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Multi-principal element alloys (MPEAs) with remarkable perfor-
mances possess great potential as structural, functional, and smart
materials. However, their efficient performance-orientated design
in a wide range of compositions and types is an extremely challen-
ging issue, because of properties strongly dependent upon the
composition and composition-dominated microstructure. Here,
we propose a multistage-design approach integrating machine
learning, physical laws and a mathematical model for developing
the desired-property MPEAs in a very time-efficient way. Compared
to the existing physical model- or machine-learning-assisted mate-
rial development, the forward-and-inverse problems, including
identifying the target property and unearthing the optimal compo-
sition, can be tackled with better efficiency and higher accuracy
using our proposed avenue, which defeats the one-step
component-performance design strategy by multistage-design
coupling constraints. Furthermore, we developed a new multi-
phase MPEA at the minimal time and cost, whose high strength-
ductility synergy exceeded those of its system and subsystem
reported so far by searching for the optimal combination of phase
fraction and composition. The present work suggests that the
property-guided composition and microstructure are precisely tai-
lored through the newly built approach with significant reductions
of the development period and cost, which is readily extendable to
other multi-principal element materials.

“State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body,
College of Mechanical and Vehicle Engineering, Hunan University, Changsha,
410082, P. R. China. E-mail: fangqh1327@hnu.edu.cn

b State Key Laboratory of Powder Metallurgy, Central South University, Changsha,
410083, P. R. China

¢ Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod,
308015, Russia. E-mail: stepanov@bsu.edu.ru

 Department of Materials Science and Engineering, The University of Tennessee,
Knoxville, TN, 37996, USA

+ Electronic supplementary information (ESI) available. See DOI: 10.1039/

d1mho01912k

1 These authors contributed equally to this work.

1518 | Mater. Horiz., 2022, 9, 1518-1525

New concepts

The energy shortage and environmental pollution have been great chal-
lenges so far for human beings. Here, we report a highly effective, precise,
and environmentally friendly material design strategy through a novel
machine learning approach integrating the physical laws and a mathema-
tical model, which is successfully applied to the development of complex
multi-phase multi-principal element alloys (MPEAs), contributing to the
world’s carbon neutrality process. Here, a feasible material design avenue
is proposed by integrating machine learning, physical laws, and a
mathematical model. A newly developed MPEA with a good combination
of strength and plasticity exceeding that of its system and subsystems
reported so far is then screened and prepared within only two days. It has
been demonstrated that the efficiency and economy of the present work are
several hundred times higher than those of the existing approach. Most
importantly, the present work provides a universal framework for the precise
and rapid tailoring of the property-guided composition and microstructure,
which further broadens the applicable scope of advanced MPEAs.

Introduction

Obtaining multi-principal element alloys (MPEAs) with excel-
lent mechanical properties through traditional trial-and-error
methods is an extremely time- and cost-consuming task, owing
to the near-infinite compositional space and its impact on the
phase structures.'® Despite the involvement of multi-scale
simulation tools and high-throughput technologies,’®"? the
precise design of MPEAs with desired properties is still a
challenge due to the complicated process producing complex
and uncertain microstructures. Naturally, it is crucial to search
for an effective and accurate strategy/approach to predict the
structures/properties and design desired-performance MPEA
systems. Recently, machine learning has been actively pro-
moted for the development of phase selection, performance
prediction, and component screening in MPEAs.*™"®
theless, the conventional data-driven machine learning models
have so far neglected the physical essence of the problems and
caused less explainable and poor generalization. Indeed, the
existing machine learning models,"®"” which are still in their
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infancy for computer-aided material design, have been limited
to numerically establishing the connection between input and
output features. The deep integration of physical cognition and
machine learning has not yet been enforced for the develop-
ment of MPEAs. Here, we provide a universal multistage design
framework, by which we successfully design a new multi-phase
MPEA. Comparing the tensile properties of this MPEA with its
system and subsystems proposed in the literature, it is demon-
strated that the present MPEA possesses a superior combi-
nation of yield strength and elongation.

To develop multi-phase MPEAs with excellent properties
rapidly and accurately, a multistage design method integrating
the physical laws, a mathematical model, and machine learn-
ing is presented in Fig. 1A. Hence, two core problems should be
solved, namely, both the forward problem (FP) avenue (from
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Fig. 1 Strategy of multistage design for performance-oriented precision
design. (A) Flowchart of the optimization design in the multi-phase MPEAs
with high strength and large elongation. Several common machine learn-
ing algorithms, including K-nearest neighbors (KNN), decision tree (DT),
support vector machine (SVM), and artificial neural network (ANN), are
used to predict the phase selection of MPEAs. Here, the widely studied
physics-based features for the phase formation of MPEA are calculated as
the initial input features (a detailed description in Table S1, ESI). (B) The
comparisons of the one-step and multistage strategies in the FP and IP
avenues. The black arrows represent the process of the one-step strategy.
The colored arrows denote the process of the multistage strategy.
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the composition to desired performance) and the inverse
problem (IP) avenue (from the target performance to optimal
composition), as shown in Fig. 1B. Here, the multistage strategy
has been embedded in the FP and IP avenues, which is
composed of two parts, introducing a composition-dependent
physics feature space to predict the phase formation and a
phase-dependent mathematical model to calculate the yield
strength. In order to obtain the target performance, we can
screen out the initial composition space and then determine
the optimal composition (Fig. 1B). Compared to the results of
the one-step strategy, this work can rapidly converge in the
desired region, resulting in the reduction of the experimental
trial and error, no matter whether in the FP avenue or the IP
avenue. Thus, the current novel approach can effectively reduce
the development cycle and resource consumption in compli-
cated materials.

Experimental section
Sample preparation

Two alloys with a nominal composition of Aly3C0¢.95Cro.05-
FeMn, ,,Ni and Al 55C00 oCrFegosMng gNigg (mole fraction)
were produced by vacuum arc melting. High-purity (at least
99.5 weight percent, wt%) powders of the constitutive elements
were used as starting materials. The produced ingots had
dimensions of ~10 x 14 x 50 mm?®. The ingots were remelted
5 times to ensure the chemical homogeneity. The SEM-EDS
analysis showed that the actual chemical composition of the
alloy closely corresponded to the nominal one.

Microstructural characterization

The microstructure and phase composition of the alloys in the
as-cast condition were studied, using the X-ray diffraction
(XRD), scanning electron microscopy (SEM), and transmission
electron microscopy (TEM) techniques. The XRD analysis was
performed using a RIGAKU diffractometer and Cu Ko radiation.
The samples for the SEM observations were prepared by careful
mechanical polishing. The SEM investigations were performed
employing an FEI Quanta 300 3D and an FEI Nova NanoSEM
microscope equipped with back-scattered electron (BSE),
energy-dispersive X-ray spectrometry (EDS), and electron back-
scattered diffraction (EBSD) detectors. The EBSD phase maps
were produced, utilizing TSL OIM software. The samples for
TEM analysis were prepared by the conventional twin-jet
electro-polishing of mechanically pre-thinned to 100 pum foils,
in a mixture of 95% C,Hs;OH and 5% HCIO, at 27 V potential.
The TEM investigations were performed, employing a JEOL
JEM-2100 microscope equipped with an EDS detector at an
accelerating voltage of 200 kV.

Mechanical testing

Tensile mechanical tests were performed, utilizing an Instron
5882 machine. Dog-bone specimens with gauge dimensions of
1.5 x 3 x 5 mm” for testing were cut using an electric discharge
machine. Prior to testing, the specimens were carefully
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mechanically polished. Tensile testing to fracture was carried
out at an initial strain rate of 10~ s~'. Elongation to fracture
was determined by a VIC-3D system. 3 tests were performed to
ensure the consistency of the results.

Mathematical modeling

Mathematical modeling is a very important bridge to relate the
fundamental material properties to the macroscopic material
behaviors. Here, the fundamental properties (such as composi-
tion and elastic moduli) are connected to the specific mechan-
isms of deformation (such as dislocation slip and phase
structure), which then collectively determine the macroscopic
properties (such as strength and strain hardening). In MPEAs,
the yield strengths can be composed of grain-boundary
strengthening and lattice-friction stress. The grain-boundary
strengthening in MPEAs is supposed to be similar to that in
traditional alloys.'® However, the lattice-friction stress in
MPEAs is significantly different from that in traditional alloys,
owing to their intrinsic multi-principal characteristics. Here, we
utilize the lattice-distortion-introduced stress originating from
the atomic difference between various multi-principal elements
in MPEAs to replace the sum of the solid-solution strengthen-
ing and lattice-friction stress in traditional alloys, owing to the
fact that there is no definite distinction between the solute and
solution in MPEAs. It is noted that the present model contains
no fitting parameters. The computed inputs are the composi-
tions and phase structures of the MPEAs, where the former is
the inherent feature of materials, and the latter can be obtained
by the machine learning approach. The detailed calculation
description of yield strength is provided in Supplementary Text
S1 (ESIt) ‘“Yield strength of MPEAs”. Here, the proposed
mathematical model can directly calculate the yield strength
of single-phase MPEAs. For the dual-phase MPEAs, their yield
strength is predicted through the mixing theory, which needs
the phase volume fraction calculated based on the constructed
“composition-FCC/BCC volume fraction” model by machine
learning (Supplementary Text S2, ESIT).

Data collection

The initial “composition-phase structure” data set is built by
collecting the available experimental results in the previous
literature (a detailed alloy composition and the corresponding
source in Data S1, ESIt), including 325 entries with some
common MPEA systems, such as Al-Fe-Co-Cr-Ni-Mn, Co-Cr-
Fe-Ni, and Mo-Nb-Ta-V-Zr. Furthermore, considering that
these process parameters have a significant influence on the
microstructure and properties, the MPEAs collected in the
initial data set were all prepared by arc melting to prevent
measurement differences. The data set includes three MPEA
phase structures (BCC, BCC + FCC, and FCC). Because there are
few HCP MPEAs so far, the HCP MPEAs are excluded to avoid
unbalanced data distribution. In addition, to ensure the relia-
bility of the data set and improve the accuracy and efficiency of
the machine learning model, data cleaning is a critical step
before using machine learning algorithms. The basic guideline
is that each MPEA composition corresponds to a unique phase
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and each item appears only once. Besides, all of the entries with
the same composition yet different phase structures induced by
the variation of the process parameters need to be excluded
because the accuracy of these data cannot be figured out.
Meanwhile, some obvious outlier entries are removed by obser-
ving the distribution of the input features (see the detailed
description of the input features in the Data analysis section).
After data cleaning, the final data set for phase prediction is
composed of 266 entries with 103 BCC, 61 FCC and 102 BCC +
FCC phases (Data S2, ESIY).

Machine learning algorithm

The performance of the four machine learning algorithms,
including the KNN algorithm, DT algorithm, SVM algorithm,
and ANN algorithm, are evaluated in the current work. In order
to protect against the over-fitting issue when using machine
learning algorithms, the five-folds cross-validation method is
used for the KNN, DT, and SVM algorithms while an early-
stopping strategy is adopted for the ANN algorithm. The
descriptions of these machine learning algorithms, five-folds
cross-validation method and early-stopping strategy are elabo-
rated in Supplementary Text S1 (ESIf) “Machine learning
algorithm”.

Results and discussion
Data analysis

Before the implementation of the machine learning algorithms,
it is critical to determine the appropriate descriptors as the
input features. Apparently, it is unreasonable to use the ele-
ments and corresponding composition fraction as descriptors
because of the unpredictable dimensional disaster and exces-
sive computation. Luckily, Hume-Rothery rules'® denote that
some physical features, such as the valence electron concen-
tration (VEC), mixing entropy (ASpx), mixing enthalpy (AHy;y),
atomic-size difference (0) and electronegativity difference (Ay),
are closely related to the phase formation of MPEAs. Based on
the previous work, some other important physics features, such
as thermodynamics features®® (average melting temperature
Tm, and thermal stability parameters Q), atomic features®® (),
physical properties (elastic modulus E, bulk modulus B, and
alloy density p) and hybrid features®® (1), are adopted as the
input features to expand the parameter space. The detailed
description and formula of the twelve physical features are
presented in Table S1 (ESIt). Subsequently, the values of the
features are normalized to (0,1): (i) each individual feature has
the same numerical scale; (ii) all features are treated equally.
Furthermore, the t-stochastic neighbor embedding (t-SNE)
method>* is used to investigate the feature distribution of the
whole sample in two dimensions, as shown in Fig. 2 (the
detailed data corresponding to each MPEA in Data S3, ESIf).
The original data distribution can be presented in Fig. S1
(ESIY). There are two advantages of choosing the t-SNE method
for data analysis: (i) converting the high dimension data into
low dimension space makes the data distribution be better

This journal is © The Royal Society of Chemistry 2022
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Fig. 2 Feature distribution of the 266 samples in two-dimensional spaces
via t-SNE.

visualized, and each axis does not need to be given a clear
physical meaning; (ii) original information of the high dimen-
sional feature space can be maintained. Here, there are some
BCC alloys far away from other materials (the top right of
Fig. 2), which are mainly refractory MPEAs, such as Nb-Ta-
Ti-V, Hf-Nb-Ta-Zr, and Mo-Nb-Ta-Ti-Zr systems. For the
MPEAs lacking the refractory elements, such as Cr-Co-Fe-Ni
and Cu-Al-Cr-Co-Fe-Ni systems, they mainly locate at the left
region of Fig. 2. Furthermore, although the distributions of the
BCC and FCC phases are obviously separated, the samples of
the BCC + FCC phases are significantly entangled with them.
This trend indicates that the feature information of them in
origin high dimension space is similar. Therefore, using
empirical rules to identify the phase selection is difficult.
Accordingly, in this work, a machine learning model with high
efficiency and accuracy is developed to search for the nonlinear
mapping that distinguishes the feature distribution of various
phases. Moreover, in view of the small data size, the current
machine learning model could predict accurately the phases of
MPEAs, which are limited in the initial data set.

Phase prediction

In order to obtain the optimal features of phase predictions,
removing less important features can perform more reliably in
classification tasks while decreasing the size of the machine
learning models. Here, a feature engineering scheme combined
with correlation analysis with physical knowledge is used to
search for an optimal number of features and reduce the size of
the feature space. Fig. 3A shows the Pearson correlation
coefficient®® matrices for every possible input feature pair
obtained from 12 features. Less than 10% of features have
absolute values of correlation coefficients larger than 0.8
(Fig. 3A), confirming the relatively small redundancy. Further-
more, the physics information of the features is mined to
reduce the size of the feature space to an optimal number of
the correlated features (Fig. 3B). Thus, the original 12 features
are converted to the 9 features resulting in a smaller feature
space in the final classification process. Importantly, a more
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robust machine learning model can be generated by decreasing
the number of features.

To select the best machine learning algorithm for phase
predictions, various machine learning models are evaluated
(performance of the machine learning algorithm in Supple-
mentary Text S3, ESIt). Here, the accuracy values of KNN, SVM,
and DT are the average of five testing results, and the accuracy
of ANN represents the average of the training, validation and
testing data set, i.e., the average of the entire data set. Fig. 3C
indicates the comparison of the accuracy, and ANN is of
potential interest for prediction performance. Meanwhile, the
proposed feature engineering scheme significantly enhances
the efficiency of the model without sacrificing the prediction
accuracy. Moreover, for discovering the criterion on how to
confirm the phase selection, the sensitivity measures for the
BCC, BCC + FCC, and FCC structures are calculated, respec-
tively. The result of the trained ANN model for the sensitivity
measure of the feature (Fig. 3D) illustrates that the weight
coefficient of the VEC to decide the phase structure gradually
declines, accompanied by the increase of the weight coefficient
of the mixing enthalpy, which breaks the traditional rule of VEC
acting as only the high impact feature.*>*® Hence, the for-
mation mechanism of multi-phases is extremely complex, and
this result gives avenues towards the multi-mechanism criter-
ion that beats the single rule for precise structural design.

Yield strength of multi-phase MPEA

To accelerate the development of the complex materials, it is
very common to construct the correlation among the composi-
tion, microstructure, and mechanical performance.'® There-
fore, a mathematical model is established to predict the
yielding strength of the MPEA. Simultaneously, the elongation
of MPEA is obtained using the machine learning approach due
to the lack of an accurate prediction model for the ductility
(Supplementary Text S4, ESIf).

We have carefully curated literature data on the yield
strengths of a range of MPEAs with various phase structures,
including the FCC, BCC, and FCC + BCC phases. The yield
strengths of the BCC and FCC MPEAs are significantly differ-
ent, in which those of most FCC MPEAs is less than 400 MPa,
and those of most BCC MPEAs is larger than 900 MPa (Fig. 4A).
Then, the predicted strength data are compared to the experi-
mental data, and there is a fairly good agreement between the
prediction and experiment (Fig. 4A). The further statistics
indicate that the computed results with the deviation less than
3% account for 28.3%, with the deviation larger than 3% and
less than 10% represent 34%, and with the deviation larger
than 10% and less than 20% denote 30.2%. Specifically, only
7.5% of the prediction data has a deviation larger than 20%.
Furthermore, it has been confirmed that the prediction accu-
racy of this model is superior to other typical models out of
many potential candidates (Fig. 4B). This developed mathema-
tical model integrating machine learning would be efficiently
used as constraints to predict properties of hypothetical MPEAs
when applied to data-driven materials. These results illustrate
that this mathematical model possesses excellent quantitative
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predictive capability and universal applicability to compute the
yield strengths of MPEAs. Thus, the present model can be
integrated into the machine learning approach, for a further
selection of MPEAs with outstanding properties by considering
various aspects: multi-component, multi-phase, and multiple-
strengthening mechanisms.

Application of the multistage design strategy

The most important contribution of the current multistage
design approach is to deduce the accurate element composition
and phase structure. Here, the classical FeCoCrNiMn (Cantor)
system is the basic principle component, and then the intro-
duction of the Al element produces multi-phase MPEAs.””
Meanwhile, the new Al 63C00.95Crp 95FeMn, 74,Ni MPEA, having
a good combination of strength and plasticity, has been pre-
dicted through the IP avenue in Fig. 1B (Supplementary Text S2,
ESIt “Prediction of the optimal composition in the Al-Fe-Co-
Cr-Ni-Mn system”). To check the validity of the predictions,
this alloy is prepared by arc melting. From the XRD pattern of
Fig. 5A, the intensity of the peaks from the FCC and BCC phases
is similar, and the alloy is composed of both phases with the
lattice parameters of 0.361 and 0.289 nm, respectively. To
identify the crystal structures of the constitutive phases, the
EBSD analysis is performed (Fig. 5B), where the estimated
volume fractions of the FCC and BCC phases are 72% and
28%, respectively. The TEM studies are performed to analyze
the structure of the alloy at a nanoscale (Fig. 5C), where the
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existence of FCC and BCC phases is confirmed by corresponding
selected area electron diffraction patterns (#1, #2, and #3 in
Fig. 5C). This trend agrees reasonably well with the available
literature data.>”*® Finally, the chemical compositions of the
constitutive phases measured by the TEM-based EDS analysis
are presented in Table S3 (ESIt). The FCC phase has a composi-
tion close to the nominal one, and the BCC phase is enriched with
Cr and Fe and depleted of the rest of the elements. The tensile
stress-strain curve in Fig. 5D shows a high yield strength of 880
MPa, the ultimate tensile strength of 1,235 MPa, and the elonga-
tion of 12.3%. Furthermore, the experimental results suggest that
the new MPEA proposed in the current work thoroughly defeats
the properties of its existing system/subsystems and other MPEAs
reported in previous literature,”” as presented in Fig. 5E. The
experimental strength and elongation are also located in the
range of screening criteria (strength > 800 MPa and elongation
> 10%, the detailed explanation is mentioned in Supplementary
Text S2, ESIT). Therefore, a new alloy system with excellent
mechanical properties can be designed, which only takes two
days, including the prediction, preparation, characterization, and
performance test. These results imply the key role of our novel
avenue in designing high-performance MPEAs. Moreover, in order
to further demonstrate the validity comprehensively of the
proposed multistage-design approach, the Alj55C00oCr-

Feg.osMn, gNip g MPEA with suboptimum properties has been re-
selected and re-prepared. The detailed description is presented in
Supplementary Text S5 (ESIT).
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Fig. 5 Results of the validation experiment. (A) Structural and mechanical properties of the as-cast Alp 63C00.95Crg.9sFeMng74Ni MPEA: XRD pattern. (B)
EBSD phase map (the green color depicts the FCC phase, and the red denotes the BCC one). (C) TEM bright-field image with selected area electron
diffraction patterns. (D) Tensile stress—strain curve. (E) Ashby plot of elongation versus the yield strength of the Al-Co—-Cr—Fe—-Ni—Mn system, and other

MPEA systems (Table S4, ESIt).
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Comparison of the design methods

The existing one-step strategy used in desighing MPEAs usually
attempts to directly establish the relationship from the compo-
sition to performance.>®> However, this mode neglects the
complex phase structure dependent upon composition, thus
causing a significant deviation between the computed and
target performance. For example, using a one-step strategy,
the AlCoCrCuFeNi MPEA with desired performance was pre-
pared successfully at the expense of several series of experi-
mental feedbacks, due to the existence of phase transformation
with the variations in Al and Cu contents.”?® Moreover, the
precipitation strengthened copper alloys with high properties
were also obtained by the one-step strategy but were verified by
12 experiments owing to the lack of microstructure-to-
performance correlation.?® The present work introduces the
composition-dominated phase structure as the intermediary
and thus realizes the multistage strategy, integrating physics-
guided machine learning to predict phase formation, and a
microstructure-controlled mathematical model to calculate the
yield strength. Firstly, a “physics-feature-space” is constructed
to describe the phase formation of MPEAs and embed it into
machine learning. Compared to the case for the composition as
descriptors, the physical feature-constrained machine learning
model not only contributes to accurately revealing a general
criterion of phase formation (Fig. 3D) but also makes the model
explainable and universal. The classical feature engineering
method based on the Pearson coefficient for the phase predic-
tion of MPEA has been fully reported.>® Nevertheless, this
feature analysis method is one-sided because only numerical
correlations between features are assessed, causing some
potential redundant features to remain. Therefore, the
proposed feature engineering method that comprehensively
considers the Pearson coefficient and physical features
(Fig. 3B) becomes more reasonable, effectively improving the
accuracy and efficiency of the machine learning model
(Fig. 3C). The developed mathematical model considers the
extensive strengthening mechanisms, such as the grain bound-
ary strengthening, phase transformation strengthening, and
solid solution strengthening.’*** Hence, the current model is
universal for multiphase MPEAs, whose accuracy in the pre-
dicted strength is up to 90% and overmatches that of other
existing models (Fig. 4). The robust machine learning and
mathematical models are the intrinsic reason for the accuracy
of this novel approach in the FP avenue. Compared to the one-
step strategy, the multistage strategy significantly reduces the
initial composition space in the IP avenue. Subsequently, the
FP avenue is employed to compute the performance of
the initial composition space and screen out the optimal
composition based on the optimal performance, avoiding a
lot of experimental trial and errors and obtaining low cost yet
high efficiency using the multistage design strategy.

As is well-known, the high strength of the alloy most likely
stems from the multiphase microstructure (Fig. 5E). For the Al-
Co-Cr-Fe-Ni-Mn system, the combination of Al and Ni tends
to form the BCC phase because of the high formation
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enthalpy.”® With increasing the Al content, the MPEAs trans-
form from the FCC phase to the BCC + B2 phase. Thus, the
multiphase enabling strength-plasticity synergy is developed,
owing to the following reason: the FCC matrix provides a
reasonable elongation and good strain-hardening capacity,
and the BCC and B2 phases acted as hard reinforcement and
generate strong back stresses in the softer FCC phase. Our
multistage strategy can capture this rule hidden, guiding the
experimental exploration of the multi-phase MPEAs that go
beyond the limitations of the conventional alloy performance.
With respect to the cycle of the development for alloys, a
comparison with the major technologies is presented in
Fig. 6. The traditional experiments are the most time- and
cost-consuming, due to lots of trials and errors. The high-
throughput, theoretical model and simulation-assisted experi-
ments enhance efficiency (or reduce cost) to a certain extent.
This is derived from the wide composition range space and its
induced uncertainty of the microstructure. The existing design
strategy combining machine learning and experiments still
requires some trials as feedback. Here, the cost and efficiency
of the proposed approach virtually exceed those of previous
material design technologies, providing a new avenue to
simultaneously achieve rapid and accurate material design.

In the present work, we have proposed a multistage design
approach integrating machine learning, physical laws, and a
mathematical model to achieve the rapid design of the multi-
phase MPEA. Based on the proposed strategy, a new multi-
phase MPEA is developed in a very short amount of time and
low consumption. Importantly, the comprehensive mechanical
properties outperform its system and subsystems reported
previously, which achieves accurate design for MPEAs with
high strength and ductility. It is believed that the present work
provides a fundamental framework to guide the design of
advanced materials through a means of high efficiency and
low cost, helpful for reducing resource consumption.

1 O MPEA .
S .
A\ superalloys : . N *
O Mg alloys \Qur Work
() stainless steels \‘ %
/uT O Alalloys A . Zone 1
& e
® 10t High- throughput . ML + Exp. -
E + EXp p s, .A /
g ' \ Zone I
@ b Simul. + Ex
Q0 ‘ . . N -+ Exp.
(8]
= o®
LI 100 - ZonelV A. /.”
A ' ~ Zone III
Model + Exp.
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Cost (pieces)

Fig. 6 Advantages of the method. Ashby map showing efficiency as a
function of cost and time in relation to the potential material design
technologies (Table S5, ESIT). Zones -1V represent a deteriorating combi-
nation of efficiency and cost.
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