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Cohesive zone failure models are widely used to simulate fatigue crack propagation under cyclic loadings, but the
functional form of such phenomenological models does not have a strong micromechanical basis. While nu-
merical techniques have been developed to extract the crack-tip cohesive zone law for monotonic fracture from
experimental strain information, elucidating the unloading-reloading hysteresis representing accumulated and
irreversible damage under fatigue cycling is still challenging. Here, we introduce a novel field projection method
(FPM) to reconstruct the cohesive zone laws for steady-state fatigue crack growth from elastic strain field in-
formation at various loading and unloading stages within a single steady-state fatigue cycle. The method is based
on the Maxwell-Betti’s reciprocal theorem, which considers the material response to be linear elastic during
loading and unloading, albeit with a reciprocity gap to account for the inhomogeneous residual elastic strain
accumulated at the end of each fatigue cycle. Through numerical experiments, we demonstrate that this FPM is
capable of accurately extracting the crack-tip cohesive tractions and separations, along with the elusive
unloading-reloading hysteresis, which constitute the cohesive zone law for fatigue crack growth. We discuss the
errors and uncertainties associated with this inverse approach.

1. Introduction

Fatigue cracking is the most prevalent form of in-service failure for
many engineering and aerospace structures. An important characteristic
of fatigue failure is that it occurs when the cyclic peak stress is lower
than the failure stress of the material. The mechanism of fatigue crack
growth, which connects fatigue damage in the material with the crack
driving force determined from loading and geometry, occurs within a
narrow process zone ahead of the fatigue crack-tip (Gladysz & Chawla,
2020). We now have a fundamental understanding of the relationship
between fatigue damage within this narrow process zone and micro-
structure morphology (Nalla et al., 2002; De et al., 2009; Mughrabi,
2013). In polycrystalline metals, for example, fatigue damage arises
from irreversible dislocation processes at sub-grain scales near the crack-
tip that is distinct from background plasticity in the material (Przybyla
et al., 2013). Due to the highly multi-scale nature of fatigue crack
initiation and growth, predicting mesoscale fatigue quantities, such as
the crack driving force and fatigue life, from first principles remains a
challenge. Instead, fatigue crack growth prediction has mostly relied on
embedded process zone models, calibrated with top-down experiments,
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to link the microscopic damage process to the macroscopic failure
behavior (Tvergaard & Hutchinson, 1992; Hutchinson & Evans, 2000).

One of the most widely adopted embedded process zone model is the
cohesive zone law, which constitutes the relationship between cohesive-
zone tractions in equilibrium with the stress fields of the surrounding body
and the cohesive-zone separations compatible with the deformation fields
of the surrounding body (Dugdale, 1960; Barenblatt, 1962). The area
under this traction-separation relationship represents the energy release
rate (cohesive energy), which serves as a criterion for crack advance. In
modeling material fracture, the peak cohesive traction and the cohesive
energy are fitted to measurement data, while the functional form (shape)
of the cohesive zone law - linear, bilinear, trapezoidal, or exponential — is
assumed a-priori (Chen et al., 2003; Gustafson & Waas, 2009; Desai et al.,
2016; Jemblie et al., 2017; Lélias et al., 2019). Studies, however, have
shown that the shape of the cohesive zone law is indicative of different
micro-mechanisms of fracture (Li & Chandra, 2003; Olden et al., 2008;
Chew et al., 2009; Hong et al., 2009). For example, crazing-induced
ductile crack growth in polymethyl methacrylate (PMMA) resulted in a
convex-shaped cohesive zone law, while hydrogen embrittlement of high
impact polystyrene (HIPS) contributed to a concave-shaped cohesive zone
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Fig. 1. (a) Schematic of the small-scale yielding, elasto-plastic model with a cohesive interface in front of the crack tip. (b) Cyclic loading profile between Ky, and
Kmnax, With t;. denoting the simulation time between each cycle. (c) Finite element mesh of the small-scale yielding model. (d) Close-up view of the finite element
mesh, with region 0I1 (green) for extraction of elastic strain field. (e) Integration domain (R = 0R; + 0R3) within the upper-half of a highly-refined mesh near the
crack-tip for field projection. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

law (Hong et al., 2009). In the case of fatigue crack growth, the functional
form of the cohesive zone law becomes even more important since it has to
account for damage accumulation under cyclic loading (Chew, 2014).
Early studies assumed a cohesive zone law with a linear unloading-
reloading path without cyclic degradation of the stiffness, which led to
plastic shakedown after a few cycles and resulted in early crack growth
termination (de-Andrés et al., 1999). Later studies adopted cohesive zone
laws with distinctly different loading and unloading paths — by degrading
the cohesive traction and/or the cohesive and unloading stiffness with the
number of fatigue cycles—to enable simulation of subcritical crack growth
under cyclic loading (Nguyen et al., 2001; Roe & Siegmund, 2003; Maiti
et al,, 2006; Maiti & Geubelle, 2006). Ultimately, this unloading-
reloading hysteresis in the cohesive zone law was introduced to account
for the effects of dissipative mechanisms, such as plasticity-induced void
growth, crystallographic slip, mechanical rupture of inter- and intra-
granular bonds, and frictional interactions between asperities (Kanni-
nen, 1986; Gilbert et al., 1995; Chew, 2014).

Experimental techniques, such as high-resolution digital image cor-
relation (Foehring et al., 2018; VanSickle et al., 2020), and neutron and
synchrotron X-ray diffraction (Xie et al., 2021a; Xie et al., 2021b), are
now able to provide in situ, full-field deformation measurements on
microstructural length-scales. In concert, numerical approaches termed
as the field projection method (FPM) are now able to reconstruct the
crack-tip cohesive zone laws for monotonic fracture from full-field
deformation measurements in both elastic and elasto-plastic mediums
(Kim et al., 2012; Chew, 2013). However, the corresponding elasto-

plastic deformation fields near a fatigue crack tip can be far more
complicated versus those from monotonic fracture since these defor-
mation fields are history (cycle)-dependent (Rice, 1967; Tvergaard &
Hutchinson, 1992; Chew, 2014; Gao, 2016).

In this work, we extend the FPM to reconstruct the cohesive zone
laws for steady-state fatigue crack growth, using elastic strain field in-
formation at various loading and unloading stages within a single
steady-state fatigue cycle. Our FPM utilizes the Maxwell-Betti’s recip-
rocal theorem, which considers the material response to be linear elastic
during loading and unloading, but with a reciprocity gap to account for
the inhomogeneous residual elastic strain accumulated at the end of
each fatigue cycle. We demonstrate through numerical experiments that
this FPM can accurately reconstruct the cohesive zone laws for fatigue
crack growth, including its unloading-reloading hysteresis. Section 2
provides details of the numerical experiments, which are based on an
elasto-plastic, small-scale yielding model, with a pre-defined cohesive
zone law for fatigue crack growth ahead of the crack-tip, subjected to
remote mode I (Kj) cyclic loading. Section 3 describes the FPM for fa-
tigue crack growth. In Section 4, we detail the numerical results for the
extraction of the cohesive zone laws for fatigue crack growth from the
remote elastic strain fields of the small-scale yielding model using FPM,
and discuss the errors and uncertainties associated with this inverse
approach. We conclude in Section 5 with a summary.
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2. Problem formulation

While experimental techniques to measure the elastic strain fields
surrounding a fatigue crack-tip are now well established by way of
neutron and synchrotron X-ray diffraction, these experiments are still
unable to resolve the detailed traction-separation characteristics within
the tiny fracture process zone. We propose an approach termed the FPM to
reconstruct the crack-tip cohesive zone laws for fatigue from measured
experimental strain field information surrounding a propagating fatigue
crack-tip. We validate the efficacy of this approach by first performing a
forward simulation, which combines fatigue damage with a cohesive zone
model, to simulate fatigue crack growth and generate the “measured”
elastic strain fields surrounding a steady-state fatigue crack. The FPM we
propose is then used to reconstruct the cohesive zone law inversely from
these “measured” elastic strain fields, which is then validated against the
original cohesive zone law implemented in the forward simulation model.
In this section, we provide details of the forward simulation model used to
numerically generate these “measured” elastic strain fields.

2.1. Boundary value problem

Our small-scale yielding finite element model contains a semi-
infinite centerline crack in a homogeneous, elasto-plastic material,
subjected to cyclic remote mode I K-field loading (Fig. 1a). The elastic
properties of the material are denoted by Young’s modulus E and Pois-
son’s ratio v, while the plastic response is characterized by a J, flow
theory which obeys a linear hardening relationship

G, =0y, + A&’ (€D)

where o, is the von Mises stress, 6, is the initial yield stress, € is the
plastic strain, and A is the linear hardening constant. The displacements
along the remote circular boundary are prescribed by a mode I
(Kp)-controlled loading under plane strain conditions

1 R
ui(R,0) = K; v —(3—4v— cosé))cosg
E 2z 2
(2)
1 R
(R, 0) = K; J'E_ Y %(3 — 4y — cosé‘)sing

where R? = x? +x2 and 6 = tan™! (%) for points on the remote bound-

ary (Fig. 1a). We linearly increase the mode I stress intensity factor from
K; =0 to Kmax, before linearly unloading to Kmin, and subsequently
cycling K; between Ky, and Kpg until the final cycle, where we
completely unload to K; = 0 (Fig. 1b).

2.2. Cohesive zone modeling

We perform finite element simulations of the boundary value problem
(Fig. 1c-e) using the commercial finite element software, ABAQUS. To
simulate crack propagation during fatigue cycling, we implement a single
row of cohesive elements ahead of the initial crack tip, located just outside
theregion dI1 (encircled in greenin Fig. 1aand 1d). This allows us to attain
steady-state fatigue crack growth conditions once the crack propagates
through the highly refined mesh starting at x; = x, = 0 (Fig. 1e) within
OI1. The cohesive elements are governed by an irreversible cohesive zone
law with unloading-reloading hysteresis (Nguyen et al., 2001; Zheng
et al., 2011; Gao, 2016). The relationship between the normal cohesive
traction t, and the normal cohesive separation A, is

oA, A, ¢ d (A,
==n 1-=" — (=
Omax 50 exp ( 60 ) + O max dt <50 ) (3)

where omqr and §p denote the interfacial strength and characteristic
length, respectively. The second term in (3) denotes the artificial viscous
energy dissipation introduced to stabilize the numerical calculations
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during crack growth, with ¢ and t representing the viscosity parameter
and simulation time, respectively. The effects of regularization on the
simulation accuracy and ability to achieve steady-state fatigue crack
growth have been extensively studied (Gao & Bower, 2004). The
unloading-reloading hysteresis is introduced by considering the
unloading stiffness, K~, and the reloading stiffness, K*, separately,

: K A, A, <0
0 P .n7 _’I 4
! {K+An,An>o “)
with
wo (K —K’)An/ﬁu,A,, <0
K™ =25 K = . , )
A, 7K+A,,/5f,An >0

where £ and AY are the normal traction and separation at the start of the
unloading step. Thus, the unloading stiffness, K-, of each cohesive
element depends only on the unloading point (£, A%) and remains con-
stant during the unloading process, while the reloading stiffness, K+,
evolves with both the unloading and reloading process. This stiffness
evolution accounts for the hysteresis damage accumulation during fatigue
crack growth. The damage rate or crack speed, as defined by the increase
in crack length per unit time, is controlled by the length-scale parameters
8¢ and &5 in (5). We illustrate the hysteresis profile of this cohesive zone
law for fatigue crack growth in Fig. S1 of the Supplementary Materials by
tracing the evolution of the traction and separation relationship along a
fixed material point within the process zone (x2 = 0) during steady-state
fatigue crack growth. We show that a decrease in & /6o from 12.5 to 7 for
84/80 = 0.125 increases the crack speed slightly from 36 /t,. to
3.750 /teye, Where t,y denotes the characteristic time per cycle (Fig. 1b). A
further decreasein 6¢ /5y to 3 abruptly causes a three-fold jump in the crack
speed to 10.46 /t.y.. At a fixed 6¢/5y = 12.5, decreasing 6,/5o from 0.8 to
0.2 also increases the crack speed but at a relatively constant rate from
1.28 69 /tcyc t0 2.6 6o /tcy.. Weimplement this cohesive interface model as a
user-defined element (UEL) subroutine in ABAQUS.

Throughout this paper, we adopt the material parameters of o, /E =
0.0032 and v = 0.3 resembling those for Mg alloys (E = 100GPa, 5, =
320MPa), while we simulate the effects of linear elastic, hardening, and
perfectly plastic material responses with A/E = 1, 0.18, and 0, respectively.
The maximum and minimum stress intensities are fixed at Kinax = 3956y+/30
and Knmin = 39.50,/50, respectively, for our fatigue cycling. We adopt the
cohesive interface parameters of omw = 30y, & = 12.58), and §, =
0.12580, which allows us to attain steady-state fatigue crack growth, as
shown by the self-similar von Mises stress contours for different crack lengths
in Fig. S2 of the Supplementary Materials. Unless otherwise stated, we also
introduce a small viscosity parameter of { = 0.00150,t to stabilize the
numerical computations. Previous studies have conducted detailed analyses
of the effects of both the cohesive zone and viscosity parameters on the fa-
tigue crack growth response and the associated background plastic dissipa-
tion (Zheng et al., 2011; Gao, 2016). In the following, we seek to inversely
reconstruct the cohesive zone laws for steady-state fatigue crack growth,
together with its complex unloading-reloading hysteresis, based on elastic
strain field information within region dI1 of the finite element mesh (encir-
cled in green in Fig. 1d) at 10 different loading and unloading stages of the
final fatigue cycle (black symbols in Fig. 1b).

3. Field projection method for fatigue crack growth

Previously, we formulated a FPM to reconstruct the crack-tip cohesive
zone laws for monotonic fracture, using the initial undeformed material as
the reference configuration for zero displacements (Chew, 2013). In the case
of fatigue crack growth, the plastic strain and associated deformation fields
are strongly history dependent (Fig. S2 of the Supplementary Materials),
which complicates the cohesive zone law extraction. However, we note that
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Fig. 2. (a) Von Mises stress contours at various loading and unloading stages during the last fatigue cycle, for a linear elastic material (1/E = 1). (b) Equivalent stress
(o.) versus equivalent elastic strain (ei’) for 10 material points in (a). (¢) Equivalent stress (c,) versus equivalent strain (¢,) for 10 material points in (a), taking the
fully-unloaded material (K;/Kma = 0) at the end of the cycle as the reference configuration.

within each fatigue cycle, every (background) material point locally reaches
close to its highest equivalent (von Mises) stress state at K; = Kpqy. During
subsequent unloading to K; = K, these material points should unload
linear elastically along the same slope, E, in the absence of residual stress.
However, not all points in the background material will be loaded and
unloaded to the same extent, resulting in an inhomogeneous distribution of
elastic residual strains and stresses near the fatigue crack-tip, which cause the
unloading path to deviate from linearity.

To illustrate this, we show the von Mises stress contours at various
loading (from K to Kigyx) and unloading (from K4, to 0) stages during
the last fatigue cycle, for two extreme cases: 1/E = 1 representing a fully
elastic material in Fig. 2a, and A/E = 0 representing an elasto-fully-
plastic material in Fig. 3a. For each case, we randomly select 10 mate-
rial points (cross symbols) near the fatigue crack, and trace the rela-
tionship between its equivalent stress (o) and equivalent elastic strain
(e) in Fig. 2b and 3b. For 1/E = 0, a significant amount of residual
stress resides near the fatigue crack-tip after complete unloading to K; =
0 (Fig. 3a). The corresponding stress—strain response for the selected
material points show an initial linear decrease in o, from its maximum

value at Kyqx (cross symbols) during unloading (Fig. 3b), though not all
these material points share the same unloading path. In addition, the o,
versus ¢! response soon deviates from linearity even before K; reaches
Kmin (open circles), particularly for material points that are located at
regions of high residual stress (e.g. point 7 in Fig. 3a). Further unloading
to K; = 0 (square symbols) causes further deviation from linearity, and a
complete reversal in the unloading path is observed for material points
3, 7, 8 10 which now undergo compression. For 1/E = 1, the magnitude
of residual stress at K; = 0 is now much lower but it is still non-negligible
(Fig. 2a). The corresponding stress—strain response for the 10 material
points show the expected linear decrease of o, with e during unloading
to K; = 0. All material points appear to share the same unloading path,
though the stress state does not identically decay to 0 even when fully
unloaded (square symbols), which indicates the presence of a non-
uniform distribution of residual stress. While the material represented
by 1/E = 1 is fully-elastic, the presence of a small viscosity parameter {
used to stabilize the numerical calculations in (3) is sufficient to cause
some irreversibility, resulting in the presence of a non-zero residual
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Fig. 3. (a) Von Mises stress contours at various loading and unloading stages during the last fatigue cycle, for an elasto-fully-plastic material (A/E = 0). (b)

Equivalent stress (.) versus equivalent elastic strain (e£) for 10 material points in (a). (¢) Equivalent stress (G.) versus equivalent strain (¢.) for 10 material points in
(a), taking the fully-unloaded material (K;/Kmex = 0) at the end of the cycle as the reference configuration.

stress state. When { =0 and A/E =1 (Fig. S3 of the Supplementary
Materials), the absence of residual stress at K; = 0 allows the stress—
strain response of all material points to linearly unload to zero. Clearly,
the extent of residual stress scales with material plasticity, and our
simulation results for the hardening case of 1/E = 0.18 (Fig. S4 of the
Supplementary Materials) show a response in between those for Figs. 2
and 3. We remark that in spite of the fully linear elastic background
material response represented by { = 0 and A/E = 1, the cohesive ele-
ments allow for damage accumulation within the fracture process zone
under repeated cycling and this irreversibility is the mechanism
responsible for fatigue crack growth in our simulations.
Conventionally, the undeformed material configuration prior to fa-
tigue cycling is treated as the reference (zero stress, strain, and
displacement) state; all our stress, strain, and displacement quantities
(6, Oe, €, 91?}, ¢, 1;) thus far are based on this reference configuration.
Here, we consider the fully unloaded deformation state after the last
fatigue cycle as our new reference configuration, with corresponding
expressions for stress, strain, and displacements denoted with a ‘~’

g =l —go

accent. Based on principle of superposition, the strain in this new

reference state g; is related to the elastic strain ¢ and the residual

lj >
elastic strain &f* at K; = 0 in the last fatigue cycle, by

©

ij ij
The corresponding stress in this new reference state 6; can be
expressed as

res
ii

)

Ojj = ijkleij :O','j—G

where Cjy is the elastic stiffness tensor, and c{]f"s = Cjnigjg is the residual
stress at K; = 0. From (6) and (7), we compute the equivalent von Mises
stress (G.)-strain (¢,) relation defined in this new reference state, and
show in Fig. 2c and 3c that all material points around the fatigue crack
now follow the same linear path with stiffness E and identically unload
to zero (square symbols).

This reformulated linear elastic stress state (without residual stress)
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Fig. 4. Traction distributions along the crack face at various loading and
unloading stages (K;/Kmax), for 4/E = 1, 0.18, and 0. Solid lines: FPM results.
Dashed lines: FEM results.

permits the use of elasticity theories to reconstruct the equivalent “un-
known” traction and separation distributions (t;, A;) along the fatigue
crack (red dashed line along dR; in Fig. 1e) from the measured stress and

displacement fields S{Eiﬁﬂl} taken along the region surrounding the

process zone (blue solid line along dR; in Fig. 1e). From the Maxwell-
Betti’s reciprocal theorem

/ Eij}’liil\j das + / E,'/‘}’l,'/u\j das = / aijn,-ﬁde -+ / Gyn,ﬁ j das (8)
OR, ORy IR, 0Ry

where n; is the outward normal vector to the boundary dR = 0R; + dRy,
and S [Gij, U;] is the linear elastic fields of an auxiliary body with the
same Young’s modulus, E, and Poisson’s ratio, v, of the real body.
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Dashed lines: FEM results.

Substituting (7) in (8), we obtain

/ oy dS + / oyni;dS = Jg + / G nu; dS +/ Gyni; dS (©)
R, R, R, Ry

where Jg is the reciprocity gap

Jr = / o} 1y dV (10)
R

to account for the presence of residual stress at K; = 0. Note that Jg =0

in the absence of residual stress, as in for A/E = 1 without viscosity ef-

fects (Fig. S3 in the Supplementary Materials). Here, we select a care-

fully designed analytical auxiliary field (Chew, 2013) that has 6; =0

but ﬁj # 0 along dR; (Fig. 1e), which reduces (9) to
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Fig. 6. Traction-separation envelopes at various loading and unloading stages (K;/Kmax), for 1/E = 1, 0.18, and 0. A hysteresis cycle tracing the loading and
unloading response for a single material point along the crack front is in green. Solid lines: FPM results. Dashed lines: FEM results. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Traction-separation law for fatigue crack-growth, for /E = 1, 0.18, and
0. Solid blue lines: FPM results. Dashed red lines: FEM results. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)

/ t;dS = Jg + / (651 — oyu;)ndS 1D
OR, ORy

The displacements u; along dR, are relative to the reference config-
uration (K; = 0) at the end of the final fatigue cycle; these displacement
quantities can obtained from ¢ through the finite element derivative of
shape function (B) matrix with prescribed K-field displacement bound-
ary condition along a region OIl sufficiently far from the crack-tip
(encircled in green in Fig. 1d). We represent the cohesive tractions t;
along dR; by a Fourier series

t = iA;;sin(zknx/L) + Z":B;cos(zknx/L) 12)

k=1 k=0
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and extract the unknown Fourier coefficients (A},B.) by substituting (12)
in (11). Because of the symmetrically applied mode I loading, only the
normal (t;) tractions are of interest, and we will henceforth drop the su-
perscripts on (AL, B}). The reconstructed cohesive traction distribution
t2(>1) by this FPM is subsequently imposed along dR; of a finite element
mesh of the real-space R, along with the known (measured) displacement
boundary condition along dR; (Fig. 1e), to determine the corresponding
separation distribution Az(x;) = 2u2(x;) along dR;. We adopt a linear
elastic material model for the separation distribution calculation, albeit
with an initial stress state (imposed as a body force) to account for 05-“.
4. Results

4.1. Numerical validation

To validate the above FPM, we perform a series of numerical ex-
periments at various loading and unloading stages during the last fatigue
cycle, to inversely reconstruct the cohesive traction and separation
distributions along the crack front (dR;) from far-field information (dR2)
at a distance h = 32 §, from the crack face (Fig. 1e). As shown in Fig. S5a
of the Supplementary Materials, the traction distribution rapidly con-
verges with increasing number of Fourier terms (n). In fact, a good
approximate traction distribution profile is already attained withn = 2,
although the FPM is better able to capture the peak cohesive traction at
higher n; this inclusion of higher-order Fourier terms causes minor
spurious oscillations in the traction distributions, which we subse-
quently correct through a spline fitting as demonstrated in Fig. S5b of
the Supplementary Materials. Fig. 4 shows the cohesive traction distri-
butions t;(x;) along the crack front by FPM for three material hardening
parameters 4/E = 1, 0.18 and 0. Each of these cohesive tractions are
constructed using n = 6 terms in the Fourier series in (12). The overall t;
distributions along the crack front from FPM (solid lines) are quantita-
tively in very close agreement with finite element method (FEM) results
(dashed lines) at the peak cycle load of K; = Kyqx (black), and at the
various loading (blue) and unloading (red) stages. Results for the cor-
responding separation distributions in Fig. 5 (solid lines), based on the
field projected traction distributions, are in perfect agreement with
direct finite element calculations of the separation distributions along
the crack face (dashed lines). Increasing plasticity (i.e., decreasing 1/E)
is found to reduce the peak cohesive tractions to cause flattening of the
traction distributions, while shortening the length of the cohesive zone
as demonstrated by the more rapid decay in A, to 0 at a shorter x; /o.

Together, the above traction and separation distributions in Figs. 4
and 5 are used to construct the overall traction-separation relationship,
as depicted in Fig. 6 at various loading stages. The (t2, A) profiles at
Kmax and Kpin (K;/Kmax = 0.1) form the upper and lower envelopes over
the unloading-reloading hysteresis, and show a rapidly increasing
cohesive traction during the initial separation to attain the peak cohe-
sive strength, while undergoing a gentler post-peak softening which
reflects the gradual loss of stress-carrying capacity. The profiles of the
(t2, Az) envelopes at Kmgy and Ky for the pure elastic material (A/E =1)
generally follows the exponential cohesive zone model outlined in (3).
Unlike cohesive zone laws for monotonic fracture, cohesive zone laws
for fatigue undergo an unloading-reloading hysteresis introduced
through the unloading and reloading stiffness (K-, K*), both of which
are closely dependent on the traction state along the interface. As such,
the overall profile of the traction-separation envelope will depend on the
applied cycling loads (Kmin, Kmax), and the material response (1/E), in
addition to the cohesive parameters. As shown in Fig. 6, significant
changes in the shape of the (t3, Ay) envelopes are observed for a plas-
tically deforming material, particularly at Km» where the effects of re-
sidual stress become more prevalent. For 1/E = 0, for example, A, is
negligible at Ky since the small applied external load cannot overcome
the compressive residual stress responsible for crack closure.

We trace the t; versus A, evolution of a single material point along
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Fig. 8. Traction-separation law for fatigue crack-growth, neglecting residual stress (o’;s) contribution, for A/E = 1, 0.18, and 0. Solid blue lines: FPM results. Dashed
red lines: FEM results. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

the crack face during loading (Kyin to Kmax) and unloading (Kmax t0 Kmin)
of this single (last) fatigue cycle. The obtained unloading-reloading
hysteresis (solid green line in Fig. 6) is again in good agreement with
FEM results (dashed green line in Fig. 6). Finally, we construct the
complete loading-reloading hysteresis in Fig. 7 by tracing the unloading
and reloading paths at discrete material points along the entire crack
face. The reconstructed cohesive zone laws for fatigue from FPM (blue)
are quantitatively similar to those from FEM (red).

4.2. Residual stress effects

In our reformulation of the Maxwell-Betti’s reciprocal theorem in
(11), the effects of plasticity are manifested as an initial residual elastic
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stress in the final unloaded configuration. Thus, increasing contribution
of plasticity effects (i.e., decreasing A/E) generally increases both the
magnitude and inhomogeneity of o7 surrounding the fatigue crack-tip

(compare Figs. 2 and 3), which results in a larger reciprocity gap Jg in
(11). In Figs. S6-S8 of the Supplementary Materials, we neglect the
contributions of of* across all A/E by setting Jr = 0, and show the
traction and separation distributions along the crack front, together with
the traction-separation envelopes, by FPM. For the fully elastic case
without viscosity effects, the approach is able to reconstruct the traction
and separation distributions, along with the traction-separation enve-
lopes, with high accuracy. Increasing contribution of residual stress
arising from plasticity effects (i.e., decreasing 1/E), however, results in
significant discrepancies in the traction distributions at low K, as well as

(b)
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Fig. 9. Magnitude of the Fourier coefficients (cx) versus cycle number (N), with o7 updated at each current cycle (a), and for o7 taken at the end cycle N = 280 (b).
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Fig. 10. Magnitude of the Fourier coefficients (cx) versus the integration
domain height (h) for field projection.

the separation distributions across the range of K;. This cumulates in a
traction-separation envelope, and resulting traction-separation unloa-
ding-reloading hysteresis from FPM (blue lines, Fig. 8), that differ
significantly from the actual cohesive zone law for fatigue (dashed red
lines, Fig. 8). These results confirm that the contributions of residual
stress effects are important and have to be accounted for in our FPM.
The reconstruction of the cohesive zone law for steady-state fatigue
crack growth was performed at the final fatigue cycle, N = 280. We
have also repeated this FPM to reconstruct the tractions and separations
from field information taken at earlier cycles for A/E = 0.18, where we
completely unload K; to record oj* at each of these earlier cycles. The
reconstructed cohesive zone laws are found to be nearly identical to the
ones exacted at the final fatigue cycle, as shown by the quantitatively

similar magnitude of the Fourier coefficients ¢, = 1/AZ + B2 for Fourier
terms up to k = 6 in Fig. 9a, which are used to construct the t, distri-
butions along the crack face. We have also attempted to use o}
measured at the final cycle N = 280 to extract the Fourier coefficients
based on deformation fields at earlier cycles (Fig. 9b). Results show a
steady increase in the errors for ¢, with increasing difference in cycle
numbers from N = 280, with most of these errors cumulating at the
lower Fourier terms. This suggests the importance of accurate of*
measurements at or close to the current cycle for extraction of the
cohesive zone law.

International Journal of Solids and Structures 239-240 (2022) 111435

4.3. Errors and uncertainties

As with all inverse approaches, the accuracy of the FPM is highly
sensitive to numerical errors and uncertainties in the input (measure-
ment) data along R, due to ill-conditioning (Chew et al., 2009; Hong
et al., 2009). The effects of ill-conditioning are further exacerbated with
increasing distance h of the measurement data along dR, from the
interrogation path along dR; representing the crack face (Fig. 1e). All of
our previous FPM results are based on a maximum n = 6 terms in the
Fourier series in (12) conducted at an integration domain height of h =
328, from the crack face. We examine in Fig. 10 the effects of increasing
h on the magnitude of each of these 6 Fourier coefficients ¢, used to
reconstruct the t, distributions along the crack face for A/E = 0.18.
Convergence of the higher Fourier terms (cs,c¢) can only be achieved for
measurement data taken up to h = 5068, from the crack face. In reality,
however, only a n =2 term extraction is necessary to reconstruct a
reasonably accurate representation of the cohesive tractions along the
crack face (Fig. S5 of the Supplementary Materials), which allows the
FPM to work even at distances beyond h = 1005, from the crack face.

The numerical errors associated with the stress and displacement
fields along dR, from FEM are relatively small compared to error noises
from experimental strain field measurements. We quantify the effects of
these measurement errors by introducing multiplicative white Gaussian
noise in our elastic strain field measurements
el =e™(1+A,)

u U

13

where ngM is the elastic strain field measurements from FEM, and A, is

the Gaussian noise (see inset in Fig. 11a). Fig. 11a shows the evolution of
the magnitude of the Fourier coefficients c, as a function of the standard
deviation s of the Gaussian noise distribution (dashed lines in inset) at
K; = Kmax for A/E = 0.18; the associated traction distributions with these
¢ values at s = 0.01, 0.025, and 0.1 are also shown in Fig. 11b. Observe
that a small standard deviation of s = 0.025 is sufficient to cause sig-
nificant deviations of even the lower k = 3 Fourier coefficient, resulting
in traction distributions (dashed lines, Fig. 11b) which do not conform
with FEM results (symbols, Fig. 11b). However, much of these errors can
be corrected with an equilibrium field regularization algorithm (Hong
et al., 2009; Chew et al., 2009) prior to performing the inverse analysis
(solid lines in Fig. 11), even with high levels of Gaussian noise (s = 0.1).

5. Concluding remarks
In summary, we have successfully developed a new FPM to recon-

struct the cohesive traction-separation envelope, as well as the unloa-
ding-reloading hysteresis, for a growing fatigue crack, based on far-field
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Fig. 11. Magnitude of the Fourier coefficients (c) versus the standard deviation (s) of the Gaussian noise distribution (a), with associated traction distributions (b)
constructed from c, with n = 6 Fourier terms. Dashed lines: original solution. Solid lines: filtered solution with equilibrium field regularization (FR). Symbols in (b)

for s = 0: FEM results.
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deformation information at different loading and unloading stages
within a single fatigue cycle. This inverse approach treats the fully-
unloaded configuration at the current fatigue cycle as the reference
state, which achieves two main purposes: (a) all deformation response
relative to this reference state within the current fatigue cycle follows
linear elasticity, and (b) the history-dependent plasticity effects are now
manifested as an initial elastic residual stress. This permits the use of the
Maxwell-Betti’s reciprocal theorem, albeit with a reciprocity gap to
account for residual stress effects, to relate the cohesive tractions along
the crack front to the far-field stresses and displacements.

Our numerical experiments demonstrate the high accuracy of this
FPM in reconstructing the crack-tip cohesive zone laws for fatigue, even
when the material undergoes severe plastic deformation. Through
quantitative error analyses, we have mapped a parameter space where
the cohesive tractions can be accurately inferred from FPM. Ultimately,
the extraction of the full functional form of the traction-separation
envelop, as well as the unloading-reloading hysteresis pathways by
FPM, provides top-down mechanistic insights into the complex process
zone characteristics during fatigue cycling. This FPM complements the
array of numerical tools previously developed to elucidate the func-
tional forms of cohesive zone laws for monotonic fracture (Chew et al.,
2009; Hong et al., 2009; Kim et al., 2012; Chew, 2013, 2014). In concert
with neutron and synchrotron X-ray measurements, the approach is
currently used to reconstruct mechanistic-based cohesive zone laws for
fatigue crack growth in highly-textured Mg alloys.
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