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A B S T R A C T   

Cohesive zone failure models are widely used to simulate fatigue crack propagation under cyclic loadings, but the 
functional form of such phenomenological models does not have a strong micromechanical basis. While nu
merical techniques have been developed to extract the crack-tip cohesive zone law for monotonic fracture from 
experimental strain information, elucidating the unloading-reloading hysteresis representing accumulated and 
irreversible damage under fatigue cycling is still challenging. Here, we introduce a novel field projection method 
(FPM) to reconstruct the cohesive zone laws for steady-state fatigue crack growth from elastic strain field in
formation at various loading and unloading stages within a single steady-state fatigue cycle. The method is based 
on the Maxwell-Betti’s reciprocal theorem, which considers the material response to be linear elastic during 
loading and unloading, albeit with a reciprocity gap to account for the inhomogeneous residual elastic strain 
accumulated at the end of each fatigue cycle. Through numerical experiments, we demonstrate that this FPM is 
capable of accurately extracting the crack-tip cohesive tractions and separations, along with the elusive 
unloading-reloading hysteresis, which constitute the cohesive zone law for fatigue crack growth. We discuss the 
errors and uncertainties associated with this inverse approach.   

1. Introduction 

Fatigue cracking is the most prevalent form of in-service failure for 
many engineering and aerospace structures. An important characteristic 
of fatigue failure is that it occurs when the cyclic peak stress is lower 
than the failure stress of the material. The mechanism of fatigue crack 
growth, which connects fatigue damage in the material with the crack 
driving force determined from loading and geometry, occurs within a 
narrow process zone ahead of the fatigue crack-tip (Gladysz & Chawla, 
2020). We now have a fundamental understanding of the relationship 
between fatigue damage within this narrow process zone and micro
structure morphology (Nalla et al., 2002; De et al., 2009; Mughrabi, 
2013). In polycrystalline metals, for example, fatigue damage arises 
from irreversible dislocation processes at sub-grain scales near the crack- 
tip that is distinct from background plasticity in the material (Przybyla 
et al., 2013). Due to the highly multi-scale nature of fatigue crack 
initiation and growth, predicting mesoscale fatigue quantities, such as 
the crack driving force and fatigue life, from first principles remains a 
challenge. Instead, fatigue crack growth prediction has mostly relied on 
embedded process zone models, calibrated with top-down experiments, 

to link the microscopic damage process to the macroscopic failure 
behavior (Tvergaard & Hutchinson, 1992; Hutchinson & Evans, 2000). 

One of the most widely adopted embedded process zone model is the 
cohesive zone law, which constitutes the relationship between cohesive- 
zone tractions in equilibrium with the stress fields of the surrounding body 
and the cohesive-zone separations compatible with the deformation fields 
of the surrounding body (Dugdale, 1960; Barenblatt, 1962). The area 
under this traction-separation relationship represents the energy release 
rate (cohesive energy), which serves as a criterion for crack advance. In 
modeling material fracture, the peak cohesive traction and the cohesive 
energy are fitted to measurement data, while the functional form (shape) 
of the cohesive zone law – linear, bilinear, trapezoidal, or exponential – is 
assumed a-priori (Chen et al., 2003; Gustafson & Waas, 2009; Desai et al., 
2016; Jemblie et al., 2017; Lélias et al., 2019). Studies, however, have 
shown that the shape of the cohesive zone law is indicative of different 
micro-mechanisms of fracture (Li & Chandra, 2003; Olden et al., 2008; 
Chew et al., 2009; Hong et al., 2009). For example, crazing-induced 
ductile crack growth in polymethyl methacrylate (PMMA) resulted in a 
convex-shaped cohesive zone law, while hydrogen embrittlement of high 
impact polystyrene (HIPS) contributed to a concave-shaped cohesive zone 
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law (Hong et al., 2009). In the case of fatigue crack growth, the functional 
form of the cohesive zone law becomes even more important since it has to 
account for damage accumulation under cyclic loading (Chew, 2014). 
Early studies assumed a cohesive zone law with a linear unloading- 
reloading path without cyclic degradation of the stiffness, which led to 
plastic shakedown after a few cycles and resulted in early crack growth 
termination (de-Andrés et al., 1999). Later studies adopted cohesive zone 
laws with distinctly different loading and unloading paths – by degrading 
the cohesive traction and/or the cohesive and unloading stiffness with the 
number of fatigue cycles – to enable simulation of subcritical crack growth 
under cyclic loading (Nguyen et al., 2001; Roe & Siegmund, 2003; Maiti 
et al., 2006; Maiti & Geubelle, 2006). Ultimately, this unloading- 
reloading hysteresis in the cohesive zone law was introduced to account 
for the effects of dissipative mechanisms, such as plasticity-induced void 
growth, crystallographic slip, mechanical rupture of inter- and intra- 
granular bonds, and frictional interactions between asperities (Kanni
nen, 1986; Gilbert et al., 1995; Chew, 2014). 

Experimental techniques, such as high-resolution digital image cor
relation (Foehring et al., 2018; VanSickle et al., 2020), and neutron and 
synchrotron X-ray diffraction (Xie et al., 2021a; Xie et al., 2021b), are 
now able to provide in situ, full-field deformation measurements on 
microstructural length-scales. In concert, numerical approaches termed 
as the field projection method (FPM) are now able to reconstruct the 
crack-tip cohesive zone laws for monotonic fracture from full-field 
deformation measurements in both elastic and elasto-plastic mediums 
(Kim et al., 2012; Chew, 2013). However, the corresponding elasto- 

plastic deformation fields near a fatigue crack tip can be far more 
complicated versus those from monotonic fracture since these defor
mation fields are history (cycle)-dependent (Rice, 1967; Tvergaard & 
Hutchinson, 1992; Chew, 2014; Gao, 2016). 

In this work, we extend the FPM to reconstruct the cohesive zone 
laws for steady-state fatigue crack growth, using elastic strain field in
formation at various loading and unloading stages within a single 
steady-state fatigue cycle. Our FPM utilizes the Maxwell-Betti’s recip
rocal theorem, which considers the material response to be linear elastic 
during loading and unloading, but with a reciprocity gap to account for 
the inhomogeneous residual elastic strain accumulated at the end of 
each fatigue cycle. We demonstrate through numerical experiments that 
this FPM can accurately reconstruct the cohesive zone laws for fatigue 
crack growth, including its unloading–reloading hysteresis. Section 2 
provides details of the numerical experiments, which are based on an 
elasto-plastic, small-scale yielding model, with a pre-defined cohesive 
zone law for fatigue crack growth ahead of the crack-tip, subjected to 
remote mode I (KI) cyclic loading. Section 3 describes the FPM for fa
tigue crack growth. In Section 4, we detail the numerical results for the 
extraction of the cohesive zone laws for fatigue crack growth from the 
remote elastic strain fields of the small-scale yielding model using FPM, 
and discuss the errors and uncertainties associated with this inverse 
approach. We conclude in Section 5 with a summary. 

Fig. 1. (a) Schematic of the small-scale yielding, elasto-plastic model with a cohesive interface in front of the crack tip. (b) Cyclic loading profile between Kmin and 
Kmax, with tcyc denoting the simulation time between each cycle. (c) Finite element mesh of the small-scale yielding model. (d) Close-up view of the finite element 
mesh, with region ∂Π (green) for extraction of elastic strain field. (e) Integration domain (∂R = ∂R1 + ∂R2) within the upper-half of a highly-refined mesh near the 
crack-tip for field projection. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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2. Problem formulation 

While experimental techniques to measure the elastic strain fields 
surrounding a fatigue crack-tip are now well established by way of 
neutron and synchrotron X-ray diffraction, these experiments are still 
unable to resolve the detailed traction-separation characteristics within 
the tiny fracture process zone. We propose an approach termed the FPM to 
reconstruct the crack-tip cohesive zone laws for fatigue from measured 
experimental strain field information surrounding a propagating fatigue 
crack-tip. We validate the efficacy of this approach by first performing a 
forward simulation, which combines fatigue damage with a cohesive zone 
model, to simulate fatigue crack growth and generate the “measured” 
elastic strain fields surrounding a steady-state fatigue crack. The FPM we 
propose is then used to reconstruct the cohesive zone law inversely from 
these “measured” elastic strain fields, which is then validated against the 
original cohesive zone law implemented in the forward simulation model. 
In this section, we provide details of the forward simulation model used to 
numerically generate these “measured” elastic strain fields. 

2.1. Boundary value problem 

Our small-scale yielding finite element model contains a semi- 
infinite centerline crack in a homogeneous, elasto-plastic material, 
subjected to cyclic remote mode I K-field loading (Fig. 1a). The elastic 
properties of the material are denoted by Young’s modulus E and Pois
son’s ratio ν, while the plastic response is characterized by a J2 flow 
theory which obeys a linear hardening relationship 

σe = σy + λεp (1)  

where σe is the von Mises stress, σy is the initial yield stress, εp is the 
plastic strain, and λ is the linear hardening constant. The displacements 
along the remote circular boundary are prescribed by a mode I 
(KI)-controlled loading under plane strain conditions 

u1(R, θ) = KI
1 + ν

E

̅̅̅̅̅
R
2π

√

(3 − 4ν − cosθ)cos
θ
2

u2(R, θ) = KI
1 + ν

E

̅̅̅̅̅
R
2π

√

(3 − 4ν − cosθ)sin
θ
2

(2)  

where R2 = x2
1 +x2

2 and θ = tan− 1
(

x2
x1

)

for points on the remote bound

ary (Fig. 1a). We linearly increase the mode I stress intensity factor from 
KI = 0 to Kmax, before linearly unloading to Kmin, and subsequently 
cycling KI between Kmin and Kmax until the final cycle, where we 
completely unload to KI = 0 (Fig. 1b). 

2.2. Cohesive zone modeling 

We perform finite element simulations of the boundary value problem 
(Fig. 1c-e) using the commercial finite element software, ABAQUS. To 
simulate crack propagation during fatigue cycling, we implement a single 
row of cohesive elements ahead of the initial crack tip, located just outside 
the region ∂Π (encircled in green in Fig. 1a and 1d). This allows us to attain 
steady-state fatigue crack growth conditions once the crack propagates 
through the highly refined mesh starting at x1 = x2 = 0 (Fig. 1e) within 
∂Π. The cohesive elements are governed by an irreversible cohesive zone 
law with unloading–reloading hysteresis (Nguyen et al., 2001; Zheng 
et al., 2011; Gao, 2016). The relationship between the normal cohesive 
traction tn and the normal cohesive separation Δn is 

tn

σmax
=

Δn

δ0
exp

(

1 −
Δn

δ0

)

+
ζ

σmax

d
dt

(
Δn

δ0

)

(3)  

where σmax and δ0 denote the interfacial strength and characteristic 
length, respectively. The second term in (3) denotes the artificial viscous 
energy dissipation introduced to stabilize the numerical calculations 

during crack growth, with ζ and t representing the viscosity parameter 
and simulation time, respectively. The effects of regularization on the 
simulation accuracy and ability to achieve steady-state fatigue crack 
growth have been extensively studied (Gao & Bower, 2004). The 
unloading–reloading hysteresis is introduced by considering the 
unloading stiffness, K− , and the reloading stiffness, K+, separately, 

ṫn =

{

K − Δ̇n, Δ̇n < 0
K+Δ̇n, Δ̇n > 0

(4) 

with 

K − =
tul
n

Δul
n
, K̇+

=

{
(K+ − K − )Δ̇n

/
δa, Δ̇n < 0

− K+Δ̇n

/
δf , Δ̇n > 0

(5)  

where tul
n and Δul

n are the normal traction and separation at the start of the 
unloading step. Thus, the unloading stiffness, K− , of each cohesive 
element depends only on the unloading point (tul

n , Δul
n ) and remains con

stant during the unloading process, while the reloading stiffness, K+, 
evolves with both the unloading and reloading process. This stiffness 
evolution accounts for the hysteresis damage accumulation during fatigue 
crack growth. The damage rate or crack speed, as defined by the increase 
in crack length per unit time, is controlled by the length-scale parameters 
δa and δf in (5). We illustrate the hysteresis profile of this cohesive zone 
law for fatigue crack growth in Fig. S1 of the Supplementary Materials by 
tracing the evolution of the traction and separation relationship along a 
fixed material point within the process zone (x2 = 0) during steady-state 
fatigue crack growth. We show that a decrease in δf/δ0 from 12.5 to 7 for 
δa/δ0 = 0.125 increases the crack speed slightly from 3δ0/tcyc to 
3.7δ0/tcyc, where tcyc denotes the characteristic time per cycle (Fig. 1b). A 
further decrease in δf/δ0 to 3 abruptly causes a three-fold jump in the crack 
speed to 10.4δ0/tcyc. At a fixed δf/δ0 = 12.5, decreasing δa/δ0 from 0.8 to 
0.2 also increases the crack speed but at a relatively constant rate from 
1.28 δ0/tcyc to 2.6 δ0/tcyc. We implement this cohesive interface model as a 
user-defined element (UEL) subroutine in ABAQUS. 

Throughout this paper, we adopt the material parameters of σy/E =

0.0032 and ν = 0.3 resembling those for Mg alloys (E = 100GPa, σy =

320MPa), while we simulate the effects of linear elastic, hardening, and 
perfectly plastic material responses with λ/E = 1, 0.18, and 0, respectively. 
The maximum and minimum stress intensities are fixed at Kmax = 395σy

̅̅̅̅̅
δ0

√

and Kmin = 39.5σy
̅̅̅̅̅
δ0

√
, respectively, for our fatigue cycling. We adopt the 

cohesive interface parameters of σmax = 3σy, δf = 12.5δ0, and δa =

0.125δ0, which allows us to attain steady-state fatigue crack growth, as 
shown by the self-similar von Mises stress contours for different crack lengths 
in Fig. S2 of the Supplementary Materials. Unless otherwise stated, we also 
introduce a small viscosity parameter of ζ = 0.0015σytcyc to stabilize the 
numerical computations. Previous studies have conducted detailed analyses 
of the effects of both the cohesive zone and viscosity parameters on the fa
tigue crack growth response and the associated background plastic dissipa
tion (Zheng et al., 2011; Gao, 2016). In the following, we seek to inversely 
reconstruct the cohesive zone laws for steady-state fatigue crack growth, 
together with its complex unloading–reloading hysteresis, based on elastic 
strain field information within region ∂Π of the finite element mesh (encir
cled in green in Fig. 1d) at 10 different loading and unloading stages of the 
final fatigue cycle (black symbols in Fig. 1b). 

3. Field projection method for fatigue crack growth 

Previously, we formulated a FPM to reconstruct the crack-tip cohesive 
zone laws for monotonic fracture, using the initial undeformed material as 
the reference configuration for zero displacements (Chew, 2013). In the case 
of fatigue crack growth, the plastic strain and associated deformation fields 
are strongly history dependent (Fig. S2 of the Supplementary Materials), 
which complicates the cohesive zone law extraction. However, we note that 
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within each fatigue cycle, every (background) material point locally reaches 
close to its highest equivalent (von Mises) stress state at KI = Kmax. During 
subsequent unloading to KI = Kmin, these material points should unload 
linear elastically along the same slope, E, in the absence of residual stress. 
However, not all points in the background material will be loaded and 
unloaded to the same extent, resulting in an inhomogeneous distribution of 
elastic residual strains and stresses near the fatigue crack-tip, which cause the 
unloading path to deviate from linearity. 

To illustrate this, we show the von Mises stress contours at various 
loading (from Kmin to Kmax) and unloading (from Kmax to 0) stages during 
the last fatigue cycle, for two extreme cases: λ/E = 1 representing a fully 
elastic material in Fig. 2a, and λ/E = 0 representing an elasto-fully- 
plastic material in Fig. 3a. For each case, we randomly select 10 mate
rial points (cross symbols) near the fatigue crack, and trace the rela
tionship between its equivalent stress (σe) and equivalent elastic strain 
(εel

e ) in Fig. 2b and 3b. For λ/E = 0, a significant amount of residual 
stress resides near the fatigue crack-tip after complete unloading to KI =

0 (Fig. 3a). The corresponding stress–strain response for the selected 
material points show an initial linear decrease in σe from its maximum 

value at Kmax (cross symbols) during unloading (Fig. 3b), though not all 
these material points share the same unloading path. In addition, the σe 

versus εel
e response soon deviates from linearity even before KI reaches 

Kmin (open circles), particularly for material points that are located at 
regions of high residual stress (e.g. point 7 in Fig. 3a). Further unloading 
to KI = 0 (square symbols) causes further deviation from linearity, and a 
complete reversal in the unloading path is observed for material points 
3, 7, 8 10 which now undergo compression. For λ/E = 1, the magnitude 
of residual stress at KI = 0 is now much lower but it is still non-negligible 
(Fig. 2a). The corresponding stress–strain response for the 10 material 
points show the expected linear decrease of σe with εel

e during unloading 
to KI = 0. All material points appear to share the same unloading path, 
though the stress state does not identically decay to 0 even when fully 
unloaded (square symbols), which indicates the presence of a non- 
uniform distribution of residual stress. While the material represented 
by λ/E = 1 is fully-elastic, the presence of a small viscosity parameter ζ 
used to stabilize the numerical calculations in (3) is sufficient to cause 
some irreversibility, resulting in the presence of a non-zero residual 

Fig. 2. (a) Von Mises stress contours at various loading and unloading stages during the last fatigue cycle, for a linear elastic material (λ/E = 1). (b) Equivalent stress 
(σe) versus equivalent elastic strain (εel

e ) for 10 material points in (a). (c) Equivalent stress (σ̃e) versus equivalent strain (ε̃e) for 10 material points in (a), taking the 
fully-unloaded material (KI/Kmax = 0) at the end of the cycle as the reference configuration. 
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stress state. When ζ = 0 and λ/E = 1 (Fig. S3 of the Supplementary 
Materials), the absence of residual stress at KI = 0 allows the stress–
strain response of all material points to linearly unload to zero. Clearly, 
the extent of residual stress scales with material plasticity, and our 
simulation results for the hardening case of λ/E = 0.18 (Fig. S4 of the 
Supplementary Materials) show a response in between those for Figs. 2 
and 3. We remark that in spite of the fully linear elastic background 
material response represented by ζ = 0 and λ/E = 1, the cohesive ele
ments allow for damage accumulation within the fracture process zone 
under repeated cycling and this irreversibility is the mechanism 
responsible for fatigue crack growth in our simulations. 

Conventionally, the undeformed material configuration prior to fa
tigue cycling is treated as the reference (zero stress, strain, and 
displacement) state; all our stress, strain, and displacement quantities 
(σij, σe, εij, εel

ij , εel
e , ui) thus far are based on this reference configuration. 

Here, we consider the fully unloaded deformation state after the last 
fatigue cycle as our new reference configuration, with corresponding 
expressions for stress, strain, and displacements denoted with a ‘~’ 

accent. Based on principle of superposition, the strain in this new 
reference state ε̃ij is related to the elastic strain εel

ij , and the residual 
elastic strain εres

ij at KI = 0 in the last fatigue cycle, by 

ε̃ij = εel
ij − εres

ij (6) 

The corresponding stress in this new reference state σ̃ij can be 
expressed as 

σ̃ij = Cijklε̃ij = σij − σres
ij (7)  

where Cijkl is the elastic stiffness tensor, and σres
ij = Cijklεres

kl is the residual 
stress at KI = 0. From (6) and (7), we compute the equivalent von Mises 
stress (σ̃e)-strain (ε̃e) relation defined in this new reference state, and 
show in Fig. 2c and 3c that all material points around the fatigue crack 
now follow the same linear path with stiffness E and identically unload 
to zero (square symbols). 

This reformulated linear elastic stress state (without residual stress) 

Fig. 3. (a) Von Mises stress contours at various loading and unloading stages during the last fatigue cycle, for an elasto-fully-plastic material (λ/E = 0). (b) 
Equivalent stress (σe) versus equivalent elastic strain (εel

e ) for 10 material points in (a). (c) Equivalent stress (σ̃e) versus equivalent strain (ε̃e) for 10 material points in 
(a), taking the fully-unloaded material (KI/Kmax = 0) at the end of the cycle as the reference configuration. 

H. Tran et al.                                                                                                                                                                                                                                    



International Journal of Solids and Structures 239-240 (2022) 111435

6

permits the use of elasticity theories to reconstruct the equivalent “un
known” traction and separation distributions (ti, Δi) along the fatigue 
crack (red dashed line along ∂R1 in Fig. 1e) from the measured stress and 

displacement fields S
[

σ̃ij, ũi

]

taken along the region surrounding the 

process zone (blue solid line along ∂R2 in Fig. 1e). From the Maxwell- 
Betti’s reciprocal theorem 
∫

∂R1

σ̃ijni ûj dS +

∫

∂R2

σ̃ijni ûj dS =

∫

∂R1

σ̂ijniũ j dS +

∫

∂R2

σ̂ijniũ j dS (8)  

where ni is the outward normal vector to the boundary ∂R = ∂R1 + ∂R2, 
and Sˆ[σ̂ij, ûi] is the linear elastic fields of an auxiliary body with the 
same Young’s modulus, E, and Poisson’s ratio, ν, of the real body. 

Substituting (7) in (8), we obtain 
∫

∂R1

σijni ûj dS +

∫

∂R2

σijni ûj dS = JR +

∫

∂R1

σ̂ ijniũj dS +

∫

∂R2

σ̂ijniũj dS (9)  

where JR is the reciprocity gap 

JR =

∫

R
σres

ij ûj,i dV (10)  

to account for the presence of residual stress at KI = 0. Note that JR = 0 
in the absence of residual stress, as in for λ/E = 1 without viscosity ef
fects (Fig. S3 in the Supplementary Materials). Here, we select a care
fully designed analytical auxiliary field (Chew, 2013) that has σ̂ij = 0 
but ûj ∕= 0 along ∂R1 (Fig. 1e), which reduces (9) to 

Fig. 4. Traction distributions along the crack face at various loading and 
unloading stages (KI/Kmax), for λ/E = 1, 0.18, and 0. Solid lines: FPM results. 
Dashed lines: FEM results. 

Fig. 5. Separation distributions along the crack face at various loading and 
unloading stages (KI/Kmax), for λ/E = 1, 0.18, and 0. Solid lines: FPM results. 
Dashed lines: FEM results. 
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Fig. 6. Traction-separation envelopes at various loading and unloading stages (KI/Kmax), for λ/E = 1, 0.18, and 0. A hysteresis cycle tracing the loading and 
unloading response for a single material point along the crack front is in green. Solid lines: FPM results. Dashed lines: FEM results. (For interpretation of the ref
erences to colour in this figure legend, the reader is referred to the web version of this article.) 
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∫

∂R1

ti ûi dS = JR +

∫

∂R2

(
σ̂ijũj − σij ûj

)
nidS (11) 

The displacements ũi along ∂R2 are relative to the reference config
uration (KI = 0) at the end of the final fatigue cycle; these displacement 
quantities can obtained from εe

ij through the finite element derivative of 
shape function (B) matrix with prescribed K-field displacement bound
ary condition along a region ∂Π sufficiently far from the crack-tip 
(encircled in green in Fig. 1d). We represent the cohesive tractions ti 
along ∂R1 by a Fourier series 

ti =
∑n

k=1
Ai

ksin(2kπx/L) +
∑n

k=0
Bi

kcos(2kπx/L) (12)  

and extract the unknown Fourier coefficients (Ai
k,B

i
k) by substituting (12) 

in (11). Because of the symmetrically applied mode I loading, only the 
normal (t2) tractions are of interest, and we will henceforth drop the su
perscripts on (Ai

k,B
i
k). The reconstructed cohesive traction distribution 

t2(x1) by this FPM is subsequently imposed along ∂R1 of a finite element 
mesh of the real-space R, along with the known (measured) displacement 
boundary condition along ∂R2 (Fig. 1e), to determine the corresponding 
separation distribution Δ2(x1) = 2u2(x1) along ∂R1. We adopt a linear 
elastic material model for the separation distribution calculation, albeit 
with an initial stress state (imposed as a body force) to account for σres

ij . 

4. Results 

4.1. Numerical validation 

To validate the above FPM, we perform a series of numerical ex
periments at various loading and unloading stages during the last fatigue 
cycle, to inversely reconstruct the cohesive traction and separation 
distributions along the crack front (∂R1) from far-field information (∂R2) 
at a distance h = 32 δ0 from the crack face (Fig. 1e). As shown in Fig. S5a 
of the Supplementary Materials, the traction distribution rapidly con
verges with increasing number of Fourier terms (n). In fact, a good 
approximate traction distribution profile is already attained with n = 2, 
although the FPM is better able to capture the peak cohesive traction at 
higher n; this inclusion of higher-order Fourier terms causes minor 
spurious oscillations in the traction distributions, which we subse
quently correct through a spline fitting as demonstrated in Fig. S5b of 
the Supplementary Materials. Fig. 4 shows the cohesive traction distri
butions t2(x1) along the crack front by FPM for three material hardening 
parameters λ/E = 1, 0.18 and 0. Each of these cohesive tractions are 
constructed using n = 6 terms in the Fourier series in (12). The overall t2 
distributions along the crack front from FPM (solid lines) are quantita
tively in very close agreement with finite element method (FEM) results 
(dashed lines) at the peak cycle load of KI = Kmax (black), and at the 
various loading (blue) and unloading (red) stages. Results for the cor
responding separation distributions in Fig. 5 (solid lines), based on the 
field projected traction distributions, are in perfect agreement with 
direct finite element calculations of the separation distributions along 
the crack face (dashed lines). Increasing plasticity (i.e., decreasing λ/E) 
is found to reduce the peak cohesive tractions to cause flattening of the 
traction distributions, while shortening the length of the cohesive zone 
as demonstrated by the more rapid decay in Δ2 to 0 at a shorter x1/δ0. 

Together, the above traction and separation distributions in Figs. 4 
and 5 are used to construct the overall traction-separation relationship, 
as depicted in Fig. 6 at various loading stages. The (t2,Δ2) profiles at 
Kmax and Kmin (KI/Kmax = 0.1) form the upper and lower envelopes over 
the unloading–reloading hysteresis, and show a rapidly increasing 
cohesive traction during the initial separation to attain the peak cohe
sive strength, while undergoing a gentler post-peak softening which 
reflects the gradual loss of stress-carrying capacity. The profiles of the 
(t2,Δ2) envelopes at Kmax and Kmin for the pure elastic material (λ/E = 1) 
generally follows the exponential cohesive zone model outlined in (3). 
Unlike cohesive zone laws for monotonic fracture, cohesive zone laws 
for fatigue undergo an unloading–reloading hysteresis introduced 
through the unloading and reloading stiffness (K− , K+), both of which 
are closely dependent on the traction state along the interface. As such, 
the overall profile of the traction-separation envelope will depend on the 
applied cycling loads (Kmin, Kmax), and the material response (λ/E), in 
addition to the cohesive parameters. As shown in Fig. 6, significant 
changes in the shape of the (t2,Δ2) envelopes are observed for a plas
tically deforming material, particularly at Kmin where the effects of re
sidual stress become more prevalent. For λ/E = 0, for example, Δ2 is 
negligible at Kmin since the small applied external load cannot overcome 
the compressive residual stress responsible for crack closure. 

We trace the t2 versus Δ2 evolution of a single material point along 

Fig. 7. Traction-separation law for fatigue crack-growth, for λ/E = 1, 0.18, and 
0. Solid blue lines: FPM results. Dashed red lines: FEM results. (For interpre
tation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.) 
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the crack face during loading (Kmin to Kmax) and unloading (Kmax to Kmin) 
of this single (last) fatigue cycle. The obtained unloading–reloading 
hysteresis (solid green line in Fig. 6) is again in good agreement with 
FEM results (dashed green line in Fig. 6). Finally, we construct the 
complete loading-reloading hysteresis in Fig. 7 by tracing the unloading 
and reloading paths at discrete material points along the entire crack 
face. The reconstructed cohesive zone laws for fatigue from FPM (blue) 
are quantitatively similar to those from FEM (red). 

4.2. Residual stress effects 

In our reformulation of the Maxwell-Betti’s reciprocal theorem in 
(11), the effects of plasticity are manifested as an initial residual elastic 

stress in the final unloaded configuration. Thus, increasing contribution 
of plasticity effects (i.e., decreasing λ/E) generally increases both the 
magnitude and inhomogeneity of σres

ij surrounding the fatigue crack-tip 
(compare Figs. 2 and 3), which results in a larger reciprocity gap JR in 
(11). In Figs. S6–S8 of the Supplementary Materials, we neglect the 
contributions of σres

ij across all λ/E by setting JR = 0, and show the 
traction and separation distributions along the crack front, together with 
the traction-separation envelopes, by FPM. For the fully elastic case 
without viscosity effects, the approach is able to reconstruct the traction 
and separation distributions, along with the traction-separation enve
lopes, with high accuracy. Increasing contribution of residual stress 
arising from plasticity effects (i.e., decreasing λ/E), however, results in 
significant discrepancies in the traction distributions at low KI, as well as 

Fig. 8. Traction-separation law for fatigue crack-growth, neglecting residual stress (σres
ij ) contribution, for λ/E = 1, 0.18, and 0. Solid blue lines: FPM results. Dashed 

red lines: FEM results. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Magnitude of the Fourier coefficients (ck) versus cycle number (N), with σres
ij updated at each current cycle (a), and for σres

ij taken at the end cycle N = 280 (b).  
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the separation distributions across the range of KI. This cumulates in a 
traction-separation envelope, and resulting traction-separation unloa
ding–reloading hysteresis from FPM (blue lines, Fig. 8), that differ 
significantly from the actual cohesive zone law for fatigue (dashed red 
lines, Fig. 8). These results confirm that the contributions of residual 
stress effects are important and have to be accounted for in our FPM. 

The reconstruction of the cohesive zone law for steady-state fatigue 
crack growth was performed at the final fatigue cycle, N = 280. We 
have also repeated this FPM to reconstruct the tractions and separations 
from field information taken at earlier cycles for λ/E = 0.18, where we 
completely unload KI to record σres

ij at each of these earlier cycles. The 
reconstructed cohesive zone laws are found to be nearly identical to the 
ones exacted at the final fatigue cycle, as shown by the quantitatively 

similar magnitude of the Fourier coefficients ck =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

A2
k + B2

k

√

for Fourier 
terms up to k = 6 in Fig. 9a, which are used to construct the t2 distri
butions along the crack face. We have also attempted to use σres

ij 

measured at the final cycle N = 280 to extract the Fourier coefficients 
based on deformation fields at earlier cycles (Fig. 9b). Results show a 
steady increase in the errors for ck with increasing difference in cycle 
numbers from N = 280, with most of these errors cumulating at the 
lower Fourier terms. This suggests the importance of accurate σres

ij 

measurements at or close to the current cycle for extraction of the 
cohesive zone law. 

4.3. Errors and uncertainties 

As with all inverse approaches, the accuracy of the FPM is highly 
sensitive to numerical errors and uncertainties in the input (measure
ment) data along ∂R2 due to ill-conditioning (Chew et al., 2009; Hong 
et al., 2009). The effects of ill-conditioning are further exacerbated with 
increasing distance h of the measurement data along ∂R2 from the 
interrogation path along ∂R1 representing the crack face (Fig. 1e). All of 
our previous FPM results are based on a maximum n = 6 terms in the 
Fourier series in (12) conducted at an integration domain height of h =

32δ0 from the crack face. We examine in Fig. 10 the effects of increasing 
h on the magnitude of each of these 6 Fourier coefficients ck used to 
reconstruct the t2 distributions along the crack face for λ/E = 0.18. 
Convergence of the higher Fourier terms (c5,c6) can only be achieved for 
measurement data taken up to h = 50δ0 from the crack face. In reality, 
however, only a n = 2 term extraction is necessary to reconstruct a 
reasonably accurate representation of the cohesive tractions along the 
crack face (Fig. S5 of the Supplementary Materials), which allows the 
FPM to work even at distances beyond h = 100δ0 from the crack face. 

The numerical errors associated with the stress and displacement 
fields along ∂R2 from FEM are relatively small compared to error noises 
from experimental strain field measurements. We quantify the effects of 
these measurement errors by introducing multiplicative white Gaussian 
noise in our elastic strain field measurements 

εel
ij = εFEM

ij (1 + Δe) (13)  

where εFEM
ij is the elastic strain field measurements from FEM, and Δe is 

the Gaussian noise (see inset in Fig. 11a). Fig. 11a shows the evolution of 
the magnitude of the Fourier coefficients ck as a function of the standard 
deviation s of the Gaussian noise distribution (dashed lines in inset) at 
KI = Kmax for λ/E = 0.18; the associated traction distributions with these 
ck values at s = 0.01, 0.025, and 0.1 are also shown in Fig. 11b. Observe 
that a small standard deviation of s = 0.025 is sufficient to cause sig
nificant deviations of even the lower k = 3 Fourier coefficient, resulting 
in traction distributions (dashed lines, Fig. 11b) which do not conform 
with FEM results (symbols, Fig. 11b). However, much of these errors can 
be corrected with an equilibrium field regularization algorithm (Hong 
et al., 2009; Chew et al., 2009) prior to performing the inverse analysis 
(solid lines in Fig. 11), even with high levels of Gaussian noise (s = 0.1). 

5. Concluding remarks 

In summary, we have successfully developed a new FPM to recon
struct the cohesive traction-separation envelope, as well as the unloa
ding–reloading hysteresis, for a growing fatigue crack, based on far-field 

Fig. 11. Magnitude of the Fourier coefficients (ck) versus the standard deviation (s) of the Gaussian noise distribution (a), with associated traction distributions (b) 
constructed from ck with n = 6 Fourier terms. Dashed lines: original solution. Solid lines: filtered solution with equilibrium field regularization (FR). Symbols in (b) 
for s = 0: FEM results. 

Fig. 10. Magnitude of the Fourier coefficients (ck) versus the integration 
domain height (h) for field projection. 
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deformation information at different loading and unloading stages 
within a single fatigue cycle. This inverse approach treats the fully- 
unloaded configuration at the current fatigue cycle as the reference 
state, which achieves two main purposes: (a) all deformation response 
relative to this reference state within the current fatigue cycle follows 
linear elasticity, and (b) the history-dependent plasticity effects are now 
manifested as an initial elastic residual stress. This permits the use of the 
Maxwell-Betti’s reciprocal theorem, albeit with a reciprocity gap to 
account for residual stress effects, to relate the cohesive tractions along 
the crack front to the far-field stresses and displacements. 

Our numerical experiments demonstrate the high accuracy of this 
FPM in reconstructing the crack-tip cohesive zone laws for fatigue, even 
when the material undergoes severe plastic deformation. Through 
quantitative error analyses, we have mapped a parameter space where 
the cohesive tractions can be accurately inferred from FPM. Ultimately, 
the extraction of the full functional form of the traction-separation 
envelop, as well as the unloading–reloading hysteresis pathways by 
FPM, provides top-down mechanistic insights into the complex process 
zone characteristics during fatigue cycling. This FPM complements the 
array of numerical tools previously developed to elucidate the func
tional forms of cohesive zone laws for monotonic fracture (Chew et al., 
2009; Hong et al., 2009; Kim et al., 2012; Chew, 2013, 2014). In concert 
with neutron and synchrotron X-ray measurements, the approach is 
currently used to reconstruct mechanistic-based cohesive zone laws for 
fatigue crack growth in highly-textured Mg alloys. 
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