',‘ frontiers

in Neuroscience

ORIGINAL RESEARCH
published: 11 February 2022
doi: 10.3389/fnins.2022.831627

OPEN ACCESS

Edited by:

Birgitta Dresp-Langley,

Centre National de la Recherche
Scientifique (CNRS), France

Reviewed by:

Rongrong Liu,

Sant’Anna School of Advanced
Studies, Italy

John Mwangi Wandeto,

Dedan Kimathi University

of Technology, Kenya

*Correspondence:
Yingzi Lin
yi.lin@northeastern.edu

Specialty section:

This article was submitted to
Perception Science,

a section of the journal
Frontiers in Neuroscience

Received: 08 December 2021
Accepted: 07 January 2022
Published: 11 February 2022

Citation:

Lin'Y, Xiao Y, Wang L, Guo Y,

Zhu W, Dalip B, Kamarthi S,
Schreiber KL, Edwards RR and
Urman RD (2022) Experimental
Exploration of Objective Human Pain
Assessment Using Multimodal
Sensing Signals.

Front. Neurosci. 16:831627.

doi: 10.3389/fnins.2022.831627

Check for
updates

Experimental Exploration of
Objective Human Pain Assessment
Using Multimodal Sensing Signals

Yingzi Lin™*, Yan Xiao?, Li Wang', Yikang Guo', Wenchao Zhu', Biren Dalip’,
Sagar Kamarthi', Kristin L. Schreiber?, Robert R. Edwards? and Richard D. Urman?

" Intelligent Human Machine Systems Laboratory, College of Engineering, Northeastern University, Boston, MA,

United States, ? College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX, United States,
3 Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women'’s Hospital, Harvard University,
Boston, MA, United States

Optimization of pain assessment and treatment is an active area of research in
healthcare. The purpose of this research is to create an objective pain intensity
estimation system based on multimodal sensing signals through experimental studies.
Twenty eight healthy subjects were recruited at Northeastern University. Nine
physiological modalities were utilized in this research, namely facial expressions (FE),
electroencephalography (EEG), eye movement (EM), skin conductance (SC), and blood
volume pulse (BVP), electromyography (EMG), respiration rate (RR), skin temperature
(ST), blood pressure (BP). Statistical analysis and machine learning algorithms were
deployed to analyze the physiological data. FE, EEG, SC, BVP, and BP proved to be
able to detect different pain states from healthy subjects. Multi-modalities proved to
be promising in detecting different levels of painful states. A decision-level multi-modal
fusion also proved to be efficient and accurate in classifying painful states.

Keywords: pain measurement, sensors, physiological signals, machine learning algorithms, multi-modality
sensor fusion

INTRODUCTION

Optimization of pain assessment and treatment is an ongoing area of research in healthcare (Pathak
etal., 2018; Hohenschurz-Schmidt et al., 2020). Verbal or graphic scales for patients being evaluated
for acute or chronic pain are not usually adequate. It is well established that different person’s
experience pain differently, and their communication of their pain intensity on the verbal scale
does not easily allow healthcare providers to gauge the persons’ pain level correctly and treat
them effectively.

Providers commonly use the numeric rating scale (NRS) for pain assessment and treat the
patients on the assumption that the pain assessments are accurate (McCaffery and Beebe, 1989).
In a clinical setting, patients are asked to provide a verbal description of their pain intensity on
a 0-10 scale. Zero (0) being no pain and 10 being severe pain. Tandon et al. (2016) conducted
a study to validate a 4-point objective pain score (OPS) to evaluate acute postoperative pain and
compare it with the standard NRS. They studied a total of 1,021 paired readings of the two methods
(OPS and NRS) in 93 patients who underwent a laparotomy and used patient-controlled analgesia.
They also concluded that the OPS is desirable as it can work independently on its own as well
as alongside NRS.
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The side effects of opioids are an issue and are often
brought about after patients have been treated for chronic
pain. However, the rate of recurrence of opioid side effects
has not often been observed when dealing with acute pain. As
reported in Daoust et al. (2020), short-term incidence of opioid-
induced side effects were evaluated, which include constipation,
nausea/vomiting, dizziness, drowsiness, sweating, and weakness
in patients discharged from the emergency department (ED) with
an opioid prescription. The results showed that oral opioid side
effects are common during the short-term care of acute pain in
ED discharged patients. There are many factors to consider in a
pain study; they include age, sex, preexisting health conditions,
previous injuries, and health conditions that the patient may be
oblivious. Given that it is not possible for healthcare providers
to know the exact amount of pain that patients feel, they
use their best judgment. To optimize the accuracy of clinical
treatment by eliminating the patients’ subjectivity and minimize
the risks of putting patients in a position where they may have
to apply “guesswork,” bio-sensors are utilized and algorithms are
developed to obtain a continuous measurement of physiological
parameters for pain measurements in real-time will drastically
ease the time and workload for healthcare providers (Lin et al.,
2018; Wang et al., 2020, 2021; Yu et al., 2020a,b; Guo et al., 2021).

The clinical symptoms associated with acute pain frequently
include increased heart rate, blood pressure, respiratory rate,
shallow respiration, agitation, restlessness, facial grimace, and
splinting. The approach of patients reporting their own
pain levels to the caregiver is highly subjective, and often
inaccurate. Algorithms for objective measurement will increase
accuracy and allow healthcare providers to work with ease
and efficiency. These algorithms can utilize bio-sensors and
wearable devices to receive data from the patient (Stern et al.,
2006; Kiachele et al, 2016; Yang et al., 2017). Bio-potentials,
the electric potentials that transfer information between living
cells, can be measured and processed using electrocardiography
(ECG), electroencephalography (EEG), or electromyography
(EMG), to observe nociception and pain. When an individual’s
nociceptive threshold is met, the nociceptive flexion reflex
assesses the protective withdrawal reflex and provides a signal
(Cowen et al., 2015).

Campbell et al. (2019) used BioVid heat pain dataset to extract
a total of 155 features from three signals namely ECG, EMG,
and SC. The 155 features are related to seven properties of the
signal. The seven properties are: to (i) variability, (ii) similarity,
(iii) linearity, (iv) stationarity, (v) amplitude, (vi) entropy, and
(vii) frequency. They then used a topologically informed chart
called Mapper to visualize associations between these features.
The purpose of the work was to address the variability in the
optimal set of features used in related literature. Chu et al.
(2017) extracted 36 features from three signal modalities and then
used the genetic algorithm for feature selection and principal
component analysis (PCA) for feature reduction. Following that
they used LDA, KNN, and SVM to classify the pain intensity.

As pain sensation levels vary between individuals, Patient A
may experience very little pain while Patient B may experience
a lot of pain when equal pain intensity is being applied. In
their study of automatic pain quantification using autonomic

parameters, Walter et al. (2014) showed this to be a significant
phenomenon impacting both clinical care and pain research.
The authors gathered study participants who underwent a heat
stimulus test to demonstrate this variability in response. Eighty-
six participants between the ages of 18-35 participated in this
study. The EMG and ECG were the measured parameters for this
experiment. Participants were seated and a PATHWAY thermode
(produced by Medoc, Israel) was applied to their right arms. This
thermode was used by the researchers to apply a controlled direct
heat under 50.5°C - to avoid skin burns. The most selective
features they used were the EMG corrugator peak-to-peak,
corrugator Shannon entropy, and heart rate variability slope RR
(Walter et al., 2014). RR is the interval between successive R’s
measured from the peak of the QRS complex of the ECG wave.
Walter et al. (2014) found that the EMG features significantly
added to the quantification of pain. From their statistical analysis,
they concluded that a general feature pattern was detected, but
detection rates can be significantly improved through individual-
specific calibration.

There are various tools and methods for observing pain levels
in unconscious patients or those that simply cannot comprehend
and communicate their pain. For example, Kanji et al. (2016)
designed a prospective cohort study to test a validated pain
assessment tool, the Critical Care Pain Observation Tool (CPOT).
This tool was used to study patients with signs of delirium.
The CPOT included facial expression, body movements, muscle
tension, and compliance with a ventilator or vocalization
(Bokoch et al., 2015).

There are opportunities to develop and validate non-
intrusive methods of measuring objective pain measurements.
For example, when patients are in critical conditions, they may
not be able to communicate their discomfort effectively to their
healthcare providers. With bio-sensors, pain can be assessed
with little to no movement from patients. This is important
because patients suffering from acute pain may not be able to
move, and their pain levels may increase if they try, and the
constant changing of pain levels may lead to variation in pain
assessment. If they communicate “sometimes it feels like a 3,
sometimes it feels like a 10 on a 0-10 scale,” then the healthcare
providers will have to guess the appropriate treatment and
medication dosages. A person’s pain perception and consequent
self-rating can be controlled by coping mechanisms such as deep
breathing, meditation, or affected by previous experiences with
pain and pain tolerance. However, bio-sensors can accurately
record and interpret the pain. Designing bio-sensors and
algorithms for objective pain measurements will greatly benefit
the healthcare industry.

To help the clinicians get continuous and objective pain
assessment results, and to improve the accuracy of the
pain assessment by supplementing the traditional verbal
scale, the Continuous Objective Multimodal Pain Assessment
Sensing System (COMPASS) study was carried out which
contains nine modalities: (1) facial expressions (FE), (2)
electroencephalography (EEG), (3) eye movement (EM), (4)
skin conductance (SC), (5) blood volume pulse (BVP), (6)
electromyography (EMG), (7) respiration rate (RR), (8) skin
temperature (ST), and (9) blood pressure (BP). In the following
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sections, the nine modalities and the fusion of them are discussed.
The aim of the COMPASS is to support clinicians in their
initial pain measurements. If measurements from a single bio-
sensor turn out to be not statistically significant, clinicians can
incorporate more bio-sensors into their practice to increase the
accuracy of their observations. This technology could provide
clinicians with an efficient way of assessing pain levels and
administering treatments safely and accordingly.

The remaining of the manuscript is organized as follows:
Section “Materials and Methods” describes the materials and
methods of the study. Section “Results” shows the key
experiment results. Section “Discussion” discusses the findings
of the present study and next steps to further investigation
including potential clinical applications. Section “Conclusion”
concludes the manuscript.

MATERIALS AND METHODS
Subjects

A total of 28 healthy subjects were recruited in this research at
Northeastern University. Among them, 26 finished three repeats
of the experiment. Our data set included seven male subjects and
19 female subjects (average age = 20.7 years, SD = 2.4). None of
the subjects reported any kinds of pain before the experiment.

Apparatus

Enobio 32 (produced by Neuroelectrics, Spain) is a wireless
sensor and has 500 Hz sampling rates, which can get sufficient
information. It was used to collect EEG signal. Tobii Pro Glasses
2 (produced by Tobii, Sweden) is a mobile eye tracing sensor with
four eye tracking cameras. It was used to collect the pupillary
response data due to its high performance of eye tracking.
FlexComp Infiniti (produced by Thought Technology, Canada)
is a physiological monitoring and data acquisition sensor and can
collect several physiological data at the same time. It was used
to collect the skin conductance, electromyography, blood volume
pulse, skin temperature, and respiration rate. An Omron series
5 (Omron, Japan) was used to collect the blood pressure signal.
A built-in web camera from a Dell laptop was used to capture the
facial expression images. A verbal rating scale was used to record
the subjective ratings reported by the subjects. A Dell desktop was
used to run the data analysis.

Procedure

The study protocol was approved by Northeastern University
institutional review board (IRB), IRB #17-01-25. All subjects
were from Northeastern University recruited through flier and
social media advertisement and were provided written consent
before starting the experiment. The experiment was repeated
three times in 3 days of three different weeks for each subject
to get sufficient data and to study if there were any differences
between different days. The experimental setting is shown in
Figure 1. The experimental procedures are as follows:

(1) Sensors were set up and a recording camera was mounted
in front of the participant, at a distance of 30 cm.

Skin
Temperature
Skin
Conductance

FIGURE 1 | The experimental set up of the present pain assessment study at
the Intelligent Human-Machine Systems Lab at Northeastern University. The
locations of nine sensors attached to a participant are marked.

(a) EEG was set up on the subject’s scalp, using the 10-20
system, as shown in Figure 2.

(b) BVP was taken using FlexComp Infiniti BVP sensor
placed on the subject’s middle finger.

(c) Skin conductance was taken using FlexComp Infiniti
skin conductance sensor placed on the subject’s ring
and index fingers.

(d) EMG measures muscle response or electrical activity
in response to a nerve’s stimulation of the muscle,
which was taken using the FlexComp Infiniti EMG
sensor placed on the subject’s left forearm.

(e) Skin Temperature was taken using FlexComp Infiniti
skin temperature sensor (non-intrusive electrode)
attached to the dorsal aspect of the subject’s left hand.

(f) Respiration Rate was taken using FlexComp Infiniti
respiration rate belt placed around the circumference
of the subject’s stomach.

(g) Pupillary diameter was taken using Tobii glasses eye-
tracker.

(h) Blood pressure was taken from the subject’s left arm
using Omron series 5.

(2) The subject was asked to maintain focus on a green dot
displayed on a monitor in front of him/her.

(3) The subject was asked to relax and a 20-s recording
of all sensors was taken in the relaxed state as a
baseline measurement.

(4) The subject was asked to put his/her hand into iced water
until the experiment ended or when the subject told us he
or she cannot bear the pain.

(5) Every session (20 s), the subject was asked for his/her pain
level from 0 to 10, using the verbal rating scale (VRS), in
which 0 meant no pain and 10 meant most painful.

(6) The experiment ended after 10 sessions or any time the
subject wanted to stop.
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Nasion

Left
preauricular

FIGURE 2 | The 10-20 international system used for EEG channel location. (1) Distances between adjacent electrodes being 10 or 20% of the total front-back or left
to right distance along the skull, (2) Each site is named a letter and a number, (3) Letters F, T, C, P, and O identify the Frontal, Central, Parietal, and Occipital lobes,
respectively, (4) The numbers identify the location along the hemisphere where even numbers are to the right and odd numbers are to the left, and (5) the letter Z

identifies the electrode placed on the midline.

Right
preauricular

(7) Once the experiment was over, the subject was asked to
complete a survey with questions pertaining to the pain
experienced during the experiment.

Data Description and Pre-processing

Table 1 shows a summary of all the sensors utilized in this
research. The summary includes a brief description of the sensor,
the collection devices, and the sampling rate of each sensor. The
sampling rate of the web camera, the Enobio, the Tobii Glasses
Pro, the Thought Technology, and the Omran was 30, 500, 50,
and 2,048 Hz, respectively.

Facial expression-based pain estimation is a key part of our
system because it is real-time, convenient, non-intrusive, and
automatic. Because the videos we collected contained other parts
of the subjects’ body as well as some backgrounds that we didn’t
use, we decided to use face region detection. Since our goal is

TABLE 1 | A summary of all the sensors (description, devices, and sampling rate).

Sensor Description Device Sampling rate
FE The facial expression of Web camera 30 Hz
the subjects
EEG The brain wave of the Enobio 32 500 Hz
subjects
EM Diameter of human Tobii Glasses Pro 50 Hz
eyes
SC Conductivity of skin Thought technology 2,048 Hz
BVP Blood that passes Thought technology 2,048 Hz
through the tissues

EMG Muscle activities Thought technology 2,048 Hz

ST Temperature on skin Thought technology 2,048 Hz

RR Number of respiration Thought technology 2,048 Hz
per minute

BP Number of respiration Omron series 5 NA
per minute

to develop a real-time pain estimation system, we didn’t apply
the common face detection algorithm R-CNN (Girshick et al.,
2014) because it is computationally heavy. Instead, the Adaboost
(Schapire, 2013) algorithm is used as our face detection method
because it performs faster and can be easily applied to the real-
time scenario.

The next step is feature extraction step. In this step, we use the
facial action unit analysis. Action units (AUs) are the fundamental
actions of an individual that appears in the facial expression
and constitute the Facial Action Coding System (FACS). In our
study, we utilize the Openface 2.0 (Baltrusaitis et al., 2018) as
our tool to get the probabilities of AUs as the facial features. The
output of the Openface 2.0 is the probabilities of the 17 AUs. The

TABLE 2 | Action units provided by Openface 2.0.

AU code Description

AU 01 Inner brow raiser
AU 02 Outer brow raiser
AU 04 Brow lowerer

AU 05 Upper lid raiser
AU 06 Cheek raiser

AU 07 Lid tightener

AU 09 Nose wrinkle

AU 10 Upper lip raiser
AU 12 Lip corner puller
AU 14 Dimpler

AU 15 Lip corner depressor
AU 17 Chin raiser

AU 20 Lip stretcher

AU 23 Lip tightener

AU 25 Lips part

AU 26 Jaw drop

AU 45 Blink
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FIGURE 3 | The proposed classification tree for the three pain levels.

details are shown in Table 2. All the AUs are obtained through
a Convolutional Neural Network based face detector and facial
landmark detection algorithm. The reason why we chose the
Openface 2.0 is that it is capable of more accurate facial action
unit recognition and real-time performances.

Support Vector Machines (SVMs) were employed for
classification. SVMs have great performance in classification
since they can map the training examples onto a higher
dimensional space and then determine the optimal separate
hyperplane based on Structural Risk Minimization theory. The
extracted AUs are chosen as the input of the SVMs. To simplify
the work, all data was partitioned into three classes: baseline (B),
low pain (LP), and high pain (HP). The data labeled with ratings
from 1 to 5 were categorized as low pain. The data labeled with
ratings from 6 to 10 were categorized as high pain. A classification
tree was tried to perform the multi-classification task. We use
SVM 1 to classify the pain vs. no pain. Then SVM 2 is used to
classify low pain vs. high pain. The proposed classification tree is
shown in Figure 3.

The EEG data were filtered with a 1-50 Hz band-pass filter.
Independent Components Analysis (ICA) was used to remove the
artifacts from the raw EEG signal. Fast Fourier Transformation
(FFT) was used to convert the raw EEG signal from time-domain
to frequency domain. The pupillary diameter data was filtered
with the “pupillary velocity” method (Bergamin et al., 1998).

MATLAB and Python are used to analyze the data. For facial
expression images, Openface 2.0 is utilized as the feature extractor
and a cascade of SVMs is developed to perform the classification.

10

Pain Ratings

Day 1 Day 2 Day 3

FIGURE 4 | The subjective ratings from three repeated days of all the
subjects.

For the physiological data, an analysis of variance (ANOVA) is
used to test the null hypothesis (p < 0.05).

RESULTS

Subjective Ratings

The subjects’ pain level is recorded every 20 s during the
experiment using the VRS in three repeated experiments in
three different days. The experiment is repeated three times
for each participant to investigate whether the participants get
acclimatized to the cold pain stimulus. Figure 4 shows three
violin plots of the subjective ratings of all the subjects on three
different days. Day 1, day 2, and day 3 for each subject were
mostly from the same day in three consecutive weeks. The violin
plot of day 1 was wider in the upper part, which meant there
were more high pain scores on day 1 than on day 2 and day 3,
according to the shape of the violin plots.

Facial Expression

The response to a person’s internal emotional states, intentions
or inter-personal communications can alter his/her facial
expression. Pain measurements can be gathered using computer-
based analysis and pattern recognition software that captures
facial features and their changes.

In this section, the performance of the proposed classification
tree for the three-level pain intensity estimation is evaluated. F1
score is used as the criterion for the classification performance.
We first use the 5-folds cross-validation strategy, where all video
frames are randomly partitioned into five equal-sized subsample
sets; four of the five sets are selected as the training set and the
remaining one is selected as the testing set. The whole process is
repeated five times and then the averaged F1 score is computed
as the final performance outcome. The results are shown in
Table 3. The best performance is achieved at baseline level, with

TABLE 3 | The results of the two validation strategies for the pain
intensity estimation.

Leave one subject out
validation (F1 score %)

5-folds cross validation
(F1-score %)

Pain
intensity

73.25
61.67
69.83

58.62
47.71
51.39

Baseline
Low pain
High pain
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an F1 score of 73.25%. To further investigate the generalization
of our proposed classification tree model, we also use to leave one
subject out validation. In this process, frames from one subject are
selected as the testing set and the remaining frames are selected
as the training set. The whole process is repeated 29 times since
there are 29 subjects taking the experiment, and the final outcome
will be the averaged F1 score as well. The best results are achieved
at baseline level with an F1 score of 58.62%.

Electroencephalography

Electroencephalography is the measurement of electricity
generated by the brain. The sensor system used to measure the
activation signal includes electrodes that follow the International
10-20 system, as shown in Figure 2. After screening through a
band-pass filter, the EEG data is converted from time-domain
to frequency domain by using FFT. There are frequency
bands over the EEG frequency, namely delta (1-3 Hz), theta
(4-8 Hz), alpha (8-13 Hz), beta (13-30 Hz), and gamma
(30-50 Hz). Figure 5A shows the topographies of common
EEG artifacts, namely generic discontinuities (GD), eye blinks
(EB), horizontal eye movement (HEM), and vertical eye
movement (VEM). Figures 5B-D shows the spectral plot
and topography of the EEG signal in baseline, low pain, and
high pain states. The EEG spectral power increased around
the Parietal area over all EEG frequency bands (dof = 25,
p < 0.01). The EEG spectral power decreased around the
Central-Parietal area in alpha, beta, and gamma bands (dof = 25,
p <0.01).

Eye Movement

Eye movement and pupillary unrest can both be observed in
objective pain measurement studies as the human eye will react
when pain or discomfort is felt. Such reactions are due to
closing of the eyes, eye movement, or pupillary unrest. The
eye movement measurement system is among the simplest, as
users will wear a pair of Tobii Eyeglasses and remain still with
their eyes open. The Tobii eye tracker is designed as a pair
of glasses, with open space in place of lenses, and is applied
as a wearable sensor over the face. Users that wear eyeglasses
are allowed to wear the Tobii Eyeglasses over their eyeglasses
if preferred. Figures 6A,B show the unfiltered and filtered
pupil diameter data (mm), respectively. Figures 6C-E show the
pupil diameter of one subject in baseline, low pain, and high
pain states in three different days. ANOVA showed significant
differences between three pain states for pupil diameter (dof = 25,
p < 0.01).

Skin Conductance

Skin Conductance (SC) is the measurement of electricity
conducted by the skin. A small amount of voltage is applied
through two electrodes that are typically strapped to two fingers
of one hand, providing real-time variation in conductance. Since
skin conductance is a non-intrusive, easy-to-measure signal. It
can also be timesaving as skin conductance bio-sensors are
applied externally and can immediately gather data. Figure 7
shows the skin conductance of one subject in baseline, low pain,
and high pain states in three different days. ANOVA showed

significant differences between the three pain states for skin
conductance (dof = 25, p < 0.01).

Blood Volume Pulse

Blood Volume Pulse (BVP) bounces infrared light against a
skin surface and measures the amount of light reflected. The
amount of light reflected varies with the amount of blood that
is present in the skin — vasomotor activity and sympathetic
arousal. The peak-to-peak amplitude of the signal will vary
with respect to the changes in sympathetic arousal. Figure 8
shows the heart rate of one subject in baseline, low pain,
and high pain states in three different days. ANOVA did
not show any significant differences between the three pain
states for heart rate.

Electromyography

Electromyography is the measurement of muscle activity
accomplished by detecting and amplifying the tiny electrical
impulses that are generated as the muscle fibers contract. The
electromyograph is the sensor used to measure the activation
signal of muscles. This sensor is placed on the muscle belly with
positive and negative electrodes parallel to the muscle fibers.
Depending on the muscles under observation, the measured
EMG potentials can range between less than 50 microvolts to
within 20-30 mV. There are two measurements of EMG signals:
(1) Needle (intramuscular) EMG, and (2) Surface EMG. Our
study uses on the Surface EMG because it is the least intrusive.
Figure 9 shows the EMG of one subject in baseline, low pain, and
high pain states during three different days. ANOVA didn’t show
any significant differences between the three pain states for EMG.

Respiration Rate

The respiration sensor is an elastic medium that is sensitive to
stretch. This sensor is strapped around the subject’s chest or
abdomen. It converts contraction and expansion of the rib cage of
the abdominal region - causing rise and fall of the signal. When
a person is in pain, breathing rhythms change. This rhythm can
be controlled where the person in pain can try to find a relaxed
state of mind to heal, or it can be less controlled, leading to a
state of panic. Breathing exercises can be implemented to relieve
and/or cope with pain. Figure 10 shows the respiration rate from
one subject in baseline, low pain, and high pain states in three
different days. ANOVA didn’t show any significant differences
between the three pain states for respiration rate.

Skin Temperature

The bodys peripheral temperature, as measured on its
extremities, will vary according to the amount of blood
perfusing the skin. This, in turn, is dependent on the subject’s
state of sympathetic arousal. Changes in temperature during
pain varies by person. There is no standard threshold for every
human test subject; however, the changes in temperature vs.
time during a painful situation can provide an insight into
increasing and decreasing pain levels. Figure 11 shows the skin
conductance from one subject in baseline, low pain, and high
pain states in three different days. ANOVA showed significant
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FIGURE 5 | (A) Four common artifacts detected by the ICA. (B-D) EEG spectrum and topography in baseline, low pain, and high pain states.
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differences between three pain states for skin conductance
(dof =25, p < 0.01).

Blood Pressure

Variation in systemic blood pressure can be a manifestation
of pain response. Blood pressure sensors are typically non-
invasive as they are designed to measure systolic, diastolic, and
mean arterial pressure via the subject’s oscillating blood pressure
responses. Figure 12 shows the boxplots of the systolic and
diastolic blood pressure from all subjects over the course of
3 days. For systolic blood pressure, there was a significant increase
after the cold pain test (dof = 25, p < 0.01).

Multi-Signals Fusion at Decision Level
Based on the above results on individual signal, we came up
with a multi-signal based pain sensing system as shown in

Figure 13, the flowchart of our multi-modal with decision-
level fusion. The Genetic algorithm (GA) (Mirjalili, 2019) was
applied in the Multi-signals fusion part. The procedure of the
fusion is as follows. The fused score can be defined using the
formula:

fs =wisp +wisi+ ...+ wosg (1)

where w; represents the weights and s; represents the score
achieved from the sensor i, fori =1,2,...,9. If the difference
between the true score and fused score is more than a
specified threshold, the weights are updated by GA until the
stopping criteria is satisfied. GA is widely used as evolutionary
computation technique. A candidate in GA is called an individual
or a chromosome, which contains a set of solutions. Acting
as the biological evolution, GA begins searching from a
randomly generated chromosomes and continues to select fitter
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day 3.

FIGURE 7 | The skin conductance of one subject on three repeated days.
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chromosomes during each generation. The population which
consists of the weights w; are initialized. Then, the set will go
through the selection, crossover, and mutation processes of the
GA. In the selection part, fittest individuals are selected and
generated by the GA. In the crossover part, features of good
surviving individuals are propagated into the next population,
which will have a better fitness than the current population. The
mutation process promotes diversity in population and keeps
the GA from getting stuck in local search. In the manuscript,
the crossover rate and mutation rate were set to 0.8 and

0.02, respectively. The initial population size and maximum
iterations were set to 50.

The multi-modal is tested using different sets of parameters.
Figure 14 shows the classification performance of our dataset
using two sets of physiological modalities. The first set contains
all signals. The second set only contains EEG and FE. The
third set includes all signals but EEG and FE. When EEG and
FE are removed from the modalities, the performance of the
pain intensity estimation becomes worse than that of using
all the modalities, especially in the low pain and high pain
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intensity estimation. When only EEG and FE are used, although
it performs worse than the first set that used all signals, but
still performs better than the third set where EEG and FE are
removed, especially in the high pain intensity estimation. The
third set estimated one of the high pain level into baseline which
didn’t occur in the second set. This shows that EEG and FE have
an immediate impact on the pain intensity estimation.

DISCUSSION
Physiological Signals

In the facial expression based cold pain intensity estimation
task, we employed a cascade SVM based classification tree and
utilized the Action Unit (AU) regression values as the input.

Two validation strategies are applied to estimate the performance
of the proposed model. The results suggest that the cold pain
intensity estimation based on facial expression is a feasible task.
The best estimation performance is achieved at no pain level.
We also found that the outcome of the 5-fold cross-validation
is better than that of the one-subject-left-out validation, which
indicate that pain perception is individually different. In future
work, more data will be collected to enhance the performance of
the model. In addition, in this study we used all AU information
from the Openface software, which may have some redundancies
among them. We found that, among all AUs, the AU45, which
represents the eye blinks, has the least effect on the estimation
between pain and no pain status. However, AU4, AU9, and
AU10 had the most effect. A direction for the next steps is to
investigate the best combination of the most useful AUs and
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remove the redundant ones to better estimate the cold pain
intensity. Another step is to investigate the connection between
AU intensities and pain intensities and get the best combination
of AUs to estimate the cold pain intensity.

ANOVA showed that there are significant differences between
the pupil diameter measurement in three painful states.
Pupillary unrest can also provide a clear response to pain.
Bokoch et al. (2015) showed that pupillary unrest in the
presence of ambient light (PUAL) is a disordered changeability
that varies with light intensity. In assessing pain using the
variation coefficient of pupillary diameter, Charier et al.
(2017) explained that the sympathetic and parasympathetic
nervous systems interact within the iris. They evaluated the
basic mean pupillary diameter, how it increased during a
contraction, and pain via the NRS. Using a portable video
pupillometer, they were able to record the pupillary diameter

(PD) with 0.05 mm accuracy. They concluded that there is
clinical relevance of variation coefficient of PD (VCPD). More
accurate pain assessment can be carried out on those who are
unable to communicate.

In the present study, the EEG spectral power increased
around the Parietal area over all EEG frequency bands.
Lutzenberger et al. (1997) showed the topographic map of the
dimensional complexity of the EEG during acute pain, personal
pain, and personal stress. This study was conducted by the
authors to test the associative networks between the cortical cell
assemblies representing pain-related memories being more vivid
in subjects with chronic pain. A study by Rissacher et al. (2007)
further showed how the EEG can detect strong activity in the
brain. In their study of identifying frequency-domain features
for an EEG-based pain measurement system, they showed how
information in the frequency domain from EEG can provide
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features of pattern recognition to observe pain characteristics.
Using human test subjects during pain and control trials, they
concluded that the temporal-parietal decrease in Alpha may
index the activation of brain areas during pain.

ANOVA showed there were significant differences between
the skin conductance measurements in three painful states. For
pain assessment, attaching adherent electrodes to the subject’s
palm or hand or sole of the foot is convenient and effective.
A fast-responding conductance signal is then processed, and the
frequency of fluctuations was converted into a measured unit
(Cowen et al,, 2015). The signal was thought to be independent
of adrenergic agents, hemodynamic variability, and respiratory
rate, as sweat glands are controlled by the muscarinic receptors.
Due to the skin quality, moisture levels, and environmental
temperature, the signal could not be pain-specific (Cowen et al.,
2015). Although the signal may not be pain-specific, there is a
need to differentiate between pain and discomfort. Furthermore,

skin conductance can be used to study what is being “felt” by
patients objectively.

Skin temperature data showed significant differences in three
painful states. Kammers et al. (2011) also showed the important
connection between pain, regulation of body temperature, and
body ownership. The authors investigated whether external
manipulation of body temperature could influence body
ownership and concluded that the painful extremes of the varying
temperatures do not modulate the RHI. Skin temperature varies
based on the body’s health conditions and time of day, as well as
factors such as pain, illness, and nervous tension. Tse et al. (2016)
studied the accuracy of a hand-held infrared device for estimating
peripheral skin temperature and the detection of temperature
disparities, and infrared devices were useful tools for this purpose.

Blood pressure is another promising modality for pain
detection. There is clear evidence showing that blood pressure
readings vary with pain intensity. Scheuren et al. (2016) explained
that the numerical rating scale can be used to quantify subjective
pain intensity and pain unpleasantness. Subjects were classified
as responders and non-responders to thermal grill stimulation
based on pain intensity ratings. Responders exhibited lower
systolic and diastolic blood pressure than non-responders and
inverse linear association is observed between blood pressure and
pain intensity and unpleasantness.

Future Research Directions

Based on the strengths and limitations of the current model and
performances, we envision the following directions guiding the
next step of the research.

Multi-Modal Pain Recognition System

As pain is a continuous sensation with no fixed point of
reference, ongoing research continues to grow toward developing
systems that can continuously measure pain. Multi-modal
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FIGURE 13 | The flowchart of our decision-level multi-modal fusion [facial images (FE), electroencephalography (EEG), eye movement (EM), skin conductance (SC),
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machine learning is a fast-growing field in this research area.
Pain measurements can also be gathered using computer-
We will continue our efforts in the direction of multi-modal
pain recognition.

Pain Remote Assessment in the COVID

Novel coronavirus COVID-19 is spreading and is an urgent
threat that has sped up a shift from the traditional in-person
diagnosis to the remote assessments in many healthcare fields,
including pain intensity assessment. In order to objectively
diagnose a patients current pain intensity and fully protect
healthcare workers, remotely assessing pain intensity is a good
alternative to replace in-hospital diagnosis. Specifically, one
future research direction is to design a home-use pain diagnosis
software for patients and/or caregivers. This software works
as a personal pain diagnosis assistant for at-home use by
patients to replace unnecessary in-hospital visits and provide
accurate pain records in the past periods. It would connect with
wireless wearable sensors, monitor the patient’s physiological
signals, estimate the patient’s current pain intensity scores, and
periodically send historical records to the patient’s healthcare
workers or pain doctors.

Multidimensional Pain Representation

A one-dimensional scale on pain intensity lacks the possibility to
capture the complexity of the patient’s pain experience. In our
project, using one-dimension to represent the pain experience
could also be responsible for the limitations of the algorithms’
performances. Hence, discovering a different way to represent
and quantify the patients’ overall pain experience is one of
the future research directions. Multiple pain assessment tools
have been developed to represent the pain experience in a
multifaceted way, even though there is no consensus on multiple
dimension pain assessment in clinical use. For example, Clinically
Aligned Pain Assessment (CAPA) Tool (Topham and Drew,
2017) measures pain in five dimensions, including comfort,
change in pain, pain control, functioning, and sleep quality.
Brief Pain Inventory (BPI) Multidimensional tool (Cleeland and
Ryan, 1994) evaluates pain experience in six dimensions, such as
pain intensity, sleep, walking ability, mood, relations with others,
and ability to concentrate. Another commonly used assessment
tool, Initiative on Methods, Measurements, and Pain Assessment
in Clinical Trials IMMPACT) (Dworkin et al., 2005) designed
six outcome domains for the chronic pain clinical trials. They
are pain intensity, physical functioning, emotional functioning,
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participant ratings of improvement and satisfaction, symptoms
and adverse events, and participant dispositions.

Summarizing the current multidimensional pain intensity
tools and considering the functioning of the PC and mobile
platforms, the pain representation should minimize the
subjective impact on the dimension measuring and maximize the
dimensions to evaluate the subjects pain experience. Therefore,
one possible multidimensional pain representation is the six-
dimension: pain intensity and change in pain, sleep, functioning
and walking ability, comfort and mood, the ability to concentrate,
and the patient’s disposition. Mobile and wearable digital devices
can monitor and evaluate the patients performance in these
six dimensions, either by subjectively entering the ratings, or
objectively measuring their current states in different dimensions.
For example, the sleep function and the step function in
the smart watch can monitor the subjects sleeping quality
and walking capability objectively, and the front camera can
predict the subject’s current moods and emotions. However,
these six dimensions are not independent of each other but
exist correlations. These correlations, such as sleep, pain and
mood, can lead to different treatments and different dimensions.
These relationships will be investigated more thoroughly in our
future endeavors.

CONCLUSION

In this work, we conducted an experimental study using nine
physiological modalities: facial images, electroencephalography,
pupillary diameter, skin conductance, blood volume pulse,
electromyography, respiration rate, skin temperature, and
blood pressure. Machine learning algorithms and ANOVA
were used to analyze the physiological data and features.
The results indicated that facial expressions, eye movement,
EEG, skin conductance, skin temperature, and blood
pressure proved to be the most promising to detect the
different levels of painful states. A decision-level multi-modal
fusion has potential to improve the accuracy of classifying
painful states.
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