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Abstract—Systems biology aims to understand how holistic systems theory can be used to explain the observable living system
characteristics, and mathematical modeling tools have been successful in understanding the intricate relationships underlying cellular
functions. Lately, researchers have been interested in understanding molecular mechanisms underlying obesity, which is a major
health concern worldwide and has been linked to several diseases. Various mechanisms such as peroxisome proliferator-activated
receptors (PPARs) are known to modulate obesity-induced inflammation and its consequences. In this study, we have modeled the
PPAR pathway using a Bayesian model and inferred the sub-pathways that are potentially responsible for the activation of the output
processes that are associated with high fat diet (HFD)-induced obesity. We examined a previously published dataset from a study that
compared gene expression profiles of 40 mice maintained on HFD against 40 mice fed with chow diet (CD). Our simulations have
highlighted that GPCR and FATCD36 sub-pathways were aberrantly active in HFD mice and are therefore favorable targets for
anti-obesity strategies. We further cross-validated our observations with experimental results from the literature. We believe that
mathematical models such as those presented in the present study can help in inferring other pathways and deducing significant
biological relationships.

Index Terms—Systems biology; PPAR pathway; Bayesian modeling; Target identification; Network Inference; Aberrant pathways
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1 INTRODUCTION

The remarkable increase in omics data such as those in
genomics, proteomics, and metabolomics, has revolution-
ized biological research and led to an emergence of new
disciplines and methodologies that are able to study com-
plex biological problems in an unprecedented manner [1].
These research developments have been primarily possible
because of the proliferation of technologies that can reliably
measure the concentrations of various cellular components
and also their interactions [2]. Specifically, advancements
in genomics have launched molecular biology into the
realms of systems biology, which integrates computational
and experimental research to define relationships between
genes, pathways and phenotypes [3]. Lately, researchers
have developed and applied mathematical models to study
various biological systems such as cancer [4]. Such models
have been widely employed to examine the perturbations of
bio-molecular relationships in disease biology and they have
shown significant successes in contributing to successful
therapeutic outcomes [5].

Obesity is linked with several chronic conditions such
as cardiovascular diseases and other major health concerns
[6]. Despite the recent strides in research exploring the
causality of these links, much of the molecular mecha-
nisms underlying obesity remain only vaguely understood.
However, recent advances in omics have made it possible
to obtain large-scale datasets which when analyzed using

mathematical techniques such as network inference [7], can
pinpoint specific cellular factors, sub-pathways and sub-
networks the perturbation of which can be associated with
specific diseases.

One approach to studying the fundamental connections
in the context of obesity is to critically examine the pertur-
bations in the underlying metabolic pathways that maybe
responsible for obesity and the related phenotypes. In this
study, we have examined the data from a previously pub-
lished study that investigated the effects of high-fat diet
(HFD) on mitochondrial functioning in liver metabolism.
The dataset comprised of transcriptomics profiles of 80 mice
cohorts that were maintained on different dietary regimes:
chow diet (CD) (6% kcal of fat) and HFD (60% kcal of
fat) [8]. In the study, the pathways associated with fatty
acid metabolism and storage, in particular, the peroxisome
proliferator-activated receptor (PPAR) pathway, emerged
as highly enriched and the most variable across CD and
HFD cohorts. PPARs are nuclear receptor proteins and
oversee key roles in cellular development, differentiation,
and metabolism [9]. Therefore, we focused our efforts on
investigating any potential HFD-induced aberrations in the
PPAR pathway and their probable impact on the resulting
phenotypes.

The paper is organized as follows. In Section 2, we first
provide a review of Bayesian networks (BN) and derive the
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posterior probabilities. In Section 3, we reconstructed the
PPAR pathway using KEGG and published literature. In
Section 4, we then present our simulations and theoretical
findings. Finally, in Section 5, we discuss the significance of
our model in the context of HFD-induced obesity along with
concluding remarks.

2 METHODOLOGY

Regulatory networks encompass multiple interactions
among various biomolecules that underlie the functioning
of key cellular processes [10]. Generally, these processes
are well-regulated and tightly-controlled; network perturba-
tions and loss of specific interactions within these processes
are often linked with specific diseases. Over the years, com-
putational tools and mathematical models have been widely
and successfully used to model and interpret such complex
and multi-layered networks from multi-dimensional omics
data [11]. One such widely used tool is Bayesian Network
(BN) modeling. We will now briefly review BNs and then
outline our methodology in detail.

Bayesian Networks

The interactions among the genes in a gene regulatory net-
work are known to be relatively sparse. In other words, each
gene within a network interacts with a relatively smaller
number of genes, as opposed to the total number of genes
within that network. This sparseness makes BN modeling
an attractive option for simulating gene regulatory networks
[12]. A bayesian network is represented by

〈
G, ψ

〉
, where G

is a Directed Acyclic Graph (DAG) and ψ is the Conditional
Probability Distribution (CPD) of each node. Each node in
G represents a random variable and the edges represent
dependencies between the nodes.

Using the local Markov independence assumption, any
Joint Probability Distribution (JPD) that satisfies the Markov
condition can be described as a product of CPDs [3]. That is,

P (X1, X2, . . . , Xn) =
n∏
i=1

P (Xi|Pa(Xi)) (1)

where Xi is a random variable and Pa(Xi) is the set of
parents of Xi. In the next section, we describe the con-
struction of the graph structure G for the PPAR signaling
pathway based on KEGG and published literature; this
graph structure forms the basis for the factorization of the
JPD of the model. We will then used gene expression data
to update the model parameters ψ.

Discretizing the gene expression data

For each gene, we discretized the expression values into a
binary framework. Quantizing the gene expression values
into a binary format helps to reduce computational com-
plexity and in enhancing the robustness against noise [13].
Using the maximum likelihood estimator for the mean µ as
the threshold, we discretized the expression data for each
gene, where values above a threshold were assigned a value
of ‘1’, and those below the threshold were assigned a value
of ‘0’. This threshold is justified by the central limit theorem
and the law of large numbers.

Prior and Posterior distributions

Next, we used bayesian modeling to estimate the network
parameters. Let ψX be the probability that a variable X
takes the value ‘1’. The prior of an uncertain quantity, such
as ψX , is a probability distribution of the quantity before the
evidence is considered. For each variable, we assumed that
ψX was Beta distributed. That is,

ψX ∼ Beta(αX , βX) (2)

Beta(ψX ;αX , βX) =
ψαX−1
X (1− ψX)βX−1

B(αX , βX)

where B(αX , βX) = Γ(α)Γ(β)
Γ(α+β) and Γ is the standard Gamma

function.
The data likelihood for n observations is defined as:

P (X|Pa(X), ψX) ∼ B(n, ψX) (3)

B(i;n, ψX) =

(
n

i

)
ψiX(1− ψX)n−i

where i is the number of successes (‘1’s).
Since the binomial likelihood is a conjugate to the beta

distribution, the posterior distributions of the variables were
defined as:

P (ψX |X) ∼ Beta(α′X , β
′
X) (4)

where α′X = (αX + i) and β′X = (βX + n− i).
Using the above equation, the expected value can then

be defined as:

E(ψX |X) =
α′X

α′X + β′X
(5)

Similarly, if we have two nodes X and Y , connected
such that Y is the parent of X , the conditional posterior
probability is defined as:

P (ψX=0|Y=0) ∼ Beta(α′X0|Y0
, β′X0|Y0

)

and the expected value of X0|Y0 is defined as:

E(ψX = 0|Y = 0) =
α′X0|Y0

α′X0|Y0
+ β′X0|Y0

(6)

where α′X0|Y0
= (n00 + 1), β′X = (n10 + 1), n00 is the

number of observations where both X and Y are ‘0’s, and
n10 is the number of observations where X is ‘1’ and Y is
‘0’ simultaneously.

Computing probabilities

Using the above equations, we may now compute the prob-
ability that a gene is over-expressed as the ratio of over-
expressed samples (number of ‘1s) to the total number of
samples in that dataset. That is,

P
(

Gene is over-expressed ↑
)
=

Number of over-expressed samples of the gene
Total number of samples of the gene

(7)

Similarly, the probability that a gene is under-expressed
may be computed as the ratio of under-expressed samples
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(number of ‘0s) to the total number of samples in the dataset.
That is,

P
(

Gene is under-expressed ↓
)
=

Number of under-expressed samples of the gene
Total number of samples of the gene

(8)

Suppose a gene G2 activates a gene G1, then we can
compute conditional probabilities of simultaneous over-
expressions or under-expressions. That is, the conditional
probability that a gene G1 is over-expressed given a gene
G2 upstream is over-expressed simultaneously can be com-
puted as:

P
(
G1is over-expressed ↑

∣∣∣G2 is over-expressed ↑
)
=(

Number of simultaneously over-expressed samples of G1 and G2

)
+ 1(

Number of over-expressed samples of G2

)
+ 2

(9)

Similarly, the conditional probability that a gene G1

is under-expressed given a gene G2 upstream is under-
expressed simultaneously can be computed as:

P
(
G1is under-expressed ↓

∣∣∣G2 is under-expressed ↓
)
=(

Number of simultaneously under-expressed samples of G1 and G2

)
+ 1(

Number of under-expressed samples of G2

)
+ 2

(10)

In a similar way, if we have a geneG2 that inhibits a gene
G1, then we can clearly rewrite the above equations with
G1 being over-expressed and G2 being under-expressed
simultaneously or G1 being under-expressed and G2 being
over-expressed simultaneously.

We will now briefly discuss the PPAR pathway and
apply the above methodology to infer the aberrant sub-
pathways.

3 PPAR PATHWAY

Peroxisome proliferator-activated receptors (PPARs) are
ligand-activated transcription factors and are a part of the
nuclear hormone receptor family. They occur as three iso-
forms: PPARα, PPARβ/δ, and PPARγ [14]. Each subtype
functions in a different manner probably because of their
distinctive tissue distributions and biochemical properties.

PPARs are stimulated by fatty acids or their derivatives
and play decisive roles in multiple biological processes,
including lipid metabolism, glucose metabolism, and over-
all energy homeostasis. PPARs form heterodimers with
retinoid X receptor (RXR) and the resultant transcription
factors regulate various cellular functions [15]. For example,
PPARα-RXR dimers stimulate genes that control lipogenesis
and cholesterol metabolism, while PPARβ/δ-RXR dimers
supervise ubiquitination and cell survival [16].

PPAR pathway is a complex signaling network and its
dysregulation is linked with multiple diseases including
liver cancer and fatty liver disease [17]. Unsurprisingly,
PPAR pathway has been associated with obesity-induced
inflammation making it an attractive therapeutic target
for mitigating obesity and the associated health concerns.
Hence, in this paper, we have investigated the highly aber-
rant sub-pathways within the PPAR pathway using mathe-
matical modeling and we have inferred the most promising
targets for therapeutic intervention to mitigate obesity.

Figure 1 illustrates the PPAR pathway reconstructed
from literature [18], [19], [20], [21]. The upstream nodes
represent the genes and the downstream nodes represent
the output processes.

Next, we applied our approach to a dataset of gene ex-
pression profiles from 40 mice fed with HFD and 40 mice fed
with CD. Fundamentally, we aimed to identify differentially
expressed genes (DEGs) and the affected sub-pathways in
the PPAR pathway that were significantly influenced by
HFD.

Fig. 1: Peroxisome proliferator-activated receptors pathway (PPAR). Upstream nodes represent the genes and the
downstream nodes represent the output processes. Black arrows indicate activation and red arrows indicate inhibition.
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4 RESULTS

For each gene in the PPAR pathway, we first discretized
the gene expression values. Then, using equation (7), we
computed the probabilities of over-expression separately for
HFD and CD samples. We then calculated the ratio of the
over-expressed probabilities for each gene and plotted them
as a bar chart in figure 2. In the figure, red bars imply a
ratio greater than 1 and blue bars imply a ratio less than
1. The higher number of red bars clearly indicated that a
majority of genes in the PPAR pathway were significantly
over-expressed in HFD as compared to CD.

Next, we investigated if the same assertion held true for
the output processes, that is, whether the output processes
were also significantly activated in HFD as compared to CD.
We modeled the output processes using the same approach
and plotted the ratio of the probabilities of output processes
in HFD compared to CD as summarized in figure 3. As
before, the red bars imply a ratio greater than 1 and blue
bars imply a ratio less than 1; evidently, the output processes
were also significantly activated in HFD as compared to CD.

To obtain an overview of the genes and sub-pathways
responsible for the over-expression of genes and output
processes in HFD, we overlaid these probabilities onto
the PPAR pathway. A probability of less than 0.4 was
highlighted in blue, a probability less than 0.6 but greater
than 0.4 was highlighted in light-red, and a probability
greater than 0.6 was highlighted in dark-red. In figure 4,
we overlaid the probabilities and the corresponding colors
onto the PPAR pathway for HFD and CD. As expected, the
genes and processes in HFD were mostly dark-red (over-
expressed) while CD were mostly blue (under-expressed).
It also became evident that lipogenesis and adipocyte dif-
ferentiation were the most perturbed output processes that
were strongly activated in HFD compared with CD (Figures
3, 4). These two processes have also been shown to be
abnormally active in previous studies thereby, corroborating
our observations [22], [23].

Fig. 3: Ratio of over-expressed probabilities of output pro-
cesses in HFD samples to CD samples in the PPAR pathway
(Red = Ratio > 1, Blue = Ratio < 1).

To understand the sub-pathways that were likely respon-
sible for the hyper-activation of lipogenesis and adipocyte
differentiation, we computed the conditional probabilities
of the gene-gene interactions using equations (9) and (10).
Then, we scanned for sub-pathways that included aber-
rantly expressed genes as well as high gene-gene con-
ditional probabilities. This cross-validation was especially
relevant since we are interested in mapping the interaction
flow that was potentially leading up to the aberrations in
these output processes. Hence, we overlaid the conditional
probabilities for both HFD and CD samples on the PPAR
pathway and highlighted the gene-gene interaction flows
for lipogenesis and adipocyte differentiation using red ar-

Fig. 2: Ratio of over-expressed probabilities of genes in HFD samples to CD samples in the PPAR pathway (Red = Ratio >
1, Blue = Ratio < 1).
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rows (Fig. 5). From the figure, GPCR and FATCD36 sub-
pathways were strongly activated in HFD as compared to
CD, and therefore, it is likely that these sub-pathways have
the maximal impact on the two output processes.

After highlighting the most relevant sub-pathways, we
next examined the seemingly most suitable targets that
could be potentially manipulated to restore any aberrations
in these processes to their ‘normal’ states. To pinpoint suit-
able target genes for such purposes, we computed the con-
ditional probability that a gene was under-expressed given
that a gene upstream was under-expressed simultaneously
supposedly through intervention or therapy as in equation
(10). The conditional probabilities were then assembled
into a heatmap in figure 6. Genes highlighted in shades
approaching blue were deemed to be better therapeutic
targets as compared to those with shades approaching red.
For each output process, we also averaged the values to
identify the best overall target for that process. As is evident
from the heatmap, PPARA, a regulator of lipid homeostasis
that has been previously targeted for hyperlipidemia treat-
ments [24], emerged as the best overall target for adipocyte
differentiation. In a recent study, PPARA was also shown
to be neuroprotective in retinopathy of type 1 diabetes,

and therefore is a potential therapeutic target for diabetic
retinopathy [25].

G-protein coupled receptors (GPCRs) are a family of
proteins that are responsible for multiple cellular responses
by activating internal signal transduction pathways through
adenylate cyclase (ADCY) and eventually PPARA [19], [26],
[27]. GPCRs have also been shown to be important drug tar-
gets in various diseases [28]. We examined multiple GPCRs
and ranked their importance in the PPAR pathway by com-
puting their conditional probabilities associated with ADCY.
Our simulations specifically pointed out the importance of
leucine-rich repeat-containing G protein-coupled receptor
6 (LRG6). LRG6 had the highest conditional probability
associated with ADCY among all GPCRs in both HFD and
CD samples. LRG6 had a conditional probability of 0.81 in
the HFD samples and 0.7 in the CD samples. These high
conditional probabilities signify the key role of LRG6 and its
influence in the PPAR pathway. Further, from the heatmap,
we also inferred that LRG6 and the GPCR sub-pathway are
the best overall targets for lipogenesis.

The detailed code, data, and the list of genes of this
implementation in R are publicly available through Github
at https://github.com/hashwanthvv/PPAR.

Fig. 4: Probability that a gene/process is over-expressed/activated in high fat diet (left) and chow diet (right). The genes and
processes in HFD samples are mostly dark-red (over-expressed) while in CD samples are mostly blue (under-expressed).

Fig. 5: The sub-pathways that were perturbed in HFD (left) and CD (right). The sub-pathways are strongly active in HFD
as compared to CD.
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Fig. 6: Heat map of the conditional probabilities of a gene being under-expressed given that a gene upstream is under-
expressed simultaneously. A shade closer to blue is a better therapeutic target as compared to a shade closer to red.

5 DISCUSSION

Advancements in computational techniques and systems
biology have prompted many researchers to approach bi-
ological processes as control problems. The aim of these
control problems is to design engineering methods to steer
an abnormal biological network into an acceptable state by
a suitable therapeutic intervention [29]. There are multiple
advantages to this approach, since a realistic and sufficiently
able model will be able to reliably predict and rank ther-
apeutic outcomes without having to rely solely on costly,
laborious and time consuming experiments. For example,
a typical biological network with five genes would require
about 31 different experiments to determine the best combi-
nation of target(s) for that network. Mathematical tools can
help in reducing the search space by performing meaningful
simulations.

The PPARs and the RXRs form heterodimers and col-
lectively regulate gene expression and perform important
roles in various cellular processes such as fatty acid storage,
glucose homeostasis, and energy balance. Abnormalities or
dysfunctions in any of these processes are associated with
diseases such as obesity and diabetes [30]. Our observations
have therefore, strongly supported the suitability of the
PPAR pathway as a potential target for therapeutic interven-
tion in obesity. Hence, obtaining deeper biological insights
into the functioning of the PPAR pathway may help uncover
key sub-pathways and potentially novel targets for newer
and more effective therapeutic applications.

In this study, we have presented a bayesian framework
to infer sub-pathways within the PPAR pathway that were
likely influenced aberrantly under different dietary scenar-
ios. Our simulations showed that GPCR and FATCD36 sub-
pathways were aberrantly active in HFD as compared to
CD. Our observations also agreed with those published
elsewhere, thereby bolstering our model [26], [31]. We fur-
ther examined the strongly activated output processes and
prioritized the most likely therapeutic gene targets that may
be potentially leveraged to restore these abnormal processes
back to their normal states.

We conclude that our observations are in agreement
with the previously published experimental results, thereby
demonstrating the efficacy of our approach. We believe that
our model can form the basis for developing new techniques
and applying them to new complex biological networks.
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