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The time-dependent Hartree—Fock—Bogoliubov equations for Bosons

VOLKER BACH, SEBASTIEN BRETEAUX, THOMAS CHEN, JURG FROHLICH AND
ISRAEL MICHAEL SIGAL

Abstract. We introduce the map of dynamics of quantum Bose gases into dynamics of quasifree states,
which we call the “nonlinear quasifree approximation”. We use this map to derive the time-dependent
Hartree—Fock—Bogoliubov (HFB) equations describing the dynamics of quantum fluctuations around a
Bose-Einstein condensate. We prove global well-posedness of the HFB equations for pair potentials satis-
fying suitable regularity conditions, and we establish important conservation laws. We show that the space
of solutions of the HFB equations has a symplectic structure reminiscent of a Hamiltonian system. This is
then used to relate the HFB equations to the HFB eigenvalue equations discussed in the physics literature.
‘We also construct Gibbs equilibrium states at positive temperature associated with the HFB equations, and
we establish criteria for the appearance of Bose—Einstein condensation.

1. Introduction

In this paper, we derive the time-dependent Hartree—Fock—Bogoliubov (HFB) equa-
tions describing quantum fluctuations of a non-relativistic Bose gas around a Bose—
Einstein condensate and study their properties.

1.1. Quantum many-body problem

The starting point of our analysis is a second-quantized description of a quantum-
mechanical many-body system of Bose point particles (bosonic atoms). We first con-
sider systems of finitely many particles. The Hilbert space of pure state vectors is
given by the bosonic Fock space:

o
F=rF", (D
n=0
where F® = ph®om" for n > 1, is the n-fold symmetric tensor product of the
one-particle Hilbert space
b= L’RY),
accounting for the Bose—Einstein statistics of the particles, and F© := C - Q is

the one-dimensional vacuum sector spanned by the normalized vacuum vector €2.
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Building blocks of operator calculus on F are annihilation and creation operator-
valued distributions ¥ (f) and ¥*(f), f € b, which are adjoints of each other and
satisfy the canonical commutation relations (CCR):

[v(D. v ()] = (filR)e. [V ¥ ()] = [¥* D). ¥* ()] = 0.2)

and ¥ (f1)Q = 0, for all fi, f> € b, see, e.g., [13]. We will write ¥ (x) for their
formal distribution kernels ¥* (x) and ¥ (x), i.e., ¥ *(f) = [ f(x) ¥*(x) dx, ¥ (f) =
[ F(x) ¥ (x) dx, and the CCR read

[V, v W] =8 —y, [y@,vy»] = [v*@.¢v* W] =0. 3

The time evolution of the system is generated by the quantum Hamiltonian:

1
= [awr@hym s [y e = 0 oum e, @
where, in the position-space representation, the operator 4 is given by
hi=—A+Vx), xeR d=1,2,3,...,

with A the Laplacian acting on b.
We always impose the following conditions:

(a) The external potential V is infinitesimally bounded
with respect to the Laplacian — A. (&)
(b) The pair potential v is even, v(x) = v(—x),

and relatively bounded with respect to A. 6)

These conditions imply that H is self-adjoint on the domain of the operator

Hy = / dr ¥ (6) (= AP (x) )

(see Appendix A). We note that these conditions allow both V and v to have Coulomb
singularities.

Let WP (R%) denote the standard Sobolev space over R?. In Sect. 4, we will use
a stronger condition on v:

(") The pair potential v is even, v(x) = v(—x),
and satisfies v € W', for some p>d. ®)

States of the system are normalized positive linear (‘expectation’) functionals, w,
on the Weyl algebra 20 over Schwartz space S(R?), which is generated by Weyl
operators,

W(f) =D with ¢(f) = v*(f) + ¥ (f),
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(see [13], Section 5.2.3). The set of states w is denoted by S, and S(RY) > f =
w[W(f)] € C can be viewed as its infinite-dimensional Fourier transform or charac-
teristic function, i.e., the generating functional of all correlations functions, see below.

States correspond either to a finite number of Bose particles, as in the case of BEC
experiments in traps, or to an infinitely extended gas at a nonzero particle density and
some fixed temperature. States w € & of finitely many particles are given by density
operators on Fock space F, i.e., there exists a positive, trace-class operator D, on F
of unit trace such that w(A) = Tr(AD,,), for all bounded operators A on F (and in
particular for all elements A € 20).

It will be convenient to consider states defined on arbitrary products:

YA (),

of creation- and annihilation operators. Expectations of such products in a state w,
henceforth called correlation functions, can be defined by applying partial derivatives,
ds, , to expectation values

a)(W(Slf]) s W(Snfn))

of Weyl operators. We will only consider states with the property that these derivatives,
and hence, the corresponding correlation functions, exist, for arbitrary n; such states
are called regular states. Of particular interest to us are correlation functions with
n < 4. Their existence is guaranteed by assuming, e.g., that a)(N2) < 00, where N
is the particle number operator, N := [dx ¥*(x)¥ (x). This assumption implies,
in particular, that w is given by a density operator on F. (We remark, however, that
existence of correlation functions follows from considerably weaker assumptions, e.g.,
from an appropriate version of the assumption that the particle density in the gas is
finite.)

The multilinear functionals w(y*(f1) -+ ¥*(f)), for fi,.... fu € SRY), are
given by tempered distributions (this is the nuclear theorem), which we formally write
as:

(Y1) - PH(x)) .

By an “observable”, we refer either to an element of the Weyl algebra 20 or to a
linear combination of operators of the form ¥#(f1) ... ¥*(f,). (We remark that the
term “observable” is, however, usually reserved for products ¥*(f1) ... ¢*(f,) that
are gauge-invariant, i.e., invariant under phase transformations, ¥ eiew, /e
e 10 v )

The time evolution of regular states is given by the von Neumann—Landau equation
[29,48] (see also [10,43], and [26]) for some history)

10w (A) =y ([A, HI, (€

for arbitrary observables A, which extends the standard von Neumann-Landau equa-
tion to general C*—algebras (see, e.g., [13,35]).
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1.2. Quasifree states and truncated expectations

Since the evolution Eq. (9) is extremely complicated to analyze, one is interested
in manageable approximations to it. Our approximation consists of restricting the
dynamics given by (9) to quasifree states, the simplest—yet sufficiently rich—class
of states generalizing the Hartree and Hartree—Fock ones, on the one hand, and the
Gaussian random processes, on the other, as has been first realized and used in [6].1

Quasifree states are defined in terms of truncated expectations, which we define next.
We use the short-hand notation v; := Vhi(x ). The n'" order truncated expectations

(correlation functions), w! (Y1, ..., ¥p), of a state w are defined recursively through
oWy =Y [T o Wi i) (10)

P, JeP,
where the P, are partitions of the ordered set {1, ..., n} into ordered subsets, J. The

simplest examples of truncated (or connected) correlations are

ol (Y(x) = 0@ (),
ol (Y1, ¥2) = 0(W1¥2) — 0 (Y1) w(¥2) . (11)

A state w is called quasifree if truncated n-point expectations vanish forn > 2,1.e.,
ol (Y1, ..., ) =0, Vn>2, (12)

We denote quasifree states by w? and the set of quasifree states by Q C S.
It follows from the definition that all n-point expectations, wq(zﬂ{i Loy, with

n > 2, in a quasifree state w? can be expressed in terms of w? (wl.tii) and w? (wﬁj w,f"),
with i, j,k € {1, ..., n}. The explicit formula is called Wick’s formula, or Wick’s
theorem; see [13]. Examples for small orders are given in Appendix B.

Given an arbitrary, not necessarily quasifree state w € S, with w(N) < oo, there
exists a unique quasifree state, denoted g[w] € 9, such that expectations

o) = qlol@) and o' ¥5) = qloly! ¥5) (13)

of quadratic or lower order agree (see Sect. 1.4). We call the state g[w] the quasifree
reduction of .”> Themap ¢ : & — Qisidempotent, gog = ¢, and acts as a projection
of the convex space & of all states onto the space of quasifree states Q.

1.3. Quasifree dynamics
As mentioned above, detailed properties of the dynamics of a many-body system

described by the von Neumann-Landau equation (9) are difficult to unravel, and
approximations are therefore needed to extract interesting qualitative features.

IThe notion of quasifree states was introduced in [45]; see [13] and references therein.
2This notion was introduced in [2] (see below). For a related notion in the context the gauge invariant twice
differentiable states, see [41]. For the definition of the gauge invariant states, see Sect. 1.3 below.
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The main idea is to restrict the dynamics to quasifree states. However, the property
of being quasifree is not preserved by the dynamics given by (9), and the main question
here is how to map the true quantum evolution onto the class of quasifree states.

The effective dynamics we propose replaces Eq. (9), with an initial condition wg €
G, by the equation

i (A) = of ([AH]),  witho!_; = glwo], (14)

for all observables A that are at most quadratic in creation- and annihilation operators.

For the Hamiltonian H given by (4), the commutator [A, H] contains products of at
most four creation- and annihilation operators; their expectation in w{ is then evaluated
by using Wick’s theorem for the quasifree state w; .

In contrast to the von Neumann—-Landau equation (9), the quasifree dynamics (14)
is nonlinear.

Of course, one expects the effective evolution to be close the original one only if
wy 1s close to g[wp] in an appropriate sense. We emphasize that, in general,

a);] 75 q[a)l]3

even if the initial state wp = g[wp] € Q is quasifree. That is, the trajectory of quasifree
states ] determined by (14) is not the projection, ¢, of the trajectory w; of states
evolving according to the full dynamics in (9) onto the space Q of quasifree states.

We call (14) the nonlinear quasifree approximation (it was called the quasifree
reduction in [3].)

The deviation of a state w € & from its quasifree reduction g[w] € 2 can be quanti-
fied in terms of their relative entropy Srej(w, glw]) := Tr{ D, ( In[D,] — ln[Dq[w]]) },
provided w and hence g[w] are given by density operators D, and Dy, respec-
tively [20]. In fact, Siej(@, glw]) may be viewed as the distance of w to £, since
Stel(w, @) > 0 with equality if, and only if, w = ' and

Srel(@, glw]) = inf Seei(w, q). (15)
qeN

It has been shown in [7] that for pure states the quasifree dynamics as defined above
( [3D) is a consequence of the Dirac—Frenkel principle, in which the right side of the
von Neumann—Landau equation (9) is projected onto a selected class of states.

We will show that Eq. (14) is equivalent to the nonlinear, self-consistent evolution
equation

idof (A) = of (1A, Hyp (o)1), (16)

for all observables A, where Hyy, (w?) is an explicit guadratic Hamiltonian given in
Eq. (44), which depends on a quasifree state w?; see Theorem 2.3. The equivalence
holds for observables linear or quadratic in creation- and annihilation operators.

Equation (14), with the Hamiltonian H given by (4), is equivalent to the HFB
Eqgs. (20)—(22) derived from it below.
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A state w € G is called U (1)-gauge invariant, if it satisfies
(W50 - Y () = 0(F ) - ¥ ()

forall @ € R and all xq,...,x, € R3, where ¥y (x) := ¢y (x). A quasifree state
w? is U(1)-gauge invariant iff ¢,¢ and o,¢ are vanishing. Indeed, w? (1/f(x)) =
(Yo (x)) = e'?w?(Y(x)), for all 6, implies w? (¥ (x)) = 0. A similar argument
applies to w? (w (x)lp(y)). If the initial state a)g is a U (1)-gauge invariant quasifree
state, H is given by (4), and wf’ is the solution of Eq. (14), then a);’ isalsoa U (1)-gauge
invariant quasifree state. Then, one can show that the self-consistent Eq. (16) and the
HFB Egs. (39)—(43), reduce to the bosonic Hartree—Fock equation, i.e., to the HFB
equations with ¢, = 0, o; = 0, and y; being the only dynamical quantity.

1.4. HFB equations for truncated expectations

As was mentioned above, a quasifree state w? € £ determines, and is determined
by, the truncated expectations up to second order in the following sense:

1. @ — I' : Given a (not necessarily quasifree) state @ € & and its expectations

p(x)  =oly()],
Yy y) =l () v ()] — o[yt (] ely ()], (17)
o(x,y) =oY@ v —olyx)]oly ()],

up to second order, and denoting by y and o the operators with integral kernels
given by y (x, y) and o (x, y), respectively, we have that (see (51) below)

(v o
r_<6]+)7)20, (18)

where A := Co C, with C denoting complex conjugation in the position-space
representation, (i.e., complex conjugation of wave functions of spatial variables).
Note in passing that this implies, in particular, that

y=y*>0and 0" =0. (19)

2. I' »> 7 :Conversely, giveny = y* > 0ando* = o suchthatT" := (g 11;7) >
0 obeys (18) and ¢ € L?(R?), there exists a unique quasifree state ®? € Q such
that (17) holds true with w? replacing w.

Actually, the condition that ¢ € LZ(Rd) is too restrictive and can be relaxed,

depending on the context.

3. w — glw] : Given a state @ € G and going through 1. and 2. above yields the
quasifree reduction g[w] := »? of w.
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The matrix operator in (18) is called “generalized one-particle density matrix”. The
positivity condition on I" in (18) can be expressed directly in terms of y and o; see
[4], [3]- The steps 1. and 2., whose composition yields the quasifree reduction ¢, were
first carried out in [2, Lemmata 3.2-3.5].

We will use (18) in proving the global existence for the HFB equations (see Propo-
sition 3.1(4) and the paragraph after Eq. (90)).

Evaluating (14) for monomials A € A®, where

A =y @), Y ), YY),

yields a system of coupled nonlinear PDE’s for (¢, y;, 0;), the Hartree—Fock—Bogo-
liubov (HFB) equations,

idy = (h+vxdy) +viv)é + (vio ), (20)
iy =[h+vxdy) +viy ., v]+ (vio)o} —o(via)", (D
id0, = [h+vsd?) +vey” . o], +[vio?, w], +via?. @)

where [A1, 2]y = AjAT + ArAT, AT = A%, y? := y + ) (9], 0% := 0 +(9)(P].
Moreover, d(a)(x) := a(x, x), and v * d(y) is multiplication by the convolution of
v with the one-particle density corresponding to y, and the Schwartz integral kernel
via(x,y) ;= v(x,y)a(x, y) results from the product of v(x — y) with the integral
kernel of «.

The HFB equations are presented again in Egs. (39)—(43), below. Since quasifree
states are characterized by their truncated expectations ¢, y and o, this system of
equations is equivalent to Eq. (14).

For comparison of the HFB Eqs. (39)—(43) with the physics literature, we formally
assume the pair interaction potential v to be a delta distribution,

vix —y) =gd(x —y), (23)

where g > 0 is a coupling constant. The HFB Egs. (20)—(22) then assume the simpler
form:

100 = hes(v") by + gd (o) — 281641 . (24)
10 = Lhes (), vl + gd (0o — gord(a), (25)
i9,00 = [hes (), orly + gld(0), vily +d(07") (26)
where hgs(y) :=h+2gd(y), withhasin4. 27

(Note that here and in what follows, we denote multiplication operators and functions
by which they multiply by the same symbols. The meaning is always clear from
context.) In our results (see Theorem 2.2) and proofs, we always assume that the
two-body potential is smooth.
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The physical interpretation of the truncated expectations of w; is as follows: The
function ¢, is the quantum-mechanical one-particle wave function of the Bose—Einstein
condensate, while y; and o, describe the dynamics of sound waves in the quasifree
approximation; in particular, d(y;) determines the density of the “thermal cloud”
of atoms. (In the physics literature, n = d(y) and m = d(o) are called the non-
condensate density and anomalous density, respectively.)

The HFB Egs. (24), (25) and (26) provide a time-dependent extension of the standard
stationary Hartree—Fock—Bogoliubov equations for a Bose gas found in the physics
literature; see, e.g., [9,19,21,42]. Related equations (with ¢, = 0) appear in super-
conductivity. These so-called Bogoliubov-de Gennes equations are equivalent to the
BCS effective Hamiltonian description.

1.5. Summary of main results

The formulation of the nonlinear quasifree approximation in the form of Eq. (14),
and the derivation of its equivalent formulations as self-consistent Eq. (16) for ] and
the HFB Eqgs. (39)—(43)) for the truncated expectations ¢, ¥, o, are among the main
results presented in this paper; (see Theorems 2.2 and 2.3).

We also initiate a mathematical study of solutions of the HFB equations. In particu-
lar, if the initial state wy is s.t. the operator yy is trace-class (i.e., the number of atoms
is finite) and oy is Hilbert-Schmidt—for precise hypotheses see Sect. 2—we have the
following results:

e Conservation of the total number of atoms in the gas:
N(¢[s y[so-l) = w[q(N)a (28)

where N is the particle-number operator; (see Corollary 2.5).
e Existence and conservation of the total energy (under suitable conditions on the
two-body potential v and on the initial state wg):

E(¢r i, 00) = o (H) = wg(H), (29)

i.e., E(¢r, y¢, 01) is independent of t; see Corollary 2.5 and Theorem 2.6, or
Prop 3.12.

v

e Positivity preservation property: If I' = (_ . _) > 0 att = 0, then this
o 14

holds for all times.
e Global well-posedness (Theorem 4.1) of the HFB equations.

It is in the proof of the local existence part of the last statement (Lemma 4.5(i))
that an error was made in [3]. In Lemma 4.5 (i) in Sect. 4 we prove the corresponding
estimate under a more restrictive condition on the pair potential v - Condition (b’)
above.

In [7], the program outlined in [3] and this paper has been pursued for equations
analogous to the HFB equations valid for fermions, namely the Bogoliubov-de Gennes
equations; see also [17]. For references to related work see [7,17].
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We will show that any observable conserved by the von Neumann—Landau dynamics
which is linear or quadratic in the creation- and annihilation operators is also conserved
by the quasifree dynamics; see Theorem 2.4. In the special case of the observable N,
this yields the statement above. Energy conservation follows from Eq. (14), with
A = Hyp (a)?), the quadratic nature of Hyg, (w?), and Eq. (16).

Note that conservation of the total number of atoms in the gas is a consequence
of (global) U (1)-gauge invariance, i.e., invariance of the Hamiltonian H under the
transformations

vx) = lvx),  vr(x) = e Pyt(x), VO eR,VxeRY.

The total particle number, NV (¢, y,0) = w?(N), and energy, £(¢p,y,0) =
o (H), as functions of (¢, y, o), can be evaluated explicitly:

N@.y.0) = /(V(X;X)Jr |6 (x)]%)dx . (30)

The energy £(¢, y, o) is given explicitly in Eq. (47). For a delta-function pair potential,
v = g4, it takes the form

E(p,y,0) =Trlh(y + |§)(d])]
2 2 1 2
+g/(2n(x)|¢(x)| +n(x) +§|w(x)| )dx . 31

(In terms of Hp, (w?), we have that E(¢, y, o) := w?(H) = @w? (Hpm(w?)) + scalar.)
As usual, if y is trace-class and o is Hilbert—Schmidt the energy functional £ can
be used to give a variational characterization of stationary Gibbs states:
e Gibbs states minimize the energy (¢, v, o) under the constraint of constant
entropy and for a fixed value of the expected particle number.
Equation (16) suggests to define HF B stationary states as the quasifree states sat-
isfying the equation

o? ([A, Hypy(0D)]) = 0, (32)

for all observables A. (If w7 is given by a density matrix, we can rewrite this equation
as an explicit fixed point equation, see (33) below.) The most interesting ones among
such states are the ground states and Gibbs states. These states are defined as:

1 q
wg, = LlimwwL,

where a)z is the quasifree ground state or Gibbs state of a Bose gas confined to a
torus, A; = R4 /2LZd, i.e., to the box [—L, L]d with periodic boundary conditions.
It satisfies the fixed point equation

Dp u(@f) = o], with @g (@] )(A) := Tr[A exp(—p(Him(@]) — uN))]/E,
(33)
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where B > 0 is the inverse temperature, p is the chemical potential, and the expo-
nential of the negative pressure E = Tr[exp(—8 (Hpm (wz)) — uN)] is the partition
function of the gas. The quasifree state a)z fulfilling (33) is a solution to Eq. (32) (or
a stationary solution of Eq. (16)) for a gas confined to the box Ay . With regard to the
thermodynamic limit, L — oo, we note that if the external potential V vanishes (i.e.,
for a translation-invariant Hamiltonian),

o? ([Hap (@), A) = Llimmw(i([Hhm(wZ),A]) = 0,

for any observable A localized in a compact region of position space.

Furthermore, if the external potential V vanishes (the translation-invariant case),
one should replace the total energy and the particle number by the energy density and
particle density, respectively, in order to study the approach to the thermodynamic
limit, L — oo.

If V= 0 and y and o are translation-invariant, then the integrand in the energy
functional (¢, y, o) (see (47)) is the energy density functional introduced in [18]
and further studied in [38,39]. It is shown in the latter papers that this functional
has minimizers under the constraint of constant entropy- and particle densities. In
[38,39] it is also shown that a condensate appears in the corresponding minimizers.
(To complete the picture one should show that the states thus obtained are stationary
solutions to Eq. (16).)

In this paper, we do not consider the general problem of existence of static solu-
tions. However, for V = 0, we present a result concerning existence of the positive-
temperature, U (1)-gauge- and translation-invariant HFB Gibbs states, and we show
that Bose—FEinstein condensation (BEC) occurs above a critical density; see Theo-
rem 5.3.

As mentioned above, for U (1)-gauge-invariant quasifree states, ¢ = 0 and o = 0;
and hence HFB Gibbs states with these properties are, in fact, stationary solutions
of the bosonic Hartree—Fock equation. Moreover, as the results of [38,39] show, in
the BEC regime, these states are not minimizers of the full HFB energy density, at
fixed values of the entropy- and particle density. However, the existence of such states
exhibiting Bose—Einstein condensation suggests that there are also U (1)-symmetry
breaking HFB Gibbs states with ¢ # 0 and o # 0.

1.6. Fixed point equation

Let Uy (¢, s) denote the unitary propagator on bosonic Fock space F, see (1),
solving

i10;Uye (t,5) = thb(a)tq) Uya (2, s), with Uge(s,s) =1,Vs. (34)

In terms of this propagator, we can rewrite Eq. (16), with initial condition a)g = wo,
as a fixed point problem,

of = &(@f),  with @ (@]))(A) = wf (U (1,00* AUya(1,0)),  (35)
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for all times ¢ € R. Since the propagators U,q (¢, s) are generated by families of qua-
dratic Hamiltonians, we have that wg (Uga (2, 0)* AUy (2, 0)) is a quasifree state, for
any time ¢. This formulation opens the possibility to prove existence of the quasifree
dynamics directly, using a Brouwer—Schauder-type fixed-point theorem, without pass-
ing to the truncated expectations ¢, y and o.

In this paper, we do not study whether the quasifree effective dynamics (16) (the
HFB equations) provide an accurate approximation to the many-body dynamics (9),
for finite times. There is a large literature concerning the derivation of the simpler
Hartree- and Hartree—Fock equations from many-body dynamics in a limiting (mean-
field) regime. Recently, evolution equations that include linear fluctuations around
solutions of the Hartree equation (i.e., equations arising from linearization of the
HFB equation in y and o) have been derived in [22,23,31-33,36]; see [30] for a
recent review, and [27] for an early contribution. Independently and in a different
framework, equations equivalent to (39)—(41) are derived for pure states along with
the conservation of particle number and energy in [22] and re-derived in a different way
in [24]. For pure quasifree states, the relation y + y% = oo* holds, and Egs. (39)—(41)
turn out to be Hamiltonian evolution equations.

1.7. Organization of the paper

In Sect. 2, we first present the HFB equations, which we derive in Appendix 6.
We then show that certain conservation laws for the many-body problem imply cor-
responding conservation laws for the HFB equation.

In Sect. 3, we show that the space of solutions of the HFB equations has a symplectic
structure, and that these equations have similarities with Hamiltonian equations of
motion.

In Sect. 3, we explain how the symplectic version of the HFB equations is related
to the HFB eigenvalue equations found in the physics literature.

In Sect. 4, we prove that the Cauchy problem for the HFB equations is globally well-
posed in the “energy space”, provided that the pair interaction potential is assumed to
have suitable regularity properties. Our proof of global well-posedness is inspired in
part by previous work on the Hartree-Fock equation [11,12,15,16,49]. We note that
global existence for the related time-dependent Bogolubov-de Gennes equations for
fermion systems has recently been established in [7], using a similar proof strategy.

In Sect. 5, we prove Bose—Einstein condensation for stationary states.

A brief summary of the theory of quasifree states and proofs of various technical
lemmata is collected in Appendices.

2. The HFB equations and their basic properties

In this section, we formulate the HFB equations for a general pair potential v and
prove the associated conservation laws. The derivation of the HFB equations is done
in Appendix 6 by applying the quasifree reduction as in the introduction.
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Definition of spaces. Let M := (V,) = /T — A, with A, being the Laplacian in d
dimensions. We denote by £! and £ the spaces of trace-class and Hilbert—Schmidt
operators on L?(R%) endowed with the trace norms || - || crand ||| g2, resp. For j € Ny
we define the spaces

X' =Hl oM @M} = (¢, y,0) € H x H] x H]}, (36)

with H/ being the Sobolev space H’ (R?), 'HJJ; := M~/ L'M~ being the space of

trace-class operators y such that M7y M/ is also trace-class, and H{; ={oel?:

IMio| r2+lloM 1 2 < oo} which may be viewed as the space of square-integrable

functions o on R? x R3 such that both (V,)/o and (Vy)f o are square-integrable, too.
Defining the norms

ol = 1Ml 2. Wyl = IMTy Mo il = Mol g2 + llo M ) 2,
(37)

on H/, Hj , and H{;, respectively, we endow the spaces X J with the norms
(P, v, o)lxi = Pl gi + II)/IIHJV' + ol

Furthermore, we let X7 := C°([0, T); X>)NCL([0, T); X!) and we denote by Xéf

and X;f the spaces of quasifree states and families of quasifree states with the 1** and
2" order truncated expectations from the spaces X/ and X7, respectively.

Remark 2.1. For systems with infinite number of particles and finite density, one could
replace R by the torus Ti :=R?4/(LZ)¢ and then pass to the thermodynamic limit.

In what follows, we assume Conditions (a) and (b) stated in the Introduction [see
Egs. (5) and (6)].

Theorem 2.2. The family of quasifree states w! € X‘Tlf satisfies
il (A) = of (A HD . VAe€A?, (38)

with the Hamiltonian H defined in (4), if and only if the triple (¢, y;, 01) € X1
of the 15" and 2" order truncated expectations of w! satisfies the time-dependent
Hartree—Fock—Bogoliubov equations

i = h(y) s + k(o) s , (39)
idy: = R, il + k(0o — o1k (07")* (40)
id0, = [h(y?), 0014 + k() iy + k(6?"), (41)

where [A1, A2l = A1A] + A2AT, y? i=y +9)(p| and 6 := o + |¢)(p|, and

h(y) =h+blyl, blyl:=vxd(y)+k(y), (42)
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where

diy)(x) =yx,x), k(o):=vto, and vio(x,y):=v(x —y)o(x,y).
(43)

If v = g4, then h(y) agrees with hgs(y), and k(o) agrees with the multiplication
operator by g d (o) (x), respectively, in (24)—(26).

Due to the fact that 4(y;) is A—bounded, for each r > 0, the r.h.s. of (39)—(41)
belongs to the space X°. The proof of Theorem 2.2 is given in Appendix 6.

We now show that Egs. (14) (or (39) to (41)) and (16) describing the quasifree
dynamics are equivalent.

For a quasifree state w? with 15" and 21d order truncated expectations (¢, y,0) €
X!, we define the quadratic Hamiltonian parametrized by (¢, y, o) as:

th;,(a)q):fw*(x)hu(y)w(x)dx
—/w*(x)b[|¢)(¢|]¢(x)dx+h-C-
1
+ E/w*(x) klo1(x, y) ¥*(y)dx dy + h.c. . (44)

Theorem 2.3. Equation (14) is equivalent to the nonlinear; self-consistent evolution
equation

il (A) = ol ([A, Hyrp (0], (45)

defined for all observables A. The equivalence holds for observables linear or qua-
dratic in creation- and annihilation operators.

Moreover, truncated expectations (¢;, v, 0r) € Xr satisfythe HFB Egs. (39) to (41)
if and only if the corresponding quasifree state ] € X;lf satisfies (45).

The proof of Theorem 2.3 is given in Appendix C.

We now prove the conservation laws for the number of particles (or more generally,
for any observable commuting with the Hamiltonian H which is quadratic with respect
to creation and annihilation operators), and for the energy.

Theorem 2.4. Assume that an observable A € A® satisfies [H, A] = 0. Then, a)? (A)
is conserved:

ol (A) =wd(A) VieR. (46)

Proof. This follows from (38) for A of order up to two, with [A, H] = 0. O
To draw some consequences from this result, we need to define additional spaces.

Corollary 2.5. Let a);’ € ng solve (38) (or (45)). Then, the number of particles
N (¢, vi,00) = a)? (N) and the energy w? (H) are conserved.
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Theorem 2.6. Let w? € X Then, the energy ol (H) = E(¢, y, o) is given explicitly
as:

E(@.y,0) =Trlh(y + |9)(@D] + Tr[bllp)(P1y]
1 1

+5Trlblylyl+ 5 f v(x = Vo (x, y) + ¢ () () dxdy. (47)

Proof. We use
ol () = o (WgAW), (48)
where the Weyl operators are defined through Wy = exp (g[f*(¢) — tp(qb)) and satisfy
Wevr()Wg = ¥ (x) + ¢ (x). (49)
Note that the state a)gt is quasifree because w? is quasifree. By construction a)‘é (WP (x))
= 0 and thus using (10) and the quasifreeness of w{., one sees that w{. vanishes
on monomials of odd order in the creation and annihilation operators. Note that

E@,y,0) = a)qC(W(Z]HIWq;), hence using the vanishing on monomials of odd order
in the creation and annihilation operators

£@.v.0) =l ( / v(x — Y EOY*()Y P (Vdxdy

+ %( / v = Y)g (b (MY @)Y (y)dxdy + hc.)
+ / (h -+ BlIG) e 11) (s 3)¥* (0 (y)dxdy )
+ %/ lp (X)) [*v(x — y)dxdy + (¢, hep) .

Then, using that a)qc is a quasifree state with expectations (0, y, o) yields

1 1 -
£, v.0) = STHlbI Y + 5 f oG v(x — y)o(x, y)dxdy)

0 [T - e mdy)
1
TG+ BlIONGIDY1+ 5 [ 18096 0)Pu(x = )y + (6. ho)

which gives the expression of the energy in terms of ¢, y and o.

3. Generalized one-particle density matrix and Bogoliubov transforms

In this section, we consider the HFB Egs. (40)—(41) for y; and o; and reformulate

them in terms the generalized one-particle density matrix I'; = (3;; 11’);t ) We show
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that the diagonalizing maps for I'; are symplectomorphisms (see below for the defini-
tion) and that the resulting equation for I'; is equivalent to the evolution equation for
these symplectomorphisms. The latter will allow us to (a) give another proof of the
conservation of energy without using the second quantization framework and (b) con-
nect the time-dependent HFB Egs. (40)—(41) to the time-independent HFB equations
used in the physics literature. See Sect. 3.

We begin by relating properties of I' = (?, 1_7_]; ) to those of y and o.

Proposition 3.1. The generalized one-particle density matrix, I', is nonnegative,

r:(’f ”-)zo, (50)

iff the following four conditions 1. — 4. are fulfilled,

1. The operator y > 0 is positive semidefinite.

2. The expectation o (x,y) = o (y, x) is symmetric.

3. The inequality o (1 + )" o* < y holds true in the sense of quadratic forms.
4. The bound %”0”313; < ||V||H1y(1 + Tr[y]) holds true.

(Statement (4) follows from (1) and (3) and is given here for later convenience of
references.)

Proof. We remark that the truncated expectations y and ¢ are the expectations of the
state

wc(A) = a)(Wd)AW;)

where Wy = exp (¥*(¢) — ¥/ (¢)) are the Weyl operators. Wy satisfy Wy (x) Wi =
¥ (x) — ¢(x). The generalized one particle density matrix I of wc is non-negative,
since, for all f, g in L2,

f y o AR R ¥ _ .-
((g>,<51_%?)(8))-wc«w () +Y @)W ) +Y*@)) 2 0. (5D

Statements (1) and (2) are obvious. The inequality in Point (3) follows from the
Schur complement argument:

o< (1 —o(1 +;7)—1> <y o ) (1 —a(l +;7)—1)*
=\o 1 o*1+7)\o 1

_(y—cd+p)lo* 0
o 0 1+y/)°

Finally, we observe that (1) and (3) and the inequality y < Tr[y]1 imply the
following bound on oo *,

(1+TrlyD) loo* <ol +7) lo* < y.

Inserting M = /1 — A, on both sides and taking the trace yields (4). 0
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Notations. With the spaces and norms defined in (36)—(37) and for j € Ny we define
the spaces

Y/ =K &K, (52)
with the norms on Y/ given by
1= llyi =Myl +lloll;-

We also use the spaces Vr = cY(0, T); Y nclqo, T): Y') and J7T := the space
of generalized one-particle density matrices, I, with entries in V7.

In what follows we fix a number 7 > 0 and a family ¢, € C°([0, T); H?) N
clqo, 7); HY (not necessarily a solution of (39)) and do not display it in our notation.
A simple computation yields the first result of this section:

Proposition 3.2. (y;, 0,) € Yr is a solution to the HFB Egs. (40)-(41) iff T, =

(3 lj‘[ft) € Yr solves the equation
i8,T, = SAN(THT, — TLA(T)S, (33)

. _ (hy?) k(e?)
with A(T) = (k(<7¢) o

and S = ((1)_01).

), where, recall, h(y) and k(o) are defined in (42) and (43),

To formulate the next result, we introduce some definitions.

Definition 3.3. Let h denote a complex Hilbert space. A bounded linear operator
U= (%%)onh & b with the property that

Usu=S and USU*=S, (54)

where S = (%), is called a symplectomorphism.
If, moreover, there exists a unitary transformation U on Fock space, sometimes
called implementation of ¢/, such that

Vigeh, U () +¥@IU =y uf +vg) + ¥ f +ug),
then the symplectomorphism ¢/ is said to be implementable.

Remark 3.4. The operator U is a symplectomorphism in the sense that it preserves the
symplectic form Im(-,S-) on h @ b (i.e., is a canonical map). (In fact, U preserves

(+.8-))

Remark 3.5. The operator U/ is a symplectomorphism if and only if the operator f +—
uf + v f is a symplectomorphism on (f, Im(-, -)) in the usual sense (i.e., it preserves
the symplectic form Im(-, -))

Remark 3.6. The conditions in (54) are equivalent to satisfying the four equations

un* —vv* =1, wu—vio=1, wv=v'u, w! =vu’. (55)
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Remark 3.7. The transformation

Yigeh, (). v(H)) = @Fuf) + v, v*f) +¥wf)  (56)

is called a Bogoliubov transformation. It is easy to check that it preserves the CCR iff
the operator U = (% ) satisfies (54).

If v is Hilbert—Schmidt, then the Bogoliubov transformation (56) is implementable.
This condition is referred to as the Shale condition; see [47].
For later use, we introduce the Banach space

HO2 = { (Z ’f) ‘a e B(H") ~MBMM™", be MLI2M_1} :
a
where B(E) denotes the (Banach) space of bounded operators on a Banach space E.
H°2 is endowed with the norm | (;JEZ)HHOQ2 = llall gty + 101l p1 2241 using the
same identification between operators and kernels as before.
We begin with an auxiliary result:

Proposition 3.8. Let ' = (g 11;7) e Y and T' > 0. Then, there exist an imple-
mentable symplectomorphism U € H°*? such that

y 0 *
r=u — U=,
(0 1+V/>

where 0 < y' < y. The operator y' is unique up to conjugation by a unitary operator.

This result is related to Theorem 1 of [37], which is stronger. See also [5,8]. As the
relation between the two results is not obvious, we give a direct proof of Proposition
3.8 after the proof of Proposition 3.9.

The next result relates the evolution of I'; to the evolution of implementable sym-
plectomorphisms U, € H? that diagonalize T,.

Proposition 3.9. (i) For any I'; € Yr and any implementable symplectomorphism
Uy € H™2, the initial value problem

iatut* == SA(F[)U* ) ut:o = Z/IO ) (57)

has a unique solution in H?, which is a symplectomorphism for every t.
(ii) Let T'y € Yr solve Eq. (53), with an initial condition I'y € Y3 5.t.Tog > 0. Let
U be an implementable symplectomorphism diagonalizing T,

C0
o = UpTYU . Ty = <)(’)0 1+7) .
0

Then, the continuous family of implementable symplectomorphisms U in H°2(h x h)
satisfying (57), with the above Uy, diagonalizes I';:

Ty =UTU > 0. (58)
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Proof of Prop. 3.9. The operator A(I';) can be decomposed as A(I';) = A1 + Az,
with

Af = <h (_)> Ay, = <b[yt + 1¢1) (|1 kloy + ¢ ®¢t]>
0h)’ "7 \klor + ¢ ® 1 blys + 160) (1)

The first operator, A1, is the generator of a continuous one-parameter group in 2.
As for the second one, using the continuity of # — I'; € Y! and Lemma 4.5, we get
the continuity of = Ay, € H®2. We can thus use classical results of functional
analysis (see, e.g., [28]) to obtain the existence and uniqueness of I4; and its regularity.
The same arguments as in the next lemma prove that {4; is a symplectomorphism.
Finally, I'; and U;T'ol4; satisfy the same differential equation, and the uniqueness
of a solution to (57) proves the last equality. U

Proof of existence in Prop. 3.8 We split the proof into two lemmata, Lemmata 3.10,
establishing local existence, and 3.11, proving global existence, below. The strategy
is to construct I'; and symplectomorphisms U, such that I/, I';U;* = Ty, for all ¢, and
in the limit # — o0, "5, has the desired form. The key step will be to use a differential
equation for I'; implying | o; 71 0. g

Lemma3.10. (i) LetT > Oandt +— A, = (Zi Z:) € C([0, T); H°*?). Then, the
ordinary differential equation

iU = SAUS, (59

with initial datalUl§ = ((1) (1)) has aunique global solutionU, € C'([0, T); H*?),
and U; is a symplectomorphism for all time.
(i) Moreover, if y; € C'([0, T); H}), 0 € C'([0, T); H}) satisfy

i0yr = aryy — b6y — yia; + oyby (60)
i0;01 = a;or — by (1 + 1) — viby + 0ray (61)

withinitial data oo = o, yo = y givenin Prop 3.9(i), then, foralltimet € [0, T),
Urur =ry. (62)

Proof. The existence and uniqueness of I/;" follows from the theory of time-dependent
linear ordinary differential equations once one observes that H]I, and H}, are continu-
ously embedded in B(H') and ML>(L>)M~'. Atr =0, UpSU; = S and

10, (USU) = Uy (— A SS + SSA U =0,
thus U, SU = S for all time, and, to prove U;SU; = S, one observes that

lat(UI*SUt) == —(Ut*SU,)A,S + SA[(Z/{I*SZ/{[) 5
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which is a linear time-dependent ordinary differential equation for U/;*SU; which also
admits the constant solution S. By uniqueness of the solution, one gets that U;"SU; =
S. Hence, U; is a symplectomorphism for all time.

Similarly, the derivative i 9; (L{,F tu,*) vanishes because, using (60) and (61),

iBtF, == AtSFt - FtSAt .

Thus U, ' ;U = UpToUy = T'o for all times. O

We choose a; and b; in (60) and (61) such that o; vanishes in the limit 1 — oo.
Let £ (h) and £%(h) denote the spaces of trace-class and Hilbert—Schmidt operators,
resp., on the space b.

Lemma 3.11. (i) The ordinary differential equation

0yt = =200y, (63)
0,00 = —(or + oryr + vi01) (64)
with initial data oy = o, Yy = y given in Prop. 3.9(i), has a unique global
solution (y;, 07) € C'([0, 00); L1(h) x L2(h)).
(i) Given the solution (y;,0;) € C'([0,00); L' (h) x L2(h)) from (i), let A; =
(_?@ ig’ ), Uy = (%: ;—ji) and Ty = (Zi 113;[) be as in Lemma 3.10. Then, U,
converges in H*?2 to a symplectomorphism U, and

y, 0
Fozuooroou:ozuoo<(o)o 1 +J700>u:ov
with 0 < Yoo < 0.

Proof. The existence of maximal solutions to (63)—(64) follows from the Picard—
Lindelof theorem. Now using the U/ constructed in Lemma (3.10), one gets that
(L{,)_ll"o(lj{t*)_1 = I'y, which implies that I’; > 0 and thus y; > 0. It then follows
from (63) that y; is decreasing in the sense of quadratic forms and ||y, [l ) %) ”H; .

One first obtains an estimate on |0y ||2£2 = Tr[oy0/7], using (64):
Ulloilze =Tr[ = (o1 + 017 + vor)o — o0} + o) + 0, 1)
< —2Te[oi0;] = =207 l7s -

This implies that |0 || .2 < [looll 2 exp(—t). Using again (64) and the fact that y; > 0
one finds that

drllorllzy = Te[ = (o1 + 017 + vi00)0 M? = 01(0 + 10" + o yi) M?]

< =2llov |13, — Trly,00, M*] = Tr[o,0, v M?]

12
HY

1/2 1/2
We remark that [Tr[Myio0; M1 < Ill5 v, o1l ot gy and

1/2 1/2 172 —t
lv: “ollBwy = 1ve “lie2llorll g2 < llvollg llooll c2e
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hence
2 2 —t 2 —2t
< — < —
dillonl3y < —2lorllyy +v2Ce™ V2lorllyg < —llovll3, + Ce

which yields | o; ”311 < Ce™! ||ao||§11 - The pair (y;, ;) is thus bounded in H), & H,

and the maximal time of the solution is 7 = co. We also get that y; — Yoo in H}, as
t — oo as y; is decreasing and bounded below, and o; — 0.
Integrating the derivative of 4, and taking the norm of both sides yields

t
U g < UG e + /0 042 14 pgeeadls (65)

The Gronwall lemma, combined with [|14 ||y = 1 and the estimate on ||Gl||H},
provide

t
1047 N3 < exp ( /0 lovllzg1 ds) < exp (Clloollyqy ) -

Thus, the integral fooo SA U ds is absolutely convergent and

o
U — U — i / SAUds = U,
—00 0
in 12, and the limit Uz, is still an implementable symplectomorphism.
Hence,

Lo — UseTocllly = U T U — Uso Ty — 0
0
+Voo
block operators with diagonal elements in Hll, and off-diagonal elements in H},. This
proves the last point. U

ast — 0o, where I'sg = (V8° 1 ) and the convergence takes place in the space of

This completes the proof of existence. 0

Proof of uniqueness in Prop. 3.8 Indeed, let us consider ¥’ and y” satisfying
the conditions of Prop. 3.8. Then, there exists a symplectomorphism U such that
(VU 0 ) =U*( v _0 JU. AsU*SU = S, this is equivalent to

0 y/+1 0 y/'+1
y" +1/2 0 Ly +1/2 0
_ = — 66
( 0 7/’/-1—1/2) u 0 y'+1/2, u (66)

and we want to prove that y’ and y” are unitarily equivalent in L?. The off-diagonal
entries in (66) yield u*(y’ + 1/2)v + vT (y’ 4+ 1/2)ii = 0 and as U is a symplecto-
morphism, we get from (55) that u is invertible and vi—! = u*1T. Thus,

’ 1 ~—1 ~—1/ 1_
(y +§)vu +vi (y +§)—O.
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We can now use a known method to solve the Lyapunov (or Sylvester) equations:

- Tl i) it )
vl = — —(e Yy e 2>dt
o dt

o0 / 1 1 ’
= /0 e ' +%)<(y’ + E)vif1 +vi (Y + E))e_’(y +dr =0,

where we used that y +1/2 > 1/2, so that there is no problem in handling the integrals.
Hence v = 0, and, using (55) again, u is a unitary operator. And thus y” = u*y’u
which proves the result. g

We now write the HFB equations in a form that is reminiscent of a Hamiltonian
structure, and use it to give a direct proof of the conservation of the energy.
Notation: For ¢ € H',U = (4}) € H*>? a symplectomorphism, and y} € H!
non-negative. We set

My (6, u,v) = ($, hep) + Trl*ygu + 0" (1 + 70)9) (h + blIg) (1]
+%Tr[(u*y6u + ol (1 4+ 7O o)blu*yju + o7 (1 + 7)1
1 _ _
+5 Telklu"ygv + oI (1 + 7 + 9] (@110 viu + u” (1 + 7)0 + 1) (9]

In the next proposition and its proof we use the abbreviations A(t) = h(ytd”) and
k(t) = k(a,qb’), where, recall, y? := y + |¢)(¢| and 0¢ := 0 + ¢ ® ¢, and h(y) and
k(o) are defined in (42) and (43).

Proposition 3.12. Let p; = (¢, y1,0;) € CO[0,T); X>) N CH([0,T); X1) be a
solution to the HFB Eqs. (39)—(41) in the classical sense, on an interval [0, T), with
T > 0. Let Us and y; be as in Proposition 3.9.

Then, E(¢y, Vi, 07) = Hy(; (¢r, uy, vy) and the derivatives of'HV(; and of (¢r, us, vy)
are linked through the equations

oH,,

Ti)o(d’t, U, V) =10;¢y, (67)
BHV(; . 1

u* (¢[, Uy, U[) = J/Olatu, + Ev,k(l‘) B (68)
37‘(),(; .. — 1

T+ (¢, ur, v1) = =y i0:vy + veh(2) + Eutk(t) . (69)

The conservation of the energy E(¢y, ¥i, 07) follows.

Proof. Equation (58) is equivalent to

ve = wlydus + vl (14 7)o,

or = ulygu + ol (1 + 7))y .
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Hence, we can rewrite the expression of the energy in terms of ¢, u;, and v; as
E(ps, yr,00) = HV(; (¢4, us, vy). We then compute the derivatives of Hy(;3

BH)/(; —h b *,/ Tl =/\= k -
P (¢, u,v) =h¢ +blu"you + v (1 + y)vl¢ + klo + ¢ ® 9ll¢),

8Hyé o %/ T —/\ =
e (¢, u, v) = you(h + bllP) (@[] + blu"you + v (1 + ¥y)v])

1 -
+ (5 + YUk o+ u” (14 790+ 16) (911,

aHyO/ _ , - -, 7 T -7- * /
3o+ (@, u,v) = (L +ypv(h +D[|9)(bl] + blu” you + v (1 + yp)v])

1 -
+ (5 F yuklu"ygu + " (1+ 70 + 16)($1].

Replacing (¢, u, v) by (¢r, uy, v;) yields
oH

W?VO@” U, ) = hey + byl + k() ,
i’ = )+ - + 7k
P (P, ur, v) = yourh(t) + (5 + Yo uek(t)
oH

/ — 1
S @ v) = L+ y)uh(D) + (5 + yo)uk(r).

which are in fact (67), (68), (69) using the HFB equations. Hence, using first the chain
rule, then (67), (68), and (69),

Lt Gt 00) = Grtr 2 (g, v) + 2 (4, ) on )
— ’ L Up, Vp) = , U, V, s Ur, U
dt VO t t t t¥t 8(¢| t t t a|¢> t t t t¥Yr
87‘[],(; aHV(;
+ Tr[duf —— (¢, ur, vi)] + Tr[du;
ou* ou
8H7’6

ov

(¢t7 Ug, vl)]

(d)lv Ug, UI)]

37‘(),6
+ Tr[alvt*m(qsls ur, vp)] + Tr[0, v,
_ — 1
= Re Tr[d;uj vk (t) + 9, v (vih(t) + Eu,k(t))] .
We can now use that the evolution Eq. (57) on 4, is equivalent to
iduy = uh(t) + vik(1) (70)
i0v; = —uk(t) — v,h(1), (71)
along with Tr[AT] = Tr[A] and the cyclicity of trace to group all the terms as in

d P _
ZH},(;(QS,, ur, v) = Im Tr[k (DR @) (v, @y — ujv) — k(@k(E)v] v,

+h@h(t)vl i, + 20 ()] b + kOl i, + h(t)k(@)u! 5]
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Table 1. Correspondence between the notations of this article and
some notations common in the physics literature [21]

This article  ¢(x)  y(x;x) o(x,x) hgs kgs N; \%4

[21] o) Aa(r) ) L gmr) No(Ej) Uey —p

which then vanishes since vtT it; = ujv, for a symplectomorphism (see (55)), and the
terms k()k(t)v/v;, h()h(t)v; U;, k()k(t)u; it;, and k()h(t)v) u; + h(t)k(t)u,Tf)t
give real traces. U

Relation to the HFB eigenvalue equations. Now, we link our work with the HFB
eigenvalue equations often encountered in the physics literature [19,21,42].

To be explicit, we give, in Table 1, the correspondence between the notations of this
article and those of an article of Griffin [21].

We note that the setting in [21] is not exactly the same as ours, since the class of
external potentials V' that we consider excludes trapping potentials, and the solutions
®(r) considered in [21] are time-independent. Moreover, we note that in this paper,
we give rigorous proofs in the case of a two-body interaction potential v such that v2
is relatively form-bounded with respect to the Laplacian, which excludes potentials as
singular as g§; hence, the correspondence we establish in this section is only formal.
Nevertheless, we believe that pointing out this relationship is useful.

Moreover, we note that in the physics literature (see, e.g., [21, (23)]), the HFB eigen-
value equations are often investigated using a generalized eigenbasis decomposition
(using vectors often denoted by u;, v; which play the same role as below), which
we can relate to our approach in the following manner, based on our discussion from
Sect. 3.

LetU; = (g; gi ), and let y6 > 0 be a trace class operator as in Prop. 3.9, with the
orthonormal decomposition yy = >~ ;.o N;j1¢;)(¢;l. Let

uj=u;t;  and v = —vE .
Then, (58) yields

ve= Y (Njluj) el + 0+ Nj)9j0(05.1)
j=0

o = Z (N luj)jel + (L4 Nj) D)) i) -
j=0

which yield [21, (25)] by evaluation on the diagonal:

yi(eix) =Y (Njluj P + 1+ Nj) v, 0)) . (72)
j=0
o1(x, %) = Y uj ()0, (x)(1+2N) . (73)

Jj=0
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We now consider a pair interaction potential v = gé. We assume that ¢ is indepen-
dent of time and u  ;, v, have the simple form:

—itE

i —itE
ujr=e Tujo, Vi =e

ivjo. (74)
We also distinguish the quantities corresponding to v = g8 by the index gé. Then,
(57) formally yields the HFB eigenvalue equations:

hgsuj —kgsvj = Ejuj,

hgsvj —kgsuj = —E;v;,

as presented in the work of Griffin [21, Eq. (23)]. Note that (72), (73), and (74) imply
that y;(x; x) and o7 (x; x) are time independent, since the phases simplify.

We conclude that the HFB eigenvalue equations are the stationary version of our
Eq. (57). It amounts to finding eigenvalues and eigenvectors for the matrix AS in
(57), which is a nonlinear problem since A depends on y and o (that is, on u, v
and y;)). Furthermore, the decomposition in functions u; and v; corresponds to a
“diagonalization” of the generalized one-particle density matrix I" in the sense of
Proposition 3.8.

4. Existence and uniqueness of solutions to the HFB equations

We prove the global in time existence and uniqueness of mild solutions to the
time-dependent Hartree—Fock—Bogoliubov equations in the H '-setting.

We recall that, given a Banach space X, f € C(X), a continuous function on X,
and —i A the infinitesimal generator of a strongly continuous semigroup G (¢) on X, a
continuous function p : [0, T) — X is called a mild solution of the problem
{ia,p = Ap+ [ (p), 75)

p0) =poeX,

if p; solves the fixed point equation in integral form (with the integral in Bochner’s
sense)

t
Pﬁ:GUNW_iK;GU_ﬂf@Qd& (76)

In what follows we use the notation A < B to stand for an inequality of the form
A < CB, for some constant where C > 0. The main result of this section is the
following

Theorem 4.1. Let d < 3 and pg = (¢o, Y0, 00) € X', Assume that the potentials V
and v satisfy Conditions (a) and (b’) of Sect. 1.1. Then the following hold:
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(i) Existence and uniqueness of a local mild solution:
There exists a unique maximal solution

(Pret0.1) = (brs V1> 0)eepo.ry € CO([0, T); X1

to the HBF Egs. (39) to (41) in the mild sense, for some 0 < T < oo.
(ii) Existence and uniqueness of a local classical solution:
If po € X3, then

(P)rero.ry € CO10, T); Xy nclo, 7); X1

and p; satisfies the HBF Egs. (39) to (41) in the classical sense.
(iii) Conservation laws:

The number of particles Tr[y,] and the energy (47) are constants.
(iv) Positivity preservation property:

IfT' = <)_/ 7 _) > 0 at t = 0, then this holds for all times.

ol+y
(v) Existence of a global solution:
If additionally Ty > 0, then the solution p; is global, i.e., T = oco.

Proof of Theorem 4.1(i) [Local Mild Solutions] We use the notations introduced at
the beginning of Sect. 2. The proof is based on a standard fixed point argument (through
an application of the Cauchy-Lipschitz and Picard—Lindelof theorem). Separating the
linear part Ap and nonlinear part f(p), we can write the HFB Eqs. (39) to (41) in the
form:

iop=Ap+ f(p), (77)
where p := (¢, y, o) € X2. Then, the linear part in the HFB equations is given by
Ap = (h . [h.y]. [h.oly + ko), (78)

with the domain D(A) = X2, and the nonlinear part f := (fi, f>, f3) by

fi(p) = blylp + ko + ¢=*1¢, (719)
f2(p) = [bly +19)(¢11, v1+ ko + $%°16 — oklo + ¢=2], (80)
f3(p) = [bly +16)(@ll. 015 + [klo + ¢=*1, 14 . 1)

From Lemma 4.3, below, we obtain that f is continuously Fréchet differentiable in
X! and therefore is locally Lipschitz, and from Lemma 4.2, we obtain that G(t) =
exp(itA) defines a strongly continuous uniformly bounded semigroup on X !.

Consequently, we can rewrite the HFB Eqgs. (39)—(41) as a fixed point problem

t
P = G(l)po—i/O Gt —5)f(ps)ds
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and use the Banach contraction theorem to show that (39)—(41) have the unique local
mild solution to in X! for the given initial data. (For the details for this standard
argument, see [34, Sect. 9.2e, Thm 3].) O

We will now prove our main Lemmata on G(¢) = exp(itA) and f. First, we recall
the norms (37). Moreover, if we denote the integral kernel of an operator o by &, then
the norm ||o ”H i is equivalent to the norm

ol = 15155 = 1(M? @ 1+ 1@ M*)/26) || 2 gony
Lemma 4.2. The operator A generates a strongly continuous semigroup, G(t) =
exp(itA), on X', uniformly bounded as IGOlpxty < 1.
Proof. Letfz(o) = [h, o]+ + k[o]. We define G(¢) = exp(itA)on p := (¢, y,0) €
X/ as
G(t)p = (exp(—ith)¢, exp(—ith)y exp(ith), exp(—itfz)(a)). (82)

We use that —A is h-bounded, and 4 is —A-bounded and that M is translationally
invariant. For (¢, y,0) € X! and C < oo chosens.t. M < h + C,

lexp(—ith)gll 1 = [|(h + C) exp(=ith)$ll 2 = [(h + C)pll72 S Il -

Similarly || exp(—ith)y exp(ith)||H1y < ||y||H; .

Finally, we define the operator / acting on L%(R2?) by the condition h(o) = hé.
Then, we have h = hy + hy + v(x — ), since the pair potential v be infinitesimally
bounded with respect to —A, the operator h=he+h y +v(x — ) is self-adjoint and
hand —A, — A, are mutually relatively bounded. Hence, using (82) and choosing ¢
s.t. My + M, gﬁ—f—c,
lexp(—it ([h, o1y + ko D)o 341 = | exp(—ith)G ||

S G+ ) exp(=ith)a 2 S 16 g1 = llollyg -

The strong continuity of G(¢) follows from the strong continuity of exp(—ith) and
exp(—ith). O

The following lemma allows us to control the nonlinear term f in the HFB equations.

Lemma 4.3. The vector of nonlinear terms f = (f1, f2, f3) definedin Eq. (79)—(81)
maps X into itself and is continuously Fréchet differentiable in X' (f € C'(X")).

Proof of Lemma 4.3. For the first statement, it is sufficient to prove that, for the qua-
dratic and cubic parts of f are bounded as:

| (b1 + klo1 . [bly1. 1+ kl016 — oklo], [bly]. o1+ + (ko] y14) |
Sl (83)
| (k[®416 . (bLI9) (@11, ¥] + k[6®215 — ok[$®2],
(Lo} (@11, o1y + [K[6=*1. ¥14) |51 S Nl - (84)
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All the cubic estimates can be deduced from their quadratic counterparts using

1) (@ll3g, < I¢l71 and ¢ ® Pl < IglI7: -

We thus only consider the quadratic terms. Using Lemma 4.5 (i), we estimate

16l 181 S 1y llagy 10l < Noll -
For k[0 |¢, we use Lemma 4.5 (ii) to find
Ikl 1pll 1 < MK 2 S o3 ol 2 -
We estimate [b[y], y] using Lemma 4.5 (i),
6Ty 1 ¥l = 2| MblyIM ™ My M|| 21

< 2051y Ny ¥ ey, < vl < ol

For k[o]o (and similarly ok[o]), the inequality
Iklo]ollyg = IMkloloMll g1 < IMK[o]] c2llo Ml 22,

Lemma 4.5 (ii) (see estimate (95))
and [oM| 2 < ||‘7||H}, (which follows from the definition of ||‘7||H},) give the
estimate

k(015 I3, S ol - (85)
For b[y]o (or similarly ob[y]), using Lemma 4.5 (i), we obtain
by loliy = IMbIyIM ™ g Mo M| 2 < 1yl ol -

And finally k[o]y (and similarly yk[o]), using Lemma 4.5 (ii) (see estimate (95)),
we arrive at

Iklo17 Iy < IMKlo 1l 220y Mg S N0l 1Y 1l »

which completes the proof of (83) and therefore of (84).

To prove that f is Fréchet differentiable, we observe that each f; is a linear com-
bination of multi-linear maps and therefore df (p)& is of the same form as f(p) and
can be estimated as above. O

Proof of Theorem 4.1(ii) [Local Classical Solutions] The existence of classical solu-
tions to the HFB equations for initial data in X3 then follows from: U

Lemma 4.4 (See [46, Lemma 3.1]). If —i A is the generator of a continuous one-
parameter semi-group in the Banach space X, and if f is continuously differentiable on
X, then a mild solution of Eq. (75) has its values in the domain D(A) of A throughout
its interval of existence provided this is the case initially.

In other words, py, if it exists at all, then satisfies the differential Eq. (75) in the
obvious sense. 0
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Proof of Theorem 4.1(iii) [ Conservation Laws] For classical solutions, the conservation
of the number particle and of the energy were proven as a consequence of the same
conservation laws for the many-body system in Theorem 2.6 and 2.4. Another proof
of the conservation law for the energy using only the HFB equations (independently
from the many body problem) was given in Prop. 3.12, and the conservation of the
particle number could also be proven directly from (40). We can now use those results
since we proved the local existence of a classical solution. The conservation laws then
extend to mild solutions by approximation. g

Proof of Theorem 4.1(iv) [Positivity preservation property]
This follows from relation (62). Indirectly, it follows from the equivalence of the
HFB Egs. (39) to (41) the self-consistent Eq. (45) (see Theorem 2.3). O
Proof of Theorem 4.1(v) [Global Solution] We recall that for a maximal solution p;
of the mild problem (76) defined on an interval [0, T'), we have that either 7 = oo or
SUP;eo,T) llorll x1 = oo (see, e.g., [14, Thm 4.3.4]). It is thus enough to prove that

sup {”¢t”1—11a e ll 2 ||Ut||7-(}7} <
1€[0,T) 4

to show that the solutions are global. Let

Ti=/dxdy Y (=D)Y (), (86)

Because V is infinitesimally form bounded with respect to the Laplacian,

/dx VrOY )V (x) > —%T —¢cN (87)

holds. And, because the pair potential v is bounded, we have

1
Vim 5 [ dxdy ot - 0wt @U R = ~CF - N (8)
Hence, from the definition of H, (87) and (88) we get

T < 2H + CN? + CN. (89)

We now take the expectation value of o]’ and use that w{ is quasifree to bound w;' (N?)
by C(w{ (N)? + 1) and the conservation of the particle number and of the energy to
obtain

2
Tr[— Ay + 16 (D] < CE@Pr, v 00 + Y N @i, vi, 0))

k=0

2
< C(E(¢o, 10, 00) + Y_ N0, v0,00)"). (90)

k=0
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Combined with the conservation of the particle number, this estimate provides bounds

on ||y ”Hll/ and ||¢; || ;1 that are uniform in z. Moreover, uniform bounds on ||o || !

are then obtained from Proposition 3.1. It thus follows that the solution is global, as

claimed. O
Recall that WP (R¥) denotes the standard Sobolev space over R4,

Lemma 4.5. Assume thatv € WP with p > d. Then, the operators b and k defined
in (42) and (43) possess the following properties:

(i) b is continuous from H)l, to B(HY ~ MBM .

(ii) k is continuous from H}; to M~ 2.

Proof. For the detailed proof of statement (i), we refer to [12]. For the reader’s con-
venience, we recall here the main arguments. We first consider the direct term, i.e.,
the first term in the definition of b. It is sufficient to prove that v % n (with functions
n(x) = y(x; x)) and Vv % n uniformly bounded by ||y ||H;~ As those two bounds are
very similar, we focus on the more difficult one, Vv * n.

Denote by 7 the (generalized) integral kernel of an operator . Since v € W21 (R?)
with p > d, the function v is bounded. Since Vy [ps v(x —y) ¥ (y; y)dy = [pa v(x —
¥) Vyy (y; y)dy, we have

HVx/ v(x — )y dy|, < HvHoo/ IVyy (y; y)ldy 1)
R4 R4
Furthermore, fRd [Vyy (y; »Idy < lly ||H1V , which can proved by using the decompo-

sition y = Z;’i] Ajlej){ejl with A ; > 0 of ¥, combined with the Cauchy—Schwarz
inequality:

WK

/IVyV(y;y)ldyS )»j/ lp;(MVe;(y)ldy 92)
R R

~.
I
_

WK

<D 4illejll2 Vel ©3)
J=1
o0

<D MlIMe;lTz < 1yl 94)
j=1

The last two estimates imply the desired result, || Vv * n]loo < ||y |l74 . The estimates
Y
for the exchange term (the second term in the definition of B) are similar.
Point (ii) is equivalent to the estimate

IMklo]llc2 S llollgg 95)

which we now prove.
Denote by ¢ the (generalized) integral kernel of an operator o. Clearly, |o ”H j
|6 || z1. Denote by a(x, y) = v(x — y)& (x, y), the integral kernel of k[c]. We have
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that

IMk||%, = / / |Mya(x, y)[*dxdy < [lal7,:. (96)
Since a(x, y) = v(x — y)o(x, y) and

lallgr < llaliz2 + l0xallp2 + l9yallz2

we use the Leibniz rule, dya(x, y) = (dv(x — y))o(x,y) + v(x — y)d,o (x, y), to
find that

lallzr <(Ivlizee + 100M 7 g2y + 0y 0My g g2) 1515, o7
where L2 := LZ(R;I X Ri’, ). The Schwartz and Sobolev inequalities imply that

lxvfilipz < Noxvlizell fllzs < Mollwet IMSfIlL2,
for arbitrary s and p satisfying % + % = % and p > d. Thus,
lox oM S vllw
and, similarly, ||8va;1 I < llvllyp.a. It follows that

lallgr < Ivllwea 161 g1 (98)

This, together with (96) and ||o || j1 =~ ||a||H(17, yields (95). O

5. Gibbs states and Bose—Einstein condensation

In this section, we determine translation- and U (1) gauge-invariant Gibbs states
for the HFB equations without an external potential, and with an interaction potential
g4, and discuss the emergence of a Bose—Einstein condensate at positive temperature.
(Recall from the introduction that U (1) gauge-invariant Gibbs states for the HFB
equations are, in fact, Gibbs states for the Hartree-Fock equations.)

We consider the system on a torus, A;, = Rd/2LZd, ie., [—L, L]d with periodic
boundary conditions. Accordingly, we denote A} := %Zd the lattice reciprocal to
2L7¢. We will eventually take the thermodynamic limit, L — oo, and discuss the
emergence of a Bose-Einstein condensate.

The Hamiltonian H of the Bose gas is U (1) gauge-invariant (that is, invariant under
the transformation ¥* — (¢/y)%), and, as we consider the case with no external
potential, translation invariant. On a compact torus, where the volume is finite, these
symmetries are also present in the Gibbs states of system (the notion of translation

invariance should be, of course, appropriately modified). We are interested in quasifree
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states a)z which, on the one hand, satisfy both the U (1) gauge invariance and the trans-
lation invariance, and, on the other hand, satisfy a fixed point equation corresponding
to the consistency condition (45) in the dynamical case:

D(]) = of with ®(@])(A) :=TrlA exp(—p(Hpyrp(]) — uN)/E] (99)

where B > 0 is the inverse temperature, p is the chemical potential, and E =
Trlexp(—B(Hy Fp (a)z)) — uN)]. The U (1) gauge-invariance of a)[i then implies that
the truncated expectations ¢wi and 01 vanish. Indeed, if one of them was nonzero,
then the HFB Hamiltonian H g r g would include terms which would break U (1) gauge
invariance, such as f dx m(x) ¥*(x)¥*(x)+h.c.. The quasifree states we consider are
thus characterized by their truncated expectation yy,, and we will replace the variable
a)z by yr in the sequel of this section.

We use the expression of the HFB Hamiltonian (44) withv = gé (and ¢ = 0,0 =
0), although this expression was derived for more regular interaction potentials v’s:

Hprp(@]) = /dxdy YY) (A +gn)(x;y), (100)

with n = n(x) = yr(x; x). The translation invariance implies that the kernel yz, (x; y)
is a function of x — y, that we still denote by yr, and therefore n = n(x) = yr(x; x)
is independent of x.

Applying the fixed point Eq. (99) with A = ¢ *(y)y¥ (x), one can express it equiv-
alently in the variable yy:

1
= , 101
VL= axp(B(—A +gnl—pl)) — 1 (101)
for n € [0, 00). The operator yy, is a pseudodifferential operator with symbol
j 1
pLk) == / yL(e *Rdx = (102)
AL exp(Bk? +gn —p)) —1
of yr. Thus,
1 .
n=yr0)=—— > 71k, (103)
ALl &
€AY

As the Fourier coefficients of y;, depend only of the number n, we obtain from (101),
(102) and (103) a nonlinear fixed point equation for n:

! > ! (104)
n = .
ALl 2, exp(Bk? +gn — ) — 1
€AY
Note that the knowledge of n satisfying (104), or of y satisfying (101) or of wz
satisfying (99) are equivalent.
From a physical point of view, it is natural to fix the density n, which can be tuned
in an experiment and to compute p. So n is a parameter and we solve (104) with the
unknown (.
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Lemma 5.1. Let g, B,n > 0, and, for d > 3. Let n. be the critical density

S dk (T .
e (2m)4 /1;{:1 B _ 1 () B2, (105)

where {(x) =Y, n~ "  and T'(x) = JoS e ar.
We define St : (—oo, gn) — R and S : (—00, gn] — R through

1

1
S = )
L =R kEXA:* exp(BK + gn — 1) — 1

dk
Soollt) = (3 /Rd exp(BR2 + gn —p)) — 1

Then:
e There exists a unique y (n) < gn such that (104) holds, i.e.,

n=Sr(ur(n)). (106)

e Ifn < ng, there exists a unique [Loo(n) < gn such that

n = Seo(Moo(n)). (107)
We extend the function jLeo to (0, 00) by setting oo(n) = gn forn > nc.
Remark 5.2. The critical density n, can be explicitly computed.

Proof. In the discrete case, the existence follows from the intermediate value theorem
because the map Sy, is continuous with limits O at —oo and oo at gn. The map Sy, is
strictly increasing and thus there exists a unique .y (n) such that n = Sy (up (n)).

In the continuous case, we first prove the existence of oo (1), for a given n > 0,
the map (0, gn] > u — Soo(u) is well-defined, continuous, lim;,— _so Soo(t) = 0,
Seo(gn) = n¢, and thus the intermediate value theorem yields the existence of a jtso
satisfying (107). Since S is strictly increasing, the uniqueness follows. g

In Theorem 5.3, we prove that the thermodynamic limit Y, of the self-consistent
Eq. (101) for yz is well-defined and exhibits the so-called Bose—Einstein condensation.

Theorem 5.3. Let g, f,n > 0andd > 3. Let yr, ne, [t and oo as defined in (101)
and Lemmata 5.1. Then,

rD/
pur(n) ——> poo(n) and yrL —— Yoo, (108)
L—o00 L—o0

where

1
exp (B2 + gn — poo(n))) — 1

Yoo(k) = max{0,n —nc} (k) + (109)
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Remark 5.4. The presence of the 6 (k) term is interpreted as the existence of Bose—
Einstein condensation, because there is an accumulation of particles in the zero mode.
It occurs when 9/?n > C,; with C, a constant depending only on the dimension.

Proof of Theorem 5.3. First we prove the convergence of py (n) towards a pieo (7).
We first remark that uy(n) > —C for some constant C > 0 independent of L.
(Otherwise one could extract a subsequence such that n = S ; (ur;(n)) - 0 < n.)
Thus, the accumulation points of /47, (n) are contained in [—C, gn]. Let ur ; (n) denote
an extracted sequence converging to an accumulation point .

Inthe case n < n.: If u' = gn, then for j large enough KL; (n) > (Lo(n)+gn)/2,
thus

gn + Mw(”)) N Soo(gn + oo(n)

n =St e, ) = St (= :

) > Soolttoc(2)) = n
and which would lead to a contradiction. Note that it is crucial that pu(n) < gn
for n < n. to get the convergence to the integral S (%""(")) It thus follows that
u' < gn. Then SLj (,uLj (n)) converges to n, because by definition of 17, (n) this sum
is equal to 2, and also to Soo (1t'). (One has to control the dependency in L, (n) in the
Riemann sums.) Hence, it/ = oo () and the unique accumulation point is o (7).
We thus proved the convergence of 1ty (1) to teo (7).

In the case n > n,., we sketch an argument similar to the one above. If an accumu-
lation point u’ was such that 4’ < gn, then the sums Sy ;(pr;(n)) would converge
to integrals with a value strictly smaller than n, and thus strictly smaller than n. This
would lead to a contradiction. Thus, the only possible accumulation point is gn and
purL(n) = gn = poo(n).

We now prove the convergence of y; towards yeo. Let ¢ € Cg° (R%). For L large
enough the support of ¢ is included in Ay, and

1
= — v (K)o (k) . 110
/ALW |AL|k§*yL< )¢ (k) (110)

On the other hand, (Yoo, @)D’ = (Yoos @)s' = (Yoo, ¢) s’ (Note that in the normaliza-
tion we choose, the Fourier coefficients of ¢ on A, and the Fourier transform coincide,
there is thus no need to specify the hat notation.) The convergence of yy, to Yo is thus
equivalent to

1 o ) Qm)~4p(k)dk
ALl Z YL (k)@ (k) — max{0, n — n.}¢(0) +/Rd B g _ 1 (111)
keAz
for all ¢.

In the case n < n. the convergence is thus just a convergence of Riemann sums of
the integral (with the small additional difficulty that 1«7 (n) depends on L in the sum)
because there is no singularity in the function k — (exp(8 (k> 4+gn—poo(n)))— 1L
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In the case n > n.: Let ¢ > 0. First note that, for any fixed n > 0

1 ¢ (k) / Qr)~¢k)dk
> - =
ALl S exp(B(k? + gn — pup(n))) — 1 =y  ePF —1
[k|>n

as L — oo. We choose 1 > 0 small enough so that

. . e Q)" 4p0)dk
kl <n = |pk) —@0) < — and / R A S
kKl =n = 16(k) —¢O)] = P T )

The first condition on 7 yields

‘ Loy $k) = $(0) e
ALl S exp(BR> +gn —urm) — 1| ~ 4
lkl<n

then, the second condition on 1 implies

. 1 ¢(0) . €
lim su —(n—no)p0)| < -.
Lo [IAL] kEZA* exp(BK? + gn — u(m)) — 1 ‘ 4
L
kl<n
Hence
1 p(k
lim sup Z 5 a0
L—oo |IALl S exp(B(kS +gn — pup(n) — 1
N
. Q)" g(k)dk
—(”—nc)<ﬂ(k)—/Rd W <e,
and as this holds for any ¢ > 0, we get the result. 0

6. Derivation of the Bosonic HFB equations

In this section, we prove Theorem 2.2. The derivations below are done in a some-
what informal way commonly used in dealing with operators on Fock spaces (see,
e.g., [8,13,25]). For instance, the commutator [A, H], for A = ¢¥(x) and A =
¥ (x)¥ (y), contains the terms A,y (x) and ¥ (x) Ay (y). The formal computation
gives 01 (Ax ¥ (x)) = Ay (Y (x)) and o (Y (xX)A ¥ (y)) = Ay (Y ()Y (y)),
which are well-defined by our assumptions and are equal to Ay¢ (x) and Ayo (x, y),
respectively.

To do this more carefully, one uses, instead of operator functions w#(x), the op-
erator functionals w#( f), for some nice f. E.g., instead [{(x), H], we consider the
commutator [ (f), H], for any nice f, and concentrate on the term 1 (Af) it con-
tains. Clearly, w? is well-defined on ¥ (Af) and can be written as w? (¥ (Af)) =
[Afx)o? (Y (x) = [Afx)p(x) = [ f(x)Ap(x). Thus, we obtain the same

result as above but in a weak form.
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Proof of Theorem 2.2. We first observe that the three following conditions are equiv-
alent:

1. A quasifree state w; satisfies
o] (A) = of ([A, HI), (112)

for any operator A of order < 2 in the fields.
2. A quasifree state o] satisfies

i (¥ () = of [y (x), HI), (113)
idof (YY) = of (W ()Y (x), H) (114)
idof (YY) = of (¥ ()Y (y), HI). (115)
3. A quasifree state wf with truncated expectations ¢;, y; and o; satisfies
19 (x) = of ([ (x), H) , (116)
iy (x: y) = of (Y)Y (x), H]) =9, (¢ (x)p () (117)
10,01 (x, y) = of (Y ()Y (), HD) — id, (41 (¥)9 (3)) - (118)

We now suppose wtq satisfies (116)—(118). Using the definition of the Hamiltonian,
we obtain

i0:¢pr (x) =wzq([1/f(x),/1/f*(y)h(y;y’)llf(y’) dydy']
1
#5100, [0 = O 0 dyay]) (119)

= w?(/ h(x; Y)Y () dy' + / v = DY MY P (x) dy) . (120)
where we used the CCR (3) to get

[¥ ), v YO O ()]
=8(x — YOOIV ) +8x = Y)Y (MY ). (121)

As w] is a quasifree state (see Appendix B)

of (VY (MY (x))
= 1o (M (%) + 0 (v ) () + G ()Y (v ¥) + S (M y (x; y) . (122)
We thus deduce that

by (x) = / hGxs )6y dyf
+ / v(y —x)¢ () v (y; y)dy + f v(y — )¢ () yi(x; y)dy

+ / v(x — )0y (v, ) (y) dy + / v(y — X) (¥)y (X) () dy
= ((h + bly D) (x) + k(o )i (x)
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which is the dynamical Eq. (39) for ¢;.
For y; and oy, instead of a)? we use
ot (A) = of (Wg, AWy ), (123)
where, recall, Wy = exp (¥*(¢) — ¥ (¢)), the Weyl operators, which satisfy
Wi ()Wy = ¥ (x) + ¢(x) . (124)

Note that the state a)qc’t is quasifree because (u;’ is quasifree. By construction a)%’ (W (x))
= 0 and thus using (10) and the quasifreeness of w'é’ , one sees that w(é’ , vanishes on
monomials of odd order in the fields. This provides substantial simplifications in the
computations below.

In particular, the equations of the dynamics for y; and o; can be rewritten:

i9rye (x5 y) = (WY (x), Wo HWg, 1) (125)
19:01(x1,y) = ¢, (Y ()Y (), Wy HWg, 1) . (126)

We compute W(ZIHW@ modulo terms of odd degree and of degree O in the creation
and annihilation operators:

Wy HWy, = / v (2)(h + byll) (11)(z; 2) ¥ (2)) dzdZ’
1
+3 / v(z — )P (D) (VY * (Y™ (Z) dzdZ’ + adj.

1
+ > f v(z — UV * )Y ()Y (z) dzdZ . (127)

Because w[é’ , vanishes on monomials of odd order in the fields and using the commu-
tator, the knowledge of W;tHW@ modulo terms of odd degree and of degree 0 in the
creation and annihilation operators is sufficient to compute the time derivative (125)
of y;. Thus, using the CCR we get

10y (x;y) = /w%,<(h + byllg) (@ 1]) (xs DY (V)Y (2)

— (B + Bullg) (:11) (z: MY @)Y (x)
+v(z = X)@ (2)P )V (V™ (2) — v(z — Y () (WY ()Y (x)

+ vz = )YV @Y )Y (2) —v(z — y)w*(z)w*(y)W(z)W(X)) dz.
(128)

From the quasifreeness of a)‘é’ , follows:
i0y1(x; y) = [+ bollge) (| + vl v ] (x3 y)
+ / (v(z = )¢ ()1 ()01 (v, 2) — v(z = Y (D)1 (¥)0r (2, X)

+v(z — x)0y (x, 2)07 (¥, 2) — v(z — Y)oy (x, 2)oy (v, 2)) dz. (129)
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which is the dynamical Eq. (40) for y;.
Using the same arguments as for y;, we get
i0;0:(x;y)
= w0, (v = OB ) + v = VYY)

+ f ((h + bollge) (@ 1D (xs DY () + (b + byl ) (e D (y; )Y (X)) (2)
+u(x — DY @Y (V)P ()P (2) + v(y — DY (@)Y (%) (¥) s (2)

+v(x = DY QUMY @)Y (@) + vy — DY @Y ()Y ()Y (2) dZ> .
(130)

From the quasifreeness of w(é , follows:

i0;04(x; y)
=v(x — ¥)P: (x)P: (¥) + v(x — y)or(x, y)

+ [ (0 080 @) i 201 (5.2) + (b + bullg @11 03 200 3. 2

+v(x — 2Dy (¥; DPr ()P (2) + vy — 2y (x5 2)Pe (V)P (2)
+v(x — 2 (v (x: 201z, y) + v (v: 201 (2, X) + i (2; 2Dor (x, y))

+0(y — ) (1 (x: 2012, ¥) + i (¥: 201 (2, ) + vi (2 2o (x, y))) dz,
(131)

which is the dynamical Eq. (41) for o;. O
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A. Self-adjointness of the Hamiltonian H

We use that the pair potential v is infinitesimally A—bounded, i.e., forany ¢ € (0, 1],
v<—eA+Ce! (132)
(we write C for constants which depend on v, d and change along the estimates) to

obtain after taking e = 1/(3(n — 1)),

1

Then, summing the n(n — 1) /2 terms of this form on each n-particles subspace of the
Fock space, we obtain that

1 2
V= 3 f dxdy v(x = MY OY* MY YY) < §T+ CN’. (134

for some C > 0, with T defined in (86). One can then use the KLMN theorem and
the Nelson theorem (see [40,44]) to prove the self-adjointness of H. (Details can be
adapted from, e.g., [1, Section 3].)

B. Definition of quasifree states

For brevity, we write W? := " (x;). We recall that the truncated expectations are
defined via

wf-vh=> T[] " ]vh. (135)

P, JeP, jelJ

where P, are partitions of the ordered set {1, ..., n} into ordered subsets.
We have w! () = w(¥) and

o Wi = 0@l — o WHoWh). (136)

For quasifree states, the correlation functions a)(lﬁf e w,f ), with n > 2 can be ex-
pressed through o (y*(x)) and o (¥ (x)¥*(y)) according to the Wick formula. For
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example,
oWV = oW He WY

3
oDV + oWhowiv) - 2[Jew) 137)

i=1

and
oW YEvivh = o@ivhHo WD + oW ivhowivh

4
+oW{vhoWiv) — 2] Jow)) (138)

i=1

(remember that ¥/’s stand on the right of ¥/*’s.) Note that

o(¥* () = o(¥ (1), oWY3) = 0W2y)

and

o(Y1y3) = o(WP3¥) +8(x — y).

Thus, a quasifree state o is completely determined by the functions o’ (¥ (x)), o’

(v* ()% () and &7 (¥ ()Y ().

Remark B.1. It is instructive to rewrite correlation functions for a quasifree state @ in
terms of the fluctuation fields x (x), defined as

x(x) =y x) —olyx)], (139)

where the average field w[y(x)] = ¢ (x) is considered a multiplication operator on
F. Then, w is a quasifree state iff w(xf e xgn_l) =0and

2n—1

i i g i
(X1 Xap) = Z H O Xz (i) X (i41))>

neS, i=1

where the sum is taken over all the permutations 7 of the set of indices {1, ..., 2n}
satisfying 7 (1) < ... < w(2n) and, for all.

C. Equivalence of the HBF equations with the evolution generated by Hj, 5 (w;’)

In this section, we prove Theorem 2.3.
Let a quasifree state a)? satisfy (45) and let ¢, y; and o; denote its truncated expec-
tations. Below, we use the abbreviations A (t) = h(yf’) and k() = k(o,¢’), where,
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recall, y¢ =y + |p)(¢| and 0% =0+ |¢)(¢|, and h(y) and k(o) are defined in
(42) and (43). To find the equation for ¢;, we compute
190 (x) = of ([ (x), Hypp(@])])
= af ( / h(e) (e: 2 (2)dz = blIgn) (91 (x) + f Y@k, 2) d2)

= h(t)¢r (x) — blIg:) (111 (x) + k()¢ (x) .

Hence ¢, satisfies (39).
For y; and o; we remark that, modulo terms of order one and constants W(Z‘[ Hy, 5 (a)?)
Wy, and Hy,sp(wf) coincide, hence

Wi o @)W, = [ 1)@ 200 @0 @) dzd

1
+5/I/f*(m)lﬂ*(zz)k(t)(m,Zz)dz1dZ2+adj.. (140)

Recall the definition (123) of qu,t(A)' As in the proof of Theorem 2.2, the terms
coming from the derivative of Wy, simplify:

19,y (x5 y) = o, (W * (Y (x), Wgs Hiypp (@] )W, 1) -

It is sufficient to consider W;{H(@, V1, 01) Wy, modulo monomials of odd order in the
fields:

i) = o, ([ o v v @i - [ oG @
+ [ e okne v - [TOE e s)
= [ b am ot - [ nes b

+/0t(y,z)k(t)(z,x)dz—/k(t)(z,y)ot(x,z)dz>.
Similarly
i0io1(x;y) = w(é,t([’ﬁ(x)l/f(y)ﬁ W,Ztthb(a)?)W@]) (141)

and

10y (x3y) =/h(t)(x;z)ar(x,z)der/h(t)(y;Z)ot(y,z)dz

+/J/z(y,Z)k(t)(Z,X)dZ+/Vz(x,Z)k(t)(Z,y)dZJrk(t)(x,y) (142)

Thus, y; and oy satisfy (40) and (41).

We have shown that, if a quasifree state a)? satisfies (45), then its truncated expec-
tations, ¢, y; and oy, satisfy (39), (40) and (41). Proceeding in the opposite direction,
one shows that, if truncated expectations, ¢;, y; and oy, satisfy (39), (40) and (41),
then the corresponding quasifree state w; satisfies (45). 0
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