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Abstract. We introduce the map of dynamics of quantum Bose gases into dynamics of quasifree states,
which we call the “nonlinear quasifree approximation”. We use this map to derive the time-dependent
Hartree–Fock–Bogoliubov (HFB) equations describing the dynamics of quantum fluctuations around a
Bose–Einstein condensate. We prove global well-posedness of the HFB equations for pair potentials satis-
fying suitable regularity conditions, and we establish important conservation laws. We show that the space
of solutions of the HFB equations has a symplectic structure reminiscent of a Hamiltonian system. This is
then used to relate the HFB equations to the HFB eigenvalue equations discussed in the physics literature.
We also construct Gibbs equilibrium states at positive temperature associated with the HFB equations, and
we establish criteria for the appearance of Bose–Einstein condensation.

1. Introduction

In this paper, we derive the time-dependent Hartree–Fock–Bogoliubov (HFB) equa-
tions describing quantum fluctuations of a non-relativistic Bose gas around a Bose–
Einstein condensate and study their properties.

1.1. Quantum many-body problem

The starting point of our analysis is a second-quantized description of a quantum-
mechanical many-body system of Bose point particles (bosonic atoms). We first con-
sider systems of finitely many particles. The Hilbert space of pure state vectors is
given by the bosonic Fock space:

F :=
∞⊕

n=0

F (n) , (1)

where F (n) := h⊗symn , for n ≥ 1, is the n-fold symmetric tensor product of the
one-particle Hilbert space

h := L2(Rd) ,

accounting for the Bose–Einstein statistics of the particles, and F (0) := C · ! is
the one-dimensional vacuum sector spanned by the normalized vacuum vector !.
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Building blocks of operator calculus on F are annihilation and creation operator-
valued distributions ψ( f ) and ψ∗( f ), f ∈ h, which are adjoints of each other and
satisfy the canonical commutation relations (CCR):
[
ψ( f1),ψ∗( f2)

]
= 〈 f1| f2〉h ,

[
ψ( f1),ψ( f2)

]
=

[
ψ∗( f1),ψ∗( f2)

]
= 0 ,(2)

and ψ( f1)! = 0, for all f1, f2 ∈ h, see, e.g., [13]. We will write ψ#(x) for their
formal distribution kernelsψ∗(x) andψ(x), i.e.,ψ∗( f ) =

∫
f (x)ψ∗(x) dx ,ψ( f ) =∫

f (x)ψ(x) dx , and the CCR read
[
ψ(x),ψ∗(y)

]
= δ(x − y) ,

[
ψ(x),ψ(y)

]
=

[
ψ∗(x),ψ∗(y)

]
= 0 . (3)

The time evolution of the system is generated by the quantum Hamiltonian:

H =
∫

d ψ∗(x) h ψ(x)+ 1
2

∫
dx dy v(x − y)ψ∗(x)ψ∗(y)ψ(x)ψ(y) , (4)

where, in the position-space representation, the operator h is given by

h := −% + V (x), x ∈ Rd , d = 1, 2, 3, . . . ,

with % the Laplacian acting on h.
We always impose the following conditions:

(a) The external potential V is infinitesimally bounded

with respect to the Laplacian − %. (5)

(b) The pair potential v is even, v(x) = v(−x),

and relatively bounded with respect to %. (6)

These conditions imply that H is self-adjoint on the domain of the operator

H0 :=
∫

dx ψ∗(x)(−%)ψ(x) (7)

(see Appendix A). We note that these conditions allow both V and v to have Coulomb
singularities.
Let W p,r (Rd) denote the standard Sobolev space over Rd . In Sect. 4, we will use

a stronger condition on v:

(b′) The pair potential v is even, v(x) = v(−x),

and satisfies v ∈ W p,1, for some p > d. (8)

States of the system are normalized positive linear (‘expectation’) functionals, ω,
on the Weyl algebra W over Schwartz space S(Rd), which is generated by Weyl
operators,

W ( f ) := eiφ( f ), with φ( f ) := ψ∗( f )+ ψ( f ) ,
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(see [13], Section 5.2.3). The set of states ω is denoted by S, and S(Rd) * f +→
ω[W ( f )] ∈ C can be viewed as its infinite-dimensional Fourier transform or charac-
teristic function, i.e., the generating functional of all correlations functions, see below.
States correspond either to a finite number of Bose particles, as in the case of BEC

experiments in traps, or to an infinitely extended gas at a nonzero particle density and
some fixed temperature. States ω ∈ S of finitely many particles are given by density
operators on Fock space F , i.e., there exists a positive, trace-class operator Dω on F
of unit trace such that ω(A) = Tr(ADω), for all bounded operators A on F (and in
particular for all elements A ∈ W).
It will be convenient to consider states defined on arbitrary products:

ψ#( f1) . . .ψ#( fn),

of creation- and annihilation operators. Expectations of such products in a state ω,
henceforth called correlation functions, can be defined by applying partial derivatives,
∂sk , to expectation values

ω
(
W (s1 f1) · · ·W (sn fn)

)

ofWeyl operators.Wewill only consider states with the property that these derivatives,
and hence, the corresponding correlation functions, exist, for arbitrary n; such states
are called regular states. Of particular interest to us are correlation functions with
n ≤ 4. Their existence is guaranteed by assuming, e.g., that ω(N2) < ∞, where N
is the particle number operator, N :=

∫
dx ψ∗(x)ψ(x). This assumption implies,

in particular, that ω is given by a density operator on F . (We remark, however, that
existence of correlation functions follows from considerablyweaker assumptions, e.g.,
from an appropriate version of the assumption that the particle density in the gas is
finite.)
The multilinear functionals ω

(
ψ#( f1) · · ·ψ#( fn)

)
, for f1, . . . , fn ∈ S(Rd), are

given by tempered distributions (this is the nuclear theorem), which we formally write
as:

ω
(
ψ#(x1) · · ·ψ#(xn)

)
.

By an “observable”, we refer either to an element of the Weyl algebra W or to a
linear combination of operators of the form ψ#( f1) . . .ψ#( fn). (We remark that the
term “observable” is, however, usually reserved for products ψ#( f1) . . .ψ#( fn) that
are gauge-invariant, i.e., invariant under phase transformations, ψ +→ eiθψ,ψ∗ +→
e−iθψ∗.)
The time evolution of regular states is given by the von Neumann–Landau equation

[29,48] (see also [10,43], and [26]) for some history)

i∂tωt (A) = ωt ([A,H]) , (9)

for arbitrary observables A, which extends the standard von Neumann–Landau equa-
tion to general C∗−algebras (see, e.g., [13,35]).
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1.2. Quasifree states and truncated expectations

Since the evolution Eq. (9) is extremely complicated to analyze, one is interested
in manageable approximations to it. Our approximation consists of restricting the
dynamics given by (9) to quasifree states, the simplest—yet sufficiently rich—class
of states generalizing the Hartree and Hartree–Fock ones, on the one hand, and the
Gaussian random processes, on the other, as has been first realized and used in [6].1

Quasifree states are defined in terms of truncated expectations,whichwedefine next.
We use the short-hand notation ψ j := ψ# j (x j ). The nth order truncated expectations
(correlation functions), ωT (ψ1, . . . ,ψn), of a state ω are defined recursively through

ω(ψ1 · · ·ψn) =
∑

Pn

∏

J∈Pn

ωT (ψi1 , . . . ,ψi|J |) , (10)

where the Pn are partitions of the ordered set {1, ..., n} into ordered subsets, J . The
simplest examples of truncated (or connected) correlations are

ωT (ψ(x)) = ω(ψ(x)) ,

ωT (ψ1, ψ2) = ω(ψ1ψ2) − ω(ψ1)ω(ψ2) . (11)

A state ω is called quasifree if truncated n-point expectations vanish for n > 2, i.e.,

ωT (ψ1, . . . ,ψn) = 0, ∀n > 2, (12)

We denote quasifree states by ωq and the set of quasifree states by Q ⊂ S.
It follows from the definition that all n-point expectations, ωq(ψ

#1
1 · · ·ψ#n

n ), with

n > 2, in a quasifree state ωq can be expressed in terms of ωq(ψ
#i
i ) and ωq(ψ

# j
j ψ

#k
k ),

with i, j, k ∈ {1, . . . , n}. The explicit formula is called Wick’s formula, or Wick’s
theorem; see [13]. Examples for small orders are given in Appendix B.

Given an arbitrary, not necessarily quasifree state ω ∈ S, with ω(N) < ∞, there
exists a unique quasifree state, denoted q[ω] ∈ Q, such that expectations

ω(ψ
#1
1 ) = q[ω](ψ#1

1 ) and ω(ψ
#1
1 ψ

#2
2 ) = q[ω](ψ#1

1 ψ
#2
2 ) (13)

of quadratic or lower order agree (see Sect. 1.4). We call the state q[ω] the quasifree
reduction ofω.2 Themap q : S → Q is idempotent, q◦q = q, and acts as a projection
of the convex space S of all states onto the space of quasifree states Q.

1.3. Quasifree dynamics

As mentioned above, detailed properties of the dynamics of a many-body system
described by the von Neumann–Landau equation (9) are difficult to unravel, and
approximations are therefore needed to extract interesting qualitative features.

1The notion of quasifree states was introduced in [45]; see [13] and references therein.
2This notion was introduced in [2] (see below). For a related notion in the context the gauge invariant twice
differentiable states, see [41]. For the definition of the gauge invariant states, see Sect. 1.3 below.
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The main idea is to restrict the dynamics to quasifree states. However, the property
of being quasifree is not preserved by the dynamics given by (9), and themain question
here is how to map the true quantum evolution onto the class of quasifree states.
The effective dynamics we propose replaces Eq. (9), with an initial condition ω0 ∈

S, by the equation

i∂tω
q
t (A) = ω

q
t
(
[A,H]

)
, with ω

q
t=0 = q[ω0] , (14)

for all observablesA that are at most quadratic in creation- and annihilation operators.
For the HamiltonianH given by (4), the commutator [A,H] contains products of at

most four creation- and annihilation operators; their expectation inω
q
t is then evaluated

by using Wick’s theorem for the quasifree state ω
q
t .

In contrast to the von Neumann–Landau equation (9), the quasifree dynamics (14)
is nonlinear.
Of course, one expects the effective evolution to be close the original one only if

ω0 is close to q[ω0] in an appropriate sense. We emphasize that, in general,

ω
q
t 1= q[ωt ],

even if the initial stateω0 = q[ω0] ∈ Q is quasifree. That is, the trajectory of quasifree
states ω

q
t determined by (14) is not the projection, q, of the trajectory ωt of states

evolving according to the full dynamics in (9) onto the space Q of quasifree states.
We call (14) the nonlinear quasifree approximation (it was called the quasifree

reduction in [3].)
The deviation of a stateω ∈ S from its quasifree reduction q[ω] ∈ Q can be quanti-

fied in terms of their relative entropy Srel(ω, q[ω]) := Tr
{
Dω

(
ln[Dω]− ln[Dq[ω]]

)}
,

provided ω and hence q[ω] are given by density operators Dω and Dq[ω], respec-
tively [20]. In fact, Srel(ω, q[ω]) may be viewed as the distance of ω to Q, since
Srel(ω,ω′) ≥ 0 with equality if, and only if, ω = ω′ and

Srel(ω, q[ω]) = inf
q∈Q

Srel(ω, q). (15)

It has been shown in [7] that for pure states the quasifree dynamics as defined above
( [3]) is a consequence of the Dirac–Frenkel principle, in which the right side of the
von Neumann–Landau equation (9) is projected onto a selected class of states.

We will show that Eq. (14) is equivalent to the nonlinear, self-consistent evolution
equation

i∂tω
q
t (A) = ω

q
t
(
[A,Hhfb(ω

q
t )]

)
, (16)

for all observables A, where Hhfb(ω
q) is an explicit quadratic Hamiltonian given in

Eq. (44), which depends on a quasifree state ωq ; see Theorem 2.3. The equivalence
holds for observables linear or quadratic in creation- and annihilation operators.
Equation (14), with the Hamiltonian H given by (4), is equivalent to the HFB

Eqs. (20)–(22) derived from it below.
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A state ω ∈ S is called U (1)-gauge invariant, if it satisfies

ω
(
ψ

#
θ (x1) · · ·ψ

#
θ (xn)

)
= ω

(
ψ#(x1) · · ·ψ#(xn)

)
,

for all θ ∈ R and all x1, . . . , xn ∈ R3, where ψθ (x) := eiθψ(x). A quasifree state
ωq is U (1)-gauge invariant iff φωq and σωq are vanishing. Indeed, ωq(ψ(x)

)
=

ωq(ψθ (x)
)
= eiθωq(ψ(x)

)
, for all θ , implies ωq(ψ(x)

)
= 0. A similar argument

applies to ωq(ψ(x)ψ(y)
)
. If the initial state ω

q
0 is a U (1)-gauge invariant quasifree

state,H is given by (4), andω
q
t is the solution of Eq. (14), thenω

q
t is also aU (1)-gauge

invariant quasifree state. Then, one can show that the self-consistent Eq. (16) and the
HFB Eqs. (39)–(43), reduce to the bosonic Hartree–Fock equation, i.e., to the HFB
equations with φt = 0, σt = 0, and γt being the only dynamical quantity.

1.4. HFB equations for truncated expectations

As was mentioned above, a quasifree state ωq ∈ Q determines, and is determined
by, the truncated expectations up to second order in the following sense:

1. ω → , : Given a (not necessarily quasifree) state ω ∈ S and its expectations





φ(x) := ω[ψ(x)],
γ (x; y) := ω[ψ∗(y)ψ(x)] − ω[ψ∗(y)]ω[ψ(x)],
σ (x, y) := ω[ψ(x)ψ(y)] − ω[ψ(x)]ω[ψ(y)] ,

(17)

up to second order, and denoting by γ and σ the operators with integral kernels
given by γ (x, y) and σ (x, y), respectively, we have that (see (51) below)

, =
(

γ σ

σ̄ 1+ γ̄

)
≥ 0 , (18)

where Ā := CσC , with C denoting complex conjugation in the position-space
representation, (i.e., complex conjugation ofwave functions of spatial variables).
Note in passing that this implies, in particular, that

γ = γ ∗ ≥ 0 and σ ∗ = σ̄ . (19)

2. , → ωq :Conversely, givenγ = γ ∗ ≥ 0 andσ ∗ = σ̄ such that, :=
( γ σ

σ̄ 1+γ̄

)
≥

0 obeys (18) and φ ∈ L2(Rd), there exists a unique quasifree state ωq ∈ Q such
that (17) holds true with ωq replacing ω.
Actually, the condition that φ ∈ L2(Rd) is too restrictive and can be relaxed,
depending on the context.

3. ω → q[ω] : Given a state ω ∈ S and going through 1. and 2. above yields the
quasifree reduction q[ω] := ωq of ω.
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The matrix operator in (18) is called “generalized one-particle density matrix”. The
positivity condition on , in (18) can be expressed directly in terms of γ and σ ; see
[4], [3]. The steps 1. and 2., whose composition yields the quasifree reduction q, were
first carried out in [2, Lemmata 3.2-3.5].
We will use (18) in proving the global existence for the HFB equations (see Propo-

sition 3.1(4) and the paragraph after Eq. (90)).
Evaluating (14) for monomials A ∈ A(2), where

A(2) :=
{
ψ(x), ψ∗(x)ψ(y), ψ(x)ψ(y)

}
,

yields a system of coupled nonlinear PDE’s for (φt , γt , σt ), the Hartree–Fock–Bogo-
liubov (HFB) equations,

i∂tφt =
(
h + v ∗ d(γt )+ v # γt

)
φt +

(
v # σ

φt
t

)
φ̄t , (20)

i∂tγt =
[
h + v ∗ d(γ φt

t )+ v # γ
φt
t , γt

]
+

(
v # σ

φt
t

)
σ ∗
t − σt

(
v # σ

φt
t

)∗
, (21)

i∂tσt =
[
h + v ∗ d(γ φt

t )+ v # γ
φt
t , σt

]
+ +

[
v # σ

φt
t , γt

]
+ + v # σ

φt
t , (22)

where [A1, A2]+ = A1AT
2 + A2AT

1 , A
T := A∗, γ φ := γ +|φ〉〈φ|, σφ := σ +|φ〉〈φ̄|.

Moreover, d(α)(x) := α(x, x), and v ∗ d(γ ) is multiplication by the convolution of
v with the one-particle density corresponding to γ , and the Schwartz integral kernel
v # α(x, y) := v(x, y)α(x, y) results from the product of v(x − y) with the integral
kernel of α.
The HFB equations are presented again in Eqs. (39)–(43), below. Since quasifree

states are characterized by their truncated expectations φ, γ and σ , this system of
equations is equivalent to Eq. (14).
For comparison of the HFB Eqs. (39)–(43) with the physics literature, we formally

assume the pair interaction potential v to be a delta distribution,

v(x − y) = g δ(x − y) , (23)

where g ≥ 0 is a coupling constant. The HFB Eqs. (20)–(22) then assume the simpler
form:

i∂tφt = hgδ(γ
φt
t )φt + gd(σφt

t )φ̄t − 2g|φt |2φt , (24)

i∂tγt = [hgδ(γ φt
t ), γt ] + gd(σφt

t )σ ∗
t − gσt d(σ

φt
t ) , (25)

i∂tσt = [hgδ(γ φt
t ), σt ]+ + g[d(σφt

t ), γt ]+ + d(σφt
t ) , (26)

where hgδ(γ ) := h + 2gd(γ ) , with h as in 4. (27)

(Note that here and in what follows, we denotemultiplication operators and functions
by which they multiply by the same symbols. The meaning is always clear from
context.) In our results (see Theorem 2.2) and proofs, we always assume that the
two-body potential is smooth.
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The physical interpretation of the truncated expectations of ω
q
t is as follows: The

functionφt is the quantum-mechanical one-particlewave functionof theBose–Einstein
condensate, while γt and σt describe the dynamics of sound waves in the quasifree
approximation; in particular, d(γt ) determines the density of the “thermal cloud”
of atoms. (In the physics literature, n = d(γ ) and m = d(σ ) are called the non-
condensate density and anomalous density, respectively.)
TheHFBEqs. (24), (25) and (26) provide a time-dependent extension of the standard

stationary Hartree–Fock–Bogoliubov equations for a Bose gas found in the physics
literature; see, e.g., [9,19,21,42]. Related equations (with φt = 0) appear in super-
conductivity. These so-called Bogoliubov-de Gennes equations are equivalent to the
BCS effective Hamiltonian description.

1.5. Summary of main results

The formulation of the nonlinear quasifree approximation in the form of Eq. (14),
and the derivation of its equivalent formulations as self-consistent Eq. (16) for ω

q
t and

the HFB Eqs. (39)–(43)) for the truncated expectations φ, γ , σ , are among the main
results presented in this paper; (see Theorems 2.2 and 2.3).
We also initiate a mathematical study of solutions of the HFB equations. In particu-

lar, if the initial state ω0 is s.t. the operator γ0 is trace-class (i.e., the number of atoms
is finite) and σ0 is Hilbert-Schmidt—for precise hypotheses see Sect. 2—we have the
following results:

• Conservation of the total number of atoms in the gas:

N (φt , γt , σt ) := ω
q
t (N) , (28)

where N is the particle-number operator; (see Corollary 2.5).
• Existence and conservation of the total energy (under suitable conditions on the
two-body potential v and on the initial state ω

q
0 ):

E(φt , γt , σt ) := ω
q
t (H) = ω

q
0 (H) , (29)

i.e., E(φt , γt , σt ) is independent of t ; see Corollary 2.5 and Theorem 2.6, or
Prop 3.12.

• Positivity preservation property: If , =
(

γ σ

σ̄ 1+ γ̄

)
≥ 0 at t = 0, then this

holds for all times.
• Global well-posedness (Theorem 4.1) of the HFB equations.

It is in the proof of the local existence part of the last statement (Lemma 4.5(i))
that an error was made in [3]. In Lemma 4.5 (i) in Sect. 4 we prove the corresponding
estimate under a more restrictive condition on the pair potential v - Condition (b’)
above.
In [7], the program outlined in [3] and this paper has been pursued for equations

analogous to the HFB equations valid for fermions, namely the Bogoliubov-de Gennes
equations; see also [17]. For references to related work see [7,17].
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Wewill show that any observable conserved by the vonNeumann–Landau dynamics
which is linear or quadratic in the creation- and annihilation operators is also conserved
by the quasifree dynamics; see Theorem 2.4. In the special case of the observable N,
this yields the statement above. Energy conservation follows from Eq. (14), with
A = Hhfb(ω

q
t ), the quadratic nature of Hhfb(ω

q
t ), and Eq. (16).

Note that conservation of the total number of atoms in the gas is a consequence
of (global) U (1)-gauge invariance, i.e., invariance of the Hamiltonian H under the
transformations

ψ(x) → eiθψ(x), ψ∗(x) → e−iθψ∗(x), ∀θ ∈ R,∀x ∈ Rd .

The total particle number, N (φ, γ , σ ) := ωq(N), and energy, E(φ, γ , σ ) :=
ωq(H), as functions of (φ, γ , σ ), can be evaluated explicitly:

N (φ, γ , σ ) =
∫ (

γ (x; x)+ |φ(x)|2
)
dx . (30)

The energyE(φ, γ , σ ) is given explicitly inEq. (47). For a delta-function pair potential,
v = gδ, it takes the form

E(φ, γ , σ ) = Tr[h(γ + |φ〉〈φ|)]

+ g
∫ (

2n(x)|φ(x)|2 + n(x)2 + 1
2
|w(x)|2

)
dx . (31)

(In terms ofHhfb(ω
q), we have that E(φ, γ , σ ) := ωq(H) = ωq(Hhfb(ω

q))+ scalar.)
As usual, if γ is trace-class and σ is Hilbert–Schmidt the energy functional E can

be used to give a variational characterization of stationary Gibbs states:

• Gibbs states minimize the energy E(φ, γ , σ ) under the constraint of constant
entropy and for a fixed value of the expected particle number.

Equation (16) suggests to define HFB stationary states as the quasifree states sat-
isfying the equation

ωq([A,Hhfb(ω
q)]

)
= 0 , (32)

for all observables A. (If ωq is given by a density matrix, we can rewrite this equation
as an explicit fixed point equation, see (33) below.) The most interesting ones among
such states are the ground states and Gibbs states. These states are defined as:

ω
q
β,µ := lim

L→∞
ω
q
L ,

where ω
q
L is the quasifree ground state or Gibbs state of a Bose gas confined to a

torus, /L = Rd/2LZd , i.e., to the box [−L , L]d with periodic boundary conditions.
It satisfies the fixed point equation

0β,µ(ω
q
L) = ω

q
L , with 0β,µ(ω

q
L)(A) := Tr[A exp(−β(Hhfb(ω

q
L) − µN))]/1,

(33)
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where β > 0 is the inverse temperature, µ is the chemical potential, and the expo-
nential of the negative pressure 1 = Tr[exp(−β(Hhfb(ω

q
L)) − µN)] is the partition

function of the gas. The quasifree state ω
q
L fulfilling (33) is a solution to Eq. (32) (or

a stationary solution of Eq. (16)) for a gas confined to the box /L . With regard to the
thermodynamic limit, L → ∞, we note that if the external potential V vanishes (i.e.,
for a translation-invariant Hamiltonian),

ωq([Hhfb(ω
q),A]

)
:= lim

L→∞
ω
q
L

(
[Hhfb(ω

q
L),A]

)
= 0,

for any observable A localized in a compact region of position space.
Furthermore, if the external potential V vanishes (the translation-invariant case),

one should replace the total energy and the particle number by the energy density and
particle density, respectively, in order to study the approach to the thermodynamic
limit, L → ∞.

If V = 0 and γ and σ are translation-invariant, then the integrand in the energy
functional E(φ, γ , σ ) (see (47)) is the energy density functional introduced in [18]
and further studied in [38,39]. It is shown in the latter papers that this functional
has minimizers under the constraint of constant entropy- and particle densities. In
[38,39] it is also shown that a condensate appears in the corresponding minimizers.
(To complete the picture one should show that the states thus obtained are stationary
solutions to Eq. (16).)
In this paper, we do not consider the general problem of existence of static solu-

tions. However, for V = 0, we present a result concerning existence of the positive-
temperature, U (1)-gauge- and translation-invariant HFB Gibbs states, and we show
that Bose–Einstein condensation (BEC) occurs above a critical density; see Theo-
rem 5.3.
As mentioned above, for U (1)-gauge-invariant quasifree states, φ = 0 and σ = 0;

and hence HFB Gibbs states with these properties are, in fact, stationary solutions
of the bosonic Hartree–Fock equation. Moreover, as the results of [38,39] show, in
the BEC regime, these states are not minimizers of the full HFB energy density, at
fixed values of the entropy- and particle density. However, the existence of such states
exhibiting Bose–Einstein condensation suggests that there are also U (1)-symmetry
breaking HFB Gibbs states with φ 1= 0 and σ 1= 0.

1.6. Fixed point equation

Let Uωq (t, s) denote the unitary propagator on bosonic Fock space F , see (1),
solving

i∂tUωq (t, s) = Hh f b(ω
q
t )Uωq (t, s) , with Uωq (s, s) = 1 ,∀s . (34)

In terms of this propagator, we can rewrite Eq. (16), with initial condition ω
q
0 = ω0,

as a fixed point problem,

ω
q
t = 0t (ω

q
(·)), with 0t (ω

q
(·))(A) := ω

q
0 (Uωq (t, 0)∗ AUωq (t, 0)), (35)
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for all times t ∈ R. Since the propagators Uωq (t, s) are generated by families of qua-
dratic Hamiltonians, we have that ωq

0 (Uωq (t, 0)∗ AUωq (t, 0)) is a quasifree state, for
any time t . This formulation opens the possibility to prove existence of the quasifree
dynamics directly, using a Brouwer–Schauder-type fixed-point theorem, without pass-
ing to the truncated expectations φ, γ and σ .

In this paper, we do not study whether the quasifree effective dynamics (16) (the
HFB equations) provide an accurate approximation to the many-body dynamics (9),
for finite times. There is a large literature concerning the derivation of the simpler
Hartree- and Hartree–Fock equations from many-body dynamics in a limiting (mean-
field) regime. Recently, evolution equations that include linear fluctuations around
solutions of the Hartree equation (i.e., equations arising from linearization of the
HFB equation in γ and σ ) have been derived in [22,23,31–33,36]; see [30] for a
recent review, and [27] for an early contribution. Independently and in a different
framework, equations equivalent to (39)–(41) are derived for pure states along with
the conservation of particle number and energy in [22] and re-derived in a differentway
in [24]. For pure quasifree states, the relation γ +γ 2 = σσ ∗ holds, and Eqs. (39)–(41)
turn out to be Hamiltonian evolution equations.

1.7. Organization of the paper

In Sect. 2, we first present the HFB equations, which we derive in Appendix 6.
We then show that certain conservation laws for the many-body problem imply cor-
responding conservation laws for the HFB equation.
In Sect. 3, we show that the space of solutions of theHFB equations has a symplectic

structure, and that these equations have similarities with Hamiltonian equations of
motion.
In Sect. 3, we explain how the symplectic version of the HFB equations is related

to the HFB eigenvalue equations found in the physics literature.
In Sect. 4, we prove that the Cauchy problem for the HFB equations is globally well-

posed in the “energy space”, provided that the pair interaction potential is assumed to
have suitable regularity properties. Our proof of global well-posedness is inspired in
part by previous work on the Hartree-Fock equation [11,12,15,16,49]. We note that
global existence for the related time-dependent Bogolubov-de Gennes equations for
fermion systems has recently been established in [7], using a similar proof strategy.
In Sect. 5, we prove Bose–Einstein condensation for stationary states.
A brief summary of the theory of quasifree states and proofs of various technical

lemmata is collected in Appendices.

2. The HFB equations and their basic properties

In this section, we formulate the HFB equations for a general pair potential v and
prove the associated conservation laws. The derivation of the HFB equations is done
in Appendix 6 by applying the quasifree reduction as in the introduction.
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Definition of spaces. Let M := 〈∇x 〉 =
√
1 − %x , with %x being the Laplacian in d

dimensions. We denote by L1 and L2 the spaces of trace-class and Hilbert–Schmidt
operators on L2(Rd) endowedwith the trace norms ‖·‖L1 and ‖·‖L2 , resp. For j ∈ N0

we define the spaces

X j = H j ⊕ H j
γ ⊕ H j

σ =
{
(φ, γ , σ ) ∈ H j × H j

γ × H j
σ

}
, (36)

with H j being the Sobolev space H j (Rd), H j
γ := M− jL1M− j being the space of

trace-class operators γ such that M jγ M j is also trace-class, and H j
σ := {σ ∈ L2 :

‖M jσ‖L2 +‖σM j‖L2 < ∞}which may be viewed as the space of square-integrable
functions σ onR3 ×R3 such that both 〈∇x 〉 jσ and 〈∇y〉 jσ are square-integrable, too.

Defining the norms

‖φ‖H j := ‖M jφ‖L2 , ‖γ ‖H j
γ
:= ‖M jγ M j‖L1 , ‖σ‖H j

σ
:= ‖M jσ‖L2 + ‖σM j‖L2 ,

(37)

on H j , H j
γ , and H j

σ , respectively, we endow the spaces X j with the norms

‖(φ, γ , σ )‖X j = ‖φ‖H j + ‖γ ‖H j
γ
+ ‖σ‖H j

σ

Furthermore, we letXT := C0([0, T ); X3)∩C1([0, T ); X1) and we denote by X j
qf

and X qf
T the spaces of quasifree states and families of quasifree states with the 1st and

2nd order truncated expectations from the spaces X j and XT , respectively.

Remark 2.1. For systemswith infinite number of particles and finite density, one could
replace Rd by the torus Td

L := Rd/(LZ)d and then pass to the thermodynamic limit.

In what follows, we assume Conditions (a) and (b) stated in the Introduction [see
Eqs. (5) and (6)].

Theorem 2.2. The family of quasifree states ω
q
t ∈ X qf

T satisfies

i∂tω
q
t (A) = ω

q
t ([A,H]) , ∀ A ∈ A(2) , (38)

with the Hamiltonian H defined in (4), if and only if the triple (φt , γt , σt ) ∈ XT

of the 1st and 2nd order truncated expectations of ω
q
t satisfies the time-dependent

Hartree–Fock–Bogoliubov equations

i∂tφt = h(γt )φt + k(σφt
t )φ̄t , (39)

i∂tγt = [h(γ φt
t ), γt ] + k(σφt

t )σ ∗
t − σt k(σ

φt
t )∗ , (40)

i∂tσt = [h(γ φt
t ), σt ]+ + [k(σφt

t ), γt ]+ + k(σφt
t ), (41)

where [A1, A2]+ = A1AT
2 + A2AT

1 , γ
φ := γ + |φ〉〈φ| and σφ := σ + |φ〉〈φ̄|, and

h(γ ) = h + b[γ ] , b[γ ] := v ∗ d(γ )+ k(γ ) , (42)
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where

d(γ )(x) := γ (x, x) , k(σ ) := v # σ , and v # σ (x, y) := v(x − y) σ (x, y) .
(43)

If v = gδ, then h(γ ) agrees with hgδ(γ ), and k(σ ) agrees with the multiplication
operator by g d(σ )(x), respectively, in (24)–(26).
Due to the fact that h(γt ) is %−bounded, for each t > 0, the r.h.s. of (39)–(41)

belongs to the space X0. The proof of Theorem 2.2 is given in Appendix 6.
We now show that Eqs. (14) (or (39) to (41)) and (16) describing the quasifree

dynamics are equivalent.
For a quasifree state ωq with 1st and 2nd order truncated expectations (φ, γ , σ ) ∈

X1, we define the quadratic Hamiltonian parametrized by (φ, γ , σ ) as:

Hh f b(ω
q) =

∫
ψ∗(x)hv(γ )ψ(x) dx

−
∫

ψ∗(x)b
[
|φ〉〈φ|

]
φ(x) dx + h.c.

+ 1
2

∫
ψ∗(x) k[σ ](x, y)ψ∗(y) dx dy + h.c. . (44)

Theorem 2.3. Equation (14) is equivalent to the nonlinear, self-consistent evolution
equation

i∂tω
q
t (A) = ω

q
t ([A,Hh f b(ω

q
t )]) , (45)

defined for all observables A. The equivalence holds for observables linear or qua-
dratic in creation- and annihilation operators.
Moreover, truncated expectations (φt , γt , σt ) ∈ XT satisfy theHFBEqs. (39) to (41)

if and only if the corresponding quasifree state ω
q
t ∈ X qf

T satisfies (45).

The proof of Theorem 2.3 is given in Appendix C.
We now prove the conservation laws for the number of particles (or more generally,

for any observable commuting with the HamiltonianHwhich is quadratic with respect
to creation and annihilation operators), and for the energy.

Theorem 2.4. Assume that an observableA ∈ A(2) satisfies [H,A] = 0. Then,ωq
t (A)

is conserved:

ω
q
t (A) = ω

q
0 (A) ∀ t ∈ R . (46)

Proof. This follows from (38) for A of order up to two, with [A,H] = 0. !

To draw some consequences from this result, we need to define additional spaces.

Corollary 2.5. Let ω
q
t ∈ X qf

T solve (38) (or (45)). Then, the number of particles
N (φt , γt , σt ) = ω

q
t (N) and the energy ω

q
t (H) are conserved.
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Theorem 2.6. Letωq ∈ Xqf . Then, the energyωq(H) = E(φ, γ , σ ) is given explicitly
as:

E(φ, γ , σ ) = Tr[h(γ + |φ〉〈φ|)] + Tr[b[|φ〉〈φ|]γ ]
+1
2
Tr[b[γ ]γ ] + 1

2

∫
v(x − y)|σ (x, y)+ φ(x)φ(y)|2dxdy . (47)

Proof. We use

ω
q
C (A) := ωq(WφAW ∗

φ ) , (48)

where the Weyl operators are defined through Wφ = exp
(
ψ∗(φ)− ψ(φ)

)
and satisfy

W ∗
φψ(x)Wφ = ψ(x)+ φ(x) . (49)

Note that the stateω
q
Ct is quasifree becauseωq is quasifree. By constructionω

q
C (ψ(x))

= 0 and thus using (10) and the quasifreeness of ω
q
C , one sees that ω

q
C vanishes

on monomials of odd order in the creation and annihilation operators. Note that
E(φ, γ , σ ) = ω

q
C (W

∗
φHWφ), hence using the vanishing on monomials of odd order

in the creation and annihilation operators

E(φ, γ , σ ) = ω
q
C,t

( ∫
v(x − y)ψ∗(x)ψ∗(y)ψ(x)ψ(y)dxdy

+ 1
2

( ∫
v(x − y)φt (x)φt (y)ψ∗(x)ψ∗(y)dxdy + h.c.

)

+
∫ (

h + b[|φ〉〈φt |]
)
(x; y)ψ∗(x)ψ(y)dxdy

)

+ 1
2

∫
|φ(x)φ(y)|2v(x − y)dxdy + 〈φ, hφ〉 .

Then, using that ωq
C is a quasifree state with expectations (0, γ , σ ) yields

E(φ, γ , σ ) = 1
2
Tr[b[γ ]γ ] + 1

2

∫
σ (x, y)v(x − y)σ (x, y)dxdy)

+ 8
( ∫

σ (x, y)v(x − y)φ(x)φ(y)dxdy
)

+ Tr[(h + b[|φ〉〈φ|])γ ] + 1
2

∫
|φ(x)φ(y)|2v(x − y)dxdy + 〈φ, hφ〉

which gives the expression of the energy in terms of φ, γ and σ .

3. Generalized one-particle density matrix and Bogoliubov transforms

In this section, we consider the HFB Eqs. (40)–(41) for γt and σt and reformulate
them in terms the generalized one-particle density matrix ,t =

( γt σt
σ̄t 1+γ̄t

)
. We show
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that the diagonalizing maps for ,t are symplectomorphisms (see below for the defini-
tion) and that the resulting equation for ,t is equivalent to the evolution equation for
these symplectomorphisms. The latter will allow us to (a) give another proof of the
conservation of energy without using the second quantization framework and (b) con-
nect the time-dependent HFB Eqs. (40)–(41) to the time-independent HFB equations
used in the physics literature. See Sect. 3.
We begin by relating properties of , =

( γ σ
σ̄ 1+γ̄

)
to those of γ and σ .

Proposition 3.1. The generalized one-particle density matrix, ,, is nonnegative,

, =
(

γ σ

σ̄ 1+ γ̄

)
≥ 0 , (50)

iff the following four conditions 1. – 4. are fulfilled,

1. The operator γ ≥ 0 is positive semidefinite.
2. The expectation σ (x, y) = σ (y, x) is symmetric.
3. The inequality σ (1+ γ̄ )−1σ ∗ ≤ γ holds true in the sense of quadratic forms.
4. The bound 1

2‖σ‖2H1
σ

≤ ‖γ ‖H1
γ
(1+ Tr[γ ]) holds true.

(Statement (4) follows from (1) and (3) and is given here for later convenience of
references.)

Proof. We remark that the truncated expectations γ and σ are the expectations of the
state

ωC (A) := ω(WφAW ∗
φ )

where Wφ = exp
(
ψ∗(φ)− ψ(φ)

)
are the Weyl operators. Wφ satisfy Wφψ(x)W ∗

φ =
ψ(x) − φ(x). The generalized one particle density matrix , of ωC is non-negative,
since, for all f, g in L2,

〈 (
f
g

)
,

(
γ σ

σ̄ 1+ γ̄

) (
f
g

) 〉
= ωC

(
(ψ∗( f )+ ψ(ḡ))(ψ( f )+ ψ∗(ḡ))

)
≥ 0 . (51)

Statements (1) and (2) are obvious. The inequality in Point (3) follows from the
Schur complement argument:

0 ≤
(
1 −σ (1+ γ̄ )−1

0 1

) (
γ σ

σ ∗ 1+ γ̄

) (
1 −σ (1+ γ̄ )−1

0 1

)∗

=
(

γ − σ (1+ γ̄ )−1σ ∗ 0
0 1+ γ̄

)
.

Finally, we observe that (1) and (3) and the inequality γ ≤ Tr[γ ]1 imply the
following bound on σσ ∗,

(1+ Tr[γ ])−1σσ ∗ ≤ σ (1+ γ̄ )−1σ ∗ ≤ γ .

Inserting M = √
1 − %x on both sides and taking the trace yields (4). !
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Notations.With the spaces and norms defined in (36)–(37) and for j ∈ N0 we define
the spaces

Y j = K j
γ ⊕ K j

σ , (52)

with the norms on Y j given by

‖(γ , σ )‖Y j = ‖γ ‖K j
γ
+ ‖σ‖K j

σ
.

We also use the spaces YT := C0([0, T ); Y 3) ∩ C1([0, T ); Y 1) and ỸT := the space
of generalized one-particle density matrices, ,, with entries in YT .
In what follows we fix a number T > 0 and a family φt ∈ C0([0, T ); H3) ∩

C1([0, T ); H1) (not necessarily a solution of (39)) and do not display it in our notation.
A simple computation yields the first result of this section:

Proposition 3.2. (γt , σt ) ∈ YT is a solution to the HFB Eqs. (40)–(41) iff ,t =( γt σt
σ̄t 1+γ̄t

)
∈ ỸT solves the equation

i∂t,t = S/(,t ),t − ,t/(,t )S , (53)

with/(,) =
( h(γ φ) k(σφ)

k(σφ) h(γ φ)

)
, where, recall, h(γ ) and k(σ ) are defined in (42) and (43),

and S =
(
1 0
0 −1

)
.

To formulate the next result, we introduce some definitions.

Definition 3.3. Let h denote a complex Hilbert space. A bounded linear operator
U =

( u v
v̄ ū

)
on h ⊕ h with the property that

U∗SU = S and USU∗ = S , (54)

where S =
(
1 0
0 −1

)
, is called a symplectomorphism.

If, moreover, there exists a unitary transformation U on Fock space, sometimes
called implementation of U , such that

∀ f, g ∈ h , U[ψ∗( f )+ ψ(ḡ)]U∗ = ψ∗(u f + vg)+ ψ(v f̄ + uḡ) ,

then the symplectomorphism U is said to be implementable.

Remark 3.4. The operator U is a symplectomorphism in the sense that it preserves the
symplectic form Im〈 · ,S · 〉 on h ⊕ h (i.e., is a canonical map). (In fact, U preserves
〈 · ,S · 〉.)
Remark 3.5. The operator U is a symplectomorphism if and only if the operator f +→
u f + v f̄ is a symplectomorphism on (h, Im〈·, ·〉) in the usual sense (i.e., it preserves
the symplectic form Im〈·, ·〉)
Remark 3.6. The conditions in (54) are equivalent to satisfying the four equations

uu∗ − vv∗ = 1 , u∗u − vT v̄ = 1 , u∗v = vT ū , uvT = vuT . (55)
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Remark 3.7. The transformation

∀ f, g ∈ h , (ψ∗( f ),ψ( f̄ )) → (ψ∗(u f )+ ψ(v f̄ ),ψ∗(v f )+ ψ(u f̄ )) (56)

is called a Bogoliubov transformation. It is easy to check that it preserves the CCR iff
the operator U =

( u v
v̄ ū

)
satisfies (54).

If v is Hilbert–Schmidt, then the Bogoliubov transformation (56) is implementable.
This condition is referred to as the Shale condition; see [47].
For later use, we introduce the Banach space

H∞,2 =
{ (

a b
b̄ ā

) ∣∣∣ a ∈ B(H1) 9 MB(h)M−1 , b ∈ ML2M−1
}
,

where B(E) denotes the (Banach) space of bounded operators on a Banach space E .
H∞,2 is endowed with the norm

∥∥( a b
b̄ ā

)∥∥
H∞,2 = ‖a‖B(H1) + ‖b‖ML2M−1 , using the

same identification between operators and kernels as before.
We begin with an auxiliary result:

Proposition 3.8. Let , =
( γ σ

σ̄ 1+γ̄

)
∈ Y 1 and , ≥ 0. Then, there exist an imple-

mentable symplectomorphism U ∈ H∞,2 such that

, = U
(

γ ′ 0
0 1+ γ ′

)
U∗ ,

where 0 ≤ γ ′ ≤ γ . The operator γ ′ is unique up to conjugation by a unitary operator.

This result is related to Theorem 1 of [37], which is stronger. See also [5,8]. As the
relation between the two results is not obvious, we give a direct proof of Proposition
3.8 after the proof of Proposition 3.9.
The next result relates the evolution of ,t to the evolution of implementable sym-

plectomorphisms Ut ∈ H∞,2 that diagonalize ,t .

Proposition 3.9. (i) For any ,t ∈ ỸT and any implementable symplectomorphism
U0 ∈ H∞,2, the initial value problem

i∂tU∗
t = S/(,t )U∗

t , Ut=0 = U0 , (57)

has a unique solution in H∞,2, which is a symplectomorphism for every t.
(ii) Let ,t ∈ ỸT solve Eq. (53), with an initial condition ,0 ∈ Ỹ 3, s.t. ,0 ≥ 0. Let

U0 be an implementable symplectomorphism diagonalizing ,0,

,0 = U0,
′
0U∗

0 , ,′
0 =

(
γ ′
0 0
0 1+ γ ′

0

)

.

Then, the continuous family of implementable symplectomorphismsUt inH∞,2(h×h)

satisfying (57), with the above U0, diagonalizes ,t :

,t = U∗
t ,′

0Ut ≥ 0 . (58)
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Proof of Prop. 3.9. The operator /(,t ) can be decomposed as /(,t ) = /1 + /2,t

with

/1 =
(
h 0
0 h̄

)
, /2,t =

(
b[γt + |φt 〉〈φt |] k[σt + φt ⊗ φt ]
k[σt + φt ⊗ φt ] b[γt + |φt 〉〈φt |]

)
.

The first operator, /1, is the generator of a continuous one-parameter group inH∞,2.
As for the second one, using the continuity of t +→ ,t ∈ Y 1 and Lemma 4.5, we get
the continuity of t +→ /2,t ∈ H∞,2. We can thus use classical results of functional
analysis (see, e.g., [28]) to obtain the existence and uniqueness of Ut and its regularity.

The same arguments as in the next lemma prove that Ut is a symplectomorphism.
Finally, ,t and U∗

t ,0Ut satisfy the same differential equation, and the uniqueness
of a solution to (57) proves the last equality. !

Proof of existence in Prop. 3.8 We split the proof into two lemmata, Lemmata 3.10,
establishing local existence, and 3.11, proving global existence, below. The strategy
is to construct ,t and symplectomorphisms Ut such that Ut,tU∗

t = ,0, for all t , and
in the limit t → ∞, ,∞ has the desired form. The key step will be to use a differential
equation for ,t implying ‖σt‖H1

σ
↘ 0. !

Lemma 3.10. (i) Let T > 0 and t +→ /t =
( at bt
b̄t āt

)
∈ C([0, T );H∞,2). Then, the

ordinary differential equation

i∂tU∗
t = S/tU∗

t , (59)

with initial dataU∗
0 =

(
1 0
0 1

)
, has auniqueglobal solutionUt ∈ C1([0, T );H∞,2),

and Ut is a symplectomorphism for all time.
(ii) Moreover, if γt ∈ C1([0, T );H1

γ ), σt ∈ C1([0, T );H1
σ ) satisfy

i∂tγt = atγt − bt σ̄t − γt at + σt b̄t , (60)

i∂tσt = atσt − bt (1+ γ̄t ) − γt bt + σt āt , (61)

with initial dataσ0 = σ ,γ0 = γ given inProp3.9(i), then, for all time t ∈ [0, T ),

Ut,tU∗
t = ,0 . (62)

Proof. The existence and uniqueness ofU∗
t follows from the theory of time-dependent

linear ordinary differential equations once one observes thatH1
γ andH1

σ are continu-
ously embedded in B(H1) and ML2(L2)M−1. At t = 0, U0SU∗

0 = S and

i∂t (UtSU∗
t ) = Ut

(
− /tSS + SS/t

)
U∗
t = 0 ,

thus UtSU∗
t = S for all time, and, to prove U∗

t SUt = S, one observes that

i∂t (U∗
t SUt ) = −(U∗

t SUt )/tS + S/t (U∗
t SUt ) ,
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which is a linear time-dependent ordinary differential equation for U∗
t SUt which also

admits the constant solution S. By uniqueness of the solution, one gets that U∗
t SUt =

S. Hence, Ut is a symplectomorphism for all time.
Similarly, the derivative i∂t

(
Ut,tU∗

t
)
vanishes because, using (60) and (61),

i∂t,t = /tS,t − ,tS/t .

Thus Ut,tU∗
t = U0,0U∗

0 = ,0 for all times. !
We choose at and bt in (60) and (61) such that σt vanishes in the limit t → ∞.

Let L1(h) and L2(h) denote the spaces of trace-class and Hilbert–Schmidt operators,
resp., on the space h.

Lemma 3.11. (i) The ordinary differential equation

∂tγt = −2σt σ̄t , (63)

∂tσt = −(σt + σt γ̄t + γtσt ) , (64)

with initial data σ0 = σ , γ0 = γ given in Prop. 3.9(i), has a unique global
solution (γt , σt ) ∈ C1([0,∞);L1(h) × L2(h)

)
.

(ii) Given the solution (γt , σt ) ∈ C1([0,∞);L1(h) × L2(h)
)
from (i), let /t =( 0 iσt

−i σ̄t 0

)
, Ut =

( ut vt
v̄t ūt

)
and ,t =

( γt σt
σ̄t 1+γ̄t

)
be as in Lemma 3.10. Then, Ut

converges inH∞,2 to a symplectomorphism U∞ and

,0 = U∞,∞U∗
∞ = U∞

(
γ∞ 0
0 1+ γ̄∞

)
U∗

∞ ,

with 0 ≤ γ∞ ≤ γ0.

Proof. The existence of maximal solutions to (63)–(64) follows from the Picard–
Lindelöf theorem. Now using the Ut constructed in Lemma (3.10), one gets that
(Ut )

−1,0(U∗
t )

−1 = ,t , which implies that ,t ≥ 0 and thus γt ≥ 0. It then follows
from (63) that γt is decreasing in the sense of quadratic forms and ‖γt‖H1

γ
≤ ‖γ0‖H1

γ
.

One first obtains an estimate on ‖σt‖2L2 = Tr[σtσ ∗
t ], using (64):

∂t‖σt‖2L2 = Tr
[
− (σt + σt γ̄t + γσt )σ

∗
t − σt (σ

∗
t + γ̄tσ

∗
t + σ ∗

t γt )
]

≤ − 2Tr
[
σtσ

∗
t
]
= −2‖σt‖2L2 .

This implies that ‖σt‖L2 ≤ ‖σ0‖L2 exp(−t). Using again (64) and the fact that γt ≥ 0
one finds that

∂t‖σt‖2H1
σ
= Tr

[
− (σt + σt γ̄t + γtσt )σ

∗
t M

2 − σt (σ
∗
t + γ̄tσ

∗
t + σ ∗

t γt )M2]

≤ −2‖σt‖2H1
σ

− Tr[γtσtσ ∗
t M

2] − Tr[σtσ ∗
t γt M2]

We remark that |Tr[Mγtσtσ
∗
t M]| ≤ ‖γt‖1/2H1

γ
‖γ 1/2

t σt‖B(h) ‖σt‖H1
σ
and

‖γ 1/2
t σt‖B(h) ≤ ‖γ 1/2

t ‖L2‖σt‖L2 ≤ ‖γ0‖1/2Tr ‖σ0‖L2e−t ,
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hence

∂t‖σt‖2H1
σ

≤ −2‖σt‖2H1
σ
+

√
2Ce−t

√
2‖σt‖H1

σ
≤ −‖σt‖2H1

σ
+ Ce−2t

which yields ‖σt‖2H1
σ

≤ Ce−t‖σ0‖2H1
σ
. The pair (γt , σt ) is thus bounded inH1

γ ⊕H1
σ

and the maximal time of the solution is T = ∞. We also get that γt → γ∞ in H1
γ as

t → ∞ as γt is decreasing and bounded below, and σt → 0.
Integrating the derivative of U∗

t and taking the norm of both sides yields

‖U∗
t ‖H∞,2 ≤ ‖U∗

0 ‖H∞,2 +
∫ t

0
‖σs‖H1

σ
‖U∗

s ‖H∞,2ds . (65)

The Grönwall lemma, combined with ‖U∗
0 ‖H∞,2 = 1 and the estimate on ‖σt‖H1

σ

provide

‖U∗
t ‖H∞,2 ≤ exp

( ∫ t

0
‖σs‖H1

σ
ds

)
≤ exp

(
C‖σ0‖H1

σ

)
.

Thus, the integral
∫ ∞
0 S/sU∗

s ds is absolutely convergent and

U∗
t −−−→

t→∞ U∗
0 − i

∫ ∞

0
S/sU∗

s ds =: U∗
∞

inH∞,2, and the limit U∗
∞ is still an implementable symplectomorphism.

Hence,

,0 − U∞,∞U∗
∞ = Ut,tU∗

t − U∞,∞U∗
∞ → 0

as t → ∞, where ,∞ =
( γ∞ 0

0 1+γ̄∞

)
, and the convergence takes place in the space of

block operators with diagonal elements inH1
γ and off-diagonal elements inH1

σ . This
proves the last point. !

This completes the proof of existence. !
Proof of uniqueness in Prop. 3.8 Indeed, let us consider γ ′ and γ ′′ satisfying

the conditions of Prop. 3.8. Then, there exists a symplectomorphism U such that( γ ′′ 0
0 γ ′′+1

)
= U∗( γ ′ 0

0 γ ′+1

)
U . As U∗SU = S, this is equivalent to

(
γ ′′ + 1/2 0

0 γ ′′ + 1/2

)
= U∗

(
γ ′ + 1/2 0

0 γ ′ + 1/2 ,

)
U (66)

and we want to prove that γ ′ and γ ′′ are unitarily equivalent in L2. The off-diagonal
entries in (66) yield u∗(γ ′ + 1/2)v + vT (γ ′ + 1/2)ū = 0 and as U is a symplecto-
morphism, we get from (55) that u is invertible and vū−1 = u∗−1vT . Thus,

(γ ′ + 1
2
)vū−1 + vū−1(γ ′ + 1

2
) = 0 .
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We can now use a known method to solve the Lyapunov (or Sylvester) equations:

vū−1 = −
∫ ∞

0

d
dt

(
e−t (γ ′+ 1

2 )vū−1e−t (γ ′+ 1
2 )

)
dt

=
∫ ∞

0
e−t (γ ′+ 1

2 )
((

γ ′ + 1
2

)
vū−1 + vū−1(γ ′ + 1

2

))
e−t (γ ′+ 1

2 )dt = 0 ,

wherewe used that γ +1/2 ≥ 1/2, so that there is no problem in handling the integrals.
Hence v = 0, and, using (55) again, u is a unitary operator. And thus γ ′′ = u∗γ ′u
which proves the result. !
We now write the HFB equations in a form that is reminiscent of a Hamiltonian

structure, and use it to give a direct proof of the conservation of the energy.
Notation: For φ ∈ H1, U =

( u v
v̄ ū

)
∈ H∞,2 a symplectomorphism, and γ ′

0 ∈ H1

non-negative. We set

Hγ ′
0
(φ, u, v) := 〈φ, hφ〉 + Tr[(u∗γ ′

0u + vT (1+ γ̄ ′
0)v̄)(h + b[|φ〉〈φ|])]

+1
2
Tr[(u∗γ ′

0u + vT (1+ γ̄ ′
0)v̄)b[u∗γ ′

0u + vT (1+ γ̄ ′
0)v̄]]

+1
2
Tr[k[u∗γ ′

0v + vT (1+ γ̄ ′
0)ū + |φ〉〈φ̄|](v∗γ ′

0u + uT (1+ γ̄ ′
0)v̄ + |φ̄〉〈φ|)] .

In the next proposition and its proof we use the abbreviations h(t) ≡ h(γ φt
t ) and

k(t) ≡ k(σφt
t ), where, recall, γ φ := γ + |φ〉〈φ| and σφ := σ + φ ⊗ φ, and h(γ ) and

k(σ ) are defined in (42) and (43).

Proposition 3.12. Let ρt = (φt , γt , σt ) ∈ C0([0, T ); X3) ∩ C1([0, T ); X1) be a
solution to the HFB Eqs. (39)–(41) in the classical sense, on an interval [0, T ), with
T > 0. Let Ut and γ ′

0 be as in Proposition 3.9.
Then, E(φt , γt , σt ) = Hγ ′

0
(φt , ut , vt ) and the derivatives of Hγ ′

0
and of (φt , ut,vt )

are linked through the equations

∂Hγ ′
0

∂φ̄
(φt , ut , vt ) = i∂tφt , (67)

∂Hγ ′
0

∂u∗ (φt , ut , vt ) = γ ′
0 i∂t ut +

1
2
vt k(t) , (68)

∂Hγ ′
0

∂v∗ (φt , ut , vt ) = −γ ′
0 i∂tvt + vt h(t)+

1
2
utk(t) . (69)

The conservation of the energy E(φt , γt , σt ) follows.

Proof. Equation (58) is equivalent to

γt = u∗
t γ

′
0ut + vTt (1+ γ̄ ′

0)v̄t ,

σt = u∗
t γ

′
0vt + vTt (1+ γ̄ ′

0)ūt .
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Hence, we can rewrite the expression of the energy in terms of φt , ut , and vt as
E(φt , γt , σt ) = Hγ ′

0
(φt , ut , vt ). We then compute the derivatives of Hγ ′

0
:

∂Hγ ′
0

∂φ̄
(φ, u, v) = hφ + b[u∗γ ′

0u + vT (1+ γ̄ ′
0)v̄]φ + k[σ + φ ⊗ φ]|φ̄〉 ,

∂Hγ ′
0

∂u∗ (φ, u, v) = γ ′
0u(h + b[|φ〉〈φ|] + b[u∗γ ′

0u + vT (1+ γ̄ ′
0)v̄])

+ (
1
2
+ γ ′

0)vk[v∗γ ′
0u + uT (1+ γ̄ ′

0)v̄ + |φ̄〉〈φ|] ,
∂Hγ ′

0

∂v∗ (φ, u, v) = (1+ γ ′
0)v(h̄ + b[|φ̄〉〈φ̄|] + b[uT γ̄ ′

0ū + v∗(1+ γ ′
0)v])

+ (
1
2
+ γ ′

0)uk[u∗γ ′
0v + vT (1+ γ̄ ′

0)ū + |φ〉〈φ̄|] .

Replacing (φ, u, v) by (φt , ut , vt ) yields

∂Hγ ′
0

∂φ̄
(φt , ut , vt ) = hφt + b[γt ]φt + k(t)φ̄t ,

∂Hγ ′
0

∂u∗ (φt , ut , vt ) = γ ′
0uth(t)+ (

1
2
+ γ ′

0)vt k(t) ,

∂Hγ ′
0

∂v∗ (φt , ut , vt ) = (1+ γ ′
0)vt h(t)+ (

1
2
+ γ ′

0)utk(t) ,

which are in fact (67), (68), (69) using the HFB equations. Hence, using first the chain
rule, then (67), (68), and (69),

d
dt

Hγ ′
0
(φt , ut , vt ) = 〈∂tφt |

∂Hγ ′
0

∂〈φ| (φt , ut , vt )+
∂Hγ ′

0

∂|φ〉 (φt , ut , vt )|∂tφt 〉

+ Tr[∂t u∗
t

∂Hγ ′
0

∂u∗ (φt , ut , vt )] + Tr[∂t ut
∂Hγ ′

0

∂u
(φt , ut , vt )]

+ Tr[∂tv∗
t

∂Hγ ′
0

∂v∗ (φt , ut , vt )] + Tr[∂tvt
∂Hγ ′

0

∂v
(φt , ut , vt )]

= Re Tr[∂t u∗
t vt k(t)+ ∂tv

∗
t (vt h(t)+

1
2
utk(t))] .

We can now use that the evolution Eq. (57) on Ut is equivalent to

i∂t ut = uth(t)+ vt k(t) , (70)

i∂tvt = −utk(t) − vt h(t) , (71)

along with Tr[AT ] = Tr[A] and the cyclicity of trace to group all the terms as in

d
dt

Hγ ′
0
(φt , ut , vt ) = Im Tr[k(t)h(t)(vTt ūt − u∗

t vt ) − k(t)k(t)v∗
t vt

+k(t)h(t)vTt ūt + 2h(t)h(t)vTt v̄t + k(t)k(t)uTt ūt + h(t)k(t)uTt v̄t ]
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Table 1. Correspondence between the notations of this article and
some notations common in the physics literature [21]

This article φ(x) γ (x; x) σ (x, x) hgδ kgδ N j V

[21] 0(r) ñ(r) m̃(r) L̂ gm(r) N0(E j ) Uext − µ

which then vanishes since vTt ūt = u∗
t vt for a symplectomorphism (see (55)), and the

terms k(t)k(t)v∗
t vt , h(t)h(t)v

T
t v̄t , k(t)k(t)u

T
t ūt , and k(t)h(t)vTt ūt + h(t)k(t)uTt v̄t

give real traces. !
Relation to the HFB eigenvalue equations. Now, we link our work with the HFB
eigenvalue equations often encountered in the physics literature [19,21,42].
To be explicit, we give, in Table 1, the correspondence between the notations of this

article and those of an article of Griffin [21].
We note that the setting in [21] is not exactly the same as ours, since the class of

external potentials V that we consider excludes trapping potentials, and the solutions
0(r) considered in [21] are time-independent. Moreover, we note that in this paper,
we give rigorous proofs in the case of a two-body interaction potential v such that v2

is relatively form-bounded with respect to the Laplacian, which excludes potentials as
singular as gδ; hence, the correspondence we establish in this section is only formal.
Nevertheless, we believe that pointing out this relationship is useful.
Moreover, we note that in the physics literature (see, e.g., [21, (23)]), theHFB eigen-

value equations are often investigated using a generalized eigenbasis decomposition
(using vectors often denoted by u j , v j which play the same role as below), which
we can relate to our approach in the following manner, based on our discussion from
Sect. 3.

Let Ut =
( ut vt
ūt v̄t

)
, and let γ ′

0 ≥ 0 be a trace class operator as in Prop. 3.9, with the
orthonormal decomposition γ ′

0 =
∑

j≥0 N j |ζ j 〉〈ζ j |. Let

u j,t := u∗
t ζ j and v j,t := −v∗

t ζ j .

Then, (58) yields

γt =
∑

j≥0

(
N j |u j,t 〉〈u j,t | + (1+ N j ) |v̄ j,t 〉〈v̄ j,t |

)
,

σt =
∑

j≥0

(
N j |u j,t 〉〈v j,t | + (1+ N j ) |v̄ j,t 〉〈ū j,t |

)
.

which yield [21, (25)] by evaluation on the diagonal:

γt (x; x) =
∑

j≥0

(
N j |u j,t (x)|2 + (1+ N j ) |v j,t (x)|2

)
, (72)

σt (x, x) =
∑

j≥0

u j,t (x)v̄ j,t (x)(1+ 2N j ) . (73)
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We now consider a pair interaction potential v = gδ. We assume that φ is indepen-
dent of time and u j,t , v j,t have the simple form:

u j,t = e−i t E j u j,0 , v j,t = e−i t E j v j,0 . (74)

We also distinguish the quantities corresponding to v = gδ by the index gδ. Then,
(57) formally yields the HFB eigenvalue equations:

hgδu j − kgδv j = E ju j ,

hgδv j − kgδu j = −E jv j ,

as presented in the work of Griffin [21, Eq. (23)]. Note that (72), (73), and (74) imply
that γt (x; x) and σt (x; x) are time independent, since the phases simplify.

We conclude that the HFB eigenvalue equations are the stationary version of our
Eq. (57). It amounts to finding eigenvalues and eigenvectors for the matrix /S in
(57), which is a nonlinear problem since / depends on γ and σ (that is, on u, v
and γ ′

0). Furthermore, the decomposition in functions u j and v j corresponds to a
“diagonalization” of the generalized one-particle density matrix , in the sense of
Proposition 3.8.

4. Existence and uniqueness of solutions to the HFB equations

We prove the global in time existence and uniqueness of mild solutions to the
time-dependent Hartree–Fock–Bogoliubov equations in the H1-setting.
We recall that, given a Banach space X , f ∈ C(X), a continuous function on X ,

and −i A the infinitesimal generator of a strongly continuous semigroup G(t) on X , a
continuous function ρ : [0, T ) → X is called a mild solution of the problem

{
i∂tρ = Aρ + f (ρ) ,

ρ(0) = ρ0 ∈ X ,
(75)

if ρt solves the fixed point equation in integral form (with the integral in Bochner’s
sense)

ρt = G(t)ρ0 − i
∫ t

0
G(t − s) f (ρs) ds. (76)

In what follows we use the notation A " B to stand for an inequality of the form
A ≤ CB, for some constant where C > 0. The main result of this section is the
following

Theorem 4.1. Let d ≤ 3 and ρ0 = (φ0, γ0, σ0) ∈ X1. Assume that the potentials V
and v satisfy Conditions (a) and (b’) of Sect. 1.1. Then the following hold:
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(i) Existence and uniqueness of a local mild solution:
There exists a unique maximal solution

(ρt )t∈[0,T ) = (φt , γt , σt )t∈[0,T ) ∈ C0([0, T ); X1)

to the HBF Eqs. (39) to (41) in the mild sense, for some 0 < T ≤ ∞.
(ii) Existence and uniqueness of a local classical solution:

If ρ0 ∈ X3, then

(ρt )t∈[0,T ) ∈ C0([0, T ); X3) ∩ C1([0, T ); X1)

and ρt satisfies the HBF Eqs. (39) to (41) in the classical sense.
(iii) Conservation laws:

The number of particles Tr[γt ] and the energy (47) are constants.
(iv) Positivity preservation property:

If , =
(

γ σ

σ̄ 1+ γ̄

)
≥ 0 at t = 0, then this holds for all times.

(v) Existence of a global solution:
If additionally ,0 ≥ 0, then the solution ρt is global, i.e., T = ∞.

Proof of Theorem 4.1(i) [Local Mild Solutions] We use the notations introduced at
the beginning of Sect. 2. The proof is based on a standard fixed point argument (through
an application of the Cauchy–Lipschitz and Picard–Lindelöf theorem). Separating the
linear part Aρ and nonlinear part f (ρ), we can write the HFB Eqs. (39) to (41) in the
form:

i∂tρ = Aρ + f (ρ) , (77)

where ρ := (φ, γ , σ ) ∈ X2. Then, the linear part in the HFB equations is given by

Aρ =
(
hφ , [h, γ ] , [h, σ ]+ + k[σ ]

)
, (78)

with the domain D(A) = X2, and the nonlinear part f := ( f1, f2, f3) by

f1(ρ) = b[γ ]φ + k[σ + φ⊗2]φ̄ , (79)

f2(ρ) = [b[γ + |φ〉〈φ|], γ ] + k[σ + φ⊗2]σ̄ − σk[σ + φ⊗2] , (80)

f3(ρ) = [b[γ + |φ〉〈φ|], σ ]+ + [k[σ + φ⊗2], γ ]+ . (81)

From Lemma 4.3, below, we obtain that f is continuously Fréchet differentiable in
X1 and therefore is locally Lipschitz, and from Lemma 4.2, we obtain that G(t) =
exp(i t A) defines a strongly continuous uniformly bounded semigroup on X1.

Consequently, we can rewrite the HFB Eqs. (39)–(41) as a fixed point problem

ρt = G(t)ρ0 − i
∫ t

0
G(t − s) f

(
ρs

)
ds .
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and use the Banach contraction theorem to show that (39)–(41) have the unique local
mild solution to in X1 for the given initial data. (For the details for this standard
argument, see [34, Sect. 9.2e, Thm 3].) !
We will now prove our main Lemmata on G(t) = exp(i t A) and f . First, we recall

the norms (37). Moreover, if we denote the integral kernel of an operator σ by σ̃ , then
the norm ‖σ‖H j

σ
is equivalent to the norm

‖σ‖H j
σ

9 ‖σ̃‖H j := ‖(M2 ⊗ 1+ 1 ⊗ M2) j/2σ̃ )‖L2(R2d ) .

Lemma 4.2. The operator A generates a strongly continuous semigroup, G(t) =
exp(i t A), on X1, uniformly bounded as ‖G(t)‖B(X1) ≤ 1.

Proof. Let ĥ(σ ) := [h, σ ]+ + k[σ ]. We define G(t) = exp(i t A) on ρ := (φ, γ , σ ) ∈
X j as

G(t)ρ := (exp(−i th)φ, exp(−i th)γ exp(i th), exp(−i t ĥ)(σ )). (82)

We use that −% is h-bounded, and h is −%-bounded and that M is translationally
invariant. For (φ, γ , σ ) ∈ X1 and C < ∞ chosen s.t. M ≤ h + C ,

‖ exp(−i th)φ‖H1 = ‖(h + C) exp(−i th)φ‖L2 = ‖(h + C)φ‖2L2 " ‖φ‖H1 .

Similarly ‖ exp(−i th)γ exp(i th)‖H1
γ

" ‖γ ‖H1
γ
.

Finally, we define the operator h̃ acting on L2(R2d) by the condition ˜̂h(σ ) = h̃σ̃ .
Then, we have h̃ = hx + hy + v(x − y), since the pair potential v be infinitesimally
bounded with respect to −%, the operator h̃ = hx + hy + v(x − y) is self-adjoint and
h and −%x − %y are mutually relatively bounded. Hence, using (82) and choosing c
s.t. Mx + My ≤ h̃ + c,

‖ exp(−i t ([h, σ ]+ + k[σ ]))σ‖H1
σ

9 ‖ exp(−i t h̃)σ̃‖H1

" ‖(h̃ + c) exp(−i t h̃)σ̃‖L2 " ‖σ̃‖H1 9 ‖σ‖H1
σ
.

The strong continuity of G(t) follows from the strong continuity of exp(−i th) and
exp(−i t ĥ). !

The following lemmaallows us to control the nonlinear term f in theHFBequations.

Lemma 4.3. The vector of nonlinear terms f = ( f1, f2, f3) defined in Eq. (79)−(81)
maps X1 into itself and is continuously Fréchet differentiable in X1 ( f ∈ C1(X1)).

Proof of Lemma 4.3. For the first statement, it is sufficient to prove that, for the qua-
dratic and cubic parts of f are bounded as:

∥∥(
b[γ ]φ + k[σ ]φ̄ , [b[γ ], γ ] + k[σ ]σ̄ − σk[σ ] , [b[γ ], σ ]+ + [k[σ ], γ ]+

)∥∥
X1

" ‖ρ‖2X1 , (83)
∥∥(
k[φ⊗2]φ̄ , [b[|φ〉〈φ|], γ ] + k[φ⊗2]σ̄ − σk[φ⊗2] ,
[b[|φ〉〈φ|], σ ]+ + [k[φ⊗2], γ ]+

)∥∥
X1 " ‖ρ‖3X1 . (84)
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All the cubic estimates can be deduced from their quadratic counterparts using

‖|φ〉〈φ|‖H1
γ

≤ ‖φ‖2H1 and ‖φ ⊗ φ‖H1 ≤ ‖φ‖2H1 .

We thus only consider the quadratic terms. Using Lemma 4.5 (i), we estimate

‖b[γ ]φ‖H1 " ‖γ ‖H1
γ
‖φ‖H1 " ‖ρ‖2X1 .

For k[σ ]φ̄, we use Lemma 4.5 (ii) to find

‖k[σ ]φ̄‖H1 ≤ ‖Mk[σ ]‖B‖φ̄‖L2 " ‖σ‖H1
σ
‖φ‖L2 .

We estimate [b[γ ], γ ] using Lemma 4.5 (i),

‖[b[γ ], γ ]‖H1
γ

≤ 2‖Mb[γ ]M−1Mγ M‖L1

≤ 2‖b[γ ]‖H1
γ
‖γ ‖H1

γ
" ‖γ ‖2H1

γ
" ‖ρ‖2X1 .

For k[σ ]σ̄ (and similarly σk[σ ]), the inequality

‖k[σ ]σ̄‖H1
γ
= ‖Mk[σ ]σ̄M‖L1 ≤ ‖Mk[σ ]‖L2‖σ̄M‖L2 ,

Lemma 4.5 (ii) (see estimate (95))
and ‖σ̄M‖L2 ≤ ‖σ‖H1

σ
(which follows from the definition of ‖σ‖H1

σ
) give the

estimate

‖k[σ ]σ̄‖H1
γ

" ‖σ‖2H1
σ
. (85)

For b[γ ]σ (or similarly σb[γ ]), using Lemma 4.5 (i), we obtain

‖b[γ ]σ‖H1
σ

≤ ‖Mb[γ ]M−1‖B‖MσM‖L2 " ‖γ ‖H1
γ
‖σ‖H1

σ
.

And finally k[σ ]γ̄ (and similarly γ k[σ ]), using Lemma 4.5 (ii) (see estimate (95)),
we arrive at

‖k[σ ]γ̄ ‖H1
σ

≤ ‖Mk[σ ]‖L2‖γ̄ M‖B " ‖σ‖H1
σ
‖γ ‖H1

γ
,

which completes the proof of (83) and therefore of (84).
To prove that f is Fréchet differentiable, we observe that each f j is a linear com-

bination of multi-linear maps and therefore d f (ρ)ξ is of the same form as f (ρ) and
can be estimated as above. !
Proof of Theorem 4.1(ii) [Local Classical Solutions] The existence of classical solu-
tions to the HFB equations for initial data in X3 then follows from: !
Lemma 4.4 (See [46, Lemma 3.1]). If −i A is the generator of a continuous one-
parameter semi-group in theBanach space X, and if f is continuously differentiable on
X, then a mild solution of Eq. (75) has its values in the domainD(A) of A throughout
its interval of existence provided this is the case initially.
In other words, ρt , if it exists at all, then satisfies the differential Eq. (75) in the

obvious sense. !
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Proof of Theorem4.1(iii) [ConservationLaws] For classical solutions, the conservation
of the number particle and of the energy were proven as a consequence of the same
conservation laws for the many-body system in Theorem 2.6 and 2.4. Another proof
of the conservation law for the energy using only the HFB equations (independently
from the many body problem) was given in Prop. 3.12, and the conservation of the
particle number could also be proven directly from (40). We can now use those results
since we proved the local existence of a classical solution. The conservation laws then
extend to mild solutions by approximation. !
Proof of Theorem 4.1(iv) [Positivity preservation property]

This follows from relation (62). Indirectly, it follows from the equivalence of the
HFB Eqs. (39) to (41) the self-consistent Eq. (45) (see Theorem 2.3). !
Proof of Theorem 4.1(v) [Global Solution] We recall that for a maximal solution ρt

of the mild problem (76) defined on an interval [0, T ), we have that either T = ∞ or
supt∈[0,T ) ‖ρt‖X1 = ∞ (see, e.g., [14, Thm 4.3.4]). It is thus enough to prove that

sup
t∈[0,T )

{
‖φt‖H1 , ‖γt‖H1

γ
, ‖σt‖H1

σ

}
< ∞

to show that the solutions are global. Let

T :=
∫

dxdy ψ∗(x)(−%)ψ(y) , (86)

Because V is infinitesimally form bounded with respect to the Laplacian,
∫

dx ψ∗(x)ψ(x)V (x) ≥ −1
2
T − cN (87)

holds. And, because the pair potential v is bounded, we have

V := 1
2

∫
dxdy v(x − y)ψ∗(x)ψ∗(y)ψ(x)ψ(y) ≥ −CN2 − CN . (88)

Hence, from the definition of H, (87) and (88) we get

T ≤ 2H+ CN2 + CN . (89)

We now take the expectation value ofωq
t and use thatω

q
t is quasifree to bound ω

q
t (N2)

by C(ω
q
t (N)2 + 1) and the conservation of the particle number and of the energy to

obtain

Tr[−%(γt + |φt 〉〈φt |)] ≤ C(E(φt , γt , σt )+
2∑

k=0

N (φt , γt , σt )
k)

≤ C(E(φ0, γ0, σ0)+
2∑

k=0

N (φ0, γ0, σ0)
k) . (90)
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Combined with the conservation of the particle number, this estimate provides bounds
on ‖γt‖H1

γ
and ‖φt‖H1 that are uniform in t . Moreover, uniform bounds on ‖σt‖H1

σ

are then obtained from Proposition 3.1. It thus follows that the solution is global, as
claimed. !
Recall that W p,r (Rd) denotes the standard Sobolev space over Rd .

Lemma 4.5. Assume that v ∈ W p,1 with p > d. Then, the operators b and k defined
in (42) and (43) possess the following properties:

(i) b is continuous fromH1
γ to B(H1) 9 MBM−1.

(ii) k is continuous from H1
σ to M−1L2.

Proof. For the detailed proof of statement (i), we refer to [12]. For the reader’s con-
venience, we recall here the main arguments. We first consider the direct term, i.e.,
the first term in the definition of b. It is sufficient to prove that v ∗ n (with functions
n(x) = γ (x; x)) and ∇v ∗ n uniformly bounded by ‖γ ‖H1

γ
. As those two bounds are

very similar, we focus on the more difficult one, ∇v ∗ n.
Denote by γ̃ the (generalized) integral kernel of an operator γ . Since v ∈ W p,1(Rd)

with p > d, the function v is bounded. Since∇x
∫
Rd v(x − y) γ (y; y)dy =

∫
Rd v(x −

y)∇yγ (y; y)dy, we have
∥∥∇x

∫

Rd
v(x − y) γ (y; y)dy

∥∥
∞ ≤

∥∥v
∥∥

∞

∫

Rd
|∇yγ (y; y)|dy (91)

Furthermore,
∫
Rd |∇yγ (y; y)|dy ≤ ‖γ ‖H1

γ
, which can proved by using the decompo-

sition γ = ∑∞
j=1 λ j |ϕ j 〉〈ϕ j | with λ j ≥ 0 of γ , combined with the Cauchy–Schwarz

inequality:

∫

Rd
|∇yγ (y; y)|dy ≤

∞∑

j=1

λ j

∫

Rd
|ϕ j (y)∇ϕ j (y)|dy (92)

≤
∞∑

j=1

λ j‖ϕ j‖L2‖∇ϕ j‖L2 (93)

≤
∞∑

j=1

λ j‖Mϕ j‖2L2 ≤ ‖γ ‖H1
γ

(94)

The last two estimates imply the desired result, ‖∇v ∗ n‖∞ ≤ ‖γ ‖H1
γ
. The estimates

for the exchange term (the second term in the definition of B) are similar.
Point (ii) is equivalent to the estimate

‖Mk[σ ]‖L2 " ‖σ‖H1
σ
, (95)

which we now prove.
Denote by σ̃ the (generalized) integral kernel of an operator σ . Clearly, ‖σ‖H j

σ
9

‖σ̃‖H1 . Denote by a(x, y) = v(x − y)σ̃ (x, y), the integral kernel of k[σ ]. We have
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that

‖Mk‖2L2 =
∫ ∫

|Mxa(x, y)|2dxdy ≤ ‖a‖2H1 . (96)

Since a(x, y) = v(x − y)σ̃ (x, y) and

‖a‖H1 ≤ ‖a‖L2 + ‖∂xa‖L2 + ‖∂ya‖L2 ,

we use the Leibniz rule, ∂xa(x, y) = (∂v(x − y))σ̃ (x, y) + v(x − y)∂x σ̃ (x, y), to
find that

‖a‖H1 ≤
(
‖v‖L∞ + ‖∂xvM−1

x ‖B(L2) + ‖∂yvM−1
y ‖B(L2)

)
‖σ̃‖H1 , (97)

where L2 := L2(Rd
x × Rd

y). The Schwartz and Sobolev inequalities imply that

‖∂xv f ‖L2 ≤ ‖∂xv‖L p‖ f ‖Ls " ‖v‖W p,1‖M f ‖L2 ,

for arbitrary s and p satisfying 1
p + 1

s = 1
2 and p > d. Thus,

‖∂xvM−1
x ‖ " ‖v‖W p,1 ,

and, similarly, ‖∂yvM−1
y ‖ " ‖v‖W p,1 . It follows that

‖a‖H1 " ‖v‖W p,1‖σ̃‖H1 . (98)

This, together with (96) and ‖σ̃‖H1 9 ‖σ‖H1
σ
, yields (95). !

5. Gibbs states and Bose–Einstein condensation

In this section, we determine translation- and U (1) gauge-invariant Gibbs states
for the HFB equations without an external potential, and with an interaction potential
gδ, and discuss the emergence of a Bose–Einstein condensate at positive temperature.
(Recall from the introduction that U (1) gauge-invariant Gibbs states for the HFB
equations are, in fact, Gibbs states for the Hartree-Fock equations.)
We consider the system on a torus, /L = Rd/2LZd , i.e., [−L , L]d with periodic

boundary conditions. Accordingly, we denote /∗
L := π

LZ
d the lattice reciprocal to

2LZd . We will eventually take the thermodynamic limit, L → ∞, and discuss the
emergence of a Bose-Einstein condensate.
The HamiltonianH of the Bose gas isU (1) gauge-invariant (that is, invariant under

the transformation ψ# → (eiθψ)#), and, as we consider the case with no external
potential, translation invariant. On a compact torus, where the volume is finite, these
symmetries are also present in the Gibbs states of system (the notion of translation
invariance should be, of course, appropriatelymodified).We are interested in quasifree
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statesω
q
L which, on the one hand, satisfy both theU (1) gauge invariance and the trans-

lation invariance, and, on the other hand, satisfy a fixed point equation corresponding
to the consistency condition (45) in the dynamical case:

0(ω
q
L) = ω

q
L with 0(ω

q
L)(A) := Tr[A exp(−β(HHFB(ω

q
L) − µN))/1] (99)

where β > 0 is the inverse temperature, µ is the chemical potential, and 1 =
Tr[exp(−β(HHFB(ω

q
L))−µN)]. TheU (1) gauge-invariance of ω

q
L then implies that

the truncated expectations φω
q
L
and σω

q
L
vanish. Indeed, if one of them was nonzero,

then theHFBHamiltonianHHFB would include termswhichwould breakU (1) gauge
invariance, such as

∫
dx m(x)ψ∗(x)ψ∗(x)+h.c. . The quasifree stateswe consider are

thus characterized by their truncated expectation γL , and we will replace the variable
ω
q
L by γL in the sequel of this section.
We use the expression of the HFB Hamiltonian (44) with v = gδ (and φ = 0, σ =

0), although this expression was derived for more regular interaction potentials v’s:

HHFB(ω
q
L) =

∫
dxdy ψ∗(x)ψ(y) (−% + gn)(x; y) , (100)

with n = n(x) = γL(x; x). The translation invariance implies that the kernel γL(x; y)
is a function of x − y, that we still denote by γL , and therefore n = n(x) = γL(x; x)
is independent of x .

Applying the fixed point Eq. (99) with A = ψ∗(y)ψ(x), one can express it equiv-
alently in the variable γL :

γL = 1
exp(β(−% + gn1 − µ1) ) − 1

, (101)

for n ∈ [0,∞). The operator γL is a pseudodifferential operator with symbol

γ̂L(k) :=
∫

/L

γL(x)e−i x ·kdx = 1
exp(β(k2 + gn − µ)) − 1

(102)

of γL . Thus,

n = γL(0) =
1

|/L |
∑

k∈/∗
L

γ̂L(k) . (103)

As the Fourier coefficients of γL depend only of the number n, we obtain from (101),
(102) and (103) a nonlinear fixed point equation for n:

n = 1
|/L |

∑

k∈/∗
L

1
exp(β(k2 + gn − µ)) − 1

. (104)

Note that the knowledge of n satisfying (104), or of γL satisfying (101) or of ω
q
L

satisfying (99) are equivalent.
From a physical point of view, it is natural to fix the density n, which can be tuned

in an experiment and to compute µ. So n is a parameter and we solve (104) with the
unknown µ.
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Lemma 5.1. Let g,β, n > 0, and, for d ≥ 3. Let nc be the critical density

nc :=
1

(2π)d

∫

Rd

dk

eβk2 − 1
= ζ( d2 ),(

d
2 )

(2π)d
β− d

2 , (105)

where ζ(x) = ∑
n≥1 n

−x and ,(x) =
∫ ∞
0 t x−1e−t dt .

We define SL : (−∞, gn) → R and S∞ : (−∞, gn] → R through

SL(µ) :=
1

|/L |
∑

k∈/∗
L

1
exp(β(k2 + gn − µ)) − 1

,

S∞(µ) := 1
(2π)d

∫

Rd

dk
exp(β(k2 + gn − µ)) − 1

.

Then:

• There exists a unique µL(n) < gn such that (104) holds, i.e.,

n = SL(µL(n)) . (106)

• If n < nc, there exists a unique µ∞(n) < gn such that

n = S∞(µ∞(n)) . (107)

We extend the function µ∞ to (0,∞) by setting µ∞(n) = gn for n ≥ nc.

Remark 5.2. The critical density nc can be explicitly computed.

Proof. In the discrete case, the existence follows from the intermediate value theorem
because the map SL is continuous with limits 0 at −∞ and ∞ at gn. The map SL is
strictly increasing and thus there exists a unique µL(n) such that n = SL(µL(n)).
In the continuous case, we first prove the existence of µ∞(n), for a given n > 0,

the map (0, gn] * µ +→ S∞(µ) is well-defined, continuous, limµ→−∞ S∞(µ) = 0,
S∞(gn) = nc, and thus the intermediate value theorem yields the existence of a µ∞
satisfying (107). Since S∞ is strictly increasing, the uniqueness follows. !

In Theorem 5.3, we prove that the thermodynamic limit γ∞ of the self-consistent
Eq. (101) for γL iswell-defined and exhibits the so-calledBose–Einstein condensation.

Theorem 5.3. Let g,β, n > 0 and d ≥ 3. Let γL , nc, µL and µ∞ as defined in (101)
and Lemmata 5.1. Then,

µL(n) −−−→
L→∞

µ∞(n) and γL
D′

−−−→
L→∞

γ∞ , (108)

where

γ̂∞(k) = max{0, n − nC } δ(k)+
1

exp
(
β(k2 + gn − µ∞(n))

)
− 1

. (109)
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Remark 5.4. The presence of the δ(k) term is interpreted as the existence of Bose–
Einstein condensation, because there is an accumulation of particles in the zero mode.
It occurs when βd/2n ≥ Cd with Cd a constant depending only on the dimension.

Proof of Theorem 5.3. First we prove the convergence of µL(n) towards a µ∞(n).
We first remark that µL(n) ≥ −C for some constant C > 0 independent of L .
(Otherwise one could extract a subsequence such that n = SL j (µL j (n)) → 0 < n.)
Thus, the accumulation points ofµL(n) are contained in [−C, gn]. LetµL j (n) denote
an extracted sequence converging to an accumulation point µ′.

In the case n < nc: Ifµ′ = gn, then for j large enoughµL j (n) ≥ (µ∞(n)+gn)/2,
thus

n = SL j (µL j (n)) ≥ SL j

(gn + µ∞(n)
2

)
→ S∞

(gn + µ∞(n)
2

)
> S∞(µ∞(n)) = n

and which would lead to a contradiction. Note that it is crucial that µ∞(n) < gn
for n < nc to get the convergence to the integral S∞

( gn+µ∞(n)
2

)
. It thus follows that

µ′ < gn. Then SL j (µL j (n)) converges to n, because by definition of µL(n) this sum
is equal to n, and also to S∞(µ′). (One has to control the dependency in µL j (n) in the
Riemann sums.) Hence, µ′ = µ∞(n) and the unique accumulation point is µ∞(n).
We thus proved the convergence of µL(n) to µ∞(n).
In the case n ≥ nc, we sketch an argument similar to the one above. If an accumu-

lation point µ′ was such that µ′ < gn, then the sums SL j (µL j (n)) would converge
to integrals with a value strictly smaller than nc and thus strictly smaller than n. This
would lead to a contradiction. Thus, the only possible accumulation point is gn and
µL(n) → gn = µ∞(n).
We now prove the convergence of γL towards γ∞. Let ϕ ∈ C∞

0 (Rd). For L large
enough the support of ϕ is included in /L , and

∫

/L

γLϕ = 1
|/L |

∑

k∈/∗
L

γ̂L(k)ϕ̂(k) . (110)

On the other hand, 〈γ∞,ϕ〉D′ = 〈γ∞,ϕ〉S ′ = 〈γ̂∞, ϕ̂〉S ′ (Note that in the normaliza-
tionwe choose, the Fourier coefficients of ϕ on/L and the Fourier transform coincide,
there is thus no need to specify the hat notation.) The convergence of γL to γ∞ is thus
equivalent to

1
|/L |

∑

k∈/∗
L

γ̂L(k)ϕ̂(k) → max{0, n − nc}ϕ̂(0)+
∫

Rd

(2π)−d ϕ̂(k)dk

eβ(k2+gn−µ∞(n)) − 1
. (111)

for all ϕ.
In the case n < nc the convergence is thus just a convergence of Riemann sums of

the integral (with the small additional difficulty that µL(n) depends on L in the sum)
because there is no singularity in the function k +→ (exp(β(k2+gn−µ∞(n)))−1)−1.
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In the case n ≥ nc: Let ε > 0. First note that, for any fixed η > 0

1
|/L |

∑

k∈/∗
L

|k|>η

ϕ̂(k)
exp(β(k2 + gn − µL(n))) − 1

→
∫

|k|>η

(2π)−d ϕ̂(k)dk

eβk2 − 1
,

as L → ∞. We choose η > 0 small enough so that

|k| ≤ η ⇒ |ϕ̂(k) − ϕ̂(0)| ≤ ε

4n
and

∫

|k|≤η

(2π)−d ϕ̂(0)dk

eβk2 − 1
≤ ε

4
.

The first condition on η yields
∣∣∣∣

1
|/L |

∑

k∈/∗
L

|k|≤η

ϕ̂(k) − ϕ̂(0)
exp(β(k2 + gn − µL(n))) − 1

∣∣∣∣ ≤ ε

4
,

then, the second condition on η implies

lim sup
L→∞

∣∣∣∣
1

|/L |
∑

k∈/∗
L

|k|≤η

ϕ̂(0)
exp(β(k2 + gn − µL(n))) − 1

− (n − nc)ϕ̂(0)
∣∣∣∣ ≤ ε

4
.

Hence

lim sup
L→∞

∣∣∣∣
1

|/L |
∑

k∈/∗
L

ϕ̂(k)
exp(β(k2 + gn − µL(n))) − 1

−(n − nc)ϕ̂(k) −
∫

Rd

(2π)−d ϕ̂(k)dk

eβk2 − 1

∣∣∣∣ ≤ ε ,

and as this holds for any ε > 0, we get the result. !

6. Derivation of the Bosonic HFB equations

In this section, we prove Theorem 2.2. The derivations below are done in a some-
what informal way commonly used in dealing with operators on Fock spaces (see,
e.g., [8,13,25]). For instance, the commutator [A, H ], for A = ψ(x) and A =
ψ(x)ψ(y), contains the terms %xψ(x) and ψ(x)%yψ(y). The formal computation
gives ωq(%xψ(x)) = %xω

q(ψ(x)) and ωq(ψ(x)%yψ(y)) = %yω
q(ψ(x)ψ(y)),

which are well-defined by our assumptions and are equal to %xφ(x) and %yσ (x, y),
respectively.
To do this more carefully, one uses, instead of operator functions ψ#(x), the op-

erator functionals ψ#( f ), for some nice f . E.g., instead [ψ(x), H ], we consider the
commutator [ψ( f ), H ], for any nice f , and concentrate on the term ψ(% f ) it con-
tains. Clearly, ωq is well-defined on ψ(% f ) and can be written as ωq(ψ(% f )) =∫

% f (x)ωq(ψ(x)) =
∫

% f (x)φ(x) =
∫

f (x)%φ(x). Thus, we obtain the same
result as above but in a weak form.



J. Evol. Equ. The time-dependent Hartree–Fock–Bogoliubov Page 35 of 43 46

Proof of Theorem 2.2. We first observe that the three following conditions are equiv-
alent:

1. A quasifree state ω
q
t satisfies

i∂tω
q
t
(
A

)
= ω

q
t
(
[A,H]

)
, (112)

for any operator A of order ≤ 2 in the fields.
2. A quasifree state ω

q
t satisfies

i∂tω
q
t
(
ψ(x)

)
= ω

q
t
(
[ψ(x),H]

)
, (113)

i∂tω
q
t
(
ψ∗(y)ψ(x)

)
= ω

q
t
(
[ψ∗(y)ψ(x),H]

)
, (114)

i∂tω
q
t
(
ψ(x)ψ(y)

)
= ω

q
t
(
[ψ(x)ψ(y),H]

)
. (115)

3. A quasifree state ω
q
t with truncated expectations φt , γt and σt satisfies

i∂tφt (x) = ω
q
t ([ψ(x),H]) , (116)

i∂tγt (x; y) = ω
q
t ([ψ∗(y)ψ(x),H]) − i∂t

(
φt (x)φ(y)

)
, (117)

i∂tσt (x, y) = ω
q
t ([ψ(x)ψ(y),H]) − i∂t

(
φt (x)φ(y)

)
. (118)

We now suppose ω
q
t satisfies (116)–(118). Using the definition of the Hamiltonian,

we obtain

i∂tφt (x) = ω
q
t

([
ψ(x),

∫
ψ∗(y)h(y; y′)ψ(y′) dydy′]

+ 1
2

[
ψ(x),

∫
v(y − y′)ψ∗(y)ψ∗(y′)ψ(y′)ψ(y) dydy′]

)
(119)

= ω
q
t

( ∫
h(x; y′)ψ(y′) dy′ +

∫
v(x − y)ψ∗(y)ψ(y)ψ(x) dy

)
, (120)

where we used the CCR (3) to get
[
ψ(x),ψ∗(y)ψ∗(y′)ψ(y′)ψ(y)

]

= δ(x − y)ψ∗(y′)ψ(y′)ψ(y)+ δ(x − y′)ψ∗(y)ψ(y)ψ(y′) . (121)

As ω
q
t is a quasifree state (see Appendix B)

ω
q
t
(
ψ∗(y)ψ(y)ψ(x)

)

= |φt (y)|2φt (x)+ σ (y; x)φ̄t (y)+ φt (x)γ (y; y)+ φt (y)γ (x; y) . (122)

We thus deduce that

i∂tφt (x) =
∫

h(x; y′)φt (y′) dy′

+
∫

v(y − x)φt (x)γt (y; y) dy +
∫

v(y − x)φt (y)γt (x; y) dy

+
∫

v(x − y)σt (y, x)φ̄t (y) dy +
∫

v(y − x)φt (y)φt (x)φ̄t (y) dy

=
(
(h + b[γt ])φt

)
(x)+ k(σφt

t )φ̄t (x)
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which is the dynamical Eq. (39) for φt .
For γt and σt , instead of ω

q
t we use

ω
q
C,t (A) := ω

q
t (WφtAW ∗

φt
) , (123)

where, recall, Wφ = exp
(
ψ∗(φ) − ψ(φ)

)
, the Weyl operators, which satisfy

W ∗
φψ(x)Wφ = ψ(x)+ φ(x) . (124)

Note that the stateω
q
C,t is quasifree becauseω

q
t is quasifree.Byconstructionω

q
C,t (ψ(x))

= 0 and thus using (10) and the quasifreeness of ω
q
C,t one sees that ω

q
C,t vanishes on

monomials of odd order in the fields. This provides substantial simplifications in the
computations below.
In particular, the equations of the dynamics for γt and σt can be rewritten:

i∂tγt (x; y) = ω
q
C,t ([ψ∗(y)ψ(x),W ∗

φt
HWφt ]) , (125)

i∂tσt (x1, y) = ω
q
C,t ([ψ(x1)ψ(y),W ∗

φt
HWφt ]) . (126)

We compute W ∗
φt
HWφt modulo terms of odd degree and of degree 0 in the creation

and annihilation operators:

W ∗
φt
HWφt ≡

∫
ψ∗(z)

(
h + bv[|φ〉〈φ|]

)
(z; z′)ψ(z′) dzdz′

+ 1
2

∫
v(z − z′)φt (z)φt (z′)ψ∗(z)ψ∗(z′) dzdz′ + ad j.

+ 1
2

∫
v(z − z′)ψ∗(z)ψ∗(z′)ψ(z′)ψ(z) dzdz′ . (127)

Because ω
q
C,t vanishes on monomials of odd order in the fields and using the commu-

tator, the knowledge of W ∗
φt
HWφt modulo terms of odd degree and of degree 0 in the

creation and annihilation operators is sufficient to compute the time derivative (125)
of γt . Thus, using the CCR we get

i∂tγt (x; y) =
∫

ω
q
C,t

((
h + bv[|φt 〉〈φt |]

)
(x; z)ψ∗(y)ψ(z)

−
(
h + Bv[|φt 〉〈φt |]

)
(z; y)ψ∗(z)ψ(x)

+ v(z − x)φt (z)φt (x)ψ∗(y)ψ∗(z) − v(z − y)φt (z)φt (y)ψ(z)ψ(x)

+ v(z − x)ψ∗(y)ψ∗(z)ψ(x)ψ(z) − v(z − y)ψ∗(z)ψ∗(y)ψ(z)ψ(x)
)
dz .

(128)

From the quasifreeness of ω
q
C,t follows:

i∂tγt (x; y) =
[
h + bv[|φt 〉〈φt | + γt ], γt

]
(x; y)

+
∫ (

v(z − x)φt (z)φt (x)σt (y, z) − v(z − y)φt (z)φt (y)σt (z, x)

+ v(z − x)σt (x, z)σt (y, z) − v(z − y)σt (x, z)σt (y, z)
)
dz . (129)
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which is the dynamical Eq. (40) for γt .
Using the same arguments as for γt , we get

i∂tσt (x; y)
= ω

q
C,t

(
v(x − y)φt (x)φt (y)+ v(x − y)ψ(x)ψ(y)

+
∫ (

(h + bv[|φt 〉〈φt |])(x; z)ψ(y)+ (h + bv[|φt 〉〈φt |])(y; z)ψ(x)
)
ψ(z)

+ v(x − z)ψ∗(z)ψ(y)φt (x)φt (z)+ v(y − z)ψ∗(z)ψ(x)φt (y)φt (z)

+ v(x − z)ψ∗(z)ψ(y)ψ(x)ψ(z)+ v(y − z)ψ∗(z)ψ(x)ψ(y)ψ(z)
)
dz

)
.

(130)

From the quasifreeness of ω
q
C,t follows:

i∂tσt (x; y)
= v(x − y)φt (x)φt (y)+ v(x − y)σt (x, y)

+
∫ ((

h + bv[|φt 〉〈φt |]
)
(x; z)σt (y, z)+

(
h + bv[|φt 〉〈φt |]

)
(y; z)σ (x, z)

+ v(x − z)γt (y; z)φt (x)φt (z)+ v(y − z)γt (x; z)φt (y)φt (z)

+ v(x − z)
(
γt (x; z)σt (z, y)+ γt (y; z)σt (z, x)+ γt (z; z)σt (x, y)

)

+ v(y − z)
(
γt (x; z)σt (z, y)+ γt (y; z)σt (z, x)+ γt (z; z)σt (x, y)

))
dz ,

(131)

which is the dynamical Eq. (41) for σt . !
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A. Self-adjointness of the Hamiltonian H

Weuse that the pair potentialv is infinitesimally%−bounded, i.e., for any ε ∈ (0, 1],

v ≤ −ε% + Cε−1 (132)

(we write C for constants which depend on v, d and change along the estimates) to
obtain after taking ε = 1/(3(n − 1)),

v(x − y) ≤ 1
6(n − 1)

(−%x − %y)+ C(n − 1) . (133)

Then, summing the n(n − 1)/2 terms of this form on each n-particles subspace of the
Fock space, we obtain that

V := 1
2

∫
dxdy v(x − y)ψ∗(x)ψ∗(y)ψ(x)ψ(y) ≤ 2

3
T+ CN3 . (134)

for some C > 0, with T defined in (86). One can then use the KLMN theorem and
the Nelson theorem (see [40,44]) to prove the self-adjointness of H. (Details can be
adapted from, e.g., [1, Section 3].)

B. Definition of quasifree states

For brevity, we write ψ
#
j := ψ#(x j ). We recall that the truncated expectations are

defined via

ω(ψ
#
1 · · ·ψ#

n) =
∑

Pn

∏

J∈Pn

ωT (
∏

j∈J

ψ
#
j ), (135)

where Pn are partitions of the ordered set {1, ..., n} into ordered subsets.
We have ωT (ψ) = ω(ψ) and

ωT (ψ
#
1ψ

#
2) = ω(ψ

#
1ψ

#
2) − ω(ψ

#
1)ω(ψ

#
2). (136)

For quasifree states, the correlation functions ω(ψ
#
1 · · ·ψ

#
n), with n > 2 can be ex-

pressed through ω(ψ#(x)) and ω(ψ#(x)ψ#(y)) according to the Wick formula. For

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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example,

ω(ψ
#
1ψ

#
2ψ

#
3) = ω(ψ

#
1)ω(ψ

#
2ψ

#
3)

+ω(ψ
#
2)ω(ψ∗

1ψ
#
3)+ ω(ψ

#
3)ω(ψ

#
1ψ

#
2) − 2

3∏

i=1

ω(ψ
#
i ) (137)

and

ω(ψ
#
1ψ

#
2ψ

#
3ψ

#
4) = ω(ψ

#
1ψ

#
2)ω(ψ

#
3ψ

#
4)+ ω(ψ

#
1ψ

#
3)ω(ψ

#
2ψ

#
4)

+ω(ψ
#
1ψ

#
4)ω(ψ

#
2ψ

#
4) − 2

4∏

i=1

ω(ψ
#
i ) (138)

(remember that ψ’s stand on the right of ψ∗’s.) Note that

ω
(
ψ∗(x)

)
= ω

(
ψ(x)

)
, ω(ψ∗

1ψ∗
2 ) = ω(ψ2ψ1)

and

ω(ψ1ψ
∗
2 ) = ω(ψ∗

2ψ1)+ δ(x − y).

Thus, a quasifree state ω is completely determined by the functions ωT (
ψ(x)

)
, ωT

(
ψ∗(x)ψ(y)

)
and ωT (

ψ(x)ψ(y)
)
.

Remark B.1. It is instructive to rewrite correlation functions for a quasifree state ω in
terms of the fluctuation fields χ(x), defined as

χ(x) := ψ(x) − ω[ψ(x)] , (139)

where the average field ω[ψ(x)] = φ(x) is considered a multiplication operator on
F . Then, ω is a quasifree state iff ω(χ

#
1 · · ·χ

#
2n−1) = 0 and

ω(χ
#
1 · · ·χ

#
2n) =

∑

π∈Sn

2n−1∏

i=1

ω(χ
#
π(i)χ

#
π(i+1)),

where the sum is taken over all the permutations π of the set of indices {1, ..., 2n}
satisfying π(1) < ... < π(2n) and, for all.

C. Equivalence of the HBF equations with the evolution generated by Hh f b(ω
q
t )

In this section, we prove Theorem 2.3.
Let a quasifree state ω

q
t satisfy (45) and let φt , γt and σt denote its truncated expec-

tations. Below, we use the abbreviations h(t) ≡ h(γ φt
t ) and k(t) ≡ k(σφt

t ), where,
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recall, γ φ := γ + |φ〉〈φ| and σφ := σ + |φ〉〈φ|, and h(γ ) and k(σ ) are defined in
(42) and (43). To find the equation for φt , we compute

i∂tφt (x) = ω
q
t
(
[ψ(x),Hh f b(ω

q
t )]

)

= ω̃
q
t

( ∫
h(t)(x; z)ψ(z)dz − b[|φt 〉〈φt |]φt (x)+

∫
ψ∗(z)k(t)(x, z) dz

)

= h(t)φt (x) − b[|φt 〉〈φt |]φt (x)+ k(t)φt (x) .

Hence φt satisfies (39).
For γt andσt we remark that,modulo terms of order one and constantsW ∗

φt
Hh f b(ω

q
t )

Wφt and Hh f b(ω
q
t ) coincide, hence

W ∗
φt
Hh f b(ω

q
t )Wφt ≡

∫
h(t)(z; z′)ψ∗(z)ψ(z′) dzdz′

+ 1
2

∫
ψ∗(z1)ψ∗(z2)k(t)(z1, z2) dz1dz2 + ad j. . (140)

Recall the definition (123) of ω
q
C,t (A). As in the proof of Theorem 2.2, the terms

coming from the derivative of Wφt simplify:

i∂tγt (x; y) = ω
q
C,t

(
[ψ∗(y)ψ(x),W ∗

φt
Hh f b(ω

q
t )Wφt ]

)
.

It is sufficient to considerW ∗
φt
H̃(φt , γt , σt )Wφt modulo monomials of odd order in the

fields:

i∂tγt (x; y) = ω
q
C,t

( ∫
h(t)(x; z)ψ∗(x)ψ(z)dz −

∫
h(t)(z; y)ψ∗(z)ψ(y) dz

+
∫

ψ∗(z)ψ∗(y)k(t)(z, x) dz −
∫

k(t)(z, y)ψ(z)ψ(x) dz
)

=
∫

h(t)(x; z)γt (z; x)dz −
∫

γt (x; z)hv(t)(z; y) dz

+
∫

σt (y, z)k(t)(z, x) dz −
∫

k(t)(z, y)σt (x, z) dz
)
.

Similarly

i∂tσt (x; y) = ω
q
C,t

(
[ψ(x)ψ(y),W ∗

φt
Hh f b(ω

q
t )Wφt ]

)
(141)

and

i∂tγt (x; y) =
∫

h(t)(x; z)σt (x, z)dz +
∫

h(t)(y; z)σt (y, z) dz

+
∫

γt (y, z)k(t)(z, x) dz +
∫

γt (x, z)k(t)(z, y) dz + k(t)(x, y) (142)

Thus, γt and σt satisfy (40) and (41).
We have shown that, if a quasifree state ω

q
t satisfies (45), then its truncated expec-

tations, φt , γt and σt , satisfy (39), (40) and (41). Proceeding in the opposite direction,
one shows that, if truncated expectations, φt , γt and σt , satisfy (39), (40) and (41),
then the corresponding quasifree state ω

q
t satisfies (45). !
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