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Abstract

Text generation systems are ubiquitous in nat-
ural language processing applications. How-
ever, evaluation of these systems remains a
challenge, especially in multilingual settings.
In this paper, we propose L’AMBRE – a
metric to evaluate the morphosyntactic well-
formedness of text using its dependency parse
and morphosyntactic rules of the language.
We present a way to automatically extract var-
ious rules governing morphosyntax directly
from dependency treebanks. To tackle the
noisy outputs from text generation systems,
we propose a simple methodology to train ro-
bust parsers. We show the effectiveness of
our metric on the task of machine translation
through a diachronic study of systems translat-
ing into morphologically-rich languages.1

1 Introduction

A variety of natural language processing (NLP) ap-
plications such as machine translation (MT), sum-
marization, and dialogue require natural language
generation (NLG). Each of these applications has a
different objective and therefore task-specific eval-
uation metrics are commonly used. For instance,
reference-based measures such as BLEU (Papineni
et al., 2002), METEOR (Banerjee and Lavie, 2005)
and chrF (Popović, 2015) are used to evaluate MT,
ROUGE (Lin, 2004) is a metric widely used in
summarization, and various task-based metrics are
used in dialogue (Liang et al., 2020).

Regardless of the downstream application, an
important aspect of evaluating language generation
systems is measuring the fluency of the generated
text. In this paper, we propose a metric that can be
used to evaluate the grammatical well-formedness
of text produced by NLG systems.2 Our metric

*Equal contribution
1Code and data are available at https://github.com/

adithya7/lambre.
2While grammatical well-formedness is often necessary

for fluent text, it is not sufficient (Sakaguchi et al., 2016).

PRON AUX ADJ NOUN VERB

S.1 Ich werde lange Bücher lesen
I-NOM.1SG will-1SG long-ACC.PL Book-ACC.PL read-PTCP

S.2 *Ich werden langen Bücher lesen
I-NOM.1SG will-1PL long-DAT.PL Book-ACC.PL read-PTCP
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Figure 1: Identifying grammatical errors in text us-
ing dependency parses and morpho-syntactic rules. Un-
grammatical sentence S.2 fails to satisfy subject-verb
agreement between PRON and AUX as well as case
agreement between ADJ and NOUN. However, it sat-
isfies case assignment rules with the subject in NOM
case and the object in ACC case respectively.

is referenceless and is based on the grammatical
rules of the language, thereby enabling fine-grained
identification and analysis of which grammatical
phenomena the NLG system is struggling with.

Although several referenceless metrics for evalu-
ating NLG models exist, most use features of both
the input and output, limiting their applicability to
specific tasks like MT or spoken dialogue (Specia
et al., 2010; Dušek et al., 2017). With the excep-
tion of the grammaticality-based metric of Napoles
et al. (GBM; 2016), these metrics are derived from
simple linguistic features like misspellings, lan-
guage model scores or parser scores, and are not
indicative of specific grammatical knowledge.

In contrast, there has recently been a burgeon-
ing of evaluation techniques based on grammatical
acceptability judgments for both language models
(Marvin and Linzen, 2018; Warstadt et al., 2019;
Gauthier et al., 2020) and MT systems (Sennrich,
2017; Burlot and Yvon, 2017; Burlot et al., 2018).

https://github.com/adithya7/lambre
https://github.com/adithya7/lambre


However, these methods require an existing model
to score two sentences that are carefully crafted
to be similar, with one sentence being grammati-
cal and the other not. These techniques are usu-
ally tailored towards specific downstream systems.
Additionally, they do not consider the interaction
between multiple mistakes that may occur in the
process of generating text (e.g., an incorrect word
early in the sentence may trigger a grammatical
error later in the sentence). Most of these methods,
with the exception of Mueller et al. (2020), focus
only on English or translation to/from English.

In this paper, we propose L’AMBRE, a metric that
both evaluates the grammatical well-formedness of
text in a fine-grained fashion and can be applied
to text from multiple languages. We use widely
available dependency parsers to tag and parse tar-
get text, and then compute our metric by identi-
fying language-specific morphosyntactic errors in
text (a schematic overview is outlined in Figure 1).
Our measure can be used directly on text gener-
ated from a black-box NLG system, and allows for
decomposing the system performance into individ-
ual grammar rules that identify specific areas to
improve the model’s grammaticality.

L’AMBRE relies on a grammatical description
of the language, similar to those linguists and lan-
guage educators have been producing for decades
when they document a language or create teach-
ing materials. Specifically, we consider rules de-
scribing morphosyntax, including agreement, case
assignment, and verb form selection. Following
Chaudhary et al. (2020), we describe a procedure
to automatically extract these rules from existing
dependency treebanks (§3) with high precision.3

When evaluating NLG outputs, adherence to
these rules can be assessed through dependency
parses (Figure 1). However, off-the-shelf depen-
dency parsers are trained on grammatically sound
text and are not well-suited for parsing ungrammat-
ical (or noisy) text (Hashemi and Hwa, 2016) such
as that generated by NLG systems. We propose a
method to train more robust dependency parsers
and morphological feature taggers by synthesizing
morphosyntactic errors in existing treebanks (§4).
Our robust parsers improve by up to 2% over off-
the-shelf models on synthetically noised treebanks.

Finally, we field test L’AMBRE on two NLP tasks:
grammatical error identification (§5) and machine

3While such sets of grammar rules could be manually com-
piled (for example, by linguists), it would require additional
centralized effort from a large group of annotators.

translation (§6). Our metric is highly correlated
with human judgments on MT outputs. We also
showcase how the interpretability of our approach
can be used to gain additional insights through a
diachronic study of MT systems from the Confer-
ence on Machine Translation (WMT) shared tasks.
The success of our measure depends heavily on the
quality of dependency parses: we discuss potential
limitations of our approach based on the grammar
error identification task.

2 L’AMBRE: Linguistically Aware
Morphosyntax-Based Rule Evaluation

In this section, we present L’AMBRE, a metric
to gauge the morphosyntactic well-formedness of
generated natural language sentences. Our met-
ric assumes a machine-readable grammatical de-
scription, which we define as a series of language-
specific rules Gl = {r1, r2, . . . , rn}. We also as-
sume that dependency parses of every grammatical
sentence adhere to these rules.4

Given a text, we compute a score by verifying
the satisfiability of all applicable morphosyntactic
rules from the grammatical description. Similar to
standard metrics for evaluating NLG, our scoring
framework allows for computing scores at both
segment-level and corpus-level granularities.

Segment level: Computing L’AMBRE first re-
quires segmentation, tokenization, tagging, and
parsing of the corpus.5 Given the tagged depen-
dency tree for a segment of text and a set of rules
in the language, we identify all rules that are ap-
plicable to the segment. We then compute the per-
centage of times that each such rule is satisfied
within the segment, based on the parser/tagger an-
notations. The final score is a weighted average
of the scores of individual rules.6 Our score lies
between [0,1], where 1 and 0 represent that rules
are perfectly satisfied or not satisfied at all respec-
tively. Consider the example sentence (S.2) from
Figure 1. Of the five agreement rules, two rules,
number agreement between PRON (Ich) and AUX

(werde), and case agreement between ADJ (lange)
and NOUN (Bücher) are not satisfied. Both rele-

4Different syntactic formalisms could be applicable, but
we work with the (modified) Universal Dependencies for-
malism (Nivre et al., 2020) due to its simplicity, widespread
familiarity and its use in a variety of multilingual resources.

5We discuss in §4 how to properly achieve this over poten-
tially malformed sentences.

6We assume equal weights among rules, although it would
be trivial to extend the metric to use a weighted average.



vant case assignment rules between, PRON (Ich)
and AUX (werde), and NOUN (Bücher) and VERB

(lesen) are satisfied. Thus, the overall score is 0.71
(5/7). This example showcases how L’AMBRE is
inherently interpretable: given a segment (S.2), we
can immediately identify that it is grammatically
sound with respect to case assignment, but contains
two errors in agreement.

Corpus level: To compute L’AMBRE at corpus-
level, we accumulate the satisfiability counts for
each rule over the entire corpus and report the
macro-average of the empirical satisfiability of
each applicable rule. This is different from a sim-
ple average of segment-level scores and is a more
reliable score as it allows the comparison of perfor-
mance by rule over the entire corpus.

3 Creating a Grammatical Description

In linguistics, grammars of languages are typically
presented in (series of) books, describing in detail
the rules governing the language through free-form
text and examples (see Moravcsik (1978); Corbett
(2006) for grammatical agreement).7 However, to
be able to use such descriptions in our metric, we
require them to be concise and machine-readable.

We build upon Chaudhary et al. (2020) that
constructed first-pass descriptions of grammatical
agreement from syntactic structures of text, in par-
ticular, dependency parses.8 In general, rules based
on a complete formalized grammar govern sev-
eral aspects of language generation, including syn-
tax, morphosyntax, morphology, morphophonol-
ogy, and phonotactics. In this work, we focus on
agreement, case assignment, and verb form choice.

3.1 Agreement

We define the agreement rules as ragree(x, y, d)→
fx=fy. Such rules refer to two words with parts-of-
speech x (dependent) and y (head/governer) con-
nected through a dependency relation d. These two
words must exhibit agreement on some morpho-
logical feature f . For instance, the noun Bücher
(‘Book’) and its modifying adjective lange (‘long’)
in the German example S.1 (Figure 1) agree in
number, gender, and case. We denote this gen-

7Many linguists also produce highly formal accounts of
grammatical phenomena. However, many of these formalisms
are difficult to implement computationally because they are
equivalent (in the most egregious cases) to Turing machines.

8We use the Surface-Syntactic Universal Dependencies
(SUD) 2.5 (Gerdes et al., 2019). See A.1 for a comparison of
UD and SUD.
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Figure 2: Argument structure rules: the global case dis-
tribution G(f) of German NOUN is very different from
its local Ldepd(f) distribution in comp:obj dependency
with VERB, allowing us to the identify case assignmnt
rule ras(NOUN,VERB,comp :obj)→CaseNOUN = Acc; Nom,
i.e the Case can be either Acc or Nom.

eral agreement rule as ragree(ADJ, NOUN, mod) →
Case, Gender, Number.

For each dependency relation d between a depen-
dent POS x and head POS y, we compute the frac-
tion of times the linked tokens agree on feature f
in the treebank. We consider ragree(x, y, d) → f as
a potential agreement rule if the fraction is higher
than 0.9. The resulting set still contains a long
tail of less-frequent rules. These are unreliable
and could just be because of treebank artifacts.
Therefore, we incorporate additional pruning to
only select the most frequent rules, covering a cu-
mulative 80% of all agreement instances in the
treebank. This is a simplified formulation com-
pared to Chaudhary et al. (2020), but as we show
later, this frequency-based approach still results in
a high-precision set of rules.

3.2 Case Assignment and Verb Form Choice

We define case assignment and verb form choice
rules as ras(x, y, d)→ fx=F . A word with POS
x at the tail of a dependency relation d with head
POS y must exhibit a certain morphological fea-
ture (i.e., fx must have the value F ). Occasionally,
a similar rule might be applicable for the head y.
For instance, a pronoun that is the child of a subj

relation (that is, it is the subject of a verb) in most
Greek constructions must be in the nominative case,
while a direct object (obj) should be in the ac-
cusative case. In this example, we can write the
rules as ras(PRON, VERB, subj)→CasePRON=Nom

and ras(PRON, VERB, obj)→CasePRON=Acc.
Our hypothesis is that certain syntactic construc-

tions require specific morphological feature selec-
tion from one of their constituents (e.g., pronoun
subjects need to be in nominative case, but pronoun
objects only allow for genitive or accusative case in



Greek).9 This implies that the “local” distribution
that a specific construction requires will be differ-
ent from a “global” distribution of morphological
feature values computed over the whole treebank.
Figure 2 presents an example for German-GSD.

We can automatically discover these rules by
finding such cases of distortion. First, we obtain
a global distribution (G(fx) = p(fx)) that cap-
tures the empirical distribution of the values of a
morphological feature f on POS x over the whole
treebank. Second, we measure two other distri-
butions, local to a relation d, for the dependent
(Ldepd(fx | d) = p(fx | ⟨x, ∗, d⟩)) and head posi-
tions (Lhead(fx | d) = p(fx | ⟨∗, x, d⟩))

To identify these morphosyntactic rules with
high precision, we measure the KL diver-
gence (Kullback and Leibler, 1951) between global
and local distributions and only keep the rules with
KL divergence over a predefined threshold of 0.9.
Similar to the case of agreement rules, we impose
a frequency threshold on the count of dependency
relation in the respective treebank. For all the agree-
ment, case assignment and verb form choice rules,
we use the largest SUD treebank for the language.

3.3 Human Evaluation

Though our grammatical description incorporates
agreement, case assignment and verb-form selec-
tion, which are highly indicative of the fluency of
natural language text, it is by no means exhaustive.
However, these rules are relatively easy to extract
from dependency parses with high precision. To
measure the quality of our extracted rule sets, we
perform a human evaluation task with three lin-
guists.10 Similar to Chaudhary et al. (2020), for
each rule, we present three choices, “almost always
true”, “sometimes true” and “need not be true”,
along with 10 positive and negative examples from
the original treebank.11 In Table 1, we show the
results for Greek, Italian and Russian.

Our rules are in general quite precise across the
three languages, with most rules marked as “al-
most always true” by linguists. However, we found
interesting special cases in Russian, where the an-

9This class of rules are also often lexicalized, depending on
the lexeme of either the head or the dependent. In the example
S.1 of Figure 1, the object phrase lange Bücher (‘long Book’)
is inflected in the accusative case because of the verb lesen
(‘read’). Other constructions might require the object declined
in genitive or dative, depending on the verb lexeme.

10Disclaimer: One annotator is also an author on this work.
11Due to large number of Russian rules, we present only a

subset to the linguists.

Rules Greek Russian Italian

ragree 11:0:0 17:3:0 -
ras 9:3:0 6:9:3 10:1:0

Table 1: Results on human evaluation of our automati-
cally extracted rules. Numbers denotes # rules labeled
as (always):(sometimes):(need not)

notator stated that dependency relations are “over-
loaded” to capture several phenomena (explaining
the “sometimes” annotations). The SUD schema
merges obj and ccomp into a single comp:obj re-
lation, thereby we notice instances where the rule
ras(PRON, VERB, comp:obj) → CasePRON = Acc

(which pertains to direct objects) is incorrectly en-
forced on a ccomp relation. We also notice some is-
sues with cross-clausal dependencies, e.g., the rule
ras(VERB, NOUN, subj) → VerbFormVERB = Inf

is valid in the sentence, “the goal is to win” but not
in “the question is why they came”.

It is important to note that these automatically
extracted rule sets are approximate descriptions of
morpho-syntactic behavior of the language. How-
ever, L’AMBRE is flexible enough to utilize any
additional rules, and arguably would be even more
effective if combined with hand-curated descrip-
tions created by linguists. We leave this as an inter-
esting direction for future work. In our code, we
provide detailed instructions for adding new rules.

4 Parsing Noisy Text

Within our evaluation framework, we rely on
parsers to generate the dependency trees of po-
tentially malformed or noisy sentences from NLG
systems. However, publicly available parsers are
typically trained on clean and grammatical text
from UD treebanks, and may not generalize to
noisy inputs (Daiber and van der Goot, 2016; Sak-
aguchi et al., 2017; Hashemi and Hwa, 2016, 2018).
Therefore, it is necessary to ensure that parsers are
robust to any morphology-related errors in the input
text. Ideally, the tagger should accurately identify
the morphological features of incorrect word forms,
while the dependency parser remains robust to such
noise. To this end, we present a simple framework
for evaluating the robustness of pre-trained parsers
to such noise, along with a method to train the
robust parsers necessary for our application.



(οικισμός + ACC.SG)

Στο μικρό οικισμό της Λίνδου.

In-the small settlement of Lindos

Στο μικρό οικισμούς της Λίνδου.

(οικισμός + ACC.PL)

Figure 3: Creating noisy input examples for parsers. In
this Greek example, we modify the original word form
οικισμό (Singular) to a plural inflection οικισμούς.

4.1 Adding Morphology-related Noise

To simulate noisy input conditions for parsers, we
add morphology-related errors into the standard
UD treebanks using UniMorph dictionaries (Mc-
Carthy et al., 2020). UniMorph provides a schema
for inflectional morphology by listing paradigms
with relevant morphological features from an uni-
versal schema (Sylak-Glassman, 2016). Given
an input sentence, we search for alternate inflec-
tions for the constituent tokens, based on their lem-
mata.12 For simplicity, we only replace a single
token in each sentence and for this token, we sub-
stitute with a form differing in exactly one morpho-
logical feature (e.g., Case, Number, etc.). For each
sentence in the original treebank, we sample a max-
imum of one altered sentence. Figure 3 illustrates
the construction of a noisy (or altered) version of
an example sentence from Greek-GDT treebank.13

In general, we were able to add noise to more
than 80% of the treebanks’ sentences, but in a few
cases we were constrained by the number of avail-
able paradigms in UniMorph (see A.2 for more
details). A potential solution could utilize a inflec-
tion model like the unimorph_inflect package of
Anastasopoulos and Neubig (2019), but we leave
this for future work.

For evaluation, we induce noise into the dev por-
tions of the treebanks and test the robustness of
off-the-shelf taggers and parsers from Stanza (Qi
et al., 2020) (indicative results on Czech, Greek,
and Turkish are shown in Figure 4). Along with
the overall scores on the dev set, we also report the
results only on the altered word forms (“Altered
Forms”). Across the three languages, we notice

12For each token, we first map the morphological feature
annotations in the original UD schema to the UniMorph
schema (McCarthy et al., 2018).

13Tan et al. (2020) follows similar methodology using
English-only LemmInflect tool, but our approach is scalable
to the large number of languages in UniMorph.

a significant drop in tagger performance, with a
more than 30% drop in feature tagging accuracy
of the altered word forms. The parsing accuracy
is also affected, in some cases significantly. This
reinforces observations in prior work and illustrates
the need to build more robust parsers and taggers.

4.2 Training Robust Parsers

To adapt to the noisy input conditions in practi-
cal NLP settings like ours, our proposed solution
is to re-train the parsers/taggers directly on noisy
UD treebanks. With the procedure described above
(§4.1) we also add noise to the train splits of the
UD v2.5 treebanks and re-train the lemmatizer, tag-
ger, and dependency parser from scratch.14 To
retain the performance on clean inputs, we concate-
nate the original clean train splits with our noisy
ones. We experimented with commonly used mul-
tilingual parsers like UDPipe (Straka and Straková,
2017), UDify (Kondratyuk and Straka, 2019), and
Stanza (Qi et al., 2020), settling on Stanza for its su-
perior performance in preliminary experiments. We
use the standard training procedure that yields state-
of-the-art results on most UD languages with the
default hyperparameters for each treebank. Given
that we are inherently tokenizing the text to add
morphology-related noise, we reuse the pre-trained
tokenizers instead of retraining them on noisy data.

Figure 4 compares the performance of the origi-
nal and our robust parsers on three treebanks. Over-
all, we notice significant improvements on both
LAS (with similar gains on UAS) and UFeat ac-
curacy on the altered treebank as well as the al-
tered forms. Importantly, our robust parsers retain
the state-of-the-art performance on clean text. In
all the analyses reported henceforth (unless explic-
itly mentioned), we use our robust Stanza parsers
trained with the above-described procedure.

5 Does L’AMBRE Capture
Grammaticality?

Before deploying L’AMBRE on automatically gen-
erated text, we need to ensure that our approach
is indeed able to identify syntactic ill-formedness.
Grammar error correction (GEC) datasets are an
ideal test bed. In its original formulation, the GEC

14We added errors into UD, and not SUD, as it allows for re-
using the original Stanza hyperparameters, and also facilitates
for application of robust parsers outside of L’AMBRE. Note
that, conversion between UD and SUD can be done with
minimal loss of information.



Treebank
Overall Treebank Altered Forms Overall Treebank Altered Forms.

(LAS) (LAS) Feature (Acc.) Feature (Acc.)

Czech-PDT 89.7

−2
−0.8

81.7

−15
−4.3

95.1

−3.1 −1.3

96.5

−39.7
−24.1

Greek-GDT 88.6
−0.6 −0.07

85.5

−6.3
−1.7

94.9

−1.3
−0.5

97.4

−35.6
−16.7

Turkish-IMST 62.5

−2.7 −1.7

63.0

−31.6 −18.4

91.6

−2
−0.6

90.3

−77.1
−39.9

∠

□∠∠ Original ■ Robust

Figure 4: Our robust parsers reduce the errors on the noisy evaluation set (example over three treebanks) compared
to the original pre-trained ones. The baseline axis in each plot corresponds to the performance on the clean
evaluation set. Our models are more robust on both parsing (LAS) and morphological feature prediction. We
report results both over the whole treebank and over only the erroneous tokens.

task involves identifying and correcting errors re-
lating to spelling, morphosyntax and word choice.
For evaluating L’AMBRE, we only focus on gram-
mar error identification (GEI) and specifically on
identification of morphosyntactic errors.

We experiment with two morphologically rich
languages, Russian and German. We use the Falko-
MERLIN GEC corpus (Boyd, 2018) for German
and the RULEC-GEC dataset (Rozovskaya and
Roth, 2019) for Russian. We focus on error types
related to morphology (see A.3).

Evaluation: To evaluate the effectiveness of
L’AMBRE, we run it on the training15 splits of the
German and Russian GEC datasets. GEC corpora
typically annotate single words or phrases as er-
rors (and provide a correction); in contrast, we only
identify errors over a dependency link, which can
then be mapped over to either the dependent or
head token. This difference is not trivial: a subject-
verb agreement error, for instance, could be fixed
by modifying either the subject or the verb to agree
with the other constituent. To account for this dis-
crepancy, we devise a schema to ensure the proper
computation of precision and recall scores. First,
we detect any errors at a given token by evaluating
all the valid L’AMBRE rules between the curren
token and its dependency neighbors (head, depen-
dents). If there is a gold error at the current token,
we consider it a true positive or false negative de-
pending on whether or not we detect the error. For
false positive cases, we divide the score between

15We use the train portion due to its large size, therefore
gives a better estimate of our L’AMBRE performance. Note
that, in this experiment, we do not aim to compare against
state-of-the-art GEI tools.

Lang. Parser ragree ∪ ras ragree ras

P R P R P R

German
Original 32.6 29.6 34.2 28.9 14.9 1.0
Robust 33.6 34.5 35.2 33.8 12.2 0.8
Robust++ 40.0 34.1 42.5 33.4 12.2 0.8

Russian Original 18.5 20.9 22.6 18.7 9.9 3.7
Robust 18.5 25.7 22.1 20.6 14.6 8.1

Table 2: Precision and Recall of morphosyntactic er-
rors on train splits of German and Russian GEC. Ro-
bust++ indicates results after additional manual post-
correction of rules.

the current token and the neighbor via the erro-
neous dependency link (see algorithm 1 in A.3).

Table 2 presents the results using both agreement
(ragree) and argument structure rules (case assign-
ment and verb form choice, ras).

Analysis: In both languages, we find agreement
rules to be of higher quality than case and verb form
assignment ones. This phenomenon is more pro-
nounced in German where many case assignment
rules are lexeme-dependent, as discussed in §3.

Importantly, our proposed robust parsers lead
to clear gains in error identification recall, com-
pared to the pre-trained ones (“Original” vs. “Ro-
bust” in Table 2). Given the complexity of the
errors present in text from non-native learners and
the well-known incompleteness of GEC corpora
in listing all possible corrections (Napoles et al.,
2016), combined with the prevalence of typos and
the dataset’s domain difference compared to the
parser’s training data, our error identification mod-
ule performs quite well.

To understand where L’AMBRE fails, we man-



ually inspected a sample of false positives. First,
we notice that tokens with typos are often erro-
neously tagged and parsed. Our augmentation is
only equipped to handle (correctly spelled) mor-
phological variants. Additionally applying a spell
checker might be beneficial in future work.

Second, we find that German interrogative sen-
tences and sentences with more rare word order
(e.g., object-verb-subject) are often incorrectly
parsed, leading to misidentifications by L’AMBRE.
In the training portion of the German HDT tree-
bank, 76% of the instances present the subject be-
fore the verb and the object appears after the verb
in 62% of the sentences. Questions and subordinate
clauses that follow the reverse pattern (OVS order)
make a significant portion of the false positives.

Last, we find that morphological taggers exhibit
very poor handling of syncretism (i.e., forms that
have several possible analyses), often producing
the most common analysis regardless of context.
For example, nominative-accusative syncretism
is well documented in modern German feminine
nouns (Krifka, 2003). German auxiliary verbs like
werden (‘will’) that share the same form for 1st
and 3rd person plurals, are almost always tagged
with the 3rd person. As a result, our method mis-
takenly identifies correct pronoun-auxiliary verb
subject dependency constructions as violations of
the rule ragree(PRON, AUX, subj)→Person, as the
PRON and AUX are tagged with disagreeing person
features (1st and 3rd respectively). By manually
correcting for this issue over our German rules (by
specifically discounting such cases) we improve
L’AMBRE’s precision by almost 7 percentage points
(“Robust++” in Table 2).

Comparison with Other Metrics: We also com-
pare L’AMBRE to other metrics that capture flu-
ency and/or grammatical well-formedness, namely
perplexity as computed by large language mod-
els and the grammaticality-based metric (GBM)
of Napoles et al. (2016). To provide a fair com-
parison of L’AMBRE, perplexity and GBM, we re-
formulate the GEI task into an acceptability judg-
ment task. Specifically, we check if the metrics’
score the grammatical target sentence higher than
the ungrammatical source sentence in the GEI test
split for Russian and German. To compute the per-
plexity scores, we use transformer-based LMs (Ng
et al., 2019). GBM relies on the open-source Lan-
guage Tool (Miłkowski, 2010), which is a widely-
used rule-based proofreading software to detect

sentence-level errors.16 GBM measures error count
rate as 1 − #errors

#tokens . For additional details on the
task setup, we refer the readers to A.4 in Appendix.

Our findings are two-fold. First, perplexity per-
forms better than the other metrics. However, per-
plexity cannot provide any error diagnosis, so it
by itself is not useful for providing feedback to
a user. Second, L’AMBRE is better at capturing
morpho-syntactic rules necessary for grammatical
correctness (especially in Russian), while GBM is
better at other fluency-related aspects. While both
L’AMBRE and GBM are interpretable, L’AMBRE’s
UD-based rule construction makes it easier to ex-
tend it to new languages.17 For complete results,
refer to Table 4 in Appendix A.4.

In our GEI analysis, we utilized the Russian and
German GEC corpora for evaluating the quality
of L’AMBRE. In future work, it would be interest-
ing to expand the analysis to datasets from other
languages, Czech (Náplava and Straka, 2019) and
Ukrainian (Syvokon and Nahorna, 2021).

6 Evaluating NLG: A Machine
Translation Case Study

Grammaticality measures, including L’AMBRE, can
be useful across NLG tasks. Here, we chose MT
due to the wide-spread availability of (human-
evaluated) system outputs in many languages.

In addition to BLEU, chrF and t-BLEU18

are commonly used to evaluate translation
into morphologically-rich languages (Goldwater
and McClosky, 2005; Toutanova et al., 2008;
Chahuneau et al., 2013; Sennrich et al., 2016).
Evaluating the well-formedness of MT outputs has
previously been studied (Popović et al., 2006). Re-
cent WMT shared tasks included special test suites
to inspect linguistic properties of systems (Sen-
nrich, 2017; Burlot and Yvon, 2017; Burlot et al.,
2018), which construct an evaluation set of con-
trastive source sentence pairs (typically English).
While such contrastive pairs are very valuable, they
only implicitly evaluate well-formedness and re-
quire access to underlying MT models to score the
contrastive sentences. In contrast, L’AMBRE explic-
itly measures well-formedness, without requiring
access to trained MT models.

16https://languagetool.org/dev
17In L’AMBRE, we reuse the expertise of UD annotators,

but in GBM, expanding to a new language requires native
speakers to craft new regexes.

18t-BLEU (Ataman et al., 2020) measures BLEU on outputs
tagged using a morphological analyzer.

https://languagetool.org/dev


en→ cs de et fi ru tr

WMT’18
all 0.84 -0.06 0.68 0.86 0.86 0.58
ragree 0.91 0.07 0.83 0.96 0.71 0.64
ras 0.78 -0.10 0.62 0.77 0.89 -0.31

WMT’19
all 0.80 0.16 - 0.85 0.57 -
ragree 0.89 0.14 - 0.87 0.70 -
ras 0.70 0.13 - 0.82 0.45 -

Table 3: With a few exceptions, our grammar-based
metrics correlate well with human evaluations of
WMT18 and WMT19 systems (Pearson’s r against Z-
scores). Results using robust Stanza parsers.

For evaluating MT systems, we use the data
from the Metrics Shared Task in WMT 2018 and
2019 (Ma et al., 2018, 2019). This corpus includes
outputs from all participating systems on the test
sets from the News Translation Shared Task (Bo-
jar et al., 2018; Barrault et al., 2019). Our study
focuses on systems that translate from English to
morphologically-rich target languages: Czech, Es-
tonian, Finnish, German, Russian, and Turkish. We
used all relevant languages from the WMT shared
task except for Lithuanian and Kazakh, which lack
reasonable quality parsers.

Correlation Analysis The MT system outputs
are accompanied with human judgment scores,
both at the segment and system level. In contrast
to the reference-free nature of human judgments,
our scorer is both reference-free and source-free.

Following the standard WMT procedure for eval-
uating MT metrics, we measure the Pearson’s r cor-
relations between L’AMBRE and human z-scores
for systems from WMT18 and WMT19. We fol-
low Mathur et al. (2020) to remove outlier systems,
since they tend to significantly boost the correla-
tion scores, making the correlations unreliable, es-
pecially for the best performing systems (Ma et al.,
2019). Table 3 presents the correlation results for
WMT18 and WMT19.19

We generally observe moderate to high corre-
lation with human judgments using both sets of
rules across all languages, apart from German
(WMT18,19). This confirms that grammatically
sound output is an important factor in human eval-
uation of NLG outputs. The correlation is lower
with case assignment and verb form choice rules,
with notable negative correlations for German, and

19See A.5 for the corresponding scatter plots.
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Figure 5: A diachronic study of grammatical well-
formedness of WMT English→X systems’ outputs.
The systems in general are becoming more fluent. In
the last two years the best systems produce as well-
formed outputs as the reference translations.

Turkish (WMT18). In the case of German, a signif-
icant number of case assignment rules are depen-
dent on the lexeme (as noted in §3) and we expect
future work on lexicalized rules to partially address
this drawback. In Turkish, the low parser quality
plays a significant role and highlights the need for
further work on parsing morphologically-rich lan-
guages (Tsarfaty et al., 2020). Last, we note that
human judgments, unlike L’AMBRE, incorporate
both well-formedness and adequacy (with respect
to the source). Therefore, we recommend using
L’AMBRE in tandem with standard MT metrics to
obtain a good indication of overall performance,
both during model training and evaluation.

We additionally perform a correlation analysis
of L’AMBRE with perplexity, BLEU and chrF on
the WMT system outputs (A.5 in Appendix). As
expected, we see a strong negative correlation with
perplexity (low perplexity and high L’AMBRE). For
BLEU and chrF, the results are quite similar to the
correlations with human z-scores.

Diachronic Analysis We present an additional
application of L’AMBRE through a diachronic study
of translation systems submitted to the WMT
news translation tasks. We run our scorer on sys-
tem outputs from WMT14 (Bojar et al., 2014) to
WMT19 (Barrault et al., 2019) for translation mod-
els from English to German and Russian.20 Fig-
ure 5 shows the scores of all systems and highlights
the average trend of system scores. We also present
the scores on the reference translations for compar-
ison. We observe that systems have gotten more
fluent over the years, often as good as the reference
translations in the most recent shared tasks.21

20Similar analysis on Czech, Finnish and Turkish in A.6.
21Such comparison of well-formedness scores is reasonable,

to an extent, even though test sets differ year-to-year, as we
measure the grammatical acceptability but not adequacy.
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Figure 6: Diachronic analysis of select agreement
(ragree) and argument structure (ras) rules in Rus-
sian. We report median well-formedness score per
year. WMT systems have consistently improved on
their well-formedness, but some phenomena are still
challenging, such as handling agreement across con-
juncted nouns (a) or casing in passive constructions (d).

L’AMBRE also allows for fine-grained analysis of
NLG systems by identifying specific grammatical
issues. We illustrate this through a diachronic com-
parison of WMT systems for English→Russian
on a subset of L’AMBRE’s morphosyntactic rules
(Figure 6), presenting the median score per rule
and year. Such fine-grained analysis reveals inter-
esting trends. For example, while systems have
been performing well on some rules over the years
(Figure 6 (c)), there are rules that improved only in
recent years (Figure 6 (a)). We also identify rules
for constructions that remain challenging even for
the best systems from WMT19 (Figure 6 (d)).

7 Conclusion and Future Work

In this paper, we introduce L’AMBRE, a framework
to evaluate grammatical acceptability of text by
verifying morphosyntactic rules over dependency
parse trees. We present a method to automatically
extract such rules for many languages along with
a method to train robust parsing models which fa-
cilitate better verification of these rules on natural
language text. We demonstrate the practical ap-
plication of L’AMBRE on the popular generation
task of machine translation, focusing on translation
into morphologically-rich languages. Directions
for future work include (1) incorporating additional
morphosyntactic rules (e.g., word order), automati-
cally extracted or hand-crafted ones such as those
in Mueller et al. (2020) and (2) building more ro-
bust parsers and morphological taggers that are
aware of the dependency structure of the sentence.
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A Appendix

A.1 Comparison of UD and SUD
A comparison of the UD and SUD trees for the
German sentence from Figure 1 is presented in
Figure 7. Unlike the UD parse, the SUD parse
directly links the PRON and AUX, allowing for an
easy inference of relevant morphosyntactic rules.

PRON AUX ADJ NOUN VERB

Ich werde lange Bücher lesen
PRON AUX ADJ NOUN VERB

root

nsubj
aux

objamod

subj

comp:aux

comp:objmod

root

UD

SUD

Figure 7: The SUD tree (below) for the sentence “Ich
werde lange Bücher lesen” links the auxiliary verb
“werde” with its subject “Ich” capturing an agreement
rule not present in the UD tree (above).

A.2 Robust parsing
We proposed a methodology to utilize UniMorph
dictionaries to add morphology-related noise into
UD treebanks. Sometimes, the amount of noise
we can add is limited by the number of available
paradigms in UniMorph. For example, the Turkish
dictionary contains just 3.5k paradigms as com-
pared to 28k in Russian, and we could only corrupt
about 55% of the Turkish sentences.

A.3 GEC datasets
In our evaluation on GEC, we only select
morphology-related errors in German and Russian
GEC datasets. Specifically, we use all errors of the
type ⟨POS⟩:form from German Falko-MERLIN
GEC corpus. In the Russian RULEC-GEC dataset,
we select errors of types Case (Noun, Adj), Num-
ber (Noun, Verb, Adj), Gender (Noun, Adj), Person
(Verb), Aspect (Verb), Voice (Verb), Tense (Verb),
Other (Noun, Verb, Adj) and word form.

The methodology for computing the precision
and recall in our GEC evaluation (from Table 2) is
presented in algorithm 1.

A.4 GEC evaluation
Comparison with Other Metrics We addition-
ally present a comparison of L’AMBRE to other met-
rics that capture fluency and/or grammatical well-
formedness. One metric is perplexity, computed

Algorithm 1: GEC using extracted mor-
phosyntactic rules.
H(t), G(t): estimated and gold error in to-
ken t
h(t), D(t): head and dependents of token t
fr(h

(t), t): rule r is satisfied in the depen-
dency link between t and h(t)

Result: P = tp
tp+fp , R = tp

tp+fn

1 tp, fp, fn = 0, 0, 0 ;
2 for sent in doc do
3 for t in sent do
4 E(t) =

{︂
t∗ : ¬fr(t∗, t),∀t∗ ∈

h(t) ∪D(t)
}︂

;

5 H(t) = len(E(t)) > 0 ;
6 if H(t) then
7 if G(t) then
8 tp += 1 ;
9 else

10 for t∗ in E(t) do
11 if ¬G(t∗) then
12 fp += 0.5 ;
13 end
14 end
15 end
16 end
17 if G(t) ∧ ¬H(t) then
18 fn += 1 ;
19 end
20 end
21 end

by large language models (LM). Specifically, we
use transformer-based LMs (Ng et al., 2019). Sec-
ond, we use a grammaticality-based metric (GBM)
(Napoles et al., 2016) that relies on the open-source
Language Tool (Miłkowski, 2010). Language Tool
is a widely-used rule-based proofreading software
used to detect sentence-level errors. GBM mea-
sures error count rate as 1− #errors

#tokens .

To provide a fair comparison of these three meth-
ods, we first reframe the GEI task into an accept-
ability judgment task. Given a source sentence
from GEC corpus, we prepare four variants using
the annotations provided with the corpus, 1. source
sentence itself (no corrections made), 2. morph-
corrected sentence (only morphology related cor-
rections are made), 3. rest-corrected sentence (only
non-morphology related corrections are made), and



Contrast L’AMBRE GBM PPL

German
(src, tgt) 0.30 (0.28) 0.63 0.95
(src, morph-corrected) 0.31 (0.29) 0.32 0.70
(src, rest-corrected) 0.21 (0.19) 0.61 0.92
(morph-corrected, tgt) 0.20 (0.18) 0.62 0.96
(rest-corrected, tgt) 0.41 (0.39) 0.47 0.97

Russian
(src, tgt) 0.21 (0.20) 0.40 0.94
(src, morph-corrected) 0.24 (0.22) 0.14 0.74
(src, rest-corrected) 0.12 (0.12) 0.43 0.88
(morph-corrected, tgt) 0.18 (0.16) 0.46 0.95
(rest-corrected, tgt) 0.35 (0.33) 0.18 0.94

Table 4: Accuracy results for L’AMBRE,
grammaticality-based metric (GBM), and perplexity
(PPL) on various contrastive acceptability judgments
on German and Russian GEC (test splits). Best score
is in bold, and the second best score is underlined.
Numbers in parentheses are obtained by using original
Stanza parsers instead of the proposed robust parsers.

4. target sentence (all corrections made).
To evaluate the effectiveness of the three met-

rics, we make 5 contrastive comparisons as shown
in Table 4. For instance, in the comparison
(src, tgt), ∀ src ̸= tgt, we check if L’AMBRE(src)
< L’AMBRE(tgt), GBM(src) < GBM(tgt) and
PPL(src) > PPL(tgt).22 Table 4 presents the ac-
curacy results across the 5 contrastive pairs on
the test splits of German and Russian GEC cor-
pora. Overall, perplexity performs much better
than the other metrics across all pairs. However,
unlike GBM and L’AMBRE, perplexity doesn’t pro-
vide error diagnosis, with no feedback on incorrect
grammatical rules. Between L’AMBRE and GBM,
former is competitive or better at two pairs, (src,
morph-corrected) and (rest-corrected, tgt), whereas
the latter does better at two other pairs, (src, rest-
corrected), (morph-corrected, tgt). These results in-
dicate that the proposed metric, L’AMBRE, is good
at capturing morpho-syntactic rules necessary for
grammatical correctness (especially in Russian),
and the more complex GBM does better at other
fluency related rules. Additionally, we observed
clear improvements by using our proposed robust
parsers (§4) over the original stanza parsers.

In our re-implementation of the GBM, we fol-

22These strict inequalities allow us to capture limitations
of rule-based methods. An error might be undetectable if the
corresponding rule is absent in the method’s rule set.

low the prior work (Napoles et al., 2016) and uti-
lize Language Tool (LT) for error detection. We
use LT for two languages, German (de-DE: Ger-
many) and Russian (ru-RU). The source sentences
in both the GEC corpora are pre-tokenized, there-
fore, we skip whitespace-based rules while us-
ing LT. For Russian, we remove whitespace-based
rules corresponding to comma, punctuation and
hypen. For German, we remove whitespace-based
rules corresponding to quotation mark, exclama-
tion mark, unit spaces, comma and parentheses.
In the German GEC test split, the total counts
of each contrastive pairs (x, y) with sent(x) ̸=
sent(y), (src, tgt): 1791, (src, morph-corrected):
1169, (src, rest-corrected): 1646, (morph-corrected,
tgt): 1582, and (rest-corrected, tgt): 831. In the
Russian GEC split, the total counts of each con-
trastive pairs (x, y) with sent(x) ̸= sent(y), (src,
tgt): 2381, (src, morph-corrected): 1405, (src, rest-
corrected): 2005, (morph-corrected, tgt): 1913, and
(rest-corrected, tgt): 1148.

A.5 WMT Correlation Studies

English→ #sys† ragree ras ragree ∪ ras

WMT’18
Czech 5 0.91 0.78 0.84

German 12 0.07 -0.10 -0.06
Estonian 12 0.83 0.62 0.68
Finnish 12 0.96 0.77 0.86
Russian 7 0.71 0.89 0.86
Turkish 7 0.64 -0.31 0.58

WMT’19
Czech 11 0.89 0.70 0.80

German 20 0.14 0.13 0.16
Finnish 12 0.87 0.82 0.85
Russian 11 0.70 0.45 0.57

Table 5: With a few exceptions, our grammar-based
metrics correlate well with human evaluations of
WMT18 and WMT19 systems. (Pearson’s r against Z-
scores). †:we remove outlier systems following Mathur
et al. (2020). Results using robust Stanza parsers.

Correlation with Human z-scores: In Table 5
we present a detailed account of the Pearson’s r
correlations between human z-scores and L’AMBRE

for systems in WMT’18 and WMT’19. We also
present the correlations with original Stanza parsers
in Table 6. In Figure 11 and Figure 12, we present
the scatter plots comparing human z-scores and
L’AMBRE for WMT’18 and WMT’19 respectively.



English→ #sys† ragree ras ragree ∪ ras

WMT’18
Czech 5 0.88 0.85 0.87

German 12 -0.08 0.02 0.04
Estonian 12 0.84 0.68 0.74
Finnish 12 0.96 0.73 0.85
Russian 7 0.66 0.84 0.90
Turkish 7 0.64 -0.86 0.51

WMT’19
Czech 11 0.86 0.46 0.63

German 20 0.44 0.10 0.17
Finnish 12 0.85 0.81 0.84
Russian 11 0.74 0.58 0.69

Table 6: Correlations with human evaluations of
WMT18 and WMT19 systems. (Pearson’s r against Z-
scores). †:we remove outlier systems following Mathur
et al. (2020). Results using original Stanza parsers.

Correlation with other metrics In Table 7 we
present a comparison of L’AMBRE with BLEU (Pa-
pineni et al., 2002) and chrF (Popović, 2015). In
Figure 9 and Figure 10, we present scatter plots
comparing perplexity and L’AMBRE for WMT sys-
tems from WMT’14 to WMT’19. To use perplexity
as a corpus fluency measure, we first compute per-
plexity of each output translation and then take an
average over all sentences in the target test set to
obtain a corpus perplexity score for each WMT sys-
tem. On most occasions, as expected, we see a neg-
ative correlation between perplexity and L’AMBRE,
more strongly in Russian than in German.

A.6 Diachronic analysis of WMT systems

Figure 8a presents a diachronic study of WMT
systems for Czech, Finnish, and Turkish using
L’AMBRE. Figure 8b shows the morpho-syntactic
rule specific trends for Russian WMT.

A.7 Rule Extraction Statistics

For extracting agreement (ragree), case assignment
and verb form choice (ras) rules, we use the largest
available treebank for the language from SUD. Ta-
ble 8 presents the rule counts for the languages
discussed in this paper.

A.8 Reproducibility Checklist

A.8.1 Model Training
For training robust dependency parsers, we use
the training infrastructure provided by Stanza au-

English→ #sys† BLEU chrF

WMT’18
Czech 5 0.83 0.81

German 12 0.18 0.14
Estonian 12 0.75 0.66
Finnish 12 0.89 0.86
Russian 7 0.85 0.84
Turkish 7 0.61 0.66

WMT’19
Czech 11 0.85 0.83

German 20 0.01 0.01
Finnish 12 0.86 0.85
Russian 11 0.65 0.53

Table 7: Correlations with BLEU, chrF for WMT’18
and WMT’19 systems using all the rules. (Pearson’s r
against L’AMBRE). †:we remove outlier systems fol-
lowing Mathur et al. (2020). Results using robust
Stanza parsers.

Treebank # ragree # ras

Czech-PDT 28 33
German-HDT 30 23
Greek-GDT 11 12
Estonian-EDT 22 31
Finnish-TDT 19 35
Russian-SynTagRus 25 35
Turkish-IMST 32 6

Table 8: Statistics of rules extracted from SUD tree-
banks.

thors.23 We use the same set of language-specific
hyperparameters as the original Stanza parsers and
taggers. All our training is performed on a single
GeForce RTX 2080 GPU.

A.8.2 Resources
In this work we use WMT metrics dataset,24 WMT
human evaluation scores,25 SUD treebanks,26

UD2SUD converter.27

23https://stanfordnlp.github.io/stanza/training.
html

24http://www.statmt.org/wmt19/metrics-task.html
25http://www.statmt.org/wmt19/results.html
26https://surfacesyntacticud.github.io/data/
27https://github.com/surfacesyntacticud/tools

https://stanfordnlp.github.io/stanza/training.html
https://stanfordnlp.github.io/stanza/training.html
http://www.statmt.org/wmt19/metrics-task.html
http://www.statmt.org/wmt19/results.html
https://surfacesyntacticud.github.io/data/
https://github.com/surfacesyntacticud/tools
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(a) A diachronic study of grammatical well-formedness of
WMT English→X systems’ outputs. The systems in general
are becoming more fluent with very passing year. In the last
two years the best systems produce as well-formed outputs as
the reference translations.
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(b) Diachronic analysis of additional agreement (ragree) and
argument structure (ras) rules in Russian WMT. We report
the median well-formedness score for each WMT year.

Figure 8: Diachronic study of the grammatical well-formedness of WMT systems.



(a) German WMT’14 (b) German WMT’15

(c) German WMT’16 (d) German WMT’17

(e) German WMT’18 (f) German WMT’19

Figure 9: Scatter plot of perplexity and L’AMBRE for German WMT systems from WMT’14→’19. High L’AMBRE
and low perplexity indicate better systems. As expected, we see a negative correlation between the two metrics
for WMT’15, WMT’17, and WMT’18. But for WMT’14, WMT’16, and WMT’19, we see positive correlations,
indicating potential limitations of our metric.



(a) Russian WMT’14 (b) Russian WMT’15

(c) Russian WMT’16 (d) Russian WMT’17

(e) Russian WMT’18 (f) Russian WMT’19

Figure 10: Scatter plot of perplexity and L’AMBRE for Russian WMT systems from WMT’14-’19. High L’AMBRE
and low perplexity indicate better systems. As expected, we see negative correlation between the two metrics
across the years.



(a) Czech WMT’18 (b) German WMT’18

(c) Estonian WMT’18 (d) Finnish WMT’18

(e) Russian WMT’18 (f) Turkish WMT’18

Figure 11: Scatter plot of human z-scores and L’AMBRE for WMT’18 systems.



(a) Czech WMT’19 (b) German WMT’19

(c) Finnish WMT’19 (d) Russian WMT’19

Figure 12: Scatter plot of human z-scores and L’AMBRE for WMT’19 systems.


