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Limited increases in savannacarbon stocks
over decades of fire suppression
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Savannas cover a fifth of the land surface and contribute a third of terrestrial net
primary production, accounting for three-quarters of global areaburned and more
than half of global fire-driven carbon emissions' . Fire suppression and afforestation
have been proposed as tools to increase carbon sequestration in these ecosystems®*,
Arobust quantification of whole-ecosystem carbon storage in savannas is lacking
however, especially under altered fire regimes. Here we provide one of the first direct
estimates of whole-ecosystem carbon response to more than 60 years of fire exclusion
inamesic African savanna. We found that fire suppression increased whole-ecosystem
carbon storage by only 35.4 + 12% (mean + standard error), even though tree cover
increased by 78.9 +29.3%, corresponding to total gains of 23.0 + 6.1 Mg C ha™ at an
average of about 0.35 £ 0.09 Mg C ha™ year™, more than an order of magnitude lower
than previously assumed*. Frequently burned savannas had substantial belowground

carbon, especially in biomass and deep soils. These belowground reservoirs are not
fully considered in afforestation or fire-suppression schemes but may mean that the
decadal sequestration potential of savannas is negligible, especially weighed against
concomitant losses of biodiversity and function.

Savannas cover around 20% of the Earth’s land surface and contrib-
ute to about 30% of terrestrial net primary production. Fire-prone
savannas represent one of the main sources of interannual variability in
global atmospheric CO,, as fire can change the sign of carbon fluxes at
regional scales fromyear to year. Itis estimated that tropical savannas
account for about 71% of global burned area' and about 62% of global
fire-driven carbon emissions?. As a result, fire suppression has been
proposed as a tool to increase carbon sequestration®® and savannas
have been targeted by afforestation schemes promising to mitigate
climate change*. Whether these schemes materialize or not, savannas
arealready burningless than they did historically®, a pattern predicted
by models to feed back to gains in carbon’. However, we lack any robust,
direct quantifications of whole-ecosystem carbon storage in savannas
that would allow us to rigorously evaluate their potential as a carbon
sink, especially under altered fire regimes.

Onthe one hand, more frequent fires in savannas directly volatilize
aboveground vegetation biomass carbon (including grasses, leaf lit-
ter and small trees and shrubs)®, This fire-driven efflux of carbon has
measurable impacts on tree cover® and soil carbon®, which —in turn
— have been used as justification for the assumption that savannas
store less carbon than their potential**>.

Onthe other hand, belowground carbon —especially in root biomass
and subsurface soil pools — is rarely explicitly quantified in evalua-
tions of fire effects on savanna whole-ecosystem carbon storage. Fire
has well-documented impacts on soil carbon in surface layers®, but
carbon in subsurface soil layers is thought to be centuries old" and,

therefore, may respond differently. In the few studies that consider
belowground biomass'>®, belowground biomass is arbitrarily assumed
toincreasein proportionto aboveground biomass, yielding constant
root-to-shoot ratios across fire frequencies. However, this assump-
tion is problematic: species-level root-to-shoot ratios vary across an
order of magnitude for savanna trees', with muchlarger belowground
allocation among savanna trees experiencing more frequent fires’>"®
(Extended Data Fig. 1). This bias probably yields biomass carbon esti-
mates in frequently burned savannas that are too small and suggests
thatdirect estimates of belowground carbon are needed foracomplete
account of whole-ecosystem carbon storage in savannas.

Afurther complicationis that factors other thanfire also determine
savanna-ecosystem carbonstocks, and the magnitude of their effects
compared with those of fire is unknown. At regional to continental
scales, rainfall systematically increases aboveground carbon and maxi-
mum potential tree cover'®”. Atlocal scales, differences in soil texture
can have substantial effects on tree cover, the depth distribution of
root biomass and soil carbon'®*,

Acomprehensive understanding of savannawhole-ecosystem carbon
storage requires rigorous and direct empirical evaluation. Here we
used a long-term burning experiment in Kruger National Park, South
Africa (Extended DataFig.2) toexamine how changesin fire frequency
affect savanna carbon storage and allocation in vegetation and soil.
This experiment, initiated in 1954, is one of the longest running in
Africa. We focused on the four wettest replicates (in Pretoriuskop),
with mean annual rainfall of roughly 700 mm (Extended Data Fig. 2),
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Fig.1|Vegetation characteristics of experimental burn plotsinamesic
savannainKruger National Park, South Africa. a, Example pictures showing
vegetation structure indifferent fire treatments. b, Examples of tree canopy
cover and height (thatis, 30-m-diameter circular plots) derived from airborne
light detection and ranging and belowground coarse-root biomass (that is,

because they were the most likely to show increases in tree cover and
whole-ecosystem carbon storage with fire exclusion® (noting that
drier savannas also merit direct consideration). We sampled a subset
of fire treatments: an extreme scenario with fires every August (that
is, dry-season annual burning), a near-natural landscape average®
with fires every three years in August (that is, triennial burning) and
an unburned treatment subjected to more than six decades of fire
suppression.

Recent advances in remote sensing are improving the accuracy
and extent of vegetation biomass estimation. Aboveground, light
detection and ranging (LiDAR) provides extensive, high-resolution
maps of savanna woody biomass???, Belowground, techniques are
comparatively in their infancy, but some hold promise for alleviating
the intensive labour required to excavate and quantify root biomass
directly. Specifically, ground-penetrating radar (GPR), supplemented
with field calibrations to improve accuracy, offers a non-destructive
method for quantifying coarse-root biomass at fine scales®. At each
treatmentreplicate, we established one 10 x 10-m GPR plot for estimat-
ing coarse lateral-root biomass toadepth of 60 cm (Fig. 1, Supplemen-
tary Figs.1-4). Because GPR methods are better at quantifying lateral
coarseroots thantaproots, we supplemented GPR measurements with
woody taproot biomass estimated by means of asite-specific diameter
atbreast height (DBH) allometry (Supplementary Fig. 5). We also used
acore-sampling method to estimate fine-root biomass and soil organic
carbon (SOC) toadepth of 60 cm, whichwere further partitioned into
C, (woody plant) versus C, (grass) contributions on the basis of stable
carbonisotope mixture methods (Extended Data Fig. 3). Aboveground
woody biomass was estimated using high-resolution, drone-based
LiDAR within 15 m of the centre of each GPR plot (to allow for small
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withenlarged images.

location errors; Fig. 1, Supplementary Figs. 1-4). Because measure-
ments of herbaceous biomass using LiDAR are not yet reliable, we used
long-term fuel-load monitoring data to estimate aboveground grass
biomass (Extended Data Fig. 4).

We found that less frequent fires substantially increased tree height,
tree cover, and aboveground woody biomass (Fig. 2a, Extended Data
Table 1, Supplementary Table 1), consistent with previous work'*",
Compared with triennial burning, fire suppression increased tree
height, tree cover, and aboveground woody biomass by 32% (standard
error,se =15%,n=4),79% (se =29%) and157% (se = 79%), respectively,
whereas annual burning decreased these by 6% (se =10%), 22% (se = 19%)
and 34% (se = 21%), respectively. Less frequent fires also increased
aboveground grass biomass (Fig. 2a, Extended Data Table 1). However,
the contribution of grasses to total standing aboveground biomass
was small (about 10%) and temporally variable (Fig. 2a, Extended Data
Fig.4), largely driven by interannual rainfall variability?*.

Lessfrequent fires also increased woody fine, coarse lateral, and tap-
root biomass (Fig.2a, Extended Data Table 1), confirming thatincreas-
ing tree cover also increased belowground woody biomass®. However,
belowground increases were not proportional to aboveground
increases, and annually burned savannas had higher root-to-shoot
ratios than those burned triennially or not burned (Fig. 2b). This result
contradicts the assumption of constant root-to-shoot ratio applied
elsewhere to estimate belowground carbon'?"* but agrees with evidence
thattreesinfrequently burned savannasinvest heavily in belowground
carbon for post-fire recovery™¢ (Extended Data Fig. 1). However, a
robust quantification of belowground biomass always remains a
great challenge in terms of methodology, accuracy, and efficiency in
savannas and other ecosystems, and our estimates also carry some
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Fig.2|Changesinwhole-ecosystem carbonstorage across fire treatments.
a, Carbonstorage estimated across different aboveground and belowground
pools. C;-derived SOCis from woody plants, whereas C,-derived SOCis from
grasses. Values for each C pool are means of four replicates (see Supplementary
Table 2). Carbon pools with *indicate notable influence of fire treatments at the
level of P< 0.05 on the basis of linear mixed models or ranked mixed models
(see Extended DataTable1). b, ¢, Changes in woody root-to-shoot ratio and
ratio of belowground to aboveground Cstorage across different fire

uncertainty. Plot-level coarse-lateral-root biomass estimated from
GPRwas highly correlated with taproot biomass estimated from DBH
(R?=0.75) (Extended Data Fig. 5a), cross-validating the assessments by
means of the two methods. Despite this, biomass estimates from lower
and higher bounds of the 95% confidence intervals differed up to three-
fold (Extended Data Fig. 5). However, the magnitude of uncertainty
was comparable across fire treatments (Fig. 2d, Extended DataFig. 5)
and, therefore, relative changes in whole-ecosystem carbon storage
owing to fire suppression were much more consistent (mean = 35.4%,
95% confidence interval = 33.6 to 36.6%) (Fig. 2e).

Theoretically, frequent or severe fires produce heat that can readily
kill roots in surface soils*, such that trees in frequently burned savan-
nas might allocate roots to deeper soil profiles. However, variation in
the depth distribution of GPR detections (as a surrogate for rooting
depth) did not support this hypothesis (Extended DataFig. 6). Although
savannatrees experiencing annual fires rooted marginally deeper than
thoseburnedinfrequently, these differences were far fromimportant.
However, we found strong support for the hypothesis that savanna
trees root deeper on sandier soils (R? = 0.61) (Extended Data Fig. 6),
where water percolates more readily and mechanicalimpedance to root
penetrationis lower?, The application of GPR to examine depth dis-
tributions of root biomass may provide further opportunity to explore
functional rooting depth of savanna trees and associated ecological
questions around tree-grass competition.

We found that changes in fire frequencies did not affect total SOC
storage (Fig.2a, Extended Data Table 1), although SOC trended slightly

treatments. d, The uncertainty of whole-ecosystem carbon storage across
different fire treatments. The uncertainty is derived from different scenarios
of coarse lateral and taproot biomass estimates (lower bound, mean, upper
bound) (see Extended DataFig. 5). e, Changes in whole-ecosystem carbon
storage relative to triennial burning (%). The box plots show medians (that is,
50th percentile), 25th and 75th percentiles, and 95% confidence intervals of
fourreplicates. Pointsinband dindicate outliers. Error barsinaand e indicate
standard errors (n=4).

higher with less frequent fires. At first glance, this result seems to
contradict work showing that fire suppression increases soil carbon
storage®, because SOC is higher under tree canopies??. However, most
previousworkinsavannas has only sampled soilstoavery shallow depth
(for example, 0-20 cm)®, whereas we integrated SOC throughout the
soil columnto represent total SOC. When we re-evaluated past findings
from the samesite for fire effects on total SOCincluding deeper soils?,
we found results consistent with what we report here: fire suppression
had unimportant effects on total SOC across the soil column, because
differenceswererestricted toshallowsoillayers® (SupplementaryFig. 6).
Deep soil carbon s clearly a neglected carbon pool.

Our results challenge the assumption that systems without trees
areimpoverished insoil carbon®. Instead, itis clear that savannas, like
most terrestrial ecosystems, store substantial carbon in soils evenin
treeless areas®. Indeed, grass net primary productivity in tropical savan-
nas is comparable with and even higher than tree productivity®, and
the inputs of C,-derived carbon into soils can be an important source
of SOC?.. For example, we found that less frequent fires increased C,
(woody)-derived SOC (Fig. 2a), which scaled positively with increas-
ing tree cover (R*=0.68) (Fig. 3¢), but that C, (grass)-derived carbon
dominated SOC even at around 80% tree cover in the unburned treat-
ment (Fig. 2a), especially in deeper soil profiles (Extended DataFig. 3).
In part, this is probably driven by the slow turnover of deep-soil
carbon™*, which suggests that management on decadal or even century
scales may have relatively small effects on soil carbon. However, even
at equilibrium, SOC may not increase proportionally with increasing
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Fig.3|ChangesinSOCwithtree coverandsoil sand content. Total SOC
storage does not change with tree cover (R*=0.00, P=0.95) (a) but decreases
with soil sand content (R?>=0.56,P=0.004) (b). C,-derived SOC increases with
tree cover (R?=0.68,P=0.001) but C,-derived SOC does not (R*=0.21,

tree cover (or woody biomass) (Fig. 3a), as soils can be subject to car-
bonsaturation depending on soil texture and mineralogy. Sandy soils
have much less physical protection for SOC and thus lower saturation
thresholds compared with clayey soils*. Here we found that C,-derived
(R*=0.63) and total SOC (R? = 0.56) decreased with subtle variation in
soil sand content (Fig. 3b, d) but not fire frequency.

Integrating across all pools, more carbon was stored belowground
thanaboveground across all fire treatments (Fig. 2a). Both fire suppres-
sionandincreasing tree cover increased the amount of carbon stored
belowground (Fig.2a), butincreases were variable, and belowground
carbonincreased much less and less consistently than aboveground
carbonwith fire suppression (Fig. 2c, Extended Data Table1). Asaresult,
the ratio of belowground to aboveground carbon storage actually
decreased with increasing tree cover (R*= 0.83) (Extended DataFig.7),
further challenging the assumption that savannas with sparse tree
cover have limited or no belowground carbon storage*. AlImost 85%
of whole-ecosystem carbon was stored belowground when tree cover
was <20%inthissavanna (Extended Data Fig. 7). Savannas clearly have
substantial belowground carbon pools.

Taken together, our resultsindicate thatless frequent firesincreased
whole-ecosystem carbon storage in this savanna (Fig. 2a, d, Extended
Data Table 1). Increased carbon storage is mainly attributable to
increased aboveground woody biomass (Fig. 2a), consistent with
previous work in savannas®®*?°, However, increases in carbon stor-
age are smaller at the level of the whole ecosystem than sometimes
assumed. Compared with triennial burning, six decades of fire sup-
pression increased whole-ecosystem carbon storage by only 35.4%
(se=12.0%, n=4), whereas annual burning decreased it by only 21.5%
(se=9.7%,n=4) (Fig.2e). Across six decades, fire-suppressed savannas
sequestered 23.0 Mg C ha™ (se = 6.1 Mg C ha™, n=4) more carbon than
savannas experiencing near-natural, triennial burning, amounting to an
annual carbon sequestrationrate of about 0.35 Mg C ha™ year™. This s
atime-averaged estimate, which may mask some non-linearities, espe-
ciallyintherate of aboveground biomass accumulation. However, our
estimateis similarinmagnitude to the 0.14 Mg C ha™ year ' documented
inasynthesis of global tropical savanna productivity?. By contrast, stud-
ies using space-for-time substitutions to estimate carbon sequestration
rates, with treeless savannas and closed-canopy forests as end points,
instead report rates ranging from 1.2 to 1.8 Mg C ha year™ (refs. ***)
— aclear overestimate. This discrepancy arises simply because these
studies neglect belowground savanna carbon pools and ignore the
timescales of transition from savannato closed-canopy forest.

Overall, we argue that increasing tree cover in savannas, whether
by means of afforestation or fire suppression, is unlikely to yield the
substantial gains in ecosystem carbon storage that have been adver-
tised. Forexample, arecent report suggested that reforestingabillion
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P=0.08) (c). C,-derived SOC decreases with soil sand content (R*=0.63,
P=0.001) but C;-derived SOC does not (R*=0.02, P=0.67) (d). Regressionlines
indicate significant linear fits and shaded bandsillustrate the 95% confidence
interval of thelinear fit.

hectares of Earth’s land surface could store a massive 205 gigatonnes
of carbon (GtC)*, with the largest sequestration potential located in
tropical grassy ecosystems including savannas (about 190 million hec-
tares; about 53.5 GtC of sequestration potential). These estimates rely
on ecosystem carbon gains totalling 283 Mg C ha™ from increasing
tree densities, amodelled estimate that is 12 times higher than our
empirical estimate. Moreover, existing estimates assume that potential
sequestration will be achieved before the year 2050 (over <30 years,
at an annual rate of about 9.4 Mg C ha™ year™), whereas we observed
asmaller gain rate over a total of 65 years (at an annual rate of about
0.35Mg C ha™ year™, anumber that is 27 times smaller). Although fur-
ther study is needed, especially in savannas in more humid environ-
ments (which are more productive) and on more clayey soils (which
may storerelatively more carboninslow-turnover soil pools), itis clear
thatarbitrarily applying carbon densities observed in tropical forests to
estimate carbongains of tropical grassy ecosystems represents amas-
sive overestimate of the carbon sequestration value of fire suppression
and afforestation. Leaving aside the influence of afforesting savannas
on biodiversity, ecosystem function and socioecological value***, it
is obvious that the carbon benefits of increasing woody biomass in
savanna ecosystems have been grossly overstated.

This work also highlights the importance of chronically disturbed,
open-canopy ecosystems for long-term carbon storage in the Earth
system. The concept of ‘avoided deforestation” hasbecome akey talking
pointindiscussions about the potential contributions of nature-based
solutions for climate mitigation®, but no such equivalent framing has
been applied to savannas and other grassy ecosystems. Even today,
natural and managed savannas cover about 20% of global land area
but are poorly protected and increasingly threatened by land-use
conversions®. Trees-for-carbon schemes are included in this threat.
That these systems contain substantial and slow-turnover carbon
stocks, especially belowground, emphasizes the urgent need to con-
sider explicitly — and to protect — their substantial existing contribu-
tions to carbon storage.

Continuing human-driven changes in fire regimes, in parallel with
changing land use, atmosphere and climate, probably have large
impacts on savanna ecosystems. To evaluate how these impacts will
shape ecosystem carbon storage, long-termexperimental and empirical
datasets will be critical. Possible climate-change-associated expansion
of drylands across the tropics® make this need all the more urgent. Our
results provide robust evidence of limited savanna carbon gains from
increasing tree cover when fire is suppressed for more thansix decades,
suggesting that the benefits of trees-for-carbon and fire-suppression
schemes for climate mitigation have been exaggerated. The experi-
ment and dataset presented here are rare and previously unknown in
tropical savannas, and work such as this must be applied more broadly.



Robust quantifications of carbon sequestration must also be consid-
ered alongside the potential negative impacts of afforestation and
fire suppression on biodiversity at all trophic levels***® and on other
ecosystem functions (including grazing*’, hydrologic cycles* and —in
some systems — extreme fire risk*?). This context makes our results
especially alarming: overestimating carbon gains fromincreasing tree
cover offers false promise for climate mitigation, at a very real cost to
biodiversity and ecosystem function.
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Methods

Study site

Kruger National Park (latitude: 22°20’-25°30’S; longitude:
31°10’-32°00’E) (hereafter, Kruger) is the largest protected area
(around 20,000 km?) in South Africa (Extended DataFig. 2), consisting
of subtropical and tropical savannas. Mean annual rainfall increases
from 350 mm in the north part of Kruger to 750 mm in the south
(Extended Data Fig. 2), with rainfall concentrated in the wet season
between November and April. Kruger isdominated by two underlying
parent materials, agranite (sandy and nutrient poor) and abasalt (clayey
and nutrient rich), which have strong influences on vegetation'®*,
Although the fire-return interval varies spatially across Kruger, the
average is about 3.5 years (ref. *°) The flora of Kruger includes >200
species of grasses and >400 species of trees and shrubs*.

Experimental design
Kruger maintains one of a handful of long-term burning experimentsin
tropicalsavannas. The experimental burning plots (EBPs) wereinitiated in
1954, making them one of the longest-running fire ecology research pro-
jectsinAfricansavannas. The overallaim of the EBPs is to determine how
fire frequency and season shape savanna vegetation structure and eco-
system functioning. The EBPs are distributed across four different land-
scapes of Kruger (that is, Mopani, Satara, Skukuza and Pretoriuskop), with
differentdominant tree species, parent materials and rainfall (Extended
DataFig.2).Eachlandscape canbe considered asanindependent factorial
design with four replicates (hereafter, strings). In each string, there are
12treatments, withthefire-returninterval of eachtreatment representing
adifferent combination of frequency and season®**. For this study, we
selected the Pretoriuskop landscape receiving around 700 mm of rainfall
(Extended Data Fig. 2), which broadly represents African savannas that
have the potential to reach full tree cover”. Among these 12 treatments,
we selected plotsburned every year in August (hereafter, annual) to rep-
resent an extreme fire regime; plots burned every three years in August
(hereafter, triennial) to represent the near-natural fire-returninterval of
African savannas®’; and plots that have not burned since 1954 (hereafter,
unburned) to represent savannas with fire-suppressed status.
Ateachtreatmentineachstringacross the Pretoriuskop landscape,
we randomly established a 10 x 10-m plot for field measurement and
sample collectionin September 2018. We recorded the longitude and
latitude coordinates of each plot. In each plot, we further recorded
woody speciesidentity, DBH (only those with DBH > 5 cm), height and
xandy coordinates relative to the 10 x 10-m plot.

Soil carbon storage estimation

To estimate soil carbon storage, we randomly sampled four soil cores
(7 cmin diameter) to a depth of 60 cm and separated into four soil
layers (0-15,15-30, 30-45 and 45-60 cm) in each 10 x 10-m plot. Soil
samples were air-dried and passed through a 2-mm sieve. A subsam-
ple of sieved soils was further oven-dried at 65 °C and then ground
to a fine powder with a mortar and pestle. An aliquot of ground soils
was acid-washed to remove carbonate and then oven-dried at 65 °C.
SOC concentrations and stable carbonisotopic values of acid-washed
soils were determined using a Costech ECS 4010 elemental analyzer
interfaced by means of a ConFlolll device with a DeltaV Advantage iso-
toperatio mass spectrometer at the Yale Analytical and Stable Isotope
Center. The stable isotopic values (§"C) were expressed as deviations
from an international standard (that is, Vienna Pee Dee Belemnite) in
parts per thousand (%) using §-notation:

sample

A

standard

- 1] «1, OOO} 1

inwhichRis theratio of ®C to ?Cisotope for sample and standard. The
precision of duplicate measurements was 0.1%o.

Asallgrassesinthissavannaare C,species, we further calculated the
relative proportion of SOC derived from woody plants () and grasses
(1-f)for eachsoil layer using a mass balance equation:

6,-6,
=575

g

(2)

inwhich 6,is the measured §C value for soil samples, 6, is the mean §°C
value forwoody plants and 6, is the mean §”C value for grasses. We used
—26.7%o (n =49 species) and —12.5%. (n = 93 species) as theendmembers
forwoody plants and grasses, respectively, across the Pretoriuskop land-
scape®. Soil bulk density was determined for each soil layer from drying a
known volume of undisturbed soils and used for calculating SOC storage
toadepth of 60 cm according to ref. *°. In addition, the soil texture for
each soil layer was determined using a hydrometer®.

Belowground biomass estimation

Fine-root biomass was determined using a core method. Four soil cores
(7 cmin diameter) to a depth of 60 cm were collected and separated
intofour soil layers (thatis, 0-15,15-30,30-45and 45-60 cm) ineach
10 x10-m plot. Fine roots (<2 mm) were separated from soils through
washing and oven-dried (65 °C for 72 h) for their biomass. Fine roots
were further divided into those from woody plants and from grasses
onthebasis of the stable Cisotopic technique using the mass balance
equation as presented in equation (2).

Coarse-lateral-root biomass from woody plants was estimated using
GPR. GPR profiles were acquired using the Subsurface Interface Radar
(SIR) System 4000 with a 1.6-GHz shielded antenna and odometer
wheels for position recording (Geophysical Survey Systems, Inc.).
Before the survey, the grass layer was carefully removed to avoid any
interference in the transmission of electromagnetic energy from
antenna to soils (Supplementary Fig. 7). The survey was conducted
duringthe dry season (September to November) of 2018 with soil water
content less than 5%. At each 10 x 10-m plot, GPR profiles were col-
lected on a20-cm grid (Supplementary Fig. 7). If a tree was present
on ascanning line, the rest of the GPR profile was obtained from the
opposite direction. The topography across all plots was relatively flat,
with minimal surface relief (<5 cm). Extra care was taken to ensure the
accurate position of each GPR profile with aguide rope and the differ-
enceinthelength ofthe GPR profile was less than 1% (that is, 10 cm) of
the supposed distance (that is, 10 m). The collection parameters for
the SIR-4000 can be found in Supplementary Table 3.

Post-collection data processing was performed with RADAN 7 soft-
ware (Geophysical Survey Systems, Inc.) using the processing steps
shown in Supplementary Fig. 8. Roots were detected as hyperbolic
reflectors in the radar profiles. The aim of post-collection processing
was to maximize the coherency of root reflectors and differentiate
them from the soil background. After basic edits of radar profiles, we
applied an exponential gain function to recover amplitude losses from
geometric spreading and soil absorption of the radar impulse. Back-
ground removal was applied tofilter out horizontal reflections resulting
from the ground surface, soil horizons and bands of low-frequency
noise. A Kirchhoff migration was used to decompose and compact
the geometry of hyperbolic reflectors to their source points that are
closer to the actual features. The Hilbert transform further collapsed
the point-diffraction amplitudes and improved background clutter
removal. After these processing techniques, GPR profiles were con-
verted to image files (Supplementary Fig. 8).

To estimate coarse-lateral-root biomass from GPR data, we applied
an image-analysis technique to quantify root reflections and used
root mass from soil cores for calibration®*® (Supplementary Fig. 9).
We selected and marked 16 points with arange of root biomass ineach
10 x10-m plot. Eight points were selected on the basis of their distance
to the nearest tree and the remainder were identified a priori with
GPR to show either high (four points) or low (four points) incidence



of reflections, encompassing the range of root biomass within the
plot. Each point was scanned with the 1.6-GHz antenna in both x and
ydirections. The location of each point was electronically marked on
theradar profile as the antennawas pulled over the centre of the point
(Supplementary Fig. 9). After the collection of GPR profiles at each
point, alargesoil core (15 cmin diameter and 50 cmin length) was used
toretrieve coarse roots (>2 mm) to a depth of 50 cm (Supplementary
Fig.9).Roots were oven-dried (65 °C for 72 h) for biomass. GPR profiles
were processed and converted to image files. To develop the linear
regression equationbetween root biomass and GPR amplitude, image
files were cropped to 15-cm-wide sections in which the antenna was
directly over thelocation of each point. Pixel intensity, arelative meas-
ure of how dark or light a pixel is at a greyscale of O (black) to 1 (white)
(Supplementary Fig. 8), was used to differentiate root reflectors and
background in each segment. We used an intensity threshold of >0.8
todelineate roots with minimumi illumination of unwanted clutter. We
counted pixels with intensity higher than the threshold in each seg-
ment to a depth of 50 cm (hereafter, GPR index, pixels with threshold
range). For each point, GPR amplitudes from two scanning directions
were averaged. Root biomass retrieved from soil cores was then cor-
related to the GPRindex for each EBP string (n = 48) to develop regres-
sion lines for plot-level biomass estimation (Supplementary Fig. 10).
Plot-levelimage files were sequentially sectioned into 15-cm segments
correspondingto the dimensions of the calibration core, henceal0-m
GPR profileyields 67 segments or unique observations. As most of the
roots were constrained to the top 60 cm, we calculated the GPRindex
foreachsegmenttoadepth of 60 cmand assigned coordinatesto each
segment. We then applied the regression line to estimate root biomass
for each segment. Ordinary kriging was used to interpolate plot-level
coarse-lateral-root biomass on the basis of segment data and their
coordinates. The final product was an average of estimates from the x
andyscanningdirections (Supplementary Figs.1-4). The uncertainty
of coarse-lateral-root biomass was estimated from the 95% confidence
intervals of the regression lines (Extended DataFig. 5, Supplementary
Fig.10). Allimage analyses were performed with the package EBImage
inR3.6.1software®.

Surface-based GPR readily detects horizontal objects such as lat-
eral roots but is not applicable to estimate the biomass of vertical
taproots®**%3°, Therefore, taproot biomass was estimated using an
allometric equation derived from an empirical study that examined
taprootbiomass for dominant tree species across the southern Kruger®.
Wethendeveloped aregressionrelationship between taproot biomass
andtree DBH (R?= 0.46, P < 0.0001) (Supplementary Fig. 5), whichwas
subsequently applied to estimate taproot biomass in each 10 x 10-m
plotonthebasis of the vegetation survey data. The uncertainty of tap-
root biomass was estimated from the 95% confidence intervals of the
regression line (Extended Data Fig. 5, Supplementary Fig. 5).

Aboveground biomass estimation
Woody biomass was estimated using LiDAR. We used a RIEGL VUX-1LR
LiDAR unit integrated onto a DJI Matrice 600 Pro unoccupied aerial
systemto collect high-resolution airborne LiDAR data. We carried out
the LiDAR survey during the middle of the wet season (that s, January)
of 2020 when vegetation was at full leaf-on stage. The flight altitude was
100 m above ground level, the flight speed was 8 m s™ and the LiDAR
scanratewas 78.1lines s™ (see Supplementary Table 4 for other param-
eter settings). The unoccupied aerial system maintained consistent
elevation above the ground by using 30 x 30-m elevational data from
the Shuttle Radar Topography Mission to adjust flight altitude in real
time during the survey. All treatments in each string were surveyed with
transects of identical heading to decrease the probability of introduc-
ing confounding variables and remote-sensing artefacts created by
differing survey methodologies or LiDAR scan directions.

LiDARis anactive-remote-sensing technique that characterizes vegeta-
tion structure in three-dimensional space across large spatial extents.

LiDAR sensors emit coherent laser pulses and measure the distance to
thetargets fromthe time delay of the returned laser pulses to the sensor.
The location of each laser return is presented as a ‘point cloud’, which
containsx, y and zlocation data from an embedded Global Positioning
System-inertial measurement unitinthe LiDAR system. Therefore, LIDAR
dataconsist of a larger number of georeferenced points with elevation
estimates and other radiometric attributes of the vegetation. We pro-
cessed the LiDAR data using Terrasolid software (Terrasolid Ltd.). First,
LiDAR datafromallthe flight lines were denoised, ground-classified and
matched together withanaccuracy of around 2-3 cm. After noise-point
removal, the average point density across all the sites was about 150
points per m? Points that penetrated the vegetation canopy and reached
thegroundsurface were used to interpolate adigital terrainmodel. Then,
allfirst-return points were compared with a triangulated irregular net-
workmodel of the ground to calculate the height above the ground sur-
faceforeach point. Agridded canopy height model (CHM) was derived
atal0-cmresolution by filling each cell with the maximum height above
ground of any first-return points within the cell.

We used an object-based image-segmentation approach to estimate
the aboveground woody biomass from the LiDAR-derived CHM?.
The CHM was used to identify treetops using an algorithm based on a
local maximum filter®’; adynamic moving-window approach was used
to scan the CHM and if a given cell was found to be the highest within
the window, it was tagged as atreetop. The height of each treetop was
retrieved from the CHM. The algorithm was trained to ensure that trees
with height > 5 m were accurately detected, which contribute most
to the aboveground woody biomass. On the basis of this algorithm,
the LiDAR-derived stem density (>5 m) was highly correlated with the
field-measured stem density* (R* = 0.90) (Extended Data Fig. 8a). Next,
tree crowns were segmented on the basis of a watershed algorithm
guided by the locations of the treetops™. The area of each tree crown
was calculated as the projection of the outlined crown on the ground
surface. After computing the height and the crown area, a regression
model developed specifically for savanna trees in Kruger was applied
to generate aboveground biomass per individual tree:

log,,(m) =B+ B, +10g,,(Agp;) + B, + (loglo(Ao,Jj))2 +B,+«log,(Hyy) (3)

in which mis the tree biomass (kg), A,y is the object-projected crown
area(m?) and H,;is the tree height (m). 8,, B,, f,and B, are least-squares
regression coefficients and are estimated as 0.115,0.161,0.252and 1.73,
respectively. Inthis study, we set a minimum height of 0.5 m to ensure
that we detected only woody plants. We used the coordinates of the
centre of each GPR plot (thatis, 10 x 10 m) to set a buffer of radius 15 m
to compute the aboveground woody biomass of each plot (Supplemen-
tary Figs.1-4). The 30-m-diameter LiDAR plot allows for small location
errors of the GPR plot and also matches the area obtained for developing
the regression model as presented in equation (3) (ref. ). Only woody
plants with their centroids within the buffer wereincluded. Inaddition,
to cross-validate the object-based LiDAR biomass estimation, we also
estimated aboveground woody biomass using species-specific allomet-
ricequations on the basis of DBH*, as well as plot-averaged pixel-based
LiDAR calibration? (see Extended DataFig. 8 for more details). However,
we chosetoreport object-based LiDAR biomass estimation in the main
text, because the object-based method s better suited to open-canopy
systems and provides amore accurate proxy for measured woody bio-
mass than allometric estimates®. All analyses were performed with the
ForestTools™ and raster*® packages in R 3.6.1 software.

Grass biomass was estimated from the long-term monitoring of grass
fuelloadsforthe EBPtrialin Kruger (Extended Data Fig. 4) usingadisc
pasture meter calibrated for savannas in Kruger'. Before each fire, 100
points in each treatment were sampled to obtain an estimate of the
mean fuelload. However, because the grass fuel load for the unburned
treatments was not available, we used disc pasture meter datafrom a
wet-season fire treatment (thatis, burningin April for every two years),
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inwhich fires rarely successfully ignite and where tree cover is compa-
rable with that of the unburned treatment, as a surrogate. To validate
this assumption, we compared grass-biomass estimates on the basis
of field measurements with grass canopy height estimated from the
LiDAR CHM described above (averaging canopy height for all pixels
without a ‘tree’ of height > 0.5 m); we found a close correspondence
between estimates (R*= 0.38; see Extended Data Fig. 4), suggesting that
the April B2 treatment provides a reasonable grass-biomass proxy for
the unburned treatment. Grass biomass for each fire treatment across
the Pretoriuskop landscape was estimated by averaging available data
from 1982 to 2010, to capture interannual variation in grass-biomass
accumulation, which can be substantial®.

Dataanalyses

We used the depth distribution of the GPR index (that is, pixel counts
above the threshold) in percentage as an indicator to examine how
changes in fire frequency would affect root biomass investment
throughout the soil profile. We calculated the depth (cm) at which
the cumulative GPR amplitude reached 50% for each fire treatment
in each string to facilitate the comparison. Vegetation biomass was
converted to C storage using a factor of 0.5, which is recommended
by the Intergovernmental Panel on Climate Change (IPCC)*. The unit
of ecosystem C storage was presented as Mg C ha™.

Wefitted linear mixed models using string as arandomintercept and
fire treatmentas the fixed termto detect the significance of measured
parameters. The package ImerTest®, which approximates the degrees
of freedom using Satterthwaite’s method, was used to evaluate the
significance of terms. We also fitted our data to ranked mixed mod-
els, in which fire treatments were ranked from low to high frequency.
The results were generally consistent across the two approaches (see
Extended Data Table 1). In addition, we used linear mixed models to
examine the influence of tree cover and/or soil sand content on SOC
storage, C;-derived and C,-derived SOC storage, belowground to above-
ground C storage and other parameters. The marginal R>was calculated
accordingly. All data analyses were performed using R 3.6.1 software.

Data and code availability

Dataand codeare available in the Dryad Digital Repository: https://doi.
org/10.5061/dryad.pg4f4qrr5. Source dataare provided with this paper.
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Africa. Disconnected lines indicate missing data for specificyears.d, The treatment as a proxy (as grass fuelload is not routinely measured for the
correlationbetween averaged grass fuelloads from1982t02009 and unburned treatment).
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Extended DataFig. 5| Theuncertainty of coarselateral and taproot
biomass estimates. a, The uncertainty of coarse lateral and taproot biomass
foreachtreatmentreplicate. Error barsindicate the 95% confidence interval
for coarse lateral and taproot biomass estimates derived from fitting
regression lines (see Supplementary Figs. 5and 10). Coarse-lateral-root
biomass estimates were significantly correlated with taproot biomass
estimates (R?=0.75,P<0.001). Letters F, K, Nand S indicate Fayi, Kambeni,

Numbi and Shabeni strings at the Pretoriuskop landscapein Kruger National
Park, South Africa; letters A, Tand Uindicate annual, triennial and unburned
treatments. b, c The uncertainty of (thatis, lower bound, mean and upper
bound) coarselateraland taproot biomass across different fire treatments.
Thebox plots show medians (thatis, 50th percentile), 25th and 75th
percentiles, and the 95% confidence interval for four replicates. Pointsinband
cindicateoutliers.
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coarse-lateral-root biomass (P=0.51). The box plots show medians

(thatis, 50th percentile), 25th and 75th percentiles, and the 95% confidence
interval for four replicates. ¢, The correlation between soil sand content (%)
and depthdistribution of coarse-lateral-root biomass (R*=0.61, P=0.003).
Theregressionlineindicates the significantlinear fit and the shaded bands

Extended DataFig. 6 | Depthdistribution of coarse-lateral-root biomass
acrossfire treatments and soil sand content. a, Depth distribution of the
GPRindex (% in the number of pixels above the threshold for root detections) as
anindicator of coarse-lateral-root biomass allocation throughout the soil
columnacrossdifferent fire treatments at each string. Horizontal lines indicate
the depth (cm) at whichthe GPRindex reaches 50% of the total detectionsinthe illustrate the 95% confidenceinterval of the linear fit.

60-cmsoil column. b, Effects of fire treatment on the depth distribution of
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Extended DataFig.7|The correlationbetweenratio ofbelowground to
aboveground carbonstorage and tree cover (%) (R*> = 0.83,P < 0.0001).
Theregressionlineindicates the significantlinear fitand the shaded bands
illustrate the 95% confidence interval of the linear fit.
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Extended DataFig. 8| The validation of the object-based method to
estimate aboveground woody biomass. a, The correlation between
LiDAR-derived stem density for trees with height > 5m (trees ha™) and
field-measured stem density (trees ha™). The field-measured stem density was
fromref.>?, which surveyed tree heightsin eight 10-m-radius plots at each
annual, triennial and unburned treatmentin Kambeni, Numbi and Shabeni
strings at the Pretoriuskop landscape in Kruger National Park, South Africa.
Theregressionlineindicates the significant linear fit and the shaded bands
illustrate the 95% confidence interval of the linear fit. The dashed line indicates
thel:1line.b, Differencesin aboveground woody biomass between
allometric-derived, object-based and plot-averaged estimates. The
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allometric-derived biomass estimation was on the basis of species-specific
allometric equations developedinref.**, which predict aboveground woody
biomass from DBH. This estimation was calculated for treeswith DBH > 5cmin
each10 x10-mplot. The plot-averaged LiDAR biomass was estimated using an
allometric equation derived from on-the-ground plot-level sampling relating
aboveground woody biomass to LiDAR-derived canopy height and canopy area
(aboveground woody biomass =-11.5+25.8 * canopy height * canopy area);
pleaserefer toref. ? for more details. The canopy height and canopy area were
averaged across pixels with height > 0.5 min each 30-m-radius plot. The box
plots show medians (thatis, 50th percentile), 25th and 75th percentiles, and the
95% confidenceinterval for four replicates. Points inbindicate outliers.



Extended Data Table 1| Results comparing the relative effect of different fire treatments on each component of ecosystem
carbon storage from linear mixed-effects models using fire treatments as the fixed effect and string as a random effect

Linear mixed model Ranked mixed model
Response variable df F p df t p
Total aboveground biomass 2,6 10.51 0.011 6 4.57 0.0038
Aboveground woody biomass 2,6 9.90 0.013 6 4.43 0.0044
Aboveground grass biomass 2,6 21044  <0.001 6 19.01 <0.001
Total belowground biomass 2,6 8.67 0.017 6 3.84 0.0086
Woody fine root biomass 2,6 431 0.069 6 2.51 0.046
Grass fine root biomass 2,6 2.11 0.20 6 -1.81 0.12
Woody lateral root biomass 2,6 10.62 0.011 6 425 0.0054
Woody tap root biomass 2,6 8.04 0.020 6 4.00 0.0071
Total SOC storage 2,6 0.82 0.48 6 1.08 0.32
C3-derived SOC storage 2,6 8.48 0.018 6 4.07 0.0065
C4-derived SOC storage 2,6 0.80 0.49 6 -0.75 0.48
Whole-ecosystem C storage 2,6 18.7 0.0026 6 6.10 0.0009
Woody root-to-shoot ratio 2,6 2.75 0.14 6 -12.30 0.061
Below-to-aboveground C storage ratio 2,6 4.74 0.058 6 -3.08 0.022

Results from linear mixed models were also compared with results from ranked mixed model using ranked fire treatments as the fixed effect and string as a random effect.
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