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Limited increases in savanna carbon stocks 
over decades of fire suppression

Yong Zhou1,2 ✉, Jenia Singh3, John R. Butnor4, Corli Coetsee5,6, Peter B. Boucher3, 
Madelon F. Case2,7, Evan G. Hockridge3, Andrew B. Davies3 & A. Carla Staver1,2 ✉

Savannas cover a fifth of the land surface and contribute a third of terrestrial net 
primary production, accounting for three-quarters of global area burned and more 
than half of global fire-driven carbon emissions1–3. Fire suppression and afforestation 
have been proposed as tools to increase carbon sequestration in these ecosystems2,4. 
A robust quantification of whole-ecosystem carbon storage in savannas is lacking 
however, especially under altered fire regimes. Here we provide one of the first direct 
estimates of whole-ecosystem carbon response to more than 60 years of fire exclusion 
in a mesic African savanna. We found that fire suppression increased whole-ecosystem 
carbon storage by only 35.4 ± 12% (mean ± standard error), even though tree cover 
increased by 78.9 ± 29.3%, corresponding to total gains of 23.0 ± 6.1 Mg C ha−1 at an 
average of about 0.35 ± 0.09 Mg C ha−1 year−1, more than an order of magnitude lower 
than previously assumed4. Frequently burned savannas had substantial belowground 
carbon, especially in biomass and deep soils. These belowground reservoirs are not 
fully considered in afforestation or fire-suppression schemes but may mean that the 
decadal sequestration potential of savannas is negligible, especially weighed against 
concomitant losses of biodiversity and function.

Savannas cover around 20% of the Earth’s land surface and contrib-
ute to about 30% of terrestrial net primary production2. Fire-prone 
savannas represent one of the main sources of interannual variability in 
global atmospheric CO2, as fire can change the sign of carbon fluxes at 
regional scales from year to year. It is estimated that tropical savannas 
account for about 71% of global burned area1 and about 62% of global 
fire-driven carbon emissions3. As a result, fire suppression has been 
proposed as a tool to increase carbon sequestration2,5 and savannas 
have been targeted by afforestation schemes promising to mitigate 
climate change4. Whether these schemes materialize or not, savannas 
are already burning less than they did historically6, a pattern predicted 
by models to feed back to gains in carbon7. However, we lack any robust, 
direct quantifications of whole-ecosystem carbon storage in savannas 
that would allow us to rigorously evaluate their potential as a carbon 
sink, especially under altered fire regimes.

On the one hand, more frequent fires in savannas directly volatilize 
aboveground vegetation biomass carbon (including grasses, leaf lit-
ter and small trees and shrubs)8. This fire-driven efflux of carbon has 
measurable impacts on tree cover9,10 and soil carbon8, which — in turn 
— have been used as justification for the assumption that savannas 
store less carbon than their potential2,4,5.

On the other hand, belowground carbon — especially in root biomass 
and subsurface soil pools — is rarely explicitly quantified in evalua-
tions of fire effects on savanna whole-ecosystem carbon storage. Fire 
has well-documented impacts on soil carbon in surface layers8, but 
carbon in subsurface soil layers is thought to be centuries old11 and, 

therefore, may respond differently. In the few studies that consider 
belowground biomass12,13, belowground biomass is arbitrarily assumed 
to increase in proportion to aboveground biomass, yielding constant 
root-to-shoot ratios across fire frequencies. However, this assump-
tion is problematic: species-level root-to-shoot ratios vary across an 
order of magnitude for savanna trees14, with much larger belowground 
allocation among savanna trees experiencing more frequent fires15,16 
(Extended Data Fig. 1). This bias probably yields biomass carbon esti-
mates in frequently burned savannas that are too small and suggests 
that direct estimates of belowground carbon are needed for a complete 
account of whole-ecosystem carbon storage in savannas.

A further complication is that factors other than fire also determine 
savanna-ecosystem carbon stocks, and the magnitude of their effects 
compared with those of fire is unknown. At regional to continental 
scales, rainfall systematically increases aboveground carbon and maxi-
mum potential tree cover10,17. At local scales, differences in soil texture 
can have substantial effects on tree cover, the depth distribution of 
root biomass and soil carbon18,19.

A comprehensive understanding of savanna whole-ecosystem carbon 
storage requires rigorous and direct empirical evaluation. Here we 
used a long-term burning experiment in Kruger National Park, South 
Africa (Extended Data Fig. 2) to examine how changes in fire frequency 
affect savanna carbon storage and allocation in vegetation and soil. 
This experiment, initiated in 1954, is one of the longest running in 
Africa. We focused on the four wettest replicates (in Pretoriuskop), 
with mean annual rainfall of roughly 700 mm (Extended Data Fig. 2), 
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because they were the most likely to show increases in tree cover and 
whole-ecosystem carbon storage with fire exclusion9 (noting that 
drier savannas also merit direct consideration). We sampled a subset 
of fire treatments: an extreme scenario with fires every August (that 
is, dry-season annual burning), a near-natural landscape average20 
with fires every three years in August (that is, triennial burning) and 
an unburned treatment subjected to more than six decades of fire 
suppression.

Recent advances in remote sensing are improving the accuracy 
and extent of vegetation biomass estimation. Aboveground, light 
detection and ranging (LiDAR) provides extensive, high-resolution 
maps of savanna woody biomass21,22. Belowground, techniques are 
comparatively in their infancy, but some hold promise for alleviating 
the intensive labour required to excavate and quantify root biomass 
directly. Specifically, ground-penetrating radar (GPR), supplemented 
with field calibrations to improve accuracy, offers a non-destructive 
method for quantifying coarse-root biomass at fine scales23. At each 
treatment replicate, we established one 10 × 10-m GPR plot for estimat-
ing coarse lateral-root biomass to a depth of 60 cm (Fig. 1, Supplemen-
tary Figs. 1–4). Because GPR methods are better at quantifying lateral 
coarse roots than taproots, we supplemented GPR measurements with 
woody taproot biomass estimated by means of a site-specific diameter 
at breast height (DBH) allometry (Supplementary Fig. 5). We also used 
a core-sampling method to estimate fine-root biomass and soil organic 
carbon (SOC) to a depth of 60 cm, which were further partitioned into 
C3 (woody plant) versus C4 (grass) contributions on the basis of stable 
carbon isotope mixture methods (Extended Data Fig. 3). Aboveground 
woody biomass was estimated using high-resolution, drone-based 
LiDAR within 15 m of the centre of each GPR plot (to allow for small 

location errors; Fig. 1, Supplementary Figs. 1–4). Because measure-
ments of herbaceous biomass using LiDAR are not yet reliable, we used 
long-term fuel-load monitoring data to estimate aboveground grass 
biomass (Extended Data Fig. 4).

We found that less frequent fires substantially increased tree height, 
tree cover, and aboveground woody biomass (Fig. 2a, Extended Data 
Table 1, Supplementary Table 1), consistent with previous work12,13.  
Compared with triennial burning, fire suppression increased tree 
height, tree cover, and aboveground woody biomass by 32% (standard 
error, se = 15%, n = 4), 79% (se = 29%) and 157% (se = 79%), respectively, 
whereas annual burning decreased these by 6% (se = 10%), 22% (se = 19%) 
and 34% (se = 21%), respectively. Less frequent fires also increased 
aboveground grass biomass (Fig. 2a, Extended Data Table 1). However, 
the contribution of grasses to total standing aboveground biomass 
was small (about 10%) and temporally variable (Fig. 2a, Extended Data 
Fig. 4), largely driven by interannual rainfall variability24.

Less frequent fires also increased woody fine, coarse lateral, and tap-
root biomass (Fig. 2a, Extended Data Table 1), confirming that increas-
ing tree cover also increased belowground woody biomass25. However, 
belowground increases were not proportional to aboveground 
increases, and annually burned savannas had higher root-to-shoot 
ratios than those burned triennially or not burned (Fig. 2b). This result 
contradicts the assumption of constant root-to-shoot ratio applied 
elsewhere to estimate belowground carbon12,13 but agrees with evidence 
that trees in frequently burned savannas invest heavily in belowground 
carbon for post-fire recovery15,16 (Extended Data Fig. 1). However, a 
robust quantification of belowground biomass always remains a 
great challenge in terms of methodology, accuracy, and efficiency in 
savannas and other ecosystems, and our estimates also carry some 
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Fig. 1 | Vegetation characteristics of experimental burn plots in a mesic 
savanna in Kruger National Park, South Africa. a, Example pictures showing 
vegetation structure in different fire treatments. b, Examples of tree canopy 
cover and height (that is, 30-m-diameter circular plots) derived from airborne 
light detection and ranging and belowground coarse-root biomass (that is, 

10 × 10-m square plots) estimated from ground-penetrating radar in different 
fire treatments. The 10 × 10-m plots are roughly located at the centre of the 
30-m-diameter plots. See Supplementary Figs. 1–4 for all treatment replicates 
with enlarged images.
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uncertainty. Plot-level coarse-lateral-root biomass estimated from 
GPR was highly correlated with taproot biomass estimated from DBH 
(R2 = 0.75) (Extended Data Fig. 5a), cross-validating the assessments by 
means of the two methods. Despite this, biomass estimates from lower 
and higher bounds of the 95% confidence intervals differed up to three-
fold (Extended Data Fig. 5). However, the magnitude of uncertainty 
was comparable across fire treatments (Fig. 2d, Extended Data Fig. 5) 
and, therefore, relative changes in whole-ecosystem carbon storage 
owing to fire suppression were much more consistent (mean = 35.4%, 
95% confidence interval = 33.6 to 36.6%) (Fig. 2e).

Theoretically, frequent or severe fires produce heat that can readily 
kill roots in surface soils26, such that trees in frequently burned savan-
nas might allocate roots to deeper soil profiles. However, variation in 
the depth distribution of GPR detections (as a surrogate for rooting 
depth) did not support this hypothesis (Extended Data Fig. 6). Although 
savanna trees experiencing annual fires rooted marginally deeper than 
those burned infrequently, these differences were far from important. 
However, we found strong support for the hypothesis that savanna 
trees root deeper on sandier soils (R2 = 0.61) (Extended Data Fig. 6), 
where water percolates more readily and mechanical impedance to root 
penetration is lower19,27. The application of GPR to examine depth dis-
tributions of root biomass may provide further opportunity to explore 
functional rooting depth of savanna trees and associated ecological 
questions around tree–grass competition.

We found that changes in fire frequencies did not affect total SOC 
storage (Fig. 2a, Extended Data Table 1), although SOC trended slightly 

higher with less frequent fires. At first glance, this result seems to  
contradict work showing that fire suppression increases soil carbon 
storage8, because SOC is higher under tree canopies28,29. However, most 
previous work in savannas has only sampled soils to a very shallow depth 
(for example, 0–20 cm)8, whereas we integrated SOC throughout the 
soil column to represent total SOC. When we re-evaluated past findings 
from the same site for fire effects on total SOC including deeper soils28,  
we found results consistent with what we report here: fire suppression 
had unimportant effects on total SOC across the soil column, because  
differences were restricted to shallow soil layers28 (Supplementary Fig. 6).  
Deep soil carbon is clearly a neglected carbon pool.

Our results challenge the assumption that systems without trees 
are impoverished in soil carbon4. Instead, it is clear that savannas, like 
most terrestrial ecosystems, store substantial carbon in soils even in 
treeless areas2. Indeed, grass net primary productivity in tropical savan-
nas is comparable with and even higher than tree productivity30, and 
the inputs of C4-derived carbon into soils can be an important source 
of SOC31. For example, we found that less frequent fires increased C3 
(woody)-derived SOC (Fig. 2a), which scaled positively with increas-
ing tree cover (R2 = 0.68) (Fig. 3c), but that C4 (grass)-derived carbon 
dominated SOC even at around 80% tree cover in the unburned treat-
ment (Fig. 2a), especially in deeper soil profiles (Extended Data Fig. 3). 
In part, this is probably driven by the slow turnover of deep-soil  
carbon11,32, which suggests that management on decadal or even century 
scales may have relatively small effects on soil carbon. However, even 
at equilibrium, SOC may not increase proportionally with increasing 
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Fig. 2 | Changes in whole-ecosystem carbon storage across fire treatments. 
a, Carbon storage estimated across different aboveground and belowground 
pools. C3-derived SOC is from woody plants, whereas C4-derived SOC is from 
grasses. Values for each C pool are means of four replicates (see Supplementary 
Table 2). Carbon pools with * indicate notable influence of fire treatments at the 
level of P < 0.05 on the basis of linear mixed models or ranked mixed models 
(see Extended Data Table 1). b, c, Changes in woody root-to-shoot ratio and 
ratio of belowground to aboveground C storage across different fire 

treatments. d, The uncertainty of whole-ecosystem carbon storage across 
different fire treatments. The uncertainty is derived from different scenarios 
of coarse lateral and taproot biomass estimates (lower bound, mean, upper 
bound) (see Extended Data Fig. 5). e, Changes in whole-ecosystem carbon 
storage relative to triennial burning (%). The box plots show medians (that is, 
50th percentile), 25th and 75th percentiles, and 95% confidence intervals of 
four replicates. Points in b and d indicate outliers. Error bars in a and e indicate 
standard errors (n = 4).
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tree cover (or woody biomass) (Fig. 3a), as soils can be subject to car-
bon saturation depending on soil texture and mineralogy. Sandy soils 
have much less physical protection for SOC and thus lower saturation 
thresholds compared with clayey soils33. Here we found that C4-derived 
(R2 = 0.63) and total SOC (R2 = 0.56) decreased with subtle variation in 
soil sand content (Fig. 3b, d) but not fire frequency.

Integrating across all pools, more carbon was stored belowground 
than aboveground across all fire treatments (Fig. 2a). Both fire suppres-
sion and increasing tree cover increased the amount of carbon stored 
belowground (Fig. 2a), but increases were variable, and belowground 
carbon increased much less and less consistently than aboveground 
carbon with fire suppression (Fig. 2c, Extended Data Table 1). As a result, 
the ratio of belowground to aboveground carbon storage actually 
decreased with increasing tree cover (R2 = 0.83) (Extended Data Fig. 7), 
further challenging the assumption that savannas with sparse tree 
cover have limited or no belowground carbon storage4. Almost 85% 
of whole-ecosystem carbon was stored belowground when tree cover 
was <20% in this savanna (Extended Data Fig. 7). Savannas clearly have 
substantial belowground carbon pools.

Taken together, our results indicate that less frequent fires increased 
whole-ecosystem carbon storage in this savanna (Fig. 2a, d, Extended 
Data Table 1). Increased carbon storage is mainly attributable to 
increased aboveground woody biomass (Fig. 2a), consistent with 
previous work in savannas28,29. However, increases in carbon stor-
age are smaller at the level of the whole ecosystem than sometimes 
assumed. Compared with triennial burning, six decades of fire sup-
pression increased whole-ecosystem carbon storage by only 35.4% 
(se = 12.0%, n = 4), whereas annual burning decreased it by only 21.5% 
(se = 9.7%, n = 4) (Fig. 2e). Across six decades, fire-suppressed savannas 
sequestered 23.0 Mg C ha−1 (se = 6.1 Mg C ha−1, n = 4) more carbon than 
savannas experiencing near-natural, triennial burning, amounting to an 
annual carbon sequestration rate of about 0.35 Mg C ha−1 year−1. This is 
a time-averaged estimate, which may mask some non-linearities, espe-
cially in the rate of aboveground biomass accumulation. However, our 
estimate is similar in magnitude to the 0.14 Mg C ha−1 year−1 documented 
in a synthesis of global tropical savanna productivity2. By contrast, stud-
ies using space-for-time substitutions to estimate carbon sequestration 
rates, with treeless savannas and closed-canopy forests as end points, 
instead report rates ranging from 1.2 to 1.8 Mg C ha−1 year−1 (refs. 13,34) 
— a clear overestimate. This discrepancy arises simply because these 
studies neglect belowground savanna carbon pools and ignore the 
timescales of transition from savanna to closed-canopy forest.

Overall, we argue that increasing tree cover in savannas, whether 
by means of afforestation or fire suppression, is unlikely to yield the 
substantial gains in ecosystem carbon storage that have been adver-
tised. For example, a recent report suggested that reforesting a billion 

hectares of Earth’s land surface could store a massive 205 gigatonnes 
of carbon (GtC)4, with the largest sequestration potential located in 
tropical grassy ecosystems including savannas (about 190 million hec-
tares; about 53.5 GtC of sequestration potential). These estimates rely 
on ecosystem carbon gains totalling 283 Mg C ha−1 from increasing 
tree densities, a modelled estimate that is 12 times higher than our 
empirical estimate. Moreover, existing estimates assume that potential 
sequestration will be achieved before the year 2050 (over <30 years, 
at an annual rate of about 9.4 Mg C ha−1 year−1), whereas we observed 
a smaller gain rate over a total of 65 years (at an annual rate of about 
0.35 Mg C ha−1 year−1, a number that is 27 times smaller). Although fur-
ther study is needed, especially in savannas in more humid environ-
ments (which are more productive) and on more clayey soils (which 
may store relatively more carbon in slow-turnover soil pools), it is clear 
that arbitrarily applying carbon densities observed in tropical forests to 
estimate carbon gains of tropical grassy ecosystems represents a mas-
sive overestimate of the carbon sequestration value of fire suppression 
and afforestation. Leaving aside the influence of afforesting savannas 
on biodiversity, ecosystem function and socioecological value34,35, it 
is obvious that the carbon benefits of increasing woody biomass in 
savanna ecosystems have been grossly overstated.

This work also highlights the importance of chronically disturbed, 
open-canopy ecosystems for long-term carbon storage in the Earth 
system. The concept of ‘avoided deforestation’ has become a key talking 
point in discussions about the potential contributions of nature-based 
solutions for climate mitigation36, but no such equivalent framing has 
been applied to savannas and other grassy ecosystems. Even today, 
natural and managed savannas cover about 20% of global land area 
but are poorly protected and increasingly threatened by land-use 
conversions37. Trees-for-carbon schemes are included in this threat.  
That these systems contain substantial and slow-turnover carbon 
stocks, especially belowground, emphasizes the urgent need to con-
sider explicitly — and to protect — their substantial existing contribu-
tions to carbon storage.

Continuing human-driven changes in fire regimes, in parallel with 
changing land use, atmosphere and climate, probably have large 
impacts on savanna ecosystems. To evaluate how these impacts will 
shape ecosystem carbon storage, long-term experimental and empirical 
datasets will be critical. Possible climate-change-associated expansion 
of drylands across the tropics38 make this need all the more urgent. Our 
results provide robust evidence of limited savanna carbon gains from 
increasing tree cover when fire is suppressed for more than six decades, 
suggesting that the benefits of trees-for-carbon and fire-suppression 
schemes for climate mitigation have been exaggerated. The experi-
ment and dataset presented here are rare and previously unknown in 
tropical savannas, and work such as this must be applied more broadly. 
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Fig. 3 | Changes in SOC with tree cover and soil sand content. Total SOC 
storage does not change with tree cover (R2 = 0.00, P = 0.95) (a) but decreases 
with soil sand content (R2 = 0.56, P = 0.004) (b). C3-derived SOC increases with 
tree cover (R2 = 0.68, P = 0.001) but C4-derived SOC does not (R2 = 0.21, 

P = 0.08) (c). C4-derived SOC decreases with soil sand content (R2 = 0.63, 
P = 0.001) but C3-derived SOC does not (R2 = 0.02, P = 0.67) (d). Regression lines 
indicate significant linear fits and shaded bands illustrate the 95% confidence 
interval of the linear fit.



Nature  |  www.nature.com  |  5

Robust quantifications of carbon sequestration must also be consid-
ered alongside the potential negative impacts of afforestation and 
fire suppression on biodiversity at all trophic levels34,39 and on other 
ecosystem functions (including grazing40, hydrologic cycles41 and — in 
some systems — extreme fire risk42). This context makes our results 
especially alarming: overestimating carbon gains from increasing tree 
cover offers false promise for climate mitigation, at a very real cost to 
biodiversity and ecosystem function.
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Methods

Study site
Kruger National Park (latitude: 22°20′–25°30′S; longitude:  
31°10′–32°00′E) (hereafter, Kruger) is the largest protected area 
(around 20,000 km2) in South Africa (Extended Data Fig. 2), consisting  
of subtropical and tropical savannas. Mean annual rainfall increases 
from 350 mm in the north part of Kruger to 750 mm in the south 
(Extended Data Fig. 2), with rainfall concentrated in the wet season 
between November and April. Kruger is dominated by two underlying 
parent materials, a granite (sandy and nutrient poor) and a basalt (clayey 
and nutrient rich), which have strong influences on vegetation18,43. 
Although the fire-return interval varies spatially across Kruger, the 
average is about 3.5 years (ref. 20) The flora of Kruger includes >200 
species of grasses and >400 species of trees and shrubs43.

Experimental design
Kruger maintains one of a handful of long-term burning experiments in 
tropical savannas. The experimental burning plots (EBPs) were initiated in 
1954, making them one of the longest-running fire ecology research pro-
jects in African savannas. The overall aim of the EBPs is to determine how 
fire frequency and season shape savanna vegetation structure and eco-
system functioning. The EBPs are distributed across four different land-
scapes of Kruger (that is, Mopani, Satara, Skukuza and Pretoriuskop), with 
different dominant tree species, parent materials and rainfall (Extended 
Data Fig. 2). Each landscape can be considered as an independent factorial 
design with four replicates (hereafter, strings). In each string, there are  
12 treatments, with the fire-return interval of each treatment representing 
a different combination of frequency and season9,44. For this study, we 
selected the Pretoriuskop landscape receiving around 700 mm of rainfall 
(Extended Data Fig. 2), which broadly represents African savannas that 
have the potential to reach full tree cover17. Among these 12 treatments, 
we selected plots burned every year in August (hereafter, annual) to rep-
resent an extreme fire regime; plots burned every three years in August 
(hereafter, triennial) to represent the near-natural fire-return interval of 
African savannas20; and plots that have not burned since 1954 (hereafter, 
unburned) to represent savannas with fire-suppressed status.

At each treatment in each string across the Pretoriuskop landscape, 
we randomly established a 10 × 10-m plot for field measurement and 
sample collection in September 2018. We recorded the longitude and 
latitude coordinates of each plot. In each plot, we further recorded 
woody species identity, DBH (only those with DBH > 5 cm), height and 
x and y coordinates relative to the 10 × 10-m plot.

Soil carbon storage estimation
To estimate soil carbon storage, we randomly sampled four soil cores 
(7 cm in diameter) to a depth of 60 cm and separated into four soil 
layers (0–15, 15–30, 30–45 and 45–60 cm) in each 10 × 10-m plot. Soil 
samples were air-dried and passed through a 2-mm sieve. A subsam-
ple of sieved soils was further oven-dried at 65 °C and then ground 
to a fine powder with a mortar and pestle. An aliquot of ground soils 
was acid-washed to remove carbonate and then oven-dried at 65 °C. 
SOC concentrations and stable carbon isotopic values of acid-washed 
soils were determined using a Costech ECS 4010 elemental analyzer 
interfaced by means of a ConFlo III device with a Delta V Advantage iso-
tope ratio mass spectrometer at the Yale Analytical and Stable Isotope 
Center. The stable isotopic values (δ13C) were expressed as deviations 
from an international standard (that is, Vienna Pee Dee Belemnite) in 
parts per thousand (‰) using δ-notation:
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in which R is the ratio of 13C to 12C isotope for sample and standard. The 
precision of duplicate measurements was 0.1‰.

As all grasses in this savanna are C4 species, we further calculated the 
relative proportion of SOC derived from woody plants ( f ) and grasses 
(1 − f ) for each soil layer using a mass balance equation:

f
δ δ

δ δ
=

−

−
(2)

s g

w g

in which δs is the measured δ13C value for soil samples, δw is the mean δ13C 
value for woody plants and δg is the mean δ13C value for grasses. We used 
−26.7‰ (n = 49 species) and −12.5‰ (n = 93 species) as the endmembers 
for woody plants and grasses, respectively, across the Pretoriuskop land-
scape45. Soil bulk density was determined for each soil layer from drying a 
known volume of undisturbed soils and used for calculating SOC storage 
to a depth of 60 cm according to ref. 46. In addition, the soil texture for 
each soil layer was determined using a hydrometer47.

Belowground biomass estimation
Fine-root biomass was determined using a core method. Four soil cores 
(7 cm in diameter) to a depth of 60 cm were collected and separated 
into four soil layers (that is, 0–15, 15–30, 30–45 and 45–60 cm) in each 
10 × 10-m plot. Fine roots (<2 mm) were separated from soils through 
washing and oven-dried (65 °C for 72 h) for their biomass. Fine roots 
were further divided into those from woody plants and from grasses 
on the basis of the stable C isotopic technique using the mass balance 
equation as presented in equation (2).

Coarse-lateral-root biomass from woody plants was estimated using 
GPR. GPR profiles were acquired using the Subsurface Interface Radar 
(SIR) System 4000 with a 1.6-GHz shielded antenna and odometer 
wheels for position recording (Geophysical Survey Systems, Inc.).  
Before the survey, the grass layer was carefully removed to avoid any 
interference in the transmission of electromagnetic energy from 
antenna to soils (Supplementary Fig. 7). The survey was conducted 
during the dry season (September to November) of 2018 with soil water 
content less than 5%. At each 10 × 10-m plot, GPR profiles were col-
lected on a 20-cm grid (Supplementary Fig. 7). If a tree was present 
on a scanning line, the rest of the GPR profile was obtained from the 
opposite direction. The topography across all plots was relatively flat, 
with minimal surface relief (<5 cm). Extra care was taken to ensure the 
accurate position of each GPR profile with a guide rope and the differ-
ence in the length of the GPR profile was less than 1% (that is, 10 cm) of 
the supposed distance (that is, 10 m). The collection parameters for 
the SIR-4000 can be found in Supplementary Table 3.

Post-collection data processing was performed with RADAN 7 soft-
ware (Geophysical Survey Systems, Inc.) using the processing steps 
shown in Supplementary Fig. 8. Roots were detected as hyperbolic 
reflectors in the radar profiles. The aim of post-collection processing 
was to maximize the coherency of root reflectors and differentiate 
them from the soil background. After basic edits of radar profiles, we 
applied an exponential gain function to recover amplitude losses from 
geometric spreading and soil absorption of the radar impulse. Back-
ground removal was applied to filter out horizontal reflections resulting 
from the ground surface, soil horizons and bands of low-frequency 
noise. A Kirchhoff migration was used to decompose and compact 
the geometry of hyperbolic reflectors to their source points that are 
closer to the actual features. The Hilbert transform further collapsed 
the point-diffraction amplitudes and improved background clutter 
removal. After these processing techniques, GPR profiles were con-
verted to image files (Supplementary Fig. 8).

To estimate coarse-lateral-root biomass from GPR data, we applied 
an image-analysis technique to quantify root reflections and used 
root mass from soil cores for calibration23,48 (Supplementary Fig. 9).  
We selected and marked 16 points with a range of root biomass in each 
10 × 10-m plot. Eight points were selected on the basis of their distance 
to the nearest tree and the remainder were identified a priori with 
GPR to show either high (four points) or low (four points) incidence 



of reflections, encompassing the range of root biomass within the 
plot. Each point was scanned with the 1.6-GHz antenna in both x and 
y directions. The location of each point was electronically marked on 
the radar profile as the antenna was pulled over the centre of the point 
(Supplementary Fig. 9). After the collection of GPR profiles at each 
point, a large soil core (15 cm in diameter and 50 cm in length) was used 
to retrieve coarse roots (>2 mm) to a depth of 50 cm (Supplementary 
Fig. 9). Roots were oven-dried (65 °C for 72 h) for biomass. GPR profiles 
were processed and converted to image files. To develop the linear 
regression equation between root biomass and GPR amplitude, image 
files were cropped to 15-cm-wide sections in which the antenna was 
directly over the location of each point. Pixel intensity, a relative meas-
ure of how dark or light a pixel is at a greyscale of 0 (black) to 1 (white) 
(Supplementary Fig. 8), was used to differentiate root reflectors and 
background in each segment. We used an intensity threshold of >0.8 
to delineate roots with minimum illumination of unwanted clutter. We 
counted pixels with intensity higher than the threshold in each seg-
ment to a depth of 50 cm (hereafter, GPR index, pixels with threshold 
range). For each point, GPR amplitudes from two scanning directions 
were averaged. Root biomass retrieved from soil cores was then cor-
related to the GPR index for each EBP string (n = 48) to develop regres-
sion lines for plot-level biomass estimation (Supplementary Fig. 10). 
Plot-level image files were sequentially sectioned into 15-cm segments 
corresponding to the dimensions of the calibration core, hence a 10-m 
GPR profile yields 67 segments or unique observations. As most of the 
roots were constrained to the top 60 cm, we calculated the GPR index 
for each segment to a depth of 60 cm and assigned coordinates to each 
segment. We then applied the regression line to estimate root biomass 
for each segment. Ordinary kriging was used to interpolate plot-level 
coarse-lateral-root biomass on the basis of segment data and their 
coordinates. The final product was an average of estimates from the x 
and y scanning directions (Supplementary Figs. 1–4). The uncertainty 
of coarse-lateral-root biomass was estimated from the 95% confidence 
intervals of the regression lines (Extended Data Fig. 5, Supplementary 
Fig. 10). All image analyses were performed with the package EBImage 
in R 3.6.1 software49.

Surface-based GPR readily detects horizontal objects such as lat-
eral roots but is not applicable to estimate the biomass of vertical 
taproots23,48,50. Therefore, taproot biomass was estimated using an 
allometric equation derived from an empirical study that examined 
taproot biomass for dominant tree species across the southern Kruger19. 
We then developed a regression relationship between taproot biomass 
and tree DBH (R2 = 0.46, P < 0.0001) (Supplementary Fig. 5), which was 
subsequently applied to estimate taproot biomass in each 10 × 10-m 
plot on the basis of the vegetation survey data. The uncertainty of tap-
root biomass was estimated from the 95% confidence intervals of the 
regression line (Extended Data Fig. 5, Supplementary Fig. 5).

Aboveground biomass estimation
Woody biomass was estimated using LiDAR. We used a RIEGL VUX-1LR 
LiDAR unit integrated onto a DJI Matrice 600 Pro unoccupied aerial 
system to collect high-resolution airborne LiDAR data. We carried out 
the LiDAR survey during the middle of the wet season (that is, January) 
of 2020 when vegetation was at full leaf-on stage. The flight altitude was 
100 m above ground level, the flight speed was 8 m s−1 and the LiDAR 
scan rate was 78.1 lines s−1 (see Supplementary Table 4 for other param-
eter settings). The unoccupied aerial system maintained consistent 
elevation above the ground by using 30 × 30-m elevational data from 
the Shuttle Radar Topography Mission to adjust flight altitude in real 
time during the survey. All treatments in each string were surveyed with 
transects of identical heading to decrease the probability of introduc-
ing confounding variables and remote-sensing artefacts created by 
differing survey methodologies or LiDAR scan directions.

LiDAR is an active-remote-sensing technique that characterizes vegeta-
tion structure in three-dimensional space across large spatial extents. 

LiDAR sensors emit coherent laser pulses and measure the distance to 
the targets from the time delay of the returned laser pulses to the sensor. 
The location of each laser return is presented as a ‘point cloud’, which 
contains x, y and z location data from an embedded Global Positioning 
System–inertial measurement unit in the LiDAR system. Therefore, LiDAR 
data consist of a larger number of georeferenced points with elevation 
estimates and other radiometric attributes of the vegetation. We pro-
cessed the LiDAR data using Terrasolid software (Terrasolid Ltd.). First, 
LiDAR data from all the flight lines were denoised, ground-classified and 
matched together with an accuracy of around 2–3 cm. After noise-point 
removal, the average point density across all the sites was about 150 
points per m2. Points that penetrated the vegetation canopy and reached 
the ground surface were used to interpolate a digital terrain model. Then, 
all first-return points were compared with a triangulated irregular net-
work model of the ground to calculate the height above the ground sur-
face for each point. A gridded canopy height model (CHM) was derived 
at a 10-cm resolution by filling each cell with the maximum height above 
ground of any first-return points within the cell.

We used an object-based image-segmentation approach to estimate 
the aboveground woody biomass from the LiDAR-derived CHM21.  
The CHM was used to identify treetops using an algorithm based on a 
local maximum filter51; a dynamic moving-window approach was used 
to scan the CHM and if a given cell was found to be the highest within 
the window, it was tagged as a treetop. The height of each treetop was 
retrieved from the CHM. The algorithm was trained to ensure that trees 
with height > 5 m were accurately detected, which contribute most 
to the aboveground woody biomass. On the basis of this algorithm, 
the LiDAR-derived stem density (>5 m) was highly correlated with the 
field-measured stem density52 (R2 = 0.90) (Extended Data Fig. 8a). Next, 
tree crowns were segmented on the basis of a watershed algorithm 
guided by the locations of the treetops53. The area of each tree crown 
was calculated as the projection of the outlined crown on the ground 
surface. After computing the height and the crown area, a regression 
model developed specifically for savanna trees in Kruger was applied 
to generate aboveground biomass per individual tree21:

m β β A β A β Hlog ( ) = + ⁎ log ( ) + ⁎ (log ( )) + ⁎ log ( ) (3)10 0 1 10 obj 2 10 obj
2

3 10 obj

in which m is the tree biomass (kg), Aobj is the object-projected crown 
area (m2) and Hobj is the tree height (m). β0, β1, β2 and β3 are least-squares 
regression coefficients and are estimated as 0.115, 0.161, 0.252 and 1.73, 
respectively. In this study, we set a minimum height of 0.5 m to ensure 
that we detected only woody plants. We used the coordinates of the 
centre of each GPR plot (that is, 10 × 10 m) to set a buffer of radius 15 m 
to compute the aboveground woody biomass of each plot (Supplemen-
tary Figs. 1–4). The 30-m-diameter LiDAR plot allows for small location 
errors of the GPR plot and also matches the area obtained for developing 
the regression model as presented in equation (3) (ref. 21). Only woody 
plants with their centroids within the buffer were included. In addition, 
to cross-validate the object-based LiDAR biomass estimation, we also 
estimated aboveground woody biomass using species-specific allomet-
ric equations on the basis of DBH54, as well as plot-averaged pixel-based 
LiDAR calibration21 (see Extended Data Fig. 8 for more details). However, 
we chose to report object-based LiDAR biomass estimation in the main 
text, because the object-based method is better suited to open-canopy 
systems and provides a more accurate proxy for measured woody bio-
mass than allometric estimates21. All analyses were performed with the 
ForestTools55 and raster56 packages in R 3.6.1 software.

Grass biomass was estimated from the long-term monitoring of grass 
fuel loads for the EBP trial in Kruger (Extended Data Fig. 4) using a disc 
pasture meter calibrated for savannas in Kruger18. Before each fire, 100 
points in each treatment were sampled to obtain an estimate of the 
mean fuel load. However, because the grass fuel load for the unburned 
treatments was not available, we used disc pasture meter data from a 
wet-season fire treatment (that is, burning in April for every two years), 
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in which fires rarely successfully ignite and where tree cover is compa-
rable with that of the unburned treatment, as a surrogate. To validate 
this assumption, we compared grass-biomass estimates on the basis 
of field measurements with grass canopy height estimated from the 
LiDAR CHM described above (averaging canopy height for all pixels 
without a ‘tree’ of height > 0.5 m); we found a close correspondence 
between estimates (R2 = 0.38; see Extended Data Fig. 4), suggesting that 
the April B2 treatment provides a reasonable grass-biomass proxy for 
the unburned treatment. Grass biomass for each fire treatment across 
the Pretoriuskop landscape was estimated by averaging available data 
from 1982 to 2010, to capture interannual variation in grass-biomass 
accumulation, which can be substantial24.

Data analyses
We used the depth distribution of the GPR index (that is, pixel counts 
above the threshold) in percentage as an indicator to examine how 
changes in fire frequency would affect root biomass investment 
throughout the soil profile. We calculated the depth (cm) at which 
the cumulative GPR amplitude reached 50% for each fire treatment 
in each string to facilitate the comparison. Vegetation biomass was 
converted to C storage using a factor of 0.5, which is recommended 
by the Intergovernmental Panel on Climate Change (IPCC)57. The unit 
of ecosystem C storage was presented as Mg C ha−1.

We fitted linear mixed models using string as a random intercept and 
fire treatment as the fixed term to detect the significance of measured 
parameters. The package lmerTest58, which approximates the degrees 
of freedom using Satterthwaite’s method, was used to evaluate the 
significance of terms. We also fitted our data to ranked mixed mod-
els, in which fire treatments were ranked from low to high frequency. 
The results were generally consistent across the two approaches (see 
Extended Data Table 1). In addition, we used linear mixed models to 
examine the influence of tree cover and/or soil sand content on SOC 
storage, C3-derived and C4-derived SOC storage, belowground to above-
ground C storage and other parameters. The marginal R2 was calculated 
accordingly. All data analyses were performed using R 3.6.1 software.

Data and code availability
Data and code are available in the Dryad Digital Repository: https://doi.
org/10.5061/dryad.pg4f4qrr5. Source data are provided with this paper.
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Extended Data Fig. 1 | An example showing belowground to aboveground 
biomass allocation for resprouting Terminalia sericea. a, b, Five T. sericea 
individuals that have experienced annual burning were excavated in the 
Pretoriuskop landscape in Kruger National Park, South Africa. c, The difference 

between aboveground and belowground biomass and the ratio of 
belowground to aboveground biomass was 19.5. The box plots show medians 
(that is, 50th percentile), 25th and 75th percentiles, and the approximate 95% 
confidence interval for five replicates.
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Extended Data Fig. 2 | Maps showing the study site. Maps showing the 
locations of different fire treatments (that is, annual, triennial and unburned) 
examined in this study and located in each string (Fayi, Kambeni, Numbi and 

Shabeni) across the Pretoriuskop landscape at Kruger National Park, South 
Africa. Base map for South Africa modified from Natural Earth.



Extended Data Fig. 3 | Changes in SOC storage and soil δ13C across different 
fire treatments throughout the 60-cm soil column. Effects of fire treatments 
on total SOC storage (Mg C ha−1) (a), soil δ13C (‰) (b), C3-derived SOC storage  

(that is, from woody plants) (Mg C ha−1) (c) and C4-derived SOC storage  
(that is, from grasses) (Mg C ha−1) (d). Values are mean ± standard errors (n = 4).
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Extended Data Fig. 4 | Long-term monitoring of grass fuel loads and their 
correlation to LiDAR-derived mean grass height. a–c, Grass fuel loads 
(kg ha−1) for annual (a), triennial (b) and April B2 (that is, burning in April for 
every two years, as a proxy for unburned) (c) treatments from 1982 to 2009 for 
different strings at the Pretoriuskop landscape in Kruger National Park, South 
Africa. Disconnected lines indicate missing data for specific years. d, The 
correlation between averaged grass fuel loads from 1982 to 2009 and 

LiDAR-derived mean grass heights (m) (R2 = 0.38, P = 0.03). The mean grass 
height was calculated by averaging heights of pixels that range from 0.05 to 
0.5 m in the CHM derived from LiDAR. Please note especially that, in panel d, 
LiDAR-derived mean grass height was estimated from the unburned treatment 
itself, but that field-estimated grass fuel load was estimated from the April B2 
treatment as a proxy (as grass fuel load is not routinely measured for the 
unburned treatment).



Extended Data Fig. 5 | The uncertainty of coarse lateral and taproot 
biomass estimates. a, The uncertainty of coarse lateral and taproot biomass 
for each treatment replicate. Error bars indicate the 95% confidence interval 
for coarse lateral and taproot biomass estimates derived from fitting 
regression lines (see Supplementary Figs. 5 and 10). Coarse-lateral-root 
biomass estimates were significantly correlated with taproot biomass 
estimates (R2 = 0.75, P < 0.001). Letters F, K, N and S indicate Fayi, Kambeni, 

Numbi and Shabeni strings at the Pretoriuskop landscape in Kruger National 
Park, South Africa; letters A, T and U indicate annual, triennial and unburned 
treatments. b, c The uncertainty of (that is, lower bound, mean and upper 
bound) coarse lateral and taproot biomass across different fire treatments. 
The box plots show medians (that is, 50th percentile), 25th and 75th 
percentiles, and the 95% confidence interval for four replicates. Points in b and 
c indicate outliers.
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Extended Data Fig. 6 | Depth distribution of coarse-lateral-root biomass 
across fire treatments and soil sand content. a, Depth distribution of the 
GPR index (% in the number of pixels above the threshold for root detections) as 
an indicator of coarse-lateral-root biomass allocation throughout the soil 
column across different fire treatments at each string. Horizontal lines indicate 
the depth (cm) at which the GPR index reaches 50% of the total detections in the 
60-cm soil column. b, Effects of fire treatment on the depth distribution of 

coarse-lateral-root biomass (P = 0.51). The box plots show medians  
(that is, 50th percentile), 25th and 75th percentiles, and the 95% confidence 
interval for four replicates. c, The correlation between soil sand content (%) 
and depth distribution of coarse-lateral-root biomass (R2 = 0.61, P = 0.003).  
The regression line indicates the significant linear fit and the shaded bands 
illustrate the 95% confidence interval of the linear fit.



Extended Data Fig. 7 | The correlation between ratio of belowground to 
aboveground carbon storage and tree cover (%) (R2 = 0.83, P < 0.0001). 
The regression line indicates the significant linear fit and the shaded bands 
illustrate the 95% confidence interval of the linear fit.
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Extended Data Fig. 8 | The validation of the object-based method to 
estimate aboveground woody biomass. a, The correlation between 
LiDAR-derived stem density for trees with height > 5m (trees ha−1) and 
field-measured stem density (trees ha−1). The field-measured stem density was 
from ref. 52, which surveyed tree heights in eight 10-m-radius plots at each 
annual, triennial and unburned treatment in Kambeni, Numbi and Shabeni 
strings at the Pretoriuskop landscape in Kruger National Park, South Africa. 
The regression line indicates the significant linear fit and the shaded bands 
illustrate the 95% confidence interval of the linear fit. The dashed line indicates 
the 1:1 line. b, Differences in aboveground woody biomass between 
allometric-derived, object-based and plot-averaged estimates. The 

allometric-derived biomass estimation was on the basis of species-specific 
allometric equations developed in ref. 54, which predict aboveground woody 
biomass from DBH. This estimation was calculated for trees with DBH > 5 cm in 
each 10 × 10-m plot. The plot-averaged LiDAR biomass was estimated using an 
allometric equation derived from on-the-ground plot-level sampling relating 
aboveground woody biomass to LiDAR-derived canopy height and canopy area 
(aboveground woody biomass = −11.5 + 25.8 * canopy height * canopy area); 
please refer to ref. 21 for more details. The canopy height and canopy area were 
averaged across pixels with height > 0.5 m in each 30-m-radius plot. The box 
plots show medians (that is, 50th percentile), 25th and 75th percentiles, and the 
95% confidence interval for four replicates. Points in b indicate outliers.



Extended Data Table 1 | Results comparing the relative effect of different fire treatments on each component of ecosystem 
carbon storage from linear mixed-effects models using fire treatments as the fixed effect and string as a random effect

Results from linear mixed models were also compared with results from ranked mixed model using ranked fire treatments as the fixed effect and string as a random effect.
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