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Abstract

In high-throughput cancer studies, gene—environment interactions associated
with outcomes have important implications. Some commonly adopted identi-
fication methods do not respect the “main effect, interaction” hierarchical struc-
ture. In addition, they can be challenged by data contamination and/or long-
tailed distributions, which are not uncommon. In this article, robust methods
based on y-divergence and density power divergence are proposed to accommo-
date contaminated data/long-tailed distributions. A hierarchical sparse group
penalty is adopted for regularized estimation and selection and can identify
important gene-environment interactions and respect the “main effect, inter-
action” hierarchical structure. The proposed methods are implemented using
an effective group coordinate descent algorithm. Simulation shows that when
contamination occurs, the proposed methods can significantly outperform the
existing alternatives with more accurate identification. The proposed approach
is applied to the analysis of The Cancer Genome Atlas (TCGA) triple-negative
breast cancer data and Gene Environment Association Studies (GENEVA) Type
2 Diabetes data.
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FIGURE 1 (A)The comparison between the labels of TNBC data and cluster results based on the first two principal components of gene
variables, in which two colors of points represent different clusters and two shapes represent the labels of samples in this dataset. (B) An
example: the TPR for main effects and interactions using conventional logistic regression under different mislabel probabilities

1 | INTRODUCTION

In high-throughput cancer studies, gene-environment interactions (G-E) can have important implications beyond the
main effects of genetic (G) and environmental (E) risk factors. The G factors analyzed in the literature include gene
expressions, single nucleotide polymorphisms (SNPs), and other omics measurements, which are usually high dimen-
sional. The E factors are usually low-dimensional environmental exposures but may also include clinical measurements.
For G-E interaction analysis, the “main effect, interaction™ hierarchy, that is, if an interaction is identified as associated
with response, the corresponding main effects are automatically identified, has been developed in recent publications
and considered as biologically and statistically sensible and necessary (Bien et al., 2013; Wu et al., 2018; Zhu et al., 2014).
As simple penalizations are insufficient, several techniques respecting this hierarchy, such as hierarchical sparse group
penalizations, have been developed (Liu et al., 2013; Wu & Ma, 2018). For the identification of important interactions,
in general, there are two schemes. The first is to conduct marginal analysis, that is, analyzing multiple E factors, one
G factor, and their interactions at a time. The other is joint analysis, that is, modeling the joint effects of all E factors, G
factors, and interactions in a single model. The two types of analyses have different model assumptions and implications,
and both are popular in the current literature (Wu & Ma, 2018).

The extensively adopted likelihood-based and other related approaches can be challenged by data contamination, which
is not uncommon. Contamination can have different forms for categorical and continuous variables. Specifically, for cate-
gorical responses, there may be samples that belong to different classes present in the data, for example, a tumor instance
incorrectly labeled as normal (Shieh & Hung, 2009). In particular, mislabeled responses have been thought to exist in the
triple-negative breast cancer (TNBC) data (Lopes et al., 2018) studied in this article. The comparison between the labels of
TNBC data and clustering analysis may also suggest this (Figure 1A). As for continuous variables, deviation from normal
distribution is common for medical and biological data (Farcomeni & Ventura, 2010), and heavy tails may happen because
of biological “anomalies” as well as a mixture of distributions caused by subtypes (Adler et al., 1998; Shen & He, 2015).

Even a single contaminated observation can lead to biased estimation and false marker identification (Figure 1B).
To conduct contamination resistant G-E interaction analysis, for example, a robust marginal smoothed penalized rank
method has been proposed (Shi et al., 2014). And for joint analysis, a rank-based regression analysis making no strin-
gent distributional assumptions on random error, has been conducted (Wu et al., 2015). A penalized robust approach to
dissect G-E interactions based on the least absolute deviation loss for prognosis data has been proposed (Wu et al., 2018).
Robust divergence, such as density power divergence (Basu et al., 1998) and y-divergence (Jones et al., 2001), is an effective
technique to deal with contaminated data. In low-dimensional settings, robustness properties of these divergences have
been well studied (Fujisawa & Eguchi, 2008; Ghosh & Basu, 2016). Under high-dimensional settings, density power diver-
gence has also been adopted to model the regulatory relationships between gene expression and copy number alterations
(Zang et al., 2017) and demonstrates better robustness than alternatives. However, our literature survey suggests that the
application of robust divergence to interaction analysis is still very limited.
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In this article, we develop a penalized robust divergence approach for identifying G-E interactions in high-dimensional
genetic studies, which has the following desirable features. First, robust losses based on density power divergence and
y-divergence are proposed to accommodate contaminated data without assuming contamination distribution and pro-
portion. Our literature search suggests that even for simple, low-dimensional settings, there is no dominating approach
(Daszykowski et al., 2007). In addition, the applications of robust analysis techniques to high-dimensional genetic studies
remain limited (Farcomeni & Ventura, 2010). As a result, it is of interest to develop and implement new robust analysis
approaches to the present setting. Second, a hierarchical sparse group penalization is adopted for regularized estima-
tion and marker selection to achieve the “main effect, interaction” hierarchy, which is not only biologically sensible but
may also assist the identification of interactions by main effects and vice versa. Third, we comprehensively conduct both
marginal and joint analyses, using similar techniques to achieve the much desired methodological coherence. Fourth,
generalized linear models (GLM) are considered to accommodate a variety of responses especially including continuous
and binary variables. Overall, this work provides a practical and useful tool for the G-E interaction analysis.

2 | METHODOLOGY

Assume n independent samples {(y;, X;, Z;),i = 1, ..., n}, where y; can be continuous, binary, and so on, ; = (x;, ..., xiq)]r
are g-dimensional clinical/environmental risk factors, and z; = (z;y, ..., 2; p ) are p-dimensional genetic markers. Denote
w;fj, = zij(l,x?) and w; = (wfl, ,w?;)T. Denote Y as the n-vector composed of y{s, and X, Wj, and W as the matrices
composed of /s, w/ ;s,and w]s, respectively.

In marginal analysis, we analyze multiple E factors, one G factor, and their interactions at a time. The covariate effect can
be written as Egzl OxXik + §jzij + EE:l BrjXirzij = 0Tx; + b}rw,;j, where 8 = (6,,...,6,)" represents all main E effects,
b i =, ﬂj,r)T represents the main effect and interactions corresponding to the jth G variable, and B i = (B1j»-sBq j)T. In
joint analysis, we model the joint effects of all E factors, G factors, and interactions at a time. The overall covariate effect
can be written as ] €x; + Ele(gjzij +30, Bijxixzij) = 07 + Ele b}rw,;j. Distinctions between the two types
of analysis and their individual implications have been well discussed in the literature and will not be reiterated here (Wu
& Ma, 2018).

2.1 | Marginal analysis
Consider the jth marginal model for the jth G variable and its G-E interactions. The empirical versions of the density

power divergence (Basu et al., 1998) (denoted as DPD for simplicity) and y-divergence (Jones et al., 2001) loss functions,
ignoring terms independent of the unknown parameters, are

1+ 1
¢ppp(0,b;) = - Z [/ flx;,w;j36,b) dy — (1 + E)f(yilxi,wij;e, bj)a ,
i=1

n . x’w;e,b 14
£,0,b) = — £ (vilx:, wij;6,b;)

TS (f FOlx,wij;8,b)1dy)

y/Q+y)’

where f(y;|x;,w;;;6,b)) is the conditional probability density function of y; given x; and w;;. The parameters a > 0 and
y > 0 balance robustness and efficiency, with a larger value corresponding to more robust but less efficient estimation. To
accommodate multiple types of responses, we consider the GLM:

yi(xfﬂ + w?}bj) - q:(x;frﬂ + w;‘;bj)

filx;,w;j;6,b;) = c(y;) exp % ;

where @(-) is twice continuously differentiable with ¢'’(-) always positive and ¢ is the dispersion parameter. ¢ =1in a
logistic model, and ¢ is usually unknown in a linear model.
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Adopting the hierarchical sparse group penalty, we propose the penalized robust objective function for marginal anal-
ysis:

q+1

Q(,b)) = ¢(8,b)) + p(lIbjll; Vg +14,a) + Y p(Ibjl; 4, a), (6)
k=2

where f(ﬂ,bj) is £ppp(6, bj) or ﬁ’},(e,bj), and p(t;4,a) = /lfoltl(l — ﬁ)erx is the minimax concave penalty (MCP)

(Zhang, 2010) with first-order derivative p’(t) = A(1 — ﬁ)Jr fora > 1andt > 0. A is a data-based tuning parameter, and
a is the regularization parameter. The same tuning parameters are used in all p marginal models to ensure that all G
variables are analyzed on a fair ground.

Rationale. The divergence-based robust goodness-of-fit measures have been developed under low-dimensional set-
tings. Intuitively, they down-weigh the “influence” of abnormal observations and hence achieve robustness (also see
Remark 1). Theoretical and numerical studies under low-dimensional settings show that they can be advantageous
over other robust methods under certain scenarios and outperform nonrobust approaches with the presence of data
contamination/long-tailed distributions (Basu et al., 1998; Fujisawa & Eguchi, 2008; Ghosh & Basu, 2016; Hung et al.,
2018). We note that the data settings considered here are significantly more challenging than the low-dimensional set-
tings. The first term of the penalty determines whether bj = 0, namely the jth G variable has no effect at all. If b; # 0, the
second term penalizes the interaction terms to determine either the interaction effects are nonzero. The sum of these two
terms can identify important G variables as well as important interactions and can respect the “main effect, interaction”
hierarchy. Interactions and main G effects corresponding to the nonzero components of b’s are considered as important.
The estimation-based identification strategy, which has been extensively adopted in joint analysis (Kim et al., 2017; Liu
et al., 2013) but only a few marginal analysis (Bien et al., 2013), is notably different from the significance-based one. It is
also noted that selection of E variables is not conducted, as in many studies, E variables are “preselected” and are all of
interest. Penalty can also be revised to conduct E variable selection if needed.

2.2 | Joint analysis

The empirical versions of the DPD and y-divergence loss functions, respectively, are
n
1 1
¢pep(8,b) = —— > [/ flxi,wi;6,b)**dy — (1 + E)f(}’ri'xi,wi;e,b)a ,
i=1

filx;, w;;0,b)
(.[ Flx, w;;0,b)+rdy

where b = (b{, ,bg)T’ and other notations are similar to those in marginal analysis.
The penalized robust objective function is

1 n
¢,0.b) = “n Zf )r/(1+r)’

P p g+l
Q®,b) = £©,b)+ Y p(lIbjll; Vg +12,a) + Y, " plby;l; 2, a), )
Jj=1 Jj=1k=2

where £(8,b) is £ppp(8,b) or £,(6,b).

It may seem that the forms of the objective functions in the marginal and joint analyses are very similar, but the two
paradigms are significantly different in multiple aspects. The prominent feature of marginal analysis is that, in each indi-
vidual analysis, the number of variables including interactions and main effects is considerably smaller than the sample
size, and it is still highly popular in biomedical studies because of its computational simplicity. On the contrary, joint anal-
ysis can better reflect the fact that molecular mechanisms under complex diseases involve multiple G variables and their
interactions, while the dimensionality, complexity, and computational cost are much higher than with marginal analysis.
Joint analysis has been popular in statistical literature, and its popularity is increasing fast in recent biomedical studies.

To our best knowledge, this work is the first to adopt DPD and y-divergence in G-E interaction analysis to accommodate
contaminated data with multiple types of responses. In addition, in previous studies, the frameworks of marginal and joint
analyses have usually been significantly different (incoherent). In contrast, the proposed marginal and joint analyses
naturally fall in the same penalized estimation and selection paradigms, which also simplify computational development.
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ALGORITHM 1 Group Coordinate Descent Algorithm for Marginal Analysis

Input: Response Y, predictors X, W ;, robust parameters (y, «), and tuning parameters (a, 1).
Output: Regression coefficients @ and b;.
Initialization: m = 0,¢ = 1073, =0 and bi.m =0.
Repeat:
(i) Update 8“1 using gradient descent and Armijo search with b fixed at bf;");
(ii) Update b?"“) using gradient descent and Armijo search with 0 fixed at 80+1);
Until: |9+ — gtm)||2 4 ||b§"’+” - bﬂ’"’ug <.

Return: 8" and bg.'"m at convergence.

ALGORITHM 2 Group Coordinate Descent Algorithm for Joint Analysis

Input: Response Y, predictors X, W, robust parameters (y, a), and tuning parameters (a, A).
Output: Regression coefficients 8 and b.
Initialization: m = 0, ¢ = 10—, and 8 and b using group LASSO.
Repeat:
(i) Update 8™+ using gradient descent and Armijo search with b fixed at b,
(ii) For j =1, ..., p;
Update bf;"“) using gradient descent and Armijo search with 8, by(k = 1,..., j — 1) and by(I = j + 1, ..., p) fixed at 6+" b"*" and
bf’"), respectively;
Until: |8+ — 67|12 4 ||p™+V) — b2 < 2.

Return: 8"+ and b"*1 at convergence.

Remark1. Robustness of the DPD and y-divergence methods benefits from down-weighed outliers in estimating equations.
It is also noted that the two divergence methods have different behaviors in estimating parameters. Take linear regression
under joint analysis as an example. When the hierarchical sparse group penalty is not considered, the two robust methods
have the same estimating equation for the regression coefficients (6, b):

&T : whHT§e,b) =0,
where

(Y —XT0 - WTb)’

202

5(6,b) = exps — O -XTe —wTh),

t =y or a, o2 is the variance of the response, @ is the componentwise product, and the operations are elementwise except
for the matrix-vector multiplication of X760 and WTb. It can be seen that weights of instances with large standardized
residuals are reduced. And the two divergence methods are connected via the equal weight function when y = a. However,
the resulted estimating equations for the dispersion parameter are different in the bias correction scheme. Specifically,
the DPD method corrects bias by subtracting a bias correction term, while the y-divergence method uses the expanded

2
parameter :: (see (A.6) in the Appendix). As for logistic regression, more discussion can be found in the previous studies

(Hung et al., 2018). A consequence is that the parameter estimation and variable selection of the two methods differ. In
addition, it is difficult (or impossible) to conclude that one divergence dominates the other under all settings. So when
analyzing data in practice, it is sensible to comprehensively consider both divergence.

2.3 | Computation

For marginal analysis, we minimize objective function (1) using the group coordinate descent algorithm summarized in
Algorithm 1. For joint analysis, the algorithm minimizing objective function (2) is summarized in Algorithm 2.
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MCP contains tuning parameters A and regularization parameter a. We set a = 3 following previous studies (Zhang,
2010). The robust parameter ¥y and a balance robustness and estimation efficiency. In the literature, there is a lack of
consensus on the selection of y and a. In practice, we search for the optimal values of (4, y, or a) jointly using the Bayesian
information criterion. In our numerical study, y and « are selected from the grid {0.01,0.1, 0.3, 0.5, 0.8, 1, 1.5}. The proposed
algorithm is computationally affordable. For instance, the joint and marginal analysis of one simulated dataset with n =
500,g = 5, p = 1,000 under the logistic model takes about 15 and 10 min, respectively, on a regular PC.

Remark 2. The proposed algorithm borrows strength from the existing framework of group coordinate descent, with the
difference that the observation weights derived from the robust divergence need to be updated at each iteration (see (A.4)
in the Appendix). For both joint and marginal analyses, the key are Step (i) and Step (ii). The details of these two steps
under linear regression for continuous data and logistic regression for binary data are provided in the Appendix. Under
some distributions, the dispersion parameter ¢ needs to be estimated. It can be achieved by solving the estimating equation
with the bisection method, which is described in the Appendix. Convergence is achieved in all of our numerical studies
and real data analysis within 50 overall iterations.

3 | SIMULATION STUDIES

‘We adopt two strategies. First, we simulate data from parametric distributions, which has been done in a large number
of published studies. Second, we simulate data based on the TNBC data described in Section 4.1 to closely mimic practi-
cal data.

Under the first strategy, we first simulate five normally distributed E risk factors. The correlation between the ith and jth
E factors is p/" =/ with p = 0.2. Then two E variables are dichotomized at 0, so there are three continuous and two binary
E variables. For G variables, we simulate from 1000-dimensional multivariate normal distribution N(0, Z). Consider two
structures of the covariance matrix X = (o; j)1<i j<p- The first structure is autoregressive correlation (AR) given by o; j =
p”‘j | with p = 0.25and 0.75 (denoted as AR1 and AR2, respectively). The second structure is banded correlation. Here two
scenarios are considered. The first scenario is given by g;; = 0.3 if |i — j| = 1, and O otherwise. Under the second scenario,
0jj =0.61if |i — j| =1, 0.3if |i — j| = 2, and 0 otherwise. There are a total of 1003 main effects and 5000 interactions. A
total of 35 nonzero effects are set, including five main E effects, 10 main G effects, and 20 interactions. The sample size is
set as n = 200 or 400 under linear regression and n = 300 or 500 under logistic regression. We note that it is commonly
recognized that logistic regression is “more difficult” than linear regression, thus demanding larger sample size, which
can be observed similarly in Fujisawa and Eguchi (2008) and Hung et al. (2018). More importantly, the goal of varying
sample sizes is to examine, for a specific model, the dependence on sample size. It is not our goal to compare linear
against logistic regression. Under the second strategy, we sample 1000-dimensional gene expression variables and two-
dimensional environmental variables from the TNBC data. There are a total of 22 nonzero effects: two main E effects, 10
main G effects, and 10 interactions, and the sample size is set as 500.

The nonzero regression coefficients are all generated from Unif[0.2, 0.8]. All simulations are based on 100 replicates.
Linear regression for continuous responses and logistic regression for binary responses are considered.

Under linear regression for continuous responses, three scenarios for the random error distributions are considered: (S0)
standard normal distribution, (S1) 0.6N(0, 1) + 0.4logN(0, 1) distribution, and (S2) t-distribution with degree of freedom 5.
For comparison, we consider two alternatives: least squares regression (LS) and least absolute deviation regression (LAD)
with the sparse group penalty.

Under logistic regression for binary responses, the response y; ~ Bernoulli{P(y; = 1|x;,w;)}, where P(y; = 1|x;,w;) =
Nio{l — w(x;, w;; 6,b)} + {1 — n;1 }(x;, w;; 0, b), the mislabel probability of the ith sample is ;0 = P(y; = 1|yjpo = 0, %, w;)
exp(x! 8+w]b)
ity: (SO) ;o = m;; = 0; (81) ; = my and n;; = my; (S2) B;y = M, and 9, = my + (m; — my)7(x;, w;;6,b). Under (S0), all
response labels are correct. (S1) has constant mislabel probabilities. (S2) has mislabel probabilities dependent on x, where
the mislabel probabilities of samples with higher probabilities of success are higher. We set m; = 0.05 and m; = 0.2. For
comparison, we also consider two alternatives: logistic regression and robust constant logistic regression (Copas, 1988)
with the sparse group penalty, which are referred to “logistic” and “constant,” respectively. We acknowledge that for both
types of response, there are other alternatives. The aforementioned comparisons can be the most relevant and explicitly

demonstrate benefits of the proposed robustness.

or niy = P(y; = 0lyio = 1,x;,w;), and 7(x;,w;;6,b) = . We consider three scenarios of mislabel probabil-
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3.1 | Marginal analysis

First, a sequence of A is considered, and identification performance is evaluated at each value. Then the AUC (area
under the receiver operating characteristic curve) is computed. Besides, the partial AUC (Walter, 2005) is also consid-
ered, where we consider the AUC with 0 and 0.3/0.5 marking the range of the false positive rate (FPR) value (denoted by
PAUCI1/pAUC?2). We also consider Top20 (Top40), defined as the number of true positives when 20 (40) variables (main
effects or interactions) are identified.

Representative results are presented in Figures 2-4 (for simplicity, only AUC, pAUC2, Top20 are shown), and additional
results are in presented in the Supporting Information. (Figures S1-S3 and Tables S1-S7). When data are not contaminated,
LS and logistic regression have the best performance (Tables S3 and S6), as expected. But with contamination, the proposed
methods significantly outperform the alternatives. For example, when n = 500 for binary response under S2 and Bandl
correlation structure (Table S5), the mean AUC values of interaction identification are 0.825 (logistic), 0.833 (constant),
0.937 (DPD), and 0.937 (y), and the mean (pAUCI, pAUC2) values are (0.708, 0.733) (logistic), (0.726, 0.754) (constant),
(0.844, 0.879) (DPD), and (0.840, 0.876) (¥). In addition, the mean (Top20, Top40) values are (6.1, 8.1) (logistic), (6.4, 8.3)
(constant), (9.9, 12.2) (DPD), and (9.8, 12.3) (¥).

The performance of the proposed and alternative methods is further examined with selected tunings. Representative
results are provided in Table S8 (Supporting Information). The true positive rate (TPR) and FPR values show the competi-
tive performance of the proposed methods with Bayesian information criterion (BIC)-selected tunings. For instance, with
interaction effects under linear regression and S2, the (TPR, FPR) values are (0.663, 0.073) for LS, (0.692, 0.017) for LAD,
(0.806, 0.014) for DPD, and (0.828, 0.016) for y-divergence.

3.2 | Joint analysis
The TPR and FPR values for the main and interactions effects at the optimal tuning parameter values are used to evaluate

identification accuracy. Representative results are provided in Tables 1-3, and additional results are summarized in the
Supporting Information (Tables S9-S12).
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TABLE 1 Simulation: Mean (SD) of TPR and FPR for main effects and interactions under logistic regression and S0, joint analysis

Main effect Interaction
Correlation n Method TPR FPR TPR FPR
AR1 300 logistic 0.736(0.127) 0.068(0.034) 0.855(0.132) 0.067(0.030)
constant 0.777(0.112) 0.097(0.040) 0.843(0.104) 0.095(0.036)
DPD 0.732(0.120) 0.084(0.037) 0.798(0.121) 0.082(0.033)
¥ 0.733(0.121) 0.084(0.034) 0.795 (0.119) 0.083(0.031)
500 logistic 0.894(0.090) 0.078(0.047) 0.958(0.078) 0.079(0.039)
constant 0.907(0.074) 0.096(0.046) 0.961(0.034) 0.092 (0.043)
DPD 0.895(0.083) 0.081(0.046) 0.956(0.045) 0.091(0.041)
¥ 0.887(0.090) 0.060 (0.061) 0.953 (0.055) 0.072(0.042)
AR2 300 logistic 0.705(0.127) 0.060(0.033) 0.786 (0.154) 0.061(0.027)
constant 0.719(0.120) 0.091(0.033) 0.797(0.124) 0.090 (0.030)
DPD 0.670(0.128) 0.077(0.041) 0.744.(0.141) 0.077(0.039)
¥ 0.677(0.124) 0.079(0.032) 0.750(0.143) 0.077(0.029)
500 logistic 0.870(0.094) 0.067(0.047) 0.946 (0.091) 0.079(0.040)
constant 0.875(0.086) 0.086(0.049) 0.941(0.062) 0.073(0.045)
DPD 0.860 (0.088) 0.071(0.041) 0.930(0.060) 0.089 (0.042)
¥ 0.867(0.089) 0.068(0.037) 0.935(0.072) 0.083(0.031)
Bandl 300 logistic 0.789(0.123) 0.068(0.034) 0.827(0.148) 0.068(0.028)
constant 0.777(0.103) 0.098(0.036) 0.854.(0.106) 0.096(0.035)
DPD 0.736(0.108) 0.084(0.037) 0.810(0.120) 0.083(0.034)
¥ 0.744(0.105) 0.085(0.030) 0.814(0.116) 0.084.(0.028)
500 logistic 0.904(0.087) 0.088 (0.057) 0.931(0.076) 0.079(0.045)
constant 0.918 (0.067) 0.094.(0.050) 0.964 (0.039) 0.093 (0.044)
DPD 0.915(0.07) 0.091(0.053) 0.960 (0.043) 0.095(0.050)
¥ 0.913(0.077) 0.086(0.050) 0.942 (0.070) 0.072(0.036)
Band2 300 logistic 0.728(0.120) 0.066(0.031) 0.776 (0.129) 0.086 (0.028)
constant 0.745(0.108) 0.097(0.035) 0.813(0.109) 0.095(0.033)
DPD 0.705(0.110) 0.083 (0.035) 0.776 (0.117) 0.082(0.034)
¥ 0.707(0.108) 0.084(0.031) 0.773 (0.108) 0.083(0.028)
500 logistic 0.897(0.104) 0.074(0.053) 0.946(0.093) 0.085(0.044)
constant 0.906(0.075) 0.093 (0.045) 0.959(0.045) 0.092 (0.042)
DPD 0.899(0.080) 0.091(0.052) 0.956(0.049) 0.095(0.052)
¥ 0.889(0.088) 0.079(0.057) 0.949 (0.075) 0.089 (0.038)

Simulation suggests that, when errors have a normal distribution for continuous responses or there is no mislabeled data
for binary responses (Tables 1 and S9), regular likelihood-based estimation has overall good performance. For examples,
when n = 300 for binary response under the AR1 correlation structure, the mean TPR values of interaction identification
are 0.855 (logistic), 0.843 (constant), 0.798 (DPD), and 0.795 (y). When n = 200 for continuous response under the AR(0.25)
correlation structure, the mean TPR values of main effect identification are 0.947 (LS), 0.949 (LAD), 0.913 (DPD), and 0.923
(7). However, if errors have a long tail for continuous responses or binary responses are mislabeled, the proposed robust
methods outperform the alternatives (results are summarized in Tables 2, 3, S10, S11, 812). For instance, when n = 400 for
the continuous response under S1 and the Bandl correlation structure, the mean TPR values of interaction identification
are 0.822(LS), 0.845(LAD), 0.997(DPD), and 0.999(y). In higher dimensional case, these all methods can also be used,
but they become progressively less effective. Therefore, in practice, the prescreening is commonly conducted to reduce
dimensionality to improve performances.
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TABLE 2 Simulation: Mean (SD) of TPR and FPR for main effects and interactions under logistic regression and Sl, joint analysis

Main effect Interaction
Correlation n Method TPR FPR TPR FPR
AR1 300 logistic 0.289(0.137) 0.007(0.015) 0.300(0.146) 0.008(0.016)
constant 0.358(0.134) 0.015(0.033) 0.370(0.155) 0.017(0.033)
DPD 0.535(0.140) 0.063(0.050) 0.526(0.160) 0.063(0.046)
y 0.532(0.143) 0.062(0.049) 0.528(0.156) 0.063 (0.046)
500 logistic 0.535(0.132) 0.009(0.027) 0.560 (0.142) 0.011(0.027)
constant 0.656(0.165) 0.034(0.097) 0.668 (0.172) 0.032(0.102)
DPD 0.775(0.127) 0.080(0.106) 0.784(0.148) 0.081(0.099)
y 0.777(0.139) 0.071(0.068) 0.794(0.156) 0.083 (0.065)
AR2 300 logistic 0.226(0.116) 0.007(0.016) 0.242(0.138) 0.008(0.015)
constant 0.292(0.128) 0.014(0.030) 0.307(0.151) 0.014(0.031)
DPD 0.464(0.151) 0.088 (0.040) 0.458(0.160) 0.086(0.039)
y 0.451(0.128) 0.090(0.035) 0.511(0.164) 0.087(0.031)
500 logistic 0.434(0.142) 0.009(0.022) 0.450(0.155) 0.011(0.022)
constant 0.610(0.136) 0.035(0.057) 0.580(0.139) 0.031(0.053)
DPD 0.736(0.126) 0.091(0.045) 0.748(0.127) 0.089(0.043)
y 0.728(0.141) 0.084(0.031) 0.756 (0.145) 0.092(0.034)
Bandl 300 logistic 0.300(0.122) 0.007(0.016) 0.324(0.146) 0.008(0.017)
constant 0.366(0.147) 0.015(0.035) 0.390(0.169) 0.016(0.035)
DPD 0.534(0.159) 0.062(0.046) 0.539(0.169) 0.062(0.042)
y 0.531(0.160) 0.061(0.044) 0.542(0.171) 0.062(0.042)
500 logistic 0.536/(0.121) 0.008(0.024) 0.556(0.137) 0.011(0.022)
constant 0.661(0.158) 0.033(0.096) 0.668 (0.156) 0.032(0.099)
DPD 0.769 (0.132) 0.077(0.105) 0.770(0.135) 0.078(0.102)
y 0.762(0.141) 0.059(0.063) 0.774(0.150) 0.071(0.064)
Band2 300 logistic 0.262(0.132) 0.007(0.015) 0.275(0.153) 0.008(0.016)
constant 0.344(0.133) 0.014(0.032) 0.360(0.151) 0.016(0.033)
DPD 0.506(0.153) 0.090(0.039) 0.498(0.170) 0.088(0.036)
y 0.492(0.148) 0.094(0.033) 0.544(0.177) 0.090(0.028)
500 logistic 0.490(0.145) 0.008(0.023) 0.508(0.151) 0.011(0.024)
constant 0.530(0.145) 0.018 (0.032) 0.521(0.165) 0.023(0.042)
DPD 0.774(0.121) 0.099(0.053) 0.786(0.120) 0.093 (0.051)
y 0.769(0.124) 0.087(0.035) 0.792(0.131) 0.097(0.038)
4 | DATA ANALYSIS
4.1 | Triple-negative breast cancer data

TNBC is the most heterogeneous group of breast cancer, and patients have a significantly shorter survival after the first
metastatic event than those with nontriple-negative cancers. The Cancer Genome Atlas (TCGA) (https://cancergenome.
nih.gov/) data on TNBC contains a total of 1222 samples (1102 with primary solid tumors, seven with metastases, and 113
with normal breast tissues) as well as 57,251 gene expression measurements and seven environmental/clinical variables.
The response variable is the TNBC status, which is a binary variable. The data can be downloaded using the R package
brea.data (https://github.com/averissimo/brca.data/releases/download/1.0/brca.data_1.0.tar.gz).

TNBC is characterized by a lack of expression of estrogen receptor (ER), progesterone receptor (PR), and human
epidermal growth factor receptor type 2 (HER2) (Foulkes et al., 2010). Non-TNBC patients have at least one of them
positive. It has been reported that up to 20% of immunohistochemical (IHC) ER and PR determinations may be inaccurate
(Hammond et al., 2010). Distinct HER?2 labels can be provided by three available sources, which are the HER2 (IHC)
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TABLE 3 Simulation: Mean (SD) of TPR and FPR for main effects and interactions under logistic regression and S2, joint analysis

Main effect Interaction
Correlation n Method TPR FPR TPR FPR
AR1 300 logistic 0.250(0.123) 0.007(0.016) 0.310(0.130) 0.008(0.015)
constant 0.291(0.135) 0.018(0.034) 0.349(0.142) 0.018 (0.035)
DPD 0.473(0.145) 0.096(0.039) 0.505(0.140) 0.093(0.037)
¥ 0.480(0.148) 0.096(0.033) 0.510(0.142) 0.093 (0.030)
500 logistic 0.489 (0.127) 0.009(0.022) 0.560 (0.124) 0.011(0.022)
constant 0.575(0.138) 0.033(0.061) 0.636(0.132) 0.029 (0.061)
DPD 0.710(0.125) 0.079 (0.098) 0.751(0.121) 0.079(0.093)
¥ 0.715(0.119) 0.078(0.079) 0.749 (0.112) 0.080(0.078)
AR2 300 logistic 0.200(0.127) 0.006(0.014) 0.248 (0.154) 0.007(0.014)
constant 0.254(0.115) 0.015(0.034) 0.311(0.147) 0.015(0.033)
DPD 0.407(0.152) 0.089(0.038) 0.450(0.151) 0.086(0.035)
¥ 0.423(0.154) 0.091(0.032) 0.458 (0.146) 0.088(0.027)
500 logistic 0.372(0.137) 0.008(0.023) 0.436 (0.157) 0.010(0.022)
constant 0.478(0.143) 0.091(0.046) 0.440(0.107) 0.055(0.013)
DPD 0.635(0.162) 0.085(0.042) 0.670(0.159) 0.091(0.042)
¥ 0.627(0.163) 0.079 (0.047) 0.664 (0.158) 0.085(0.037)
Bandl 300 logistic 0.239(0.110) 0.007(0.017) 0.312(0.126) 0.008(0.017)
constant 0.309(0.137) 0.018(0.038) 0.374(0.155) 0.019 (0.038)
DPD 0.470 (0.152) 0.096(0.041) 0.499 (0.153) 0.093(0.039)
¥ 0.483 (0.149) 0.096(0.036) 0.506(0.144) 0.093(0.031)
500 logistic 0.484(0.140) 0.009 (0.021) 0.547(0.122) 0.011(0.021)
constant 0.598(0.145) 0.034.(0.063) 0.648(0.133) 0.031(0.065)
DPD 0.760 (0.115) 0.090(0.043) 0.780(0.111) 0.093(0.043)
¥ 0.752(0.124) 0.074(0.097) 0.784.(0.106) 0.086(0.097)
Band2 300 logistic 0.235(0.116) 0.007(0.016) 0.295(0.144) 0.008 (0.016)
constant 0.304.(0.140) 0.016(0.033) 0.371(0.154) 0.017(0.033)
DPD 0.460(0.140) 0.093 (0.040) 0.504.(0.146) 0.090(0.037)
¥ 0.466(0.143) 0.095(0.036) 0.510 (0.140) 0.092(0.032)
500 logistic 0.424(0.129) 0.009(0.026) 0.392(0.125) 0.011(0.026)
constant 0.526(0.135) 0.098(0.038) 0.430(0.095) 0.053(0.014)
DPD 0.690 (0.144) 0.092(0.040) 0.708(0.133) 0.097(0.036)
¥ 0.706 (0.163) 0.084(0.056) 0.696(0.152) 0.091(0.042)

level, HER2 (IHC) status, and HER2 (fluorescence in situ hybridization, FISH) (Lopes et al., 2018; Wolff et al., 2007),
sometimes leading to conflict and mislabeling,

Following published studies, 1102 samples with primary solid tumors and 19,688 gene expression measurements are
analyzed. For environmental/clinical variables, age (normalized) and race (BLACK OR AFRICAN AMERICAN coded
as 1, and other races coded as 0) are analyzed (Lopes et al., 2018). When matching the clinical/environmental data with
genetic data, complete records are available for 924 samples. Log-transformed gene expression data are normalized to have
zero means and unit variances. The prescreening is further conducted, and the top 2000 genes are kept.

41.1 | Marginal analysis

The proposed methods based on DPD and y-divergence identify 35 main gene effects, 59 G-E interactions, and 32 main
gene effects, 51 G-E interactions, respectively. Detailed estimation results are provided in Table 4.

Among the genes identified by the proposed methods, some findings have also been reported in previous publications.
For instance, it has been reported that the transcription factor BCL11A is overexpressed in TNBC including basal-like breast
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TABLE 4 Marginal analysis of TNBC: Identified main effects and interactions
DPD ¥
Interaction Interaction
Gene Main Age Race Main Age Race
AGR2 —-0.2511 —0.0016 —0.0675 —0.0969 —0.0035 —0.0245
AGR3 —0.2557 —0.0050 —0.0643 —0.0987 —0.0047 —0.0233
AR —-0.2311 —0.0616 —0.0882 —0.0198
B3GNT5 0.2437 —0.0176 0.0568 0.0939 —0.0045 0.0217
BCLIIA 0.2348 —0.0136 0.0632 0.0903 —0.0017 0.0230
C5AR2 —0.2230 —0.0114 —0.0563
CAl12 —0.2645 —0.0042 —0.0760 —0.1006 —0.0011 —0.0252
CHODL 0.2678 —0.0898 0.1058 —0.0346
CLCN4 0.2265 —0.0108 0.0621 0.0871 —0.0020 0.0234
CXXC5 —0.2451 —0.0849 —0.0950 —0.0316
DLI1 —0.2381 —0.0879
EN1 0.2382 —0.0205 0.0765 0.0917 —0.0063 0.0275
ESR1 —0.2430 —0.0515 —0.0577 —0.0934 —0.0248 —0.0204
FAMIT71A1 0.2309 —0.0045 0.0620
FBP1 —0.2292 —0.0712 —0.0881 —0.0022 —0.0257
FOXA1 —0.3175 —0.0220 —0.1258 —0.1161 —0.0018 —0.0382
FOXC1 0.2413 —0.0192 0.0725 0.0925 —0.0046 0.0266
GATA3 —0.2701 —0.0037 —0.0850 —0.1028 —0.0290
HAPLN3 0.2280 —0.0124 0.0612 0.0875 —0.0018 0.0217
HORMADI1 0.2323 —0.0142 0.0715 0.0894 —0.0041 0.0259
MLPH —0.2781 —0.0042 —0.0904 —0.1046 —0.0300
PPPIR14C 0.2403 —0.0011 0.0656 0.0996 —0.0088 0.0146
PRRI15 —0.2628 —0.0860 —0.1018 —0.0020 —0.0319
PSAT1 0.2317 —0.0113 0.0540 0.0892 —0.0019 0.0194
RGMA 0.2254 —0.0028 0.0702
RHOB —0.2401 —0.0028 —0.0842 —0.0927 —0.0286
ROPN1 0.2301 —0.0183 0.0650 0.0885 —0.0044 0.0234
SLC44A4 —0.2500 —0.0774 —0.0961 —0.0273
SLC7AR —0.2265 —0.0562 —0.0863 —0.0174
SPDEF —0.2657 —0.1047 —0.1030 —0.0013 —0.0393
SRSF12 0.2913 —0.0927 0.1156 —0.0389
TBCID9 —0.2515 —0.0764 —0.0964 —0.0267
TFF3 —0.2607 —0.0011 —0.1011 —0.1013 —0.0370
UGT8 0.2381 —0.0185 0.0654 0.0918 —0.0041 0.0239
VGLL1 0.2461 —0.0302 0.0650 0.1183 —0.0381
SFT2D2 0.0867 0.0258

cancer, whose amplified genomic locus occurs in many basal-like breast cancer tumors, and the overexpression of exoge-
nous BCL11A promotes the formation of tumor, whose knockdown in TNBC cell lines can suppress tumorigenic potential
(Khaled et al., 2015). It has been found that the downregulation of EN1 can reduce colony formation, tumorigenicity, and
cellular viability of TNBC cell lines significantly. Besides, it has been shown that fructose-1,6-bisphosphatase (FBP1), as
the rate-limiting enzyme in gluconeogenesis and a tumor suppressor, regardless of histological type, is upregulated in
tumor tissues of TNBC (Li et al., 2016). GATAS3 is an effective marker for TNBC diagnostically, and immunohistochemical
detection of GATA3 expression contributes to identifying the primary site of metastatic tumors (Krings et al., 2014). It
has been reported that HORMADI is overexpressed in TNBC, and its expression makes breast cancer cells sensitive to
homologous repair—defect targeting agents by resulting in the deficiency of homologous recombination (Wang et al.,
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2018). In addition, FOXA1, MLPH, and SLC44A4 have been reported as downregulated in TNBC (He et al., 2015; Lin and
Hsu, 2015). FOXC1, FAM171A1, RGMA, PSATI, and UGTS8 have been identified as upregulated in TNBC (Bao et al., 2019;
Santuario et al., 2017).

The stability of findings are assessed by applying the “leave-out” approach. Specifically, the proposed method is applied
with 1% sample removed from the dataset, and this step is repeated many times. Genes and interactions’ frequencies of
being identified are computed (Table S13, Supporting Information). It can be seen that almost all genes and interactions
identified by the proposed analysis have stability measures close to 1. For comparison, we have also examined those genes
not identified and found that their stability measures are equal or close to 0, which suggests satisfactory stability.

Data are also analyzed using the alternatives. The summary comparison results are provided in Table 6, and detailed
estimation results using the alternatives are available in the Supporting Information (Table S14). It is observed that the
proposed methods and alternatives make different discoveries. More specifically, the two divergence methods generate
highly overlapping with each other but moderate overlapping with the alternatives in both main G effects and interac-
tion identification.

4.1.2 | Joint analysis

The proposed methods based on DPD and y-divergence identify 31 main gene effects, 58 G-E interactions, and 39 main
gene effects, 70 G-E interactions, respectively. Detailed estimation results are provided in Table 5.

For the identified genes, relevant findings have also been made in the literature. For example, it has been reported that
asporin (ASPN) is highly upregulated in invasive ductal carcinoma, possibly associated with invasion, and related to the
epithelial mesenchymal transition (Castellana et al., 2012). CENPW, playing crucial roles in the formation of a functional
kinetochore involved in cell division during mitosis, is suppressed in the [ER-,PR- HER2+] subgroup but elevated in
the [ER-,PR-,HER2-] subgroup (Li et al., 2016). The COL9A3 signature has been constructed for efficient and sensitive
prognosis prediction of TNBC patients, and COL9A3 has been reported as potentially contributing to the pathogenesis of
mammary tumors (Lv et al., 2019). CPA4 is differentially expressed in Flag-TBC1D3-cells, and oncogene TBC1D3 promotes
the migration of breast cancer cells (Wang et al., 2017). Besides, gene expression signatures of CXXC5 have been used for
breast cancer diagnosis and prognostic testing (Bydoun et al., 2014). DCLREIC encodes proteins that are part of the TP53
and B-estradiol centered network and operate in the DNA double-strand break repair pathway, the defect of which has
been strongly associated with breast cancer predispositions (Tervasmiki et al., 2014). ESR1 mutations are a rare event
in treatment-naive patients but common in ER+ metastatic breast cancer patients. The incidence of ESR1 mutations in
pretreated ER+ metastatic breast cancer patients is approximately 12%. Thus, advanced breast cancer harboring ESR1
mutations can affect a large number of patients (Niu et al., 2015). ITGBS5 encodes a secreted ligand of the transforming
growth factor-8 and shows decreased expression in TNBC cells (Niu et al., 2015). LYPD] is a transmembrane protein
involved in ligand-dependent signal transduction and plays critical roles in cancer progression (Burnett et al., 2015). In
addition, CCL13, DPF3, HAPLN3, and PCDHB9 have been previously reported as upregulated in TNBC (Coyle et al., 2018;
Santuario et al., 2017). AADAT and PGAP3 have significant associations with breast cancer risk (Waddell et al., 2010).

The stability of findings are assessed using the same approach as for marginal analysis, which shows satisfactory per-
formance of the proposed method (Table S15, Supporting Information). In addition, we consider detecting suspicious
individuals by searching for instances with small values of the weight function, and instances whose weights are less 0.5
are considered as candidates of mislabeled subjects. After removing these suspicious individuals, we reanalyze data using
the y-logistic or DPD method, and the identified main gene effects and interactions are summarized in Table S16 (Sup-
porting Information). The new results are notably different. For instance, 33 main gene effects are identified by the DPD
method, among which 18 are included in the previous results (Table 5). And among the 37 genes identified by y-logistic,
10 are shown in Table 5. We do note that there may not be a universally good cutoff value of weights. In fact, this analysis
is simply to show that possible contamination does occur. A more rigorous “outlier” detection will be needed if desirable.

Data are also analyzed using the alternatives. The summary comparison results are provided in Table 6, and detailed
estimation results using the alternatives are available in the Supporting Information (Table S17). It is observed that the pro-
posed methods and alternatives make different discoveries. Similar to the marginal analysis, the two divergence methods
generate highly overlapping findings but have moderate overlapping with the alternatives.

Remark 3. It is noted that the results of marginal and joint analyses are quite different, which is expected and shown in
the literature, as their analysis schemes are fundamentally different. With the same reason, it is not sensible to compare
marginal and joint analysis results.
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TABLE 5 Joint analysis of TNBC: Identified main effects and interactions
DPD y
Interaction Interaction
Gene Main Age Race Main Age Race
AADAT 0.1596 0.0764 —0.0235 0.1859 0.0949 —0.0084
ASPN —0.0263 —0.0026 —0.0137 —0.0278 —0.0021 —0.0146
CCL13 0.0020 —0.0201 —0.0165
CENPW 0.0798 —0.0257 —0.0784 0.0798 —0.0257 —0.0784
COL9A3 0.0615 —0.0059 —0.0433 0.0923 0.0159 —0.0099
CPA4 0.0365 —0.0538 —0.0339 0.0300 —0.0160 —0.0520
CXXC5 —0.6245 —0.1322 —0.3555 —0.1780 —0.0404 —0.2420
DCLREIC 0.0739 —0.0035 —0.0492 0.0739 —0.0035 —0.0492
DNAIJBI1 0.0774 —0.0300 —0.0724 0.0774 —0.0300 —0.0724
DPF3 0.0419 —0.0127 —0.0086
ERBB2 —0.0709 —0.0015 —0.0430 —0.0824 —0.0443
ESR1 —0.2735 —0.1500 —0.0914 —0.3243 —0.0750 —0.0839
HAPLN3 0.0996 —0.0097 —0.0029
HDAC2 0.0108 —0.0095 —0.0097 0.0098 —0.0036 —0.0052
ITGBS —0.0616 —0.0183 —0.0687 —0.0743 —0.0045 —0.0824
LYPD1 0.1918 —0.0665 —0.0037 0.2082 —0.0621 —0.0012
MISP3 0.0014 —0.0031 —0.0041 —0.0343 —0.0113 —0.0183
MMPI12 0.0086 —0.0058 0.0090 —0.0054
MMS22L 0.0794 —0.0512 —0.0462 0.0646 —0.0280 —0.0702
PCDHB9 0.0053 —0.0035 —0.0018 0.0053 —0.0035 —0.0018
PGAP3 —0.1338 —0.0346 —0.1376 —0.0018 —0.0360
PTCHD1 0.0569 —0.0031 —0.0639 0.0569 —0.0031 —0.0639
RPL39L 0.0071 —0.0014 —0.0093 0.0071 —0.0014 —0.0093
SIX3 0.0184 —0.0020 —0.0037 0.0199 —0.0062
SLC15A1 0.0835 —0.0408 0.1021 —0.0406
SLC38A3 0.0855 —0.0406 —0.0028 0.1008 —0.0417
SLCeAIl 0.1375 0.0881 —0.0074 0.1375 0.0881 —0.0074
TLX1 0.0089 —0.0027 0.0089 —0.0025
TMEM217 0.0551 —0.0195 —0.0063 0.0551 —0.0195 —0.0063
TRPV6 —0.0096 —0.0068 —0.0062
AL 0.2012 —0.0693 —0.1491 0.2084 —0.0750 —0.1522
ASBI12 —0.0101 —0.0750 0.1653
GZMB 0.1433 —0.0527 —0.0089
IL22RA2 0.0443 —0.0348 —0.0109
KCNS1 0.0665 —0.0027 0.0507
LYAR 0.0044 —0.0025
PDIAS 0.0777 —0.0079 —0.0599
PLCG2 0.0792 —0.0398 —0.0061
PML 0.1148 —0.0593 —0.0055
PPPIR14C 0.0498 —0.0305
RADSIAP2 0.0950 —0.0012 0.1095
UBASH3B 0.0512 —0.0107 —0.0170
ZNF3883 0.0424 —0.0323 —0.0149
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TABLE 6 Analysis of TNBC: Numbers of main G effects and interactions identified by different methods and their overlaps

Main effects Interactions

Marginal Logistic Constant DPD 4 Logistic Constant DPD ¥
Logistic 30 15 22 19 48 15 35 28
Constant 29 20 19 33 24 22
DPD 35 31 59 47
¥ 32 51
Joint Logistic Constant DPD ¥ Logistic Constant DPD 4

Logistic 28 18 25 24 52 9 45 42
Constant 36 21 29 17 il 15
DPD 31 27 58 47
¥ 39 70

4.2 | GENEVA type 2 diabetes data

As part of the Gene Environment Association Studies (GENEVA), the Health Professionals Follow-up Study (HPEFS)
was organized by the National Institutes of Health (NIH). GENEVA type 2 diabetes data, available at https://www.ncbi.
nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000091.v2.plwith the permission of National Human Genome
Research Institute, is analyzed.

The response variable of interest is the continuously distributed body mass index (BMI), which is the principal measure
of adiposity and plays an important role in diabetes. E factors considered include age, family history of diabetes among
first degree relatives (famdb), total physical activity (act), trans fat intake (trans), cereal fiber intake (ceraf), and heme iron
intake (heme). All of these E factors have been suggested as potentially associated with BMI. For G factors, we analyze
SNPs on chromosome 4, which is suggested as having an important role in many disorders. The data contain 2558 subjects
and 40,568 SNPs. Prescreening is conducted, and the top 2000 SNPs are kept.

421 | Marginal analysis

The proposed methods based on DPD and y-divergence identify 35 main gene effects, 196 G-E interactions, and 43 main
gene effects, 209 G-E interactions, respectively. Table S18 (Supporting Information) shows the detailed estimation results.

It is again observed that the findings are biologically sensible. UGT2B7 are catalytic enzymes in Mitiglinide carboxyl-
glucuronidation in human liver, exhibiting high Mitiglinide glucuronosyltransferase activity in Mitiglinide glucuronide
formation, and Mitiglinide is a new potassium channel antagonist for the treatment of type 2 diabetes mellitus (Yu et al.,
2007). Published data analyses have examined the allelic association, confirming a significant association with the disease
and revealing a significant association of BANK1 with diabetes, which suggests the possibility that BANKI is a susceptibil-
ity gene. Some studies have further provided evidence of new genetic associations of BANKI gene with diabetes (Zouidi
et al., 2014). PPA2 has a function in feeding behavior by controlling the phosphate level of the cell, and PPA2 is a negative
regulator of the insulin metabolic signaling pathway, which may contribute to abnormal BMI (Noratto et al., 2016). Elovl6
is a microsomal enzyme-converting palmitoleates saturated and monounsaturated fatty acids into oleate species, which
plays a critical role in the development of obesity-induced insulin resistance by modifying fatty acid composition. Elovl6 is
a fundamental factor linking dysregulated lipid metabolism to 3-cell dysfunction, islet inflammation, and -cell apoptosis
in type 2 diabetes (Zhao et al., 2017).

Identification stability is evaluated, and the results are provided in Table S19 (Supporting Information). The proposed
methods have satisfactory stability. Data are also analyzed using the alternatives. The summary comparison results are
provided in Table S20 (Supporting Information), and detailed estimation results using the alternatives are available in
Supporting Information (Table S21). The two divergence methods generate highly overlapping results but have small
overlapping with the alternatives.

4.2.2 | Joint analysis

The proposed methods based on DPD and y-divergence identify 25 main gene effects, 115 G-E interactions, and 29 main
gene effects, 142 G-E interactions, respectively. Table S22 (Supporting Information) shows the detailed estimation results.
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Literature search suggests that the identified genes may have important implications. For instance, the activation effect
of the CSN1S2-derived bioactive peptides for glucokinase-binding affinity of glucose has been indicated, and the pro-
tein regulated by gene CSN1S2 has been suggested to be a common nutrient used for the treatment of diabetes mellitus
(Fatchiyah et al., 2017). CCNI is the most expressed cyclin genes and the most highly expressed in pancreatic islets (Taneera
et al., 2013). In genome-wide association studies, C4orf22 has been found to reduce the risk of insulin resistance (Daily
et al., 2019). The abnormally high levels of SCD5 in diabetes and SCD5 may be a common molecular link among dia-
betes (Bellenghi et al., 2015). Besides, the ratio of ADHI1B protein expression in adipose tissue from low BMI individuals is
approximately fivefold higher than that observed in high BMI individuals, and ADHI1B expression, measured both by Illu-
mina BeadArrays and qRT-PCR, is negatively correlated with BMI (Winnier et al., 2015). It has been shown that MTHFD2L
is associated with diabetes in other genome-wide association studies (Chidambaram et al., 2016).

Table S23 (Supporting Information) shows satisfactory stability of the proposed methods. Data are also analyzed using
the alternatives. The summary comparison results are provided in Table S24 (Supporting Information), and detailed esti-
mation results using the alternatives are available in the Supporting Information (Table S25). Similarly, the proposed
methods and alternatives make different discoveries.

5 | DISCUSSION

Identifying G-E interactions associated with outcomes has important implications. In this article, we have proposed a
framework of G-E interaction analysis based on robust divergence to accommodate contaminated data. A sparse group
penalty has been adopted to respect the “main effect, interaction™ hierarchical structure. Both joint and marginal anal-
ysis have been conducted. In addition, categorical and continuous responses, as two important special cases, have been
examined in detail. And some other responses can also be accommodated under the proposed framework. In simulation,
the proposed methods have notable advantages over the alternatives when data are contaminated. In real data analysis,
sensible biological implications and identification stability have provided support to the validity of the proposed methods.
It is noted that results from the DPD and y-divergence methods are often different, and we recognize that it is not easy
to conclude which method is better when analyzing a practical data. As such, the two results have been comprehensively
considered. There are also some limitations. For example, it is difficult to provide clear interpretations of the identified
interactions due to limited studies in the literature, which needs to be refined by further biological studies.
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APPENDIX A: DETAILS FOR ALGORITHMS
The details of Steps (i) and (ii) in Algorithm 2 for joint analysis are as follows. The implementation of Algorithm 1 for
marginal analysis is very similar. Steps (i) and (ii) are realized by gradient descent and Armijo search.

Al | Details for algorithms under the logistic model
The loss functions with DPD and y-divergence, respectively, are
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The two robust methods have the same form of estimating equation:
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where s is the step length obtained by Armijo search. Computations iterated until convergence.

A.2 | Details for algorithms under the linear model
The loss functions with DPD and y-divergence, respectively, are
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where o is the standard deviation of the response and needs to be estimated.
The estimating equation for ¢ based on y-divergence and density power divergence, respectively, are
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Add the following step before Steps (i) and (ii) in each iteration:
Step (x):
Calculate ¢™ by solving (A.6) with the biselection method, with 8, b fixed at em) p(m)
The two robust methods have the same estimating equation for (8, b):
& : whHI's@e,b) =0, (A7)
where
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202

t =y or a, @ is the componentwise product, and the operations are elementwise except for the matrix-vector multiplica-
tion of XT0 and WTb.

Steps (i) and (ii) under the linear model are same as those under the logistic model, when replacing S(8, b) in (A.4) and
(A.5) with $(8, b) defined by (A.8). Then repeat Step (), Step (i), and Step (ii) until convergence.
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