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Abstract—Prolonged rotating outages and exorbitant energy
bills, recently experienced in California and Texas, have exposed
the limitations and need for modernizing electric power systems.
The occurrence of such events is a consequence of peak loads,
often due to extreme outside temperatures that simultaneously
trigger Heating Ventilation Air Conditioning (HVAC) systems.
Leveraging pervasive computing technologies, such as smart me-
ters and smart thermostats, this paper introduces a comprehen-
sive approach to perform residential HVAC power conservation
and prevent these catastrophic events. Differently from previous
solutions, our approach models realistic user behavior and
HVAC dynamics of individual homes. Specifically, we formulate a
novel reverse auction-based problem, called POwer Conservation
Optimization (POCO). The goal is to perform power conservation
by motivating users to temporarily adjust their HVAC thermostat
settings in exchange for financial rewards. We prove that POCO
ensures fruthfulness and individual rationality of the auction
mechanism, although it is an NP-hard problem. Therefore, we
propose an efficient heuristic, called Greedy Ranking AllocatioN
(GRAN), which we prove ensures the same formal properties,
while incurring only a polynomial complexity. To predict power
savings resulting from an HVAC thermostat adjustments, we
propose a novel machine learning-based technique called Power
Saving Prediction (PSP). In addition, we conduct an online survey
to study the willingness to adopt the proposed system and to
model realistic user behavior. Survey results show willingness of
adoption above 79% and a highly heterogeneous and non-linear
user behavior. We perform extensive experiments using high-
fidelity simulator EnergyPlus. Results show that PSP outperforms
a state-of-the-art solution obtaining 85% predictions within a
5% error margin. Furthermore, GRAN achieves near-optimal
performance, outperforming a recent state-of-the-art approach
obtaining results between 58% and 68% closer to the optimum.

Index Terms—HVAC power conservation, machine learning
power saving predictions, reverse auctions, smart homes, cyber-
physical pervasive computing

I. INTRODUCTION

Motivation: In recent years, increased urbanization has led to
a significant rise of electric power consumption in residential
buildings, contributing to the overall power consumption [1].
Simultaneously, increased occurrences of extreme temperature
[2] have resulted in episodes of extreme weather such as winter
storms [3], heat waves [4], and wildfires [5]. Such events have
exacerbated peak loads in smart grids owing to spikes in user
demand because extreme outside temperatures often trigger
Heating Ventilation and Air Conditioning (HVAC) systems

[6]. For example, the February 2021 winter storm in Texas
led to a historical winter peak demand record of 69, 150MW
[3]. Consequently, many Texas residential customers received
energy bills higher than $5,000 and the wholesale energy saw
a 17,900% increase [7].

Utility companies struggle to deal with peak loads and high
demands that put the generation, transmission, and distribution
systems under enormous stress, increasing the risk of blackouts
[8]. For example, in August 2020, heat waves in California
led to multiple hours of outage due to poor planning that
included rotating outages for several hours [4]. Overall, the
United States have witnessed a 67% increase in major power
outages from weather-related events since 2000 [9].

Although smart grids are experiencing a larger penetration
of renewable energy sources and energy storage devices [10] to
help reduce the impact of peak loads, as of today, they are still
insufficient to deal with high peaks during extreme weather
conditions. Hence, power systems in several countries (e.g.,
Texas [11]-[13] and California [4] in the US, Iran [14], and
South Africa [15]) are also focusing on alternative techniques,
such as power conservation, by reducing the demand through
rotating outages [11]. Unfortunately, such outages severely im-
pact the user comfort and often last longer than the originally
planned few hours [4] [3].

An alternative approach to power conservation is to directly
ask users (via social media, local newspapers, and television or
radio advertisements) to reduce their electricity consumption
during extreme hot and cold days. This practice has been
implemented in 2021 by the Electric Reliability Council of
Texas (ERCOT) [12] [13]. For such efforts, HVAC has been
specifically targeted since, as stated by ERCOT, “every degree
of cooling increases your energy use by six to eight percent”
[13]. According to the U.S. Energy Information Administra-
tion, in 2015, 51% of total power consumption from residential
buildings was related to space heating and air conditioning
[16], a trend that has been increasing since then. Moreover,
high peak demand is usually associated with extreme outside
temperatures [6], making HVAC the most suitable appliance
for power conservation.

State of the Art: Recent years have seen a diffusion of perva-
sive computing devices in smart grids realized through Internet
of Things (IoT) devices, such as smart meters in the Advanced
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Metering Infrastructure (AMI) [17], smart thermostats [18],
and home energy management systems [19]. Increasing avail-
ability of such devices enables the design and implementation
of novel, more effective, and automated approaches to achieve
power conservation [20]. Smart grid operators are focusing
on these approaches, as recently stated by the president and
CEO of California Independent System Operator, calling for
a “modernized and well-integrated resource adequacy frame-
work” [21] that includes flexible power conservation [22].

Some existing works in the literature have focused on
power conservation that exploits IoT-enabled home devices.
For instance, in [23] and [24], 10T appliances are scheduled
to reduce the electricity load during peak hours. Similarly,
in [25], auction theory is exploited to encourage users to
reduce power consumption in exchange for a financial reward.
However, these schemes mostly consider abstract appliances
and do not take into account either user behavioral models
or the complex dynamics of different appliances on power
consumption, thus limiting their applicability and effectiveness
in practice. A few works focus on the impact of HVAC
during periods of high load [6], [26]. However, the authors
of [6] only provide preliminary results to support the use
of HVAC, while the auhors of [26] proposes a basic flat-
rate framework that does not incentivize participation due to
monthly commitments.

Contributions and key novelties: To the best of our knowl-
edge, our work is the first to design a comprehensive frame-
work for power conservation that simultaneously addresses
user engagement and bidding behaviors, specific dynamics of
HVAC related to individual homes, and the system operator’s
overall objective.

Specifically, we develop an IoT-enabled framework to
achieve HVAC-based power conservation under extreme tem-
peratures. Our approach exploits reverse auctions to realize
an Incentive-Based Power Conservation (IBPC) scheme. As
depicted in Fig. 1, our system includes a utility company
and a set of residential homes (referred to as “users” in
this paper) equipped with Smart Energy Management Systems
(SEMSs). When the utility company anticipates a peak load,
it asks the user SEMSs to submit their preferences, called
bids in auction terminology. Here, bids represent monetary
rewards corresponding to the potential temperature changes
(i.e., thermostat setting) that the users would be willing to set
for a certain period of time, say an hour or more. A SEMS
may directly inquire its user, through a smartphone app, or
automatically submit bids using a pre-defined profile.

A change in the HVAC thermostat setting may result in
non-linear energy savings depending on the outside weather
(temperature, wind, humidity, etc.) and house characteristics
(size, insulation, windows U-factor, etc.). Since some of these
factors are often unknown to the SEMS and exhibit complex
interactions, we develop a machine learning-based algorithm,
called Power Saving Prediction (PSP), to predict power sav-
ings from thermostat changes. The PSP is independently
executed in each user SEMS.
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Fig. 1: A schematic overview of the proposed framework
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Subsequently, different SEMSs send their bids and the
corresponding power saving (predicted by PSP) to the util-
ity company that solves a truthful and individually rational
POwer Conservation Optimization (POCO) problem to select
the winners of the reverse auction. The set of winners are
communicated to the corresponding SEMSs which adjust the
thermostat settings accordingly. We prove that POCO is an
NP-hard problem, and propose a Greedy Ranking AllocatioN
(GRAN) algorithm to find a sub-optimal solution efficiently.
We prove that GRAN is also truthful and individually rational.

To evaluate the performance of our proposed framework,
we use the high-fidelity gold-standard energy simulator Ener-
gyPlus, a software funded by the U.S. Department of Energy
[27], and tested according to ASHRAE Standard 140 method-
ology'. Additionally, we conduct an online survey involving
200 subjects to verify the willingness of using such auction-
based system and model the realistic bidding behavior with
respect to different potential temperature changes. Survey
results demonstrate that more than 79% of users are willing to
adopt such system and bidding preferences are highly variable
and non-linear. Extensive simulation experiments demonstrate
that PSP outperforms a recent state-of-the-art approach and
provides 85% predictions within a 5% error margin, while
requiring few training samples. Moreover, GRAN achieves
near-optimal performance and outperforms a recently proposed
auction-based approach by obtaining results between 58% and
68% closer to the optimum in different scenarios.

In summary, the main contributions of this work are:

« We propose a comprehensive reverse auction-based ap-
proach for power conservation that simultaneously ad-
dresses user engagement and bidding behaviors, specific
dynamics of HVAC, and the system operator’s objective;

« We propose optimal and heuristic solutions for selecting
auction winners and prove their truthfulness and individ-
ual rationality;

o We show through realistic experiments that our solutions
are superior with respect to state-of-the-art approaches.

'According to U.S. Department of Energy, "The ASHRAE Standard 140 is
the framework for establishing confidence in energy modeling engines” [28].
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The remainder of the paper is organized as follows. The
related work is analyzed in Sec. II. Sec. III introduces the
POCO problem. Sec. IV discusses the heuristic GRAN and
proves its formal properties. In Sec. V we describe the power
saving prediction algorithm PSP, while in Sec. VI we present
the survey. Results and performance evaluation are presented
in Sec. VII. A discussion of the most relevant findings,
requirements, and limitations is presented in Sec. VIII, while
Sec. IX concludes the paper.

II. RELATED WORK

Peak load reduction, also known as peak load shaving, has
been previously studied in power grids. Price-Based Demand
Response (PBDR) has been one of the most investigated
approaches to address this problem. According to PBDR, the
price of electricity varies throughout the day, with the purpose
of shifting user habits and reduce the likelihood of peaks
[29]. Tariffs can be static [30], or change in real-time [31].
A comprehensive survey of PBDR solutions is presented in
[29]. However, it has been shown that PBDR results in low
user engagement, since users quickly stop keeping track of
different tariffs and consumption trends [32], [33]. As a result,
PBDR has low effectiveness in reducing consumption peaks.
Moreover, variable rates may cause extremely high energy bills
under conditions of high demand [3].

To address these shortcomings, Incentive-Based Power Con-
servation (IBPC) approaches have been introduced, with the
goal of engaging users effectively through monetary incen-
tives. Although IBPC incurs in an additional cost for the utility
company, a recent study has shown that increasing 100MW
generation unit can be as costly as providing monetary rewards
up to a period of 36.2 years [26]. Therefore, utility companies
are highly incentivized and have wide margins of profitability
in using an IBPC approach. Early attempts of IBPC include
direct load control [34] and curtail-able load programs [35]
[36]. However, while the former is invasive and does not
solve the engagement problem, the latter focuses on appliances
which may not always be running during extreme events of
peak load.

A more recent approach for incentive-based approaches
consists in demand-side bidding, which is the main focus
of this paper. In this approach, users actively submit their
bids to the utility company, declaring how much money they
want in exchange of a load reduction. Demand-side bidding is
supported by recent studies that show how user engagement
can be enhanced if users are actively involved in decision
making [37]. The authors of [38] implement an auction mech-
anism that uses electric vehicles’ storage during peak loads.
However, vehicles’ prices represent a strong limitation for the
pervasive deployment of such solution [39]. The authors of
[23] and [24] propose the use of auctions to schedule or turn
off appliances in order to avoid peak loads. However, both
these works only consider abstract appliances, overlooking the
specific dynamics that impact power consumption and user
comfort [40] [41]. Furthermore, introducing a large amount
of appliances in the power conservation scheme may result in

excessive user effort, which can potentially lead to response
fatigue [32], [37]. This affects long-term user engagement and,
as a consequence, successful power conservation. In order to
cope with events like winter storms and heat waves, it is im-
portant to develop an approach that is easy and intuitive to the
user, while addressing appliances that incur high consumption,
especially during weather events, such as HVAC.

Few works focus on HVAC for power conservation. For
example, the authors in [6] provide a preliminary study to
motivate the use of HVAC for peak loads, i.e., its highest
share of annual energy consumption, and the correlation of its
high usage during peak load periods. However, the authors do
not include a comprehensive framework to realize power con-
servation. A more comprehensive approach based on HVAC is
proposed in [26]. However, the authors propose a solution with
a monthly flat-rate and a single option of thermostat change.
Compared to our approach, this limits the choice of thermostat
change and preferred price, while constricting to month long
commitments rather than daily. An approach related to power
conservation in data centers during periods of peak loads has
been recently proposed in [25]. Similarly to our paper, the
authors propose a reverse auction-based solution. Due to these
similarities, we use this approach for performance comparison
as described in Section VII-C1. However, since the focus of
[25] is on data centers, the dynamics of power savings do not
address HVAC specifically, and are not explicitly described.
Furthermore, the authors do not model user behavior and
only consider one bid per user. Conversely, in this paper we
address HVAC dynamics by proposing the PSP algorithm to
predict power saving resulting from a thermostat change. We
also consider realistic user behavior modeling by means of an
online survey, and design an approach that considers multiple
bids submitted by the same user.

Overall, this paper advances the state-of-the-art by consid-
ering a comprehensive auction-based framework for power
conservation that simultaneously addresses user engagement,
realistic bidding behaviors, specific dynamics of HVAC related
to individual homes through power saving predictions, and the
system operator’s overall objective.

III. PROBLEM FORMULATION

We consider a set of NV home users served by a utility com-
pany. Users are equipped with an Internet-connected Smart
Energy Management System (SEMS) that monitors, learns,
analyzes, and controls the HVAC system to set temperature
changes. The SEMS also interacts with the utility company to
implement the auction framework. When the utility company
predicts a peak load with an expected total power consumption
Pr, it calculates the power cap Po = « X Pr, where
a € [0,1), according to the system’s characteristics, such
as generation capacity, cost of generation, capacity of trans-
mission/distribution lines, etc.? Therefore, the required power
saving is Ps = Pr — Pc.

2We assume that the utility company predicts the peak load and its duration.
The proposed framework is supposed to be executed for the duration predicted
by the utility company.
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The utility company alerts the user SEMSs that the power
conservation auction is activated, requesting for bids. A SEMS
asks its user directly, or submits the bids based on the pre-
defined profile. In the following formulation, we assume that
all users participate in the auction. Such formulation can be
easily extended to consider only a portion of participating
users. As a result, the SEMS of user ¢ submits to the utility
company a set B; = {B;; = (AP;;,AT;;,Ci;) : 1 < j <
M;} of M, bids, where AP;;, AT;;, C;; represent respec-
tively the power saving, temperature change, and monetary
compensation for user ¢ and bid j. Note that, in the following,
we use the terms “cost” and “monetary compensation” to
represent financial rewards from the utility company and user
perspective, respectively. We discuss in Section V how the
power savings AP;;, corresponding to the temperature change
AT;;, are predicted by the PSP algorithm.

After receiving bids from the users, the utility company
performs the auctioneer tasks, i.e., selects the winners and
computes the payments. The winners are a subset of NV users,
and the utility company only selects one bid per winner.
The winner selection strategy is formulated as an Integer
Linear Programming (ILP) optimization problem that aims to
minimize the costs in terms of the paid compensations, while
satisfying the power cap constraint. As shown in Section VI,
there is a correlation between the cost C;; and the temperature
change AT;; of a bid. Intuitively, a user bids higher for higher
temperature changes due to higher discomfort. As a result,
minimizing the cost has also the implicit effect of minimizing
the discomfort of the user. We refer to this as the POwer
Conservation Optimization (POCO) problem defined as:

N M;
minZZCijwij (la)
i=1 j=1
subject to
wi; € {0,1}, i=1,...,N, j=1,....,M; (1b)
M;
> wy <1, i=1,...,N (1c)
j=1
N M;
> APjwi > Ps (1d)
i=1 j=1

Expression (la) defines the goal of minimizing the total
cost. Constraint (1b) defines the decision variable w;;, which
is equal to 1 when user ¢ is selected as a winner in the j-
th bid, and 0 otherwise. Constraint (1c) ensures that no more
than one bid is selected for each user. Finally, inequality (1d)
guarantees that the power cap constraint is met.

After selecting the winners by solving the above problem,
we propose the payment rule as follows. Let the objective
function in (la) be denoted as f(-). The payment Ej, to the
user k, who is a winner of the reverse auction, is given by

Mj,

By = f(wWT%) = f(w*) + ) Crjwi, 2)
j=1

where w* is the optimal solution of POCO, w(=k* g

the optimal solution when user k& does not participate, and
Z?ﬁl Ckjwy; corresponds to the winning bid of user k. Each
winning user k gains a non-negative utility, i.e., revenue,
defined as Uy, = FEj — Ck. In the following, we prove
truthfulness and individual rationality of POCO in order to
ensure an effective power conservation program [42]. Truth-
fulness prevents users from under-bidding or over-bidding,
as it would lead to a reduced utility Uy, thus preventing
potential unhealthy behaviors. Individual rationality guarantees
that each winning user is paid an amount that ensures non-
negative utility (U > 0). We provide a sketch of the proof of
truthfulness due to space limitations.

Theorem 1. The reverse auction mechanism, as defined by the
POCO problem and the payment rule in Eq. (2), is truthful.

Proof Sketch. Given the payment rule FEj for user k as
defined in Eq. (2), we consider the utility of that user as
Uy, = B, — Z;Vikl Vijwyj, where Vi is the so called rrue
valuation following the auction terminology. The property of
truthfulness guarantees that a user does not gain by bidding
higher or lower than its true valuation. Let Uy and Uj, be
respectively the utility of the true valuation (Cp = V)
and untrue valuation (Cy # Vj). To prove truthfulness, we
prove that Uy, — U, > 0. After several steps, we obtain:
Up—Up = — vazl Z;Vil Cijwfj"‘zz']\;l Z]A/i1 CZJ“’:; Since
w;; is the optimal solution when the user & declares a truthful
compensation (i.e., Vi = C}), the first sum is always less than
or equal to the second sum, because the optimal solution of a
minimization problem holds the smallest objective value than
any other solution. Therefore Uy, — U;, > 0, and the equality
holds when wy; = wj]/ O

Next, we prove that POCO is individually rational, i.e., the
revenue Uy, of each user is non-negative.

Theorem 2. POCO is individually rational.

Proof. In order to prove non-negative compensation, let
us consider the payment rule in Eq. (2). Assuming
Zjﬂi’“l ijw;;j > 0, since users can not ask for a negative

compensation, we need to prove that f (wak)*) > f(w})).
This is always true. In fact, since f(-) is a minimization
problem, the first term can not improve the solution found in

the second term, since it has fewer elements to pick from. [

Finally, we prove the NP-hardness of POCO, motivating the
need for an efficient heuristic.

Theorem 3. POCO is an NP-hard problem.

Sketch of Proof. The NP-hardness can be proven as a reduc-
tion from the minimum 0-1 knapsack problem (minKP) [43].
The minKP looks for the set of items with minimum weight
and a cumulative value larger than or equal to a target value.
We can translate any instance of minKP into an instance of
POCO by considering one bid per user. Given a minKP item,
we create a bid for a user with cost equal to the weight of the
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item, and the power saving equal to its value. We also set the
power saving Pg equal to the target value of minKP.
Solving the POCO problem is to select the set of winning
bids with minimum cost and the power saving larger than or
equal to Pg. This corresponds to the set of elements with
minimum weight and satisfying the target value constraint. In
other words, POCO is at least as hard as minKP, hence it is
NP-Hard. O

IV. THE GRAN MECHANISM

In this section, we propose a heuristic called Greedy Rank-
ing AllocatioN (GRAN) to find an efficient solution for POCO,
while guaranteeing truthfulness and individual rationality of
the auction mechanism.

A. Winner Selection and Payment Rule

The basic idea of GRAN is to prioritize bids with a better
ratio of cost over the amount of power saved. This ratio is used
to calculate a ranking criterion sorted in non-decreasing order.
Winners are selected by picking their best bid according to the
ranking criterion, until the desired power saving Pc is reached.
The pseudo-code of GRAN is provided in Algorithm 1.

Algorithm 1: GRAN: Greedy Ranking AllocatioN

Input : Pr,a,and B; i =1,...,N
Output: List of Winners W
1 W<+ 0,Pcs =0 \ \Variables initialization
2 Po=a«a-Pr \ \Power cap
3 PS = PT — PC
s R {Rij= r i=1,...,Nj=1,...,M;}
ij
5 Sort elements of list R in a non-decreasing order
¢ while Pocg < Pg and R # () do
7 Let R;; be the first element in R and
8

Let B;: = (AP;;, AT, C;;) be the bid corresponding to R;

\ \ Update values
9 PCS = PCS =+ AP;}
10 W «— Bij
11 Remove all bids of user 7 from R
12 end
13 return W

In line 1 of Algorithm 1, we initialize the list of the
auction winners W and the variable storing the cumulative
power saving Pog. We then calculate the power cap Pc and
the amount of power saving Pg that represents the power
constraint in the Inequality (1d) (lines 2 — 3). Since our goal
is to minimize the objective function in (la), GRAN uses a
ranking criterion which gives precedence to the bids with low
cost and large power saving. GRAN uses a list R that stores
the values of ranking criterion in non-decreasing order (lines
4 —-5).

In the while loop (lines 6-12), we go through the list until
the power cap constraint is satisfied, i.e., the cumulative power
saving Pcg is greater than or equal to the required power
saving Pg. At each iteration, we pick the bid B;: with the
smallest ranking criterion R;j in R (line 7 — 8). Therefore,
we increase Pcg by the corresponding power saved (line 9)
and we add the winning bid B;j. to the list of winners W

(line 10). Finally, we remove all other elements from user iin
R (line 11), since only one bid per winner should be selected.

GRAN terminates as soon as the power saving is met,
ie., Pcs > Ps. Subsequently, the new thermostat settings
of the winners are sent to the corresponding SEMSs, and
the utility company pays the winners. For this purpose, we
propose a truthful payment rule for GRAN as described in
Algorithm 2. It may be possible that GRAN is unable to
meet the power cap and terminates the while loop because
R = (). In this case, the utility company may increase
the power cap, thus reducing the required power saving, by
supplementing the auction mechanism with other approaches
for power conservation. Nevertheless, in all our experiments,
we use a power cap that far exceeds similar power reductions
[26], and this situation never occurred.

Algorithm 2: GRAN payment rule

Input : List of Winners W, GRAN Algorithm
Output: Payment Vector E

1 foreach B;; € W do

2 W_; = GRAN(B_;) ; // B_;=UN_ B\ {B:}
3 Let Bj; be the last element added to W_;

4 Ei = R{jAPij

5 end

6 return E

To define a truthful payment rule, we guarantee that each
user ¢ is paid the critical value E;, which is defined as
follows with respect to the critical bid Bj;. If user i submits
a compensation Cy; > Ej;, it loses; otherwise, it wins. In
Algorithm 2, we obtain the critical bid as follows. We find
the solution W_; of GRAN when user i is not participating
in the auction (line 2). Then, we select the critical bid B;; as
the last bid added to the solution set (line 3). Finally, in line 4,
we define the critical value F; = R;;AP;;. In the following
subsection, we will prove that this payment rule, paired with
the winner selection algorithm, guarantees truthfulness of the
GRAN mechanism.

B. GRAN Properties

To prove that the GRAN mechanism is truthful, we follow
the approach similar to [44]. More precisely, we first prove that
the winner selection algorithm (Algorithm 1) is monotonic,
and then that the payment rule (Algorithm 2) pays the critical
value.

Definition 1 (Monotonicity). An algorithm is monotonic if,
by substituting any winning bid B;; = (AP, AT;;, Csj) with
Bi; = (AP;;, AT;;,Cyj — 6), Bjj is selected as a winner.

Theorem 4. Algorithm 1 is monotonic.

Proof. Suppose the bid B;; wins in the ¢'" iteration. If we
substitute B;; with B;; = (AP;;, ATij, Cij — 6), & > 0, and
execute Algorithm 1 with such new input, Eij would appear
in the ranking criterion R before the position of B;; in the
original execution. As a result, B~ij would be selected on or
before the ¢*" iteration. O
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Theorem 5. Each winning bid is paid the critical value.

Proof. Our goal is to prove that the payment rule we defined in
Algorithm 2 pays the critical value, as defined in line 4. More
specifically, paying the critical value is equivalent to proving
that if user ¢ submitted a compensation Cj; > FE;, then it
will lose; otherwise (i.e., if user ¢ submitted a compensation
Ci; < E;), then it will win.

Consider a winning bid B;; = (AP;;, AT;;, C;;) selected
by Algorithm 1, and consider the critical bid B;; in line 3 of
Algorithm 2, i.e., the last selected winning bid when B;; is
not participating in the auction.

[Case 1]: if C;; > Ej, then B;; is a losing bid. The inequality
Cij > E; can be rewritten as C;; > R;;AP;;. Dividing both
members by AP;; yields R;; > R;;. Because Algorithm 1
sorts values of ranking criterion ascendingly, R;; would be
placed after R;; in the list R. Therefore, B;; will be a losing
bid.

[Case 2[iif C; < E;, bid B;; is a winning bid. Similarly
to Case 1, Cy; < Ej yields R;; < R;;, which makes B;; a
winning bid, since R;; would be placed before R;; in R. [J

Theorem 6. The GRAN mechanism is truthful.

Proof. Following [44, Theorem 9.36], the proof of this theo-
rem follows from Theorems 4 and 5 proved above. O

Theorem 7. The GRAN mechanism holds the property of
individual rationality.

Proof. To prove individual rationality, we need to show that
the GRAN payment rule defined in line 4 of Algorithm 2 is
non-negative, i.e., E; = R;;APM > 0. This is straightforward
given the ranking criterion I2;; and the power saving AP;; are
non-negative. O

Let us know analyze the computational complexity of the
GRAN mechanism.

Theorem 8. The time complexity of the GRAN mechanism is
O(Nszax 1Og(NMmax)); where Mmaz = maX;=1,...,.N ‘Bz|
is the maximum number of bids submitted by a user.

Proof. We analyze the time complexity of the winner selection
(Algorithm 1) and the payment rule (Algorithm 2) separately.

[Algorithm 1]: In line 4 of Algorithm 1, we generate the
list R and sort it in line 5. The list size O(NMpax),
where M,,.. = max; |B;|. Thus the overall complexity is
O(N Max log(N Mpax)). The “while" loop in lines 6 — 12
is executed at most /N times, since each iteration selects a
user and all other bids of that user are removed from R. The
cost of each iteration is dominated by the cost of removing
bids for the selected user from R in line 11. By using a
hash list to store the pointers to the bids, this operation
can be done in O(My.y) time, implying the while loop
requires O (N Mpax) time. Therefore, the time complexity of
Algorithm 1 is O(N Mpax log(N Mpax)).

[Algorithm 2]: The “for" loop in line 1 makes at most N
iterations, since the maximum number of winners is N. At
each iteration, we execute Algorithm 1. Therefore, it requires
O(N?Mpax 10g(N Mppay)) time.

Overall, the time complexity of the GRAN mechanism is
O(N?Mpax 10g(N M0 )), dominated by Algorithm 2. [

V. POWER SAVING PREDICTIONS

In order to effectively select the winners of the auction and
meet the power cap constraint, it is necessary to know the
power saving corresponding to each bid. Predicting the power
consumption for a given thermostat setting is a complex task
that depends on a plethora of parameters, such as weather,
house size, solar gain, physical and chemical characteristics
of the house materials, etc. [45]. It is even more challenging
to predict the power saving resulting from a sudden and short-
time change in the thermostat setting.

A. Background on Power Prediction

In the literature, there exist two different approaches to pre-
dict power consumption, namely the white box and black box
approaches. In the white box approach, a physical model con-
sisting of equations that formulate the physical and chemical
characteristics of the house, layout, occupancy, and materials
[26]. However, this approach is often impractical mainly due
to two reasons: (i) most of these parameters are unknown in
practice [45]; and (ii) a different model would be required for
each house. In contrast, the black box approaches rely on the
historical data of power consumption. The goal is to train a
machine learning model capable of predicting the future time
series of power consumption under the current environmental
(e.g., weather information) and house conditions [46].

Most previous works adopting a black box approach focus
on predicting the steady-state energy consumption of a given
house at a specified thermostat setting [46], [47]. However,
in our proposed work in this paper, we are interested in
predicting the power saving during a transient state, i.e., after
a sudden and short-term change of the thermostat setting. In
most circumstances, the peak load period is not long enough
to allow the power consumption to reach the steady state [48],
making the prediction problem extremely challenging. To the
best of our knowledge, no other work strictly focuses on the
transient state predictions of residential power consumption.

B. The PSP Algorithm

The proposed Power Saving Prediction (PSP) algorithm
is based on a regression technique that predicts cumulative
power saving resulting from a thermostat change. We assume
that the SEMS of each user keeps track of thermostat setting
adjustments that occur over time during non-peak load periods,
and the resulting power consumption. These changes may be
due to sporadic manual adjustments, or automatic event-based
adjustments supported by modern thermostats [49]. Note that
the user may or may not be at home when such changes
take place. For each of these adjustments, the SEMS records
the power saving at different time scales (e.g., multiple of
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15 minutes), representing the potential duration of a peak
load. A different model is trained for each of these durations.
Training is performed with a set of features easily available
to the SEMS. Therefore, potentially useful but hard to obtain
information, such as the window U-factor [45], is purposely
omitted. Specifically, the PSP algorithm is based on the
following features:

o Weather information: outside temperature, wind speed,
humidity at the beginning of the peak load period;

e House information: default thermostat set point, new
thermostat set point, inside temperature; and

o Time: hour of the day.’

The above features could be used to train several types of
machine learning models. However, since the data collected
are from individual homes, and thus limited, models that
require large training sets (e.g., deep neural networks) would
not be practical [50]. As a result, the PSP algorithm exploits a
regression technique that allows us to learn the correlation be-
tween the features given as input, and the power saved during
the peak load period, with limited training data and at a very
fast rate, as shown in the experimental study (Section VII).
We evaluated the performance of several regression algo-
rithms (Artificial Neural Networks, Random Forest, Elastic-
Net, Support Vector Machines, Nearest Neighbors Regression,
and Naive Bayes), and tested the values of various parameters
with a grid search. We found Random Forest regression (RF)
[51] to provide the best performance. In our experiments, we
set the parameters as follows: (i) the criterion to measure split
quality to the mean squared error (MSE), (ii) the maximum
depth of the tree to 1000, (iii) the number of estimators to 150,
(iv) the minimum number of samples needed to split a node
to 2, (v) the maximum number of features while deciding the
best split equal to the total number of features (7 in this case),
and (vi) the minimum number of samples required to be at a
leaf node to 1.

VI. ONLINE SURVEY

We conduct an online survey involving 200 subjects to
assess the bidding behavior and willingness to participate
in the proposed Incentive-Based Power Conservation (IBPC)
program. The study was approved by the Institutional Review
Board at the University of Missouri System (#IRB-2025242-
ST). This section discusses the survey and the results.

A. Overview of the Survey

The participants are recruited using Amazon Mechanical
Turk are pre-screened to include only Florida residents who
use an adjustable thermostat in their homes, receive an energy
bill each month based on the energy usage, and review
their bill every month or most months. We focused on a
specific geographic area for a more uniform perception of
the system. Eligible participants were informed of their rights
and compensation before completing the survey. In our online

3The season could be another important factor. Different models could be
trained for different seasons to take into account this aspect.

study, the mean time to complete the survey was just under
10 minutes and the participants were compensated for $1.75.
This translates into the rate of $10.60/hr which was above the
federal minimum hourly wage of $7.75/hr at the time the study
was conducted, and above the top 4% earning rate of $7.50/hr
for M-Turk workers [52].

The survey began by asking the participants to first indicate
their typical thermostat setting on a hot summer day. They then
read a brief description of peak load and power conservation
to ensure that each participant had an understanding of the
context. This was followed by a description of the proposed
system that would ostensibly help reduce the energy consump-
tion during peak times by compensating the customers via
an automated system to temporarily adjust their thermostat
setting.

The participants were asked to imagine that they were
participating in such a program and setting up their smart
thermostat temperature. This was completed in two steps.
First, the participants were reminded of their response for their
typical thermostat setting on a hot summer day. Then, from a
list of options, they were asked to select the highest thermostat
setting to which they would be willing to occasionally adjust
for a maximum of one hour per day. This list of options was
customized for each participant to include 8 degrees of change
above their typical setting (for example, if their typical setting
was 70°F, their range of options was 71°F-78°F). Next, for
each thermostat temperature setting within the selected range,
the participants were asked to use a slider to indicate the
minimum compensation they would like to be paid in order to
allow the thermostat adjusted to that setting. For uniformity
of the results, we asked everyone to imagine the following
scenario when they provided their bids:

“Imagine it is daytime on a hot summer day, you are at
home, and you are doing low to moderate effort activities (for
example, sleeping, sitting, or light chores) and imagine that
the maximum duration of the change would be 1 hour, at which
point the thermostat then returns to the previous setting.”

The slider range was $0.00 to $5.00 and could be moved in
increments of .01. This dollar range was proposed in [26]. The
participants were told a compensation of $0.00 implied they
would make the adjustment for free. Finally, they were asked
whether they would participate in such a system if it existed.
The outcome of the survey is reported in the following.
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Fig. 2: Summary of online survey results per degree change
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B. Survey Results

The results do not include 44 users who failed to correctly
answer the attention check questions. Overall, more than 79%
users answered that they would be willing to use this system
in their homes. Fig. 2a shows, for a given change in the
temperature value (measured in degrees) on the X-axis, the
number of survey participants who agreed to change their
thermostat to at most that value. The results are clearly non-
linear: most users are comfortable with small temperature
changes, and become less comfortable as the change increases.

Fig. 2b shows the mean and standard deviation of user
compensations. The plot shows a monotonic trend, suggesting
that higher temperature changes require higher monetary in-
centives. Nevertheless, the users show significant heterogene-
ity in the requested amount for a given temperature change.
This, coupled with the non-linear willingness to adjust the
temperature setting, results in an interesting and non-trivial
optimization scenario for our proposed approach.

Overall, the survey results support the feasibility of the
proposed IBPC auction framework. We use these results to
model a realistic user behavior in engaging with the power
conservation framework. Specifically, we follow the survey
results to determine how many degrees a user is willing to
change and the corresponding compensation.

VII. PERFORMANCE EVALUATION

This section presents the experimental setup and the perfor-
mance of our method in comparison with other approaches.

A. Experimental Setup

We adopt EnergyPlus and integrate it with Python scripts
implementing our solutions as well as other approaches used
for comparison. EnergyPlus is a simulator funded by the
U.S. Department of energy, and tested according to ASHRAE
Standard 140 methodology [27] which makes it the gold
standard of power data simulation. It is a high-fidelity tool that
allows for modeling of very low-level parameters of residential
buildings, with the goal of producing extremely accurate power
consumption data [27].

In order to consider a variety of realistic houses, we em-
ployed the EnergyPlus residential prototype building models
provided by the U.S. department of Energy in collaboration
with the Pacific Northwest National Laboratory [53]. The
models have 4 foundation types (slab, crawlspace, heated
basement, and unheated basement) and 2 cooling system types
(central air conditioning cooling and heat pump cooling). The
combination of these characteristics gives us a total of 8
considerably different houses and therefore different utility
loads. Furthermore, EnergyPlus allows low-level control of
many house details. Hence, we exploit this functionality by
varying the window U-factor, a parameter that greatly impacts
the thermal resistance of a residential building. For each one of
the 8 models previously mentioned, we generate 5 additional
models by changing the U-factor within [2, 4]W/(m?K) range
[54]. As a result, we obtain a total of 40 heterogeneous
models that capture a wide spectrum of thermal resistance

of a house. We used each model twice for a total of 80
houses. Note that, further increase in the number of houses by
using additional copies of these models would result in more
homogeneous, and thus less realistic, scenarios. Since the total
power consumption Pr and the power cap Pc scale linearly
with the number of houses, we expect the trends observed in
our results to hold in larger deployments of the system.

B. Performance of the PSP Algorithm

In this section, we study the performance of the power
saving prediction (PSP) algorithm.

1) Comparison Approach Sha-SVR: We compare PSP to a
recent state-of-the-art approach for power prediction proposed
in [45], which we refer to as Sha-SVR. We select this approach
because it is designed to work in a specific building setting
where, similar to our framework, data are limited and the
features need to be easily available.

The authors of Sha-SVR adopt the Support Vector Regres-
sion (SVR) as the prediction model. To select the features
set, the Pearson correlation coefficients between a vast array
of meteorological parameters and the HVAC power data are
analyzed. This allows to considerably reduce the size of the
feature set. The authors conclude that the dry-bulb temperature
has the highest impact, with a correlation coefficient of 0.91
on a summer day, which is the season considered in our
experiments. Besides the dry-bulb temperature, the authors
also consider the balance point temperature, T,. The dry-bulb
temperature is transformed into Cooling Degree-Day C'D D), a
simple but effective method for building energy analysis [55].
Here CDD = max{(Tmax — Tmin)/2 — T¢, 0}, where Tiax
and T}, are the maximum and minimum hourly temperature
in a day, and T, = 59°F(15°C)) is the standard temperature
value they intuitively set for their experiments. Finally, the
authors add two features to describe the behavioral pattern of
users, by adding the month type and the day type.

Note that Sha-SVR has been designed for the prediction
during a steady-state, rather than transient-state. Hence, we
adapt the algorithm as follows. In order to calculate the power
saving resulting from a transition from set point 7,4 to a
set point 7)., we first add the temperature set point as a
new feature. Then, we use Sha-SVR to predict the steady-
state power consumption P(r,,,) and P(r, ) separately, and

calculate the power saving AP = P,y — P(r,.,,)- For more
details on Sha-SVR, refer to [45].
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Fig. 3: Performance of the prediction models
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2) Results: To train and compare the PSP algorithm with
Sha-SVR, we use the weather information from Miami pro-
vided with the EnergyPlus residential prototype building mod-
els [53]. Miami has been chosen since it experiences very hot
summer days, and it is the area where the online survey was
conducted. Because the focus is on the hottest days and hours,
we consider a time range from July to September, between
1 PM and 6 PM. For each of the houses, we consider 8
thermostat change options, each representing a 1°F (approx.
0.55°C) degree difference and takes place for 1 hour. We use
EnergyPlus to collect the resulting power consumption data
and pair it with the features required by each algorithm. The
data is then shuffled before forming the testing and training
set, with 50% samples each.

In the experiments of Fig. 3, we analyze the performance
of PSP in terms of the error percentage, median error, and
explained variance*. Specifically, Fig. 3a shows the fraction
of testing samples that are predicted within a certain error
percentage. Observe that Sha-SVR achieves poor performance.
This is due to its focus on the steady-state prediction, which
prevents this approach from considering the dynamics that
occur after a sudden change of the thermostat for a short period
of time. As a numerical example, more than 85% of Sha-
SVR’s predictions incur higher than 60% error. Conversely,
PSP achieves a very high accuracy, with more than 85% of
our testing samples within 5% error.

Next, we study the learning rate of PSP. This is particularly
important since the training data is generated by each home
individually, and hence it is limited. For this purpose, we
adopt a widely used metric called Explained Variance (EV)
regression score. EV is a statistical measure used to evaluate
the quality of a regression prediction, based on the variance
of the real value and the error [56]. EV € [0,1] and a higher
value (i.e., close to 1) represents more accurate predictions.

Our goal is to analyze the value of EV and the median
prediction error, by progressively increasing the size of the
testing set. We performed tests individually for each home
and averaged the results. The testing samples for a home
are randomly selected. As Fig. 3b shows, 20-30 samples are
sufficient to obtain a very high E'V and very low median error.
These results show the ability of PSP to provide accurate
prediction requiring only few samples for training. Recall
that these samples do not need to be collected during the
peak loads, but can instead be gathered by the SEMS, during
manual or automatic adjustments that are possible with modern
thermostats [49].

C. Power Conservation

1) Comparison Approach MEDR: A recent paper [25]
proposes a truthful auction-based IBPC approach for peak load
reduction in data centers called Mechanism for Emergency
Demand Response (MEDR). Similar to our scenario, in the
event of a peak load, N tenants are required to reduce their

4These are typical metrics for regression algorithms, comparable to the
accuracy, F-score, etc., for classification algorithms.

power consumption below a power cap. Each tenant may
submit one bid consisting of a power reduction and monetary
compensation. This paper defines an NP-Hard problem to
select winners of the auction that, similarly to POCO, aims
at minimizing the overall cost. Since the users in our settings
may submit multiple bids, for each user ¢ we randomly pick
a bid in the set B;. We implement the NP-Hard optimization
problem to select winners as well as the truthful payment rule
defined in [25]. This implementation gives an advantage to
MEDR, since the solution of the NP-Hard problem guarantees
the minimization of the objective function, at the cost of a
higher complexity. For more details, refer to [25].

2) Results: In the following, we compare the performance
of GRAN, MEDR, and the optimal solution of POCO, re-
ferred to as OPT, obtained with the Gurobi optimizer [57].
Experiments are run during the hot summer days in July
and August 2009 with an average temperature of 89.06°F
(31.7°C). Similar to the previous works, we consider a peak
load period of 1 hour [25], [26]. We ran experiments for
different peak lengths observing similar trends. Moreover, in
all experiments, the user bidding behavior is selected from the
results of the online survey. Finally, we provide each approach
with two predictions of power saving resulting from thermostat
adjustments, namely the case of perfect prediction (perfect
knowledge), and the case of the energy prediction provided
by PSP. The results are averaged over several runs to obtain
reliable results.

We explore two experimental scenarios. One where we vary
the percentage of participants, and another where we vary the
percentage of reduction required by the utility company. In
the first experimental scenario, we increase the percentage of
users participating in the auction from 40% to 100% out of
the total NV = 80 users. In this setting, the total consumption
calculated with EnergyPlus is Pr = 261.95kW. We set a =
0.95, thus the power cap is Pc = 0.95 x Pr = 248.859kW.
Note that, the non-participating users contribute to Pr, but
refuse to participate in the IBPC program.

Figures 4a and 4b respectively show the value of the POCO
objective function and the payment, by increasing the number
of participants under perfect predictions. Both objective values
and payments decrease as the user participation increases,
for all approaches. This is due to the availability of more
bids with higher user participation, which enables to find
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Fig. 4: Percentage of participants with perfect knowledge
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Fig. 5: Varying percentage of participants with PSP predictions

better solutions. MEDR suffers from its inability to optimize
over multiple bids per user. Conversely, GRAN significantly
outperforms MEDR across all values of user participation by
exploiting the ranking criterion while guaranteeing truthful-
ness. This is remarkable considering that MEDR solves an
NP-Hard problem for each auction. Overall, GRAN achieves
a value of the objective function which is on average 68.3%
closer to the optimum than MEDR, and incurs a payment
which is 71.65% lower.

Figures 5a and 5b show the value of the objective function
and payment when the power saving is predicted by PSP.
Also in this case, GRAN significantly outperforms MEDR.
The high prediction accuracy of PSP allows to achieve results
comparable to the case of perfect knowledge. It is worth noting
that, even with a participation well below the 79% expressed
by the users of the survey, our system is able to achieve the
desired power conservation.

In the second experimental scenario, we study the impact
of different settings of the power cap on the performance
of the considered approaches. For this purpose, we increase
the power reduction « from 3% to 9% of Pr, and fix the
percentage of participating users to 60%. We only show
results of power saving predicted by PSP; we observe similar
trends with perfect knowledge. The results of the objective
function and payment are shown in Figures 6a and 6b. We
observe an increase in the objective function and payments
for all approaches. Intuitively, increasing the power reduction
requires more winners to be selected, with higher temperature
changes and compensation as well. Moreover, in this case,
GRAN shows superior performance than MEDR, being able to
successfully exploit the available bids to find better solutions.
Overall, GRAN is 58.75% closer to the optimum solution on
an average and achieves payments that are 62.1% lower.
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Fig. 6: Varying percentage of reduction with PSP predictions

VIII. DISCUSSION

The work presented in this paper is the first holistic
approach to comprehensively considering 1) explicit power
dynamics with realistic power data, along with 2) the cor-
responding machine learning-based power saving predictions
due to thermostat changes, and 3) modeling of realistic user
behavior by means of an online survey. Results of the survey
show that 79% of the users would be interested in using such
system and that the users have highly heterogeneous and non-
linear bidding behavior. This percentage highly exceeds the
findings of our scalability experiments, which demonstrate that
40% of user participation is able to fulfill the requested power
cap, hence proving significant opportunities for our approach
to successfully accomplish power conservation.

The proposed approach has the following limitations that
will be addressed in our future work.

Real implementation requirements: Nowadays, the utility
companies are able to monitor the residential power consump-
tion at a fine-grain resolution, owing to the wide deployment
of the Advanced Metering Infrastructure (AMI) [58], [59].
Therefore, a real life implementation of the proposed approach
would additionally require each user home to be equipped
with an Internet-connected Nest-like thermostat that is already
capable of learning user energy patterns [18]. This thermostat
needs to be equipped with additional machine learning ca-
pabilities for power saving predictions. The user should also
have a smart-phone app to interact with the auction system and
submit bids. The app should interface with the utility company
and the thermostat to adjust the temperature setting according
to the outcome of the auction.

Robustness: Robustness is an important criterion for power
conservation approaches, since high demand may generate
large-scale blackouts. For this purpose, the system operator
sets the power cap constraint to a comfortable level for the
system to operate. However, there are several uncertainties
that make it challenging to satisfy such a constraint. First,
power saving predictions need to be accurate. In this paper, we
showed that our PSP algorithm for power saving predictions
needs few samples to provide accurate results, with a median
error below 10% after only 20 samples of training. Second,
the users may not be willing to participate in the auction and
consequently adjust their thermostat settings. We show that,
even when only 40% of the users are willing to participate in
the auction, we are able to meet the power cap constraint. This
is particularly encouraging, since 79% of the participants in the
survey expressed willingness to engage in such a system. Note
that, the power system operator may add an additional layer of
safety by further increasing the power cap to provide additional
wiggle room to account for the aforementioned uncertainties.

Bidding competitively: Many participants do not intu-
itively know what a fair or competitive bid amount is. Never-
theless, each participant has a “floor” value, referred to as the
true valuation in auction terms, that they are willing to go for in
order to win the auction. The truthfulness of the auction helps
the user converge the bids towards this value, as untruthful
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bids will result in reduced revenue. As a consequence, the
user “learns” over time to bid their true valuation.

IX. CONCLUSIONS AND FUTURE WORK

In this work, we proposed a comprehensive framework
for HVAC-based power conservation. We developed a reverse
auction-based approach according to which the users submit
bids requesting a monetary compensation to adjust their ther-
mostat settings. We formulated an optimization problem to
select the set of winners and a payment rule that provides
truthfulness and individual rationality. Proving that the winner
selection problem is NP-Hard, we formulated an efficient
heuristic which guarantees the same formal properties. Fur-
thermore, we developed a machine learning module to predict
power savings resulting from the thermostat adjustments of
individual homes. We also performed an online survey to
study user willingness to engage with such a system and
their bidding behavior. Finally, we compared our approach
with state-of-the-art solutions using the high-fidelity simulator
EnergyPlus. Experimental results show that our approach
outperforms prior solutions with near-optimum results; and
our machine learning prediction algorithm provides accurate
predictions with minimum training.

There are several future research directions worth investigat-
ing. As an example, energy-hungry appliances (e.g., electric
vehicles and water heaters) could be included in the power
conservation approach. However, such appliances will require
machine learning algorithms in order to learn the dynamic
impact on the power savings, and surveys to study the user
behavior and perceived comfort. Although this paper focused
only on the residential settings, the system operators may
also benefit from curtailing the industrial energy consumption.
However, industrial settings require ad-hoc solutions that take
into account potentially very different business needs. Finally,
while this work focuses on power conservation during hot
summer days, it is worth investigating how a similar approach
would perform in colder climates. This may require to tackle
additional challenges. For instance, certain heating systems use
back-up heating sources from natural gas when the thermostat
is turned off, which could significantly impact the power grid,
as well as the power saving predictions.
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