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Abstract: This work is a survey of current trends in applications of PMUs. PMUs have the potential
to solve major problems in the areas of power system estimation, protection, and stability. A
variety of methods are being used for these purposes, including statistical techniques, mathematical
transformations, probability, and Al The results produced by the techniques reviewed in this work are
promising, but there is work to be performed in the context of implementation and standardization.
As the smart grid initiative continues to advance, the number of intelligent devices monitoring the
power grid continues to increase. PMUs are at the center of this initiative, and as a result, each year
more PMUs are deployed across the grid. Since their introduction, myriad solutions based on PMU-
technology have been suggested. The high sampling rates and synchronized measurements provided
by PMUs are expected to drive significant advancements across multiple fields, such as the protection,
estimation, and control of the power grid. This work offers a review of contemporary research
trends and applications of PMU technology. Most solutions presented in this work were published
in the last five years, and techniques showing potential for significant impact are highlighted in
greater detail. Being a relatively new technology, there are several issues that must be addressed
before PMU-based solutions can be successfully implemented. This survey found that key areas
where improvements are needed include the establishment of PMU-observability, data processing
algorithms, the handling of heterogeneous sampling rates, and the minimization of the investment in
infrastructure for PMU communication. Solutions based on Bayesian estimation, as well as those
having a distributed architectures, show great promise. The material presented in this document is
tailored to both new researchers entering this field and experienced researchers wishing to become
acquainted with emerging trends.

Keywords: PMU; sychrophasor; wide area measurement systems; WAMs; power system estimation;
power system protection; power system monitoring; power system stability; smart grid

1. Introduction

The introduction of the phasor measurement unit (PMU) has unlocked a new realm
of possibilities for researchers and engineers. Today, solutions based on PMU technology
expand across multiple areas of research. From state estimation to protection, the PMU is
driving exciting solutions that have the potential to revolutionize the power grid, and given
the ever-increasing number of PMUs installed on the grid, many of these solutions could
become feasible in the near future. High sampling rates, combined with the synchronization
of measurements provided by PMUs, make it possible to detect dynamics that are invisible
to traditional meters. For example, in the context of system modeling, PMUs offer a dynamic
view into the behavior of a system, which makes it possible to derive system parameters
with greater accuracy which, in turn, leads to improved estimation, control, and protection.
In the context of state estimation, PMUs are expected to be the foundation of dynamic state
estimation (DSE), which will allow grid operators to make decisions based on real-time data.
In terms of protection and control, PMUSs could be used to improve corrective actions in
the presence of disturbances due to their ability to synchronize measurements across large

Energies 2022, 15, 5329. https:/ /doi.org/10.3390/en15155329

https:/ /www.mdpi.com/journal/energies


https://doi.org/10.3390/en15155329
https://doi.org/10.3390/en15155329
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0003-4006-0764
https://doi.org/10.3390/en15155329
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15155329?type=check_update&version=2

Energies 2022, 15, 5329

2 0f 32

distances. In short, PMUs are expected to usher in a new era in terms of grid technology
and solutions; however, before these advances can be realized, there are several gaps that
must be addressed. This work presents a review of current research trends and applications
of PMU technology in the power grid. After reading this document it will become clear to
the reader that the vast majority of PMU applications have a foundation on abnormal data
detection. In fact, most of the current obstacles in the field of applied synchrophasors can
be approached as goodness of data problems. In contrast to other surveys of PMU technology,
this document reviews PMU applications across the complete range of power delivery:
from generation to distribution. While the constraints found at each level of power delivery
are very different, some similarities, and in some cases synergies, can be found in the
context of PMUs. Moreover, as renewables, microgrids, and distributed generation (DG)
become more prevalent, the distinction between generation, transmission, and distribution
is becoming less clear. The modern power systems engineer must be proficient in all
three areas; this work does not draw clear lines between generation, transmission, and
distribution. However, distinctions must be made when describing protection applications.
For that reason, efforts are made to separate the techniques where appropriate, so that
consistency can be maintained throughout the paper. The applications covered in this
work are grouped into four areas: estimation, monitoring, protection, and stability. Each
of these four areas is dedicated a section where several research efforts are summarized,
compared, and discussed. The remainder of this document is organized as follows. The
history of the PMU and some of its key features are summarized in Section 3. Efforts
related to power system monitoring are covered in Section 4, while Section 5 highlights
work in cybersecurity. Power system stability and protection applications are covered in
Sections 6 and 7, respectively. Figure 1 displays the overall structure of this work. The four
main areas are further divided into subsections that highlight important and promising
areas of investigation. An overall discussion is presented in Section 8, and closing remarks
are made in Section 9. In-depth coverage of the technical aspects of PMU communication
and networking are beyond the scope of this work; however, this information can be found
in [1]. Most of the works reviewed in this manuscript were released within the last five
years; therefore, this can be considered a review of the state of the art in PMU applications.
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Figure 1. PMU application areas covered in this work.

2. Methodology

The objective of this work is to highlight the latest trends in PMU research and
applications. To that end, a series of works that exemplify current trends in their field will
be presented in each section. Recent works, for the most part published in the last five years,
that show potential for significant impact are covered in greater detail. Featured works were
selected based on citation metrics. This methodology allows this manuscript to offer a sense
of where mainstream trends are heading, as well as a preview of up-and-coming tendencies.
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3. Origins of the PMU

The origins of the PMU can be traced back to the aftermath of the 1965 northeast
blackout in the US. This event exposed several gaps in the grid-monitoring technology of
that time, in particular, static state estimation. In order to mitigate large disturbances, rapid
actions must be taken, but the effectiveness of these actions depends heavily on the quality
and the quantity of the information available to the system operators. Ideally, real-time
applications would be used for grid operation; unfortunately, real-time monitoring was
something state estimators of this period were not able to support, at least not across
large areas. In light of these limitations, measures were taken to improve the reliability
of the power grid. One of the efforts placed into motion was the development of real-
time wide area measurements (WAMs). The following decades (1970s and 1980s) saw
advancements in power system protection, digital signal processing, and satellite-based
navigation that provided a platform for the development of the first PMU in 1988 by
researchers at Virginia Tech [2]. After the turn of the century, the integration of PMUs
into the grid gained significant momentum due to the smart grid initiative, which was
in part driven by the need to modernize the grid to meet the requirements of alternative
energy sources, and as a response to high-profile events such as the 2003 northeastern
USA blackout [3]. Organizations dedicated to the study of PMU technology, such as the
North American Sychrophasor Initiative (NASPI) [4], networks such as NASPInet [1], and
industry standards such as IEEE C37.118 [5], have been established to advance and regulate
PMU applications.

Key Features of PMUs

The synchronization of PMUs is accomplished by using a common clock as reference;
currently this is achieved via GPS satellites. This synchronization makes it possible to
measure and compare phasors at multiple locations across large distances, ergo, PMUs are
synonymous with WAMs, and with the term synchrophasor [6]. A simplified centralized
synchrophasor arrangement is depicted in Figure 2.
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Figure 2. Simplified centralized synchrophasor arrangement.

In addition to their ability to make measurements across large distances, PMUs have
a high sampling rate (up to 120 Hz) [5] relative to other measurement systems such as
SCADA (up to several seconds) or smart meters (several minutes), which make it possible
to trace and analyze events dynamically. By capturing the dynamics of a system, it becomes
possible to extract unique features that can be used to enhance current technologies. The
ability of PMUSs to take measurements across large distances, combined with their high
resolution, are two key characteristics that enable many of the applications discussed in the
following sections.
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4. Power System Monitoring

One of the original drivers behind the efforts that eventually lead to the development
of the PMU was the need to enhance static state estimators. This is showcased in [7], where
PMUs are used to validate static estimators. Eventually, as PMUs continue to be installed
across the grid, dynamic state estimation (DSE) will likely become the standard for grid
monitoring. Presently, however, the infrastructure necessary to support full DSE is limited
to a few selected systems. This section is divided into two subsections: DSE and integrated
state estimation (ISE), as illustrated in Figure 1.

4.1. Dynamic State Estimation

One of the first challenges encountered by researchers in this area was a lack of system
observability due to low PMU penetration. By leveraging the electrical relationships of the
buses in a network along with techniques originally developed for SSE, PMU-observability
can be achieved without having to install PMUs at every bus in a system [8]. These ideas
are illustrated in Figure 3, where not every bus is equipped with a PMU, yet the algorithm
is capable of providing dynamic estimates for all buses in the system.

e

Estimated Bus |

Figure 3. PMU-observable system with a reduced number of PMUs.

PM-observability can be achieved via algorithms based on graph theory that take into
account the electrical relationships, as well as the topology of the system [9,10]. Each year,
the typical utility company receives a fixed amount of funding for PMU installation. This
results in a fixed amount of PMUs being added to the grid annually. These new PMUs must
be installed at key locations to maximize technical and financial gains. When constraints
such as the cost of installation or the availability of measurements are considered, the
PMU placement problem can be approached as an optimization problem [11]. In [12],
optimal PMU placement is studied under multiple contingency conditions such as line
outages and loss of measurements. Robust PMU placement via mutual information (MI) is
investigated in [13]. This approach takes into consideration uncertainties such as reduced
number of states and PMU outages, as well as financial constraints. Financial constraints
are once again considered in a Bayesian-estimation-based technique introduced in [14]. The
solution presented in [15] attempts to strike a balance between estimation accuracy and cost.
Additional constraints, such as redundancy for critical buses, prohibited substations, the
handling of existing PMUs, and others, can be integrated into the optimization algorithm
in order to meet a certain design criteria. For the remainder of this review, all systems will
be assumed to be PMU-observable, unless stated otherwise.

DSE frameworks share a common foundation: the Kalman filter (KF) [16]. A complete
derivation of the KF can be found in [17].

Over time, variations or extensions of the KF have been proposed to overcome the
limitations of the original formulation [16]. In [18], a variation of the extended Kalman
filter (EKF) is introduced to improve the performance of the filter in cases where a full set
of input measurements is not available. An extension developed to improve the ability of
the EKF to track transients and disturbances is presented in [19]. An estimator based on the
unscented Kalman filter (UKF) is used in [20] to streamline the estimation process, while
in [21], a decentralized scheme based on the UKF is investigated.
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The work in [22] presents a KF-based technique for systems containing uncertainties
due to noise, saturation, or transients. The idea is to utilize a tuning parameter to ensure
that the covariance matrix remains positive definite. Simulations produced encouraging
results as this technique outperformed other similar KF-based estimation solutions. Being
able to deal with uncertainties related to data is a significant contribution that increases the
robustness and the flexibility of DSE.

The work presented in [23] tackles the challenges that KF-based DSE encounters when
estimating larger power systems. Classical KF-based algorithms struggle to overcome
uncertainties and nonlinearities present in the state space model of larger power systems,
which can lead these filters to become unstable. The unscented Kalman filter (UKF) is
used as the foundation of this method. The UFK is reinforced by improving its numerical
stability though modifications that guarantee key matrices remain positive semi-definite
even in the presence of nonlinear events. This introduces an algorithm that replaces matrix
Py with the nearest symmetric semidefinite matrix in Frobenius norm whenever P is no
longer positive semidefinite. The new matrix Py is found through a modified version of
Dykstra’s projection algorithm [24]. Positive definiteness is enforced by replacing negative
eigenvalues with their positive equivalent. This solution performed well in some of the
testing scenarios; unfortunately, it did not maintain a consistent level of performance across
a variety of system topologies. It must be noted that this novel approach did not display
the adaptability of more established techniques such as [25,26].

An important aspect of DSE is the detection of abnormal data. Some of the classical
bad-data detection techniques inherited from traditional SSE, such as residual analysis, can
be applied to DSE, as seen in [27,28]. However, contemporary solutions are moving in a
different direction as new frameworks are being adopted. In [29], a unified PMU placement
and bad-data detection solution is proposed. First, PMU locations are optimized, then
abnormal data are detected by analyzing the linear independence of the Jacobian matrix.
In [30], Lagrange multipliers are used to identify errors in WLS estimations. Erroneous
values are identified and removed via mixed-integer programming (MIP) in [31]. An
estimator based on the least absolute value (LAV) estimator [32] is presented in [33]. This
technique offers advantages in terms of efficiency as LAV can handle both the estimations
and bad-data detection in a single module. Detrended fluctuation analysis (DFA) is used to
develop a novel bad-data detection scheme for dynamic estimation in [34].

A decentralized solution for abnormal data detection in sychrophasor measurements
is developed in [35]. In this approach, several detector types are used in unison. The first
is a detector based on linear regression, the second detector is a variation of Chebyshev’s
inequality, and the third detector is based on spatial clustering. At the global level, another
layer of detection is used, this one based on Bayesian estimation. This technique was shown
to be effective during testing, performing reliably well across a series of tests. This is a
data-driven solution, and therefore benefits from a high degree of generality. Another
highlight of this technique is its use of Bayesian estimation and a distributed architecture,
two very promising methods that studies have just recently begun utilizing. Finally, while
the scope of [35] is limited to abnormal data detection, it has the potential to be a standalone
solution if expanded accordingly.

In [36], a decentralized-approach-based graph theory is presented. The system is
broken into a series of observable islands. The number of PMUs is found via optimization
algorithms while graph theory ensures observability.

Whether it is dynamic, static, or integrated (covered in the following section) esti-
mation, the integrity and the quality of measurements used by the estimators remains a
key issue. For these techniques to flourish, their results must be robust in the presence of
signal quality issues; this topic is covered in greater detail in [37-40]. In [41], quality issues
stemming from GPS errors, latency, scaling, and noise are investigated and mitigation
solutions are presented. Redundancy between PMU measurements and linear estimators
is used to identify abnormalities. The rank of the Jacobian matrix is then used to derive
correction factors.
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The subject of uncertainty in measurements is an important aspect of estimation,
and one that has the potential to generate system-wide errors. Uncertainties come from
multiple sources, including latency, discrepancies in system parameters, and instrument
inaccuracies [42]. In [43], uncertainty propagation theory is used to analyze the spread of
errors in WLS estimators and how the results are shaped by these uncertainties. In this
method, lower and upper error bounds are established for the outputs of the estimator, and
errors are mitigated by adjusting the weights of suspected measurements. The impact of
buffering times in estimates are studied in [44]. This work considers a system where PMUs
measurements are generated at different rates. A solution based on a memory buffer is
proposed. At the memory buffer, data are primed before being fed to the estimator. This
priming includes the determination of weighting factors. This method is complemented by
the inclusion of an optimization routine that is used to find efficient buffer lengths. In [45],
fuzzy set theory and Markov models are used to develop reliability indices to identify
PMUs and estimates that are vulnerable to uncertainties.

More recently, in [46], techniques for the characterization and quantification of noise
in PMU measurements were presented. The goal of these techniques is to facilitate the
mitigation of estimation errors due to noise and uncertainties. In [47], 7-model approxi-
mations are extended to identify and correct estimation errors due to uncertainties in line
and transformer parameters. A root mean square error (RMSE) is used to track the per-
formance of the estimator. The validity of uncertainty propagation theory in transmission
line estimates is examined in [48]. Results indicate that when both voltage and current
measurements corresponding to a node are used, the accuracy of the theoretical models
are significantly improved. The widely used Gaussian assumption is studied in [49], with
results indicating the assumption might be flawed. The impact of uncertainty on fault loca-
tion was investigated in [50]. Discrepancies in transmission line parameters are mitigated
via stochastic models and MLE estimators. The performance of PMU placement strategies
in the face of uncertainties are studied in [51]. A variation of the nondominated sorting
genetic algorithm II (NSGA-II) is presented to alleviate the effects of uncertainty while
keeping costs to a minimum. Finally, extensions of the KF have been developed for the
purpose of increasing the resilience of dynamic estimators in the presence of uncertainties,
as shown in [22,52,53].

Trends: The Kalman filter and its extensions are the most prevalent estimators used
in contemporary dynamic estimation. In regards to bad-data detection, there is not a
clear go-to technique, but the trend appears to be shifting away from traditional residual
analysis as more holistic approaches are being investigated. Most techniques include a
PMU placement module; in this regard, the trend is to make the system observable with
the lowest number of PMUSs possible.

Gaps: As mentioned above, PMU-observability is pivotal. Graph theory and opti-
mization tools are being used to address this gap. Other significant obstacles in DSE are
the possible limitations in terms of communication network infrastructure. Decentralized
and distributed approaches are being evaluated to overcome this challenge. This topic is
covered in greater detail in Section 6.4. Key paper contributions in this topic are presented
in Table 1.

Table 1. Summary of contributions.

Key Contribution Reference
PMU placement and optimization [12,13,15]
Extension of the EKF for robustness [18,19,22]
Extension of the UKF for improvements in efficiency [20,21]
Alternative methods for bad-data detection [29-31,33,34]
Decentralized schemes [21,35,36]

Techniques for the mitigation of uncertainty [41,44—-46,51]
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4.2. Integrated Estimation

As previously mentioned, currently, few systems can support full DSE. Research has
been carried out attempting to leverage the technology currently deployed in the grid to
close the gap between SSE and DSE. The techniques presented in this section leverage
smart meters (SM), SCADA, and other sources of data in the grid to make sections of the
grid PMU-observable. Figure 4 illustrates an arrangement where multiple meter types are
used for estimation.

e

Figure 4. Multiple meter types used in conjunction.

Bayesian estimation is at the core of these techniques, which represents a significant
paradigm shift in SE, as algorithms such as WLS and KF-based methods remain the
most widely utilized techniques in SSE and DSE, respectively. This work refers to these
techniques as integrated state estimation (ISE). These techniques follow a layered approach
in which measurements are processed separately based on sampling rate. The outputs of
the slower layers are used to augment the PMU layer, which is the fastest layer processing
data in real time [54]. This arrangement is illustrated in Figure 5.

Figure 5. General structure of ISE scheme.

In [55], Bayesian inference is employed to estimate the probability distribution of a
given set of measurements. This process can have a varying degree of complexity depend-
ing on the properties of the dataset and the assumptions that are made. Ref. [55] leverages
NN to carry out the process of retrieving the corresponding probability distributions from
historical power-flow measurements. Once the probability distributions are established,
another NN is then used to emulate a mean-squared error (MMSE) estimator for real-time
estimation. The goal of the technique is to minimize the MMSE, defined as

#*(z) = min E[||x — £(2))|]’] = E[x|z]. 1)
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Data anomalies are detected using likelihood ratios, and when an anomaly is de-
tected the erroneous measurement is replaced by the mean of the prior distribution. One
significant advantage of this approach over other, more popular, estimation procedures
is that Bayesian estimation performs well in systems with low or lack of observability.
Probability distributions and Bayesian estimation produce estimates comparable to pseudo
measurements. In the case of [55], the technique seemed to outperform classical approaches
in terms of accuracy and resolution. The main obstacle of the technique is obtaining the
appropriate probability distributions to make the MSSE estimator produce accurate results.

The framework presented in [55] is expanded in [56] to incorporate measurements from
meters with different sampling rates. In a layered approach, measurements from meters
with lower sampling rates are included in the calculation of the probability distributions.
Online estimation, which is performed via an MMSE estimator, utilizes measurements from
the meters with the highest sampling rates. A second extension was presented in [57] to
enable PMU-observability in an approach that produces quasi-dynamic estimates. The
highlight of this technique is that it produces results comparable to the results produced by
contemporary state estimators (in some cases outperforming them), while utilizing tech-
niques that are not widely used in SE. While extremely promising, this approach is not the
most accessible for the average researcher as it requires specialized knowledge in ML and
probability theory. This technique can be improved by modifying the structure of the NN,
the number of neurons, and activation functions. The training and accuracy thresholds can
be optimized to meet a particular specification. Additionally, measurements produced by
other metering infrastructure could be leveraged to make the solution more robust.

In [58], smart meter and pseudo measurements are processed along with PMU and
SCADA measurements as part of a Bayesian estimation solution. The principle behind this
work is similar to that of [57]. A Bayesian estimator is once again used, but this time, itis a
simpler maximum a posteriori (MAP) estimator, compared to the more complex MMSE in
the previous technique.

fxjz(xsilzsp) = fz1x (zsilxsL) fx (xsL) o
fz(zs1)

As per Figure 5, the input from slower metering infrastructure is used to augment the
PMU layer of the solution. The state equations developed in this solution resemble those of
the Kalman filter, and they establish relationships between the different measurement layers:

Xsp = Xsp—1+ wsp—1 3)

zsp = hsp(xsp) +esp 4)

where x; represents the state at the current sampling layer, and £5; _; represents the state
at the previous (slower) sampling layer. w represents uncertainties between the two layers,
egy. is the error component at the current layer, and zg; is the measurements at the current
layer. An objective function for the estimated states is developed and minimized via the
modified Newton method.

sy = argmax(fx|z(xsr|zsL)) ®)

Abnormal data are detected via Chebyshev’s inequality.

2L — k%P < xk < b, + k4 /P (6)

where k* is a probability based on a credibility interval, and P is the covariance of the
posterior state. The solution produced encouraging results relative to KF and hybrid
estimation algorithms. This technique emphasizes a low computational burden and the
adaptability of the solution to a variety of systems. One assumption that deserves further
investigation was that of modeling the probability distributions as Gaussian. Assuming
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that the distributions were Gaussian allowed [58] to bypass the computationally intensive
step of estimating probability distributions using complex techniques such as NNs, as was
carried out in [57].

Integrated estimation formulations without the use of Bayesian techniques have
also been proposed. As presented in [59,60], SCADA and RTU (remove terminal unit)
measurements were used to obtain pseudo measurements which were then used in linear
estimators that process PMU data in real time.

Trends: The most simple form of integrated estimation is the expansion of PMU-
observability through the integration of other (slower) measurement sources, such as
SCADA. The slower measurements are processed offline to obtain PMU pseudo measure-
ments. Bayesian estimation appears to be experiencing a resurgence, as ML is being used
to derive probability distributions that are then used for online estimation. Based on the
results produced by works such as [57], ISE appears to have the potential to become a viable
and powerful estimation platform in the near future until dynamic estimation becomes a
widespread reality.

Gaps: Challenges in ISE can be attributed to the complexity involved in acquiring
probability distributions for Bayesian-based ISE.

Key paper contributions in this topic are presented in Table 2.

Table 2. Summary of contributions.

Key Contribution Reference

Bayesian estimation [54,56,58]
Formulation of pseudo measurements to improve observability [59,60]
Leverage of machine learning [55,57]

4.3. Disturbance Detection

Solutions in the disturbance detection group aim to enhance the situational awareness
of the grid. Events, such as switching and loading changes, and disturbances, such as
faults, are monitored and reported by via holistic solutions. For example, in [61], big data
is analyzed to detect disturbances at their inception giving system operators more time
to react.

In [62], u-PMUs are assumed to be located at the ends of a feeder. After an event is
detected, changes in voltage and current are calculated at both ends.

AV = Vst —ypre @)
AI = [Post _ pre, 8)
These deviations are then used to determine the change in impedance

A AV

AZ = N )
at both ends of the feeder. The sign (positive or negative) of the real component of each AZ
relative to each other is used to determine whether the disturbance is internal or external.
Once the location of the disturbance has been identified, sweep forward and backward
voltage calculations are performed to calculate the change in voltage at every node along
the feeder. Discrepancies in nodal voltages are used to pinpoint the exact location of the
events. Events such as the switching of capacitor banks, high and low impedance faults,
and DERs changing status were identified by this technique. The concept is a relatively
simple one to understand and to implement; however, considerable drops in performance
were experienced as more complexities such as error in measurements, marginal stability,
and high fault impedances were added to the events. This solution also lacked a well-
defined scope and application. Despite a few shortcomings, this technique could serve as
the foundation of a more robust solution, as was performed in [63], where ML techniques
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were used to extract additional features from data reported by PMUs. While this technique
improved on the work of its predecessors, extensive training of ML algorithms represents
an implementation challenge.

Another data-driven method was introduced in [64]. First, in order to reduce the
data burden produced by PMUs, the minimum amount of data required to monitor the
system is found by changing the sampling intervals of the measurements until estimates
produce errors that violate a criterion. In other words, fewer data are used until the system
can no longer be recognized. Once a satisfactory sampling interval has been established,
principal component analysis is used to estimate key system parameters. Density-based
clustering is then used to identify data outliers and locate them. This approach presented
an interesting take on PMU data processing and is an approach that does not rely on
sampling at the higher end of current PMU technology. As expected, lower sampling
rates had a negative impact on performance, but a balance between the capacity of the
PMUs, infrastructure available, and the requirements of the user can be used to optimize
the operating parameters of the program.

PMUs and NNs were utilized for load forecasting in [65]. Meanwhile, in [66], NNs
were used in a novel capacity to create heatmaps that were used to monitor system stability.
The rotor angles of generators connected to a network were monitored and were used
as input to the NN. This technique produced interesting results and presented stability
information in a novel form. Several steps in this process were of empirical nature, in
particular the structure and parameters of the NN. While the solution does not revolutionize
the state of the art, it brings new ideas to the table.

Efforts in the area of situational awareness are also delving into system validation
and topology. These efforts leverage PMUs to monitor changes in topology in order to
deliver a comprehensive view of the grid in real time. Trees were used in [67] to monitor
the topology of radial systems. In [68], results from simulations were used to build a
database of baseline values which were then used to calculate differences between them
and real-time measurements. This method uses these deviations as indicators of changes in
topology. In [69], variations in topology were identified via y-PMUs and power-flows.

Trends: The main trend in situational awareness is the development of holistic solu-
tions that:

¢  Track deviations or changes in the system to uncover issues early.
. Facilitate the access to the true status of the system in terms of states, phasors,
and topology.

This is carried out to enhance the level of knowledge of operators and the system, so
that the decision-making process can be expedited. Given the diversity of the techniques
used in situational awareness, it is difficult to identify a method or tool is that is being
widely used.

Gaps: This area seems to lack focus, or least a well-defined goal or methodology.
While some interesting ideas can be encountered in this area, presently it is hard to see any
of them being implemented in the real world. One possible target of situational awareness
could be to replace EMS (energy management system) systems in the future.

Key paper contributions in this topic are presented in Table 3.

Table 3. Summary of contributions.

Key Contribution Reference
Impedance-based event detection [62,63]
Alternative methods for improvements in efficiency [64]
Machine learning and neural networks [63,65,66]
Load forecasting [65]

Topology monitoring [67-69]
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5. Cybersecurity

Solutions developed for cybersecurity focus on the detection of malicious attacks on
state estimators and grid control systems.

Cyber-Security Solutions

In [70], cyberattacks (CAs) in DE were detected via techniques borrowed from the field
of system control. Modified versions of observers were developed, which were used to
extract key system parameters. The equations used by this method bear some resemblance
to those used to describe the Kalman filter in previous sections. Residuals were compared
to a threshold to determine whether the corresponding state was under attack. A mitigation
procedure was also introduced, where a weighted deterministic treat level (WDTL) was

defined as
(k+1)T

= [ (1) = 4(1)? + W(a() Plde (10)

where z is the WDTL of the ith PMU, while Y and W are weight matrices. PMUs with
high WDTL values are quarantined and their measurements removed from the estimation
process. In order to ensure the system remains observable, some of the constraints of the
estimation process are relaxed. This solution produced interesting results, indicating that
this work has the potential to become a framework for future solutions. However, in the
form presented in [70], the issue of how to handle the removal of a PMU that renders the
system unobservable was not addressed in detail. Moreover, there are potential gaps in
performance when highly dynamic conditions and marginal stability are introduced.

In [71], multiple types of CAs were mitigated. First, measurement attacks, which take
place at the PMU level by either disabling or corrupting measurements [27], were detected
by finding an MAP estimate of the attack parameter f as follows:

P(fi|X) z’%mt + z’; -1
arg max / = . -
z“13T:1 (lert + Zi‘ - 1)

(11)

where the subscript pr represents predicted values. The expected value of an attack
parameter f, at node i at a time T, is defined as

. . z
ElfilXzi] = = (12)

Parameter errors, defined as systemic errors at the database level [27], for instance,
an attack that modifies the impedance matrix of the system, are detected through a filter.
The output of the filter and the error parameters previously derived are used to calculate
residuals via further filtering steps. While this technique takes a very important step in
providing the means to detect both measurement and parameter errors, the formulation
is highly complex compared to other solutions, such as those based on chi-squared error
detection. The use of multiple filters simultaneously in addition to Bayesian estimation is
an interesting approach that can be refined to reduce the computational and data-transfer
burden of the solution. In [72], Bayesian-based approximation filters (BAFs) were deployed
throughout the network in a distributed architecture approach.

In [73], ML was used to develop a distributed CA detection algorithm based on
autoencoders. Detectors were deployed throughout the system and each one focused on
identifying issues locally. This eliminates constant data transfer from each measurement
node to a centralized location. The autoencoders were trained with historical data, and
several features were used for anomaly detection such as voltages, currents, impedances,
and phase angles. The technique performed well during testing, but, as is the case with
ML-based approaches, additional work can be carried out to standardize the training
process and streamline the tuning of parameters.
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The technique presented in [74] focused on the elimination of biases that may occur
in measurements provided by PMUs. States are projected unto a rectangular coordinate
system where magnitudes and angles are monitored. The correction relies on redundancy
provided by adjacent PMU nodes. In [75], when an abnormal result is obtained from
the state estimator, data from multiple sources, including SCADA, PMU databases, and
power-flows, are used to verify the validity of the estimated results. A similar approach
was taken in [76], where PMU data, load forecasts, generation data, SCADA, and EMS were
used to validate and correct abnormal results produced by state estimators. Several types of
attacks were investigated in [77], including some that have the ability to remain undetected
by commonly used bad-data detection methods. This solution proposes a technique for
detecting and mitigating attacks where counter measures are taken based on deviations
observed in the network’s impedance.

Trends: A recurrent theme in this area is the use of redundancy to identify and correct
issues. In some solutions, this is performed by using PMUs to validate the results of static
estimators. In others, PMU readings are validated by power-flow results. Utilizing multiple
sources of information is the foundation of virtually all solutions in this area.

Gaps: Finding multiple sources of data is a very significant challenge. That means
that these applications could be limited to highly monitored systems, such as critical
infrastructure. Power plants could be a viable target audience for these techniques.

Key paper contributions in this topic are presented in Table 4.

Table 4. Summary of contributions.

Key Contribution Reference
Bayesian techniques [71,72]
Machine learning and neural networks [73]
Detection and correction via geometrical tools [74]
Redundancy-based detection [75-77]
Alternative techniques from control are utilized [70]

6. Stability Applications

As previously discussed, improving state estimators was a pivotal need that drove the
development of PMUs. This is because state estimators play a critical role in the mitigation
of conditions that lead to instability.

6.1. Under Frequency Stability Applications of PMUs

Frequency stability (FS) is defined as the ability of a power system to maintain a steady
frequency, and to recover or reconverge, at the nominal operating frequency following a
disturbance that results in a significant imbalance between the generating capacity and
the load connected to the power system [78]. The FS of a system is primarily driven by
its ability to maintain or restore the load-generation balance while minimizing loss of
load [79]. A common method of mitigating dips in frequency is the removal of load from
the system so that the load-generation balance can be regained [80]. This process is called
load shedding, and it is illustrated in Figure 6.

The work in [81] proposes an adaptive technique to UF load-shedding (UFLS). Tradi-
tional UFLS schemes are based on fixed values; when the system frequency dips below a
given threshold, selected loads are disconnected from the system. While traditional UFLS
schemes have provided satisfactory UF mitigation, they are not perfect as they do not adapt
to the continuously changing conditions of the grid. Ref. [81] leveraged PMUs to develop
an adaptive UFLS scheme that optimizes the load-shedding process. Once an appropriate
amount of load has been shed, the system regains balance. The role of PMUs in this scheme
is to provide measurements that are used to monitor the inertia and frequency of the system
in real time. This solution produced satisfactory results, in some cases outperforming
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traditional UFLS schemes. The effectiveness of this scheme is influenced by the selection
of the UF pickup settings. The selection of those settings was left unexplored, as was
the selection of the load(s) to be shed. Both of these can be approached as optimization
problems in an extension of this framework.
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Figure 6. Simplified load-shedding action.

A more complete UFLS approach was presented in [82]. The fundamental idea of [82]
is to estimate the state of the system’s frequency a few seconds in advance. When a UF
condition is predicted, the solution finds a combination of loads to drop that matches the
predicted power deviation. The mathematical models used in this solution are similar to
the ones used in [81], and are omitted for brevity. The logic behind this approach is that
by taking proactive actions, this solution mitigates unknowns such as breaker trip times.
The predictions are made via polynomial curve fitting; this allows for a reduced number
of PMUs to be used. Provisions are made in cases where an accurate estimate cannot be
produced. The load-shedding step is broken into stages; this allows for further estimates
and corrections in real time. This solution also presents a load-shedding philosophy and
settings. Experimental results were favorable and the use of predictions for load-shedding
is novel. This framework could be expanded by utilizing alternate means of prediction.

Works dedicated to the islanding process are presented in [83,84]. Ref. [83] intro-
duced algorithms that calculate and find the load needing to be shed in order to regain
balance. Ref. [84] examined the validity of commonly used anti-islanding methods based
on frequency drift.

In [85], the feasibility of real-time and adaptive UF schemes based on PMUs was
investigated through simulations. The results of the experiments validated the use of PMUs
for these types of applications; however, some limitations were identified:

¢  Noisy measurements.
. Transients.
. Harmonics.

All had detrimental effects on the performance of the scheme. These issues can be
addressed by adopting mathematical models which increase the system’s robustness to
power/signal-quality-related issues. Increased filtering and data processing can also be
applied to alleviate these issues at the expense of increasing the computational requirements.
The issue of uncertainty in the context of UF schemes was also examined in [85]. Uncertainty
limits in PMU-based UF schemes were evaluated.

Key paper contributions in this topic are presented in Table 5.
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Table 5. Summary of contributions.

Key Contribution Reference
Adaptive scheme [81]
Optimized load-shedding [81,82]
Predictive scheme (82]
Optimized islanding [83,84]

6.2. Transient Stability

TS examines the ability of generators connected to the power grid to remain synchro-
nized in the aftermath of a disturbance [86]. How resilient the system is, is determined by
the generators’ ability to maintain and regain a balance between electromagnetic torque
and mechanical torque [79].

Among the first applications of PMUs in the area of stability was their integration
into out-of-step (OOS) relaying schemes, as presented in [87,88]. Recently, more intricate
techniques, such as [89], have been presented. In [89], system parameters were estimated
via the UKF from a dynamic model based on the swing equation; details can be found in [90].
Once the system’s parameters have been established, individual component analysis [91]
and the discrete Fourier transform (DFT) are used to divide the system into coherent groups
(zones). At each zone, the equal area criterion is used to develop the OOS settings. Since
the settings developed in this work are adaptive, they provide high selectivity compared to
traditional OOS schemes. While promising, this technique relies on complex calculations
at a centralized location. It also does not specify locations and the sampling rates of the
PMUs involved. Finally, although the scheme is of an adaptive nature, initial settings are
still developed using transitional techniques. Overall, this technique utilizes novel tools to
develop clusters and adaptive OSS settings, but several open items are yet to be addressed.

Machine learning has been leveraged in the development of new TS solutions; [92] is
an example of this. In this solution, a long short-term memory (LSTM) process, which is an
improvement over the recurrent neural network (RNN), is trained offline to detect rotor
angles ¢ that lead to instability. The output of the NN, y, is defined as

] 1(Stable) fory >0, t=1,2,...,T (13)
o (Unstable) fory <0
where 360 6
— — Ymax 14
T 360 + Omax (14

and Jyay is the maximum deviation between any two generators. After training, fixed
time windows are used to update the stability thresholds. As new real-time data are
processed by the algorithm, LSTM allows for fast results at the expense of decreased
accuracy. In[93], NNs were used in a similar fashion to [92] to derive key parameters
which were then used to produce coherent groups, as performed in [89]. In [94], an
improved denoising autoencoder (DAE) and synthetic data were used to develop a TS
scheme. These ML-based approaches displayed strong performance with rapid online
calculations, which make them an attractive framework for future solutions; however, the
process of training the NNs, the need to conduct a series of studies to extract important
training data, and the optimization of PMU placement offer opportunities for improvement.

In [95], a predictive transient stability (TS) monitoring scheme was presented. After a
disturbance occurs, the center of oscillations (CoO) triggered by the disturbance is located.
This is achieved by relating the frequencies at two ends of a line, as follows:

fcoo(ti) =a 'fl,ti + (1 - a) 'fZ,fi (15)

Key paper contributions in this topic are presented in Table 6.
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Table 6. Summary of contributions.

Key Contribution Reference
Adaptive scheme [89]
Machine learning and neural networks [92-94]
Predictive scheme [95]
Anti-islanding [96-98]
Stability index [99]

Where f; and f, represent the frequencies at each end of a line at time ;. Once the
location of the CoO has been identified, a simplified equivalent model of the generator
affected by the disturbance is created. The stability of the equivalent model is monitored
via Lyapunov energy functions and Lyapunov’s direct method. By monitoring the poten-
tial energy of the system simultaneously with the total energy (the sum of potential and
kinetic energies), the generator can be seen drifting into instability before any thresholds
are surpassed. This allows for corrective actions to take place sooner than with traditional
schemes, helping mitigate equipment damage and disturbances from escalating. As pre-
sented in [95], this solution was tested on relatively simple systems. More validation with
larger, more complex systems should be carried out; however, this is a very promising
solution that can serve as a foundation for future work.

As a power network reacts to transient, unintentional islanding of certain sections of
the system could occur as the protection scheme attempts to isolate the problem. Uninten-
tional islands tend to be at a higher risk of stability loss due to lack of contingencies and
access to additional resources located outside of the island. These conditions are addressed
in [96-98]. Ref. [96], proposed an improvement to non-detection zones (NDZs) via modal
analysis. Ref. [97] focused on the communication requirements for anti-islanding schemes.
In [98], simulations and decision trees were utilized to detect islanding. Decision trees were
once again used in [99], but this time they were used to generate stability indexes.

6.3. Voltage Stability

VS examines the ability of a power system to maintain steady voltages across all of the
buses in the system following a disturbance [80]. How resilient the system is, is determined
by its capacity to meet the power demands of the load and prevent progressive changes in
voltage [79].

In [100], a VS solution based on PMU measurements is presented. Thevenin equivalent
models at each bus are produced and used to derive impedance values. Spline extrapolation
is used to find the trajectory of the impedances as a function of loading. The maximum
loading parameter A,,,, ; at the ith bus is defined as the point along the impedance trajectory
where |Z;;,.| is equal to |Zy,|, signaling the point of maximum power transfer. The bus
with the lowest A,y sets the maximum loading point for the whole system. This can be
defined mathematically as

Asys = min {Apaxili = 1,2,...,1n} (16)
Amax,i is then used to determine the voltage stability margin (VSM) of the whole system as

. /\sys — Ao
0

VSM x 100% (17)

A relatively simple formulation and the utilization of well-known techniques are the
strengths of this solution. It was assumed that accurate and reliable measurements were
available through filtering techniques that were not part of the solution. The integration of
data filtering into this solution presents one possible opportunity for improvement. The
performance of the system in the presence of significant disturbances was also not explored.
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In [101], a more complete solution composed of a VS index and a load-shedding
scheme was presented. Similar to [100], parameters were calculated from Thevenin Equiv-
alent circuits at each bus. These parameters were used to build a stability index. Each
index value corresponded to a loading level. The following relations were used during the
load-shedding step:

APy = Pr(Pigx2) — PL(Piax1) (18)

AQL = BAPL (19)

where AP is the difference in power between a stable loading point (index 2) and a unstable
loading point (index 1). § is a multiplier corresponding to the power factor of the load
to be shed. This technique displayed a strong performance during testing. Once again,
the simplicity of the method is a strength; however, more testing is needed to see how the
algorithm performs in conditions of considerable measurement noise and transients.

ML techniques have also been leveraged in the development of VS solutions.
In [102,103], solutions based on random forest algorithms that adapt to the operating
conditions of the system were presented. Stability indexes were used in [104], where
locations at risk of falling into instability were identified proactively. This was achieved
though the use of equivalent network models obtained via PMUs. These network models
were studied in real time to produce stability indicators.

Key paper contributions in this topic are presented in Table 7.

Table 7. Summary of contributions.

Key Contribution Reference
Equivalent models [100,101]
Optimized load-shedding [101]
Machine learning and neural networks [102,103]
Stability index [104]

6.4. Small Signal Stability and Controller Design

Small signal stability focuses on the ability of the power system to remain synchro-
nized in the presence of small disturbances [86]. The nature of small signal disturbances is
related to oscillations produced by the mechanical dynamics of the generator and the auxil-
iary and control electronics around it [78]. This phenomenon is usually addressed through
controllers [79], but in order for controllers to be effective, these modes of oscillation must
first be identified. In [105], a regularized robust recursive least squares (R3LS) method was
used to determine oscillatory modes from PMU measurements. This technique also utilizes
moving averages and optimization tools to mitigate the impact of abnormal data. In [106],
modes of oscillation in extra-high-voltage (EHV) lines were identified via hybrid dynamic
models based on differential algebraic equations. Solutions developed to overcome chal-
lenges generated by the noise introduced by hardware were presented in [107,108]. Signals
were analyzed in the Fourier spectrum to obtain eigenvalues in [109]. Empirical mode
decomposition (EMD) and wavelet shrinkage analysis were used in [110]. The Hilbert
transform, together with synthetic measurements, were utilized in [111]. Low signal-noise-
ratio conditions were examined and mitigated through a self-coherence method in [112].
Once a suitable method for the identification of oscillatory modes has been selected, a
controller can be designed.

In [113], a wide-area damping controller (WADC) based on robust control is presented.
This controller is used to damp and eliminate low-frequency oscillations while considering
variables such as latency in communication networks, and data transmission failures.
The controller’s gain varies over time to adapt to the dynamic conditions of the system.
The design of the controller is finalized by applying stability constraints and performance
indexes in a minimization procedure. The results produced by this solution are encouraging,
and its use of adaptive parameters is an improvement over traditional controllers.



Energies 2022, 15, 5329

17 of 32

In [114], a TS solution via distributed control is presented. This solution leverages the
continuous data influx provided by PMUs to provide a controller with adaptive gains, as
seen in [113]. They key difference between the two approaches is that [114] does not rely
on centralized data processing. The distributed nature of this approach translates into a
significantly lower strain on the communication network, as well as increased security in
case of a cyberattack, since losing one single control point will not cause the entirety of
the control system to collapse. The controller used in this work is of the robust type, and
the system’s model is derived from the swing equation. The objective of the controller is
to ensure that the rotor angle matches the target angle by actuating distributed storage
sources (DSSs). Global stability constraints are developed via Lyapunov stability analysis
to ensure the system as a whole is stable. This method displayed a strong performance;
however, some open items remain in terms of the availability and capacity of DSSs, and the
frequency at which parameters are updated at both the local and the global level.

Several distributed control algorithms are presented in [115]. The principal motiva-
tion behind the development of these distributed solutions is the simple fact that current
communication infrastructure will not be able to handle the myriad data that could be
generated by centralized synchrophasor applications [116]. In [117], it was shown how
distributed computing technology is likely to grow at a faster rate than the communica-
tion infrastructure needed to support centralized solutions. Ref. [115] makes a significant
contribution by not only formulating a mathematical solution but also elaborating on the
system architecture to support it. The algorithms at each processing location are based on
eigenvalue estimation. Several architectures with varying degrees of communication in
between processing nodes are presented. Architectures with global consensus presented
advantages in terms of coping with network delays and data privacy; however, they pre-
sented several drawbacks, such as single point failure exposure due to the central point of
communication, as well as high volumes of data traffic. When a central communication
node was removed, and each processing location communicated with a sub-set of locations,
the exposure created by a single point failure was eliminated. However, with this con-
figuration, delays become more consequential, data privacy is decreased, and data traffic
volumes remain high. An architecture combining the two aforementioned architectures
delivers a system network where processing nodes are grouped into areas. Within each
area, there is communication between the processing nodes, but only one of them commu-
nicates with a central unit. The central node communicates with one specific processing
unit in each area. With this configuration, the exposure presented by the single point of
failure returns. Additionally, data privacy and delays remain a problem. However, this
configuration alleviates the data volume issues present in the other architectures. Clearly, a
one-size-fits all architecture is far from finalized, and it is very likely that compromises will
need to be made depending on the requirements present at each location. Communication
challenges in the context of PMUs are further explored in [118,119]. Obstacles encountered
in centralized architectures are emphasized in [120], while [121] focuses on challenges
specific to distributed architectures.

As seen in other areas of stability, indexes have been proposed for small-signal stability.
In [122], eigenvalues and their corresponding modes are monitored and given a rank. This
solution is based on graph theory and decision trees.

Trends: For the area of stability, the discussion of trends and gaps was combined into
one. Across the field of stability, a prominent movement is the development of predictive
techniques. Since the loss of stability happens gradually (not instantaneously), and given
the computing capacity of modern computers and relays, the trend is to identify conditions
that will lead to the loss of stability while the system is still operating under normal
conditions. This allows the system to optimize its response. In some cases, that response
could be to separate the system into islands; with a predictive approach, an optimization
routine could be used to calculate and find the precise amount of load needed to be shed.
The use of adaptive thresholds is also a significant trend in stability.

Gaps: Latency will always be a factor in time-constrained applications. The robustness
of data during heavy disturbances is an aspect that could have a detrimental impact on the
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performance of these techniques. Methods designed to provide reliable results during fault
conditions can be found in Section 4.1. It must be noted that since these solutions make
decisions upon identifying a drift into instability, the impact of latency and disturbance-
related distortions is expected to be moderate compared to solutions that take a more
reactive approach (those that wait until stability thresholds have been surpassed).

Key paper contributions in this topic are presented in Table 8.

Table 8. Summary of contributions.

Key Contribution Reference
Techniques for the detection of oscillatory modes [105,106,110,111]
Noise mitigation [107,108,112]
Robust control techniques [113]
Distributed control techniques [114,115]
Stability index [122]

7. Power System Protection

This section is divided into three areas, as seen in Figure 1. Some of the applications
in transmission protection share the same foundation and execution approach as some
of the applications designed for distribution protection. However, it must be understood
that the constraints and obstacles presented at those two levels of power delivery are
vastly different, and therefore, those applications deserve to be examined independently. A
third subsection is dedicated to specialized protection applications of PMUs, where more
experimental, yet intriguing, techniques are presented.

Several of the solutions covered by this work deal with the topic of adaptive protection
(AP). AP schemes are used to cope with drastic changes in the available fault current of
a system. With the increasing penetration of distributed generation (DG), fixed protec-
tive settings can leave the system exposed during certain operating conditions. Figure 7
illustrates a condition where four sources are connected to a system when a fault occurs
(left). With the four sources connected, the system can supply enough current to trip the
corresponding breakers and clear the fault, preventing further damage (right) [123].
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Figure 7. Power system with distributed and utility sources—all sources online.

On the other hand, if some of the sources are removed from the system and a fault
occurs, as seen in Figure 8 (left), it is possible that the remaining sources might not be able
to supply enough fault current to operate the protective devices [123]. This type of situation
can lead to larger outages (upstream breakers tripping) and equipment damage (the line
burning), and represents a clear safety hazard [80].
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Figure 8. Power system with distributed and utility sources—utility sources offline.

While these scenarios might seem far-fetched, one must remember that the typical
inverter will shut itself off once its current output reaches 1.5-2 PU [124]. One possible
solution could be to install multiple relays, but that option is not the most cost-effective.
Directional relays can alleviate the issue, but do not always offer a complete solution.
Another alternative could be to program multiple sets of settings into a relay. The problem
with that is that while modern relays can have multiple settings groups programmed into
them, switching from one set of settings to another usually requires human interaction,
either in person or remotely, and some relays require a reboot when another group of
settings is selected, meaning that the relay (and protection) will be disabled for several
seconds [125]. As a result of these limitations in OC protection, AP schemes are being
developed to dynamically adapt to the various operating conditions that the modern grid
can present [80].

7.1. Distribution

In [126], a distributed approach for fault detection and location in active distribution
networks is presented. The fundamental idea is to leverage PMU measurements as inputs
for multiple linear weighted least squares state estimators (LWLS-SE). The estimation
step is a familiar one, similar to the estimation techniques presented in Section 4. This
approach assumes that all buses in the network are equipped with PMUs. The status of
key devices, such as circuit breakers, is taken into account when the admittance matrices
corresponding to each estimator are built. This is achieved by assuming that the status of
the device is sent to the PMU. Errors are detected via a metric called weighted measurement
residual (WMR).

|z; — 2]

WMR/ = 5P, jel,...,m (20)

Zi

The WMRs of all the LWLS-SEs are calculated and compared. If a line’s WMR deviates
from the mean WMR for two consecutive time-steps at an increasing rate, the line is flagged
as faulted. The WMRs of all the faulted lines are then compared, the largest deviation
revealing the true faulted line. The results of simulations produced encouraging results
in regards to its accuracy and ability to detect a variety of faults types, with a reasonable
processing time of under 122 ms. The algorithm displayed a strong performance in the pres-
ence of DGs. Another advantage is the use of well-known estimation techniques, although,
as mentioned before, classical estimation techniques underutilize PMU measurements.
The assumption that every bus is equipped with a PMU is a strong one, particularly at
the distribution level. It is unclear how this method would perform in a system with a
large number of buses. Performance would be expected to decline as the number of buses
increases due to communication latency and processing times when comparing a large
number of residuals.

A dynamic setting-less protection scheme is presented in [127]. This solution takes a
decentralized approach to alleviate the strain that DE can place on communication networks
due to high data-transfer rates. This technique assumes that key components, such as
transformers, generators, and converters, are equipped with PMUs or other metering
devices capable of high sampling rates. DE is performed locally at these key locations with
chi-square testing used to detect anomalies. The estimated states are given a time stamp
and sent over to a central location where classical SSE for the complete system is performed.
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This technique assumes that PMU sampling rates of 60 Hz are available at the DE locations.
This sampling rate makes it possible to apply the dynamic models this technique uses to
describe the behavior of the devices being monitored. Once again, differential protection
is used as the foundation of this DE-based protection scheme. This work is based on the
premise that when internal faults occur, the WSL estimates will have large errors, while
external faults will only produce slight errors, if any at all. The chi-square test with v
degrees of freedom is defined as

v=m—n (21)
hi(%) — zi

) (22)

{=2
where v is the difference between the number of measurements m and the number of
states n. h(X) is the estimated measurement and z; is the actual measurement. When
{ reaches a critical value, the corresponding estimate £ is classified as abnormal. This
method showcased a significant degree of sensitivity as it was able to correctly identify
high-impedance faults and in some cases outperformed differential protection. This strong
performance can be attributed to use of dynamic models which allow for an in-depth look
into the behavior and condition of the system. While it is encouraging to see techniques
pushing the boundaries of current technology, it must be noted that high-end relays are
currently capable of sampling rates of only 30 Hz [128], meaning that presently, this
technique could only work with PMUs or other devices with high sampling rates. Another
drawback of this technique is that implementing it could require significant engineering
work as parameters such as flux linkages and mutual/self impedance would have to be
calculated beforehand.

Ref. [129] introduces an adaptive protection scheme that focuses on the impedance
angles of a line. This technique assumes that both ends of a line are monitored by PMUs.
The readings of the two PMUs are utilized to estimate impedance angles which are then
tracked in a polar coordinate plane. This technique is similar to distance or impedance
relaying, where the magnitude and angle of the apparent impedance of a line is used to
identify faults. The impedance angles are calculated through a very simple approach:

Vi1tV

SII = 23
i1 + Iy @)

where SII is designated as the positive sequence integrated impedance. Similarly, the
angles or integrated impedance angles I1As are calculated as

Vii + Vo

1A =
gt I+ In

(24)
where the subscripts 1 and 2 represent the ends of the line. These voltages and currents
are found via KCL (Kirchhoff’s current law) and KVL (Kirchhoff’s voltage law). Slight
modifications are made to the equations above to account for various modes of operation
and fault types. The capabilities of the PMU are leveraged to capture measurements during
disturbances. Zones related to different operating conditions, based on impedance angles,
were determined empirically. It was found that, in general, impedance angles between
5 and —5 degrees from the origin represent normal conditions. Angles between 5 and
90 degrees represent external faults, while angles between —5 and —90 degrees represent
internal faults. Calculated impedance values at both ends of the line are used to provide
redundancy. This solution’s results were robust, even in the presence of high-impedance
faults, and as DG sources were added and removed. The highlight of this technique
is its simplicity; however, its reliance on empirical data deserves further investigation.
Additionally, multiple equations and relationships are estimated by this technique; however,
it is not clear how they are applied once a disturbance has been identified.

A distribution protection scheme developed to provide consistent performance across a
wide range of topologies and disturbance events is presented in [130]. Changes in topology
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and DGs are considered in [131]. Multiple metering sources are utilized in the protection
scheme presented in [132]. Overload conditions in distribution lines are addressed in [133].

Trends: In distribution, adaptive protection is taking a more central role as researchers
look for ways to provide reliable protection in the presence of microgrids and distributed
generation. This is a key issue that modern relays have not fully addressed.

Gaps: PMU-observability becomes a major issue at the distribution level. y-PMUs
could play a central role in making these solutions feasible. Presently, these solutions could
be limited to microgrids.

Key paper contributions in this topic are presented in Table 9.

Table 9. Summary of contributions.

Key Contribution Reference
Adaptive protection techniques [126,127,129]

Integration of equipment status [126]
Decentralized scheme [127]
Impedance based protection scheme [129]

Provisions are made considering changes in [130-132]

topology

Overload conditions are considered [133]

7.2. Transmission

As PMUs communicate to produce synchrophasor measurements, a latency is intro-
duced by the communication network. In general, a delay between 40 to 100 ms is to be
expected from the moment a reading is taken to the moment the measurement becomes
available at another location in the network [80]. In the relaying world, where decisions and
actions are measured in terms of cycles, 40 to 100 ms is a significant delay; this delay makes
WAMs not suitable for high-speed protection. At the transmission level where distance
relaying is widely used, high-speed protection corresponds to Zone 1, where delays are
normally not introduced. For a Zone 1 event, a modern relay is expected to operate in
fewer than 1.5 cycles [128]. However, as delays are introduced in Zones 2 (200 to 500 ms),
and 3 (400 ms to 1 s) [134], the integration of WAMSs into protection schemes becomes
feasible. These three zones of protection are illustrated in Figure 9. Zones 2 and 3 provide
a redundancy or backup to outer areas in case primary protection fails at those locations.
Given the delayed nature of PMU-based protection, the following solutions are presented
as backup protection schemes intended to complement traditional relay-based protection.

Zone 1 Delay: < 1.5 cycles

Zone 3 Delay: 400ms-1s
Figure 9. Typical distance protection scheme with zones of protection.

In [135], a PMU-based backup protection scheme is presented. This technique aims to
provide reliable backup protection without highly complex computations during conditions
of high stress for the grid. The operating principle behind this technique is a variation of
voltage differential protection. Measurements at both ends of a line are used to derive the
following voltage and current relationships:
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Vig = cosh(yL)Vj1 — Zc sinh(yL)I;; (25)

= 1 . — -

Iy = ——sinh(yL)V;1 — cosh(yL)I;1 (26)
’ ZC ’ ’

where 7 is the propagation constant and L is the length of the line. Z represents the surge
impedance of the line, and the number 1 in the subscript represents positive sequence
values. Deviations in voltage are used to build an index that is then used to identify
abnormal conditions such as faults. The lines that produce abnormal voltage deviations are
selected for further analysis where the following parameter is calculated:

tanh’l(%) (27)

Dri =
Vi jLij
where A and B represent line parameters calculated during the fault. The Dp; values of
the lines involved in the disturbance are compared to determine the location of the issue.
The premise presented by this technique is that examining voltages can lead to a more
robust detector during disturbances which can prevent misoperations seen in current-based
protection. This work also includes its own algorithm for optimal PMU placement; this
algorithm is similar to the ones covered in Section 4. This technique provided acceptable
results across a variety of tests. The main appeal of this solution is its simplicity and
relatively low computational burden. One drawback is that perhaps this technique does
not tap into the full capacity of PMUs.

In [136], in addition to using voltage readings to identify issues, as in [135], frequency
data are integrated into the algorithm. Voltage measurements are compared to an average
that is recalculated every n cycles. PMUs whose readings are flagged as abnormal are then
tracked for n cycles and are assigned a value based on their deviations from the average.
The readings with the largest cumulative deviation are sent to another module where
events are classified via feature extraction. In the classifier module, a variant of the wavelet
transform is applied to extract the oscillatory modes corresponding to the measurements
during the disturbance. The dominant spectral component, skewness, distortion, and the
rate of change of the spectral components are some of the features used to build event
profiles which are then fed to an ML algorithm that identifies the event class. Overall,
this technique displayed a strong performance with reasonable processing times. Some
opportunities for improvement can be found when dealing with switching events, as this
solution struggled to identify these occurrences. As is the case with solutions that integrate
ML or NNs into the algorithm, the process for choosing the optimal parameters and
structure of the NN deserves further investigation. It is important to note that these types
of solutions test the capabilities of PMUs, as they leverage the high sampling rates of PMUs
to develop algorithms that process data across multiple domains. Rigorous applications
such as this one can lead to further improvements in technology.

In [137], an adaptive PMU-based protection scheme is presented. This scheme utilizes
techniques that are popular in classical estimation; this allows for ease of implementation
with a relatively low computational burden. Overall, the approach is similar to other
techniques previously discussed. A key distinction lies in its use of backup protection zones
(BPZs). After a PMU-placement algorithm determines the optimal locations for PMU in-
stallation, this technique proceeds to divide the system into subsections. These subsections,
referred to as BPZs, are established based on observability and network topology. The
principle behind BPZs is similar to differential protection, where the sum of the currents
entering the zone must equal the sum of the currents leaving the zone [80]. Faults are
identified when the currents entering a zone exceed a threshold. These relationships are
determined as follows:

Lent,Bpz;, > lim,Bpz, (28)
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where [, is the current threshold. I,;; is defined as

Lent 8Pz, = |Zier, 11| (29)

where [; represents the current of a line. I, is simply the sum of the line currents at the bus.
The adaptive aspect of this technique is accomplished by updating the I;, every minute.
When a fault is identified, voltage—current relationships of the affected BPZ are used to
locate the fault via linear least squares. This solution is based on tried-and-true techniques
(differential protection and linear regression) and, as expected, produces solid results.
Solid performance combined with relatively simple implementation make this solution
appealing. Opportunities for improvement exist in the following forms: This technique
has requirements regarding topology, which means that the algorithm might struggle to
maintain the same levels of performance when applied in systems with a complex topology.
The solution also does not address distributed generation and the potential impact on fault
current flows. Finally, the solution is rather rudimentary and does not make the most of
synchrophasor technology.

Another type of transformation, in this case the Hilbert transform, is applied in the so-
lution presented in [138]. The Hilbert transform has some parallels with the popular Fourier
transform. Test results showcased the method’s ability to produce accurate estimates in
the presence of noise, harmonics, and decaying DC components, but the PMU-sampling
rate was still on the higher end of the range at 128 Hz. Moreover, the technique was
tested on rather a simple system. Modifying the technique so that it can function with
lower sampling rates, and performing additional testing with more complex systems, offer
opportunities for improvement.

In [139], the principle of integrated impedance is used to formulate a backup protection
solution for transmission lines. The operating principle is similar to the one presented
in [129], which is itself similar to impedance-based protection. Meanwhile, ref. [140]
expands the principles presented in [129,139] to produce a formal wide-area protection
scheme. In particular, ref. [140] address backup protection for adjacent lines. The direction
of the fault currents seen by the PMUs and their relative locations are used to coordinate the
backup operation. During testing, this scheme displayed an acceptable level of performance.
There are several ways this solution can be improved, but the main takeaway is that [140]
shows how PMU-based protection can be expanded and formulated as a formal protection
scheme. A predictive blocking scheme is presented in [141] to prevent misoperation in
the Zone 1 of distance relays to due transients. Modal decomposition is used in [142]
to formulate an adaptive protection scheme for parallel transmission lines. Symmetrical
components and a modified version of the discrete Fourier transform (DFT) are used in [143]
to protect EHV transmission lines. Two-terminal protection schemes for transmission lines
are presented in [144,145]. These solutions are reportedly highly accurate, but require
PMUs at both ends of the line. A technique designed to be robust in presence of errors is
presented in [146].

Trends: In regard to transmission protection, backup and adaptive schemes are the
most investigated applications. Backup applications, which include time delays by design,
are able to leverage PMUs to locate faults and coordinate corrective actions. Adaptive
and setting-less protection are also used in applications closely related to stability. Most
techniques appear to be a variation of either differential or impedance/distance protection.
Many techniques are taking a decentralized approach and modify the techniques discussed
in Section 4.1 for the purposes of protection.

Gaps: The majority of PMU-based protection applications seem incomplete. For in-
stance, coordination, which is a critical aspect of protection, is covered by only a few solutions.

Key paper contributions in this topic are presented in Table 10.
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Table 10. Summary of contributions.

Key Contribution Reference
Backup protection schemes [135,136]
Adaptive protection techniques [125,137,142]

Fault location techniques [138,143-145]
Predictive scheme [141]
Measurement error mitigation [146]

7.3. Specialized Techniques

Finally, in this section, this manuscript reviews specialized applications of PMUs of a
more experimental flavor. As made evident by several techniques presented in this work,
the synchronization and high sampling rates of PMUs allow for new venues of power
system analysis. Transient and dynamic behavior provide a wealth of insight into the
system being studied [116]. These types of events are invisible to traditional metering
infrastructure, and although modern digital relays and DFRs are capable of capturing
disturbances at high resolutions, recording in these devices is usually triggered by dis-
turbances, which makes them reactive tools rather than a proactive means of protection.
Equally fundamental is the synchronization of the measurements which allows for the dy-
namic estimation of crucial system parameters [8]. This section focuses on the development
of PMU-based solutions for HIFs (high-impedance faults). Overcurrent protection has led
to to the development of myriad protection schemes due to its reliability, effectiveness, and
simplicity [80]. However, as the grid evolves, more complex, and in some cases stochastic,
events have appeared. These events have forced protection engineers to find alternative
means of protection beyond overcurrent based schemes. For instance, at the transmission
level, distance (impedance) protection is generally the default protection scheme, and
it monitors voltage—current relationships in addition to the apparent impedance angle.
Another example are voltage differential schemes, which track changes in bus voltage
instead of currents at locations where monitoring changes in current becomes unfeasible
due to high current magnitudes or CT ratios that are hard to match [134]. A very important,
yet relatively overlooked, problem in power system protection is the issue of HIFs. This
is an area where overcurrent protection has historically struggled due to the relative low
current magnitudes and the highly stochastic nature of these faults. In many cases, HIFs are
not detected and the fault either clears itself (a tree branch is completely burned through),
or the HIF escalates into a more severe fault (higher current magnitude) [147]. Several
techniques reviewed in previous sections were capable of detecting and locating HIFs;
however, in most cases that was a byproduct of the solution and therefore the typical
obstacles associated with HIFs were not fully explored. The following three techniques
take a deeper dive into HIFs and highlight some of the obstacles the state of the art is yet
to overcome.

In [148], ML and PMUs are leveraged to uncover the key features of HIFs so they can
be used for HIF detection. Mathematically, the solution is based on the findings of [147],
which introduced a popular version of the anti-parallel source-diode HIF model. This
model has become widely used and highly influential in the area of HIFs. The reason for
its popularity is that it manages to emulate many of the complex features of HIFs. While
powerful, the application of this model requires extensive simulation where faults are
modeled using many different combinations of fault parameters, which is clearly very
impractical. In [148], simulation data using the anti-parallel source-diode HIF model are
used to train a semi-supervised learning algorithm. The solution produced strong results
across several categories, including accuracy and robustness to noise; however, this solution
does not address the fundamental problem of HIFs: their stochastic nature.

The solution presented in [149] suggests a drastic move away from traditional tech-
niques that attempt to model and predict key characteristics of HIFs, such as [148]. Instead,
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this solution focuses on monitoring deviations from a benchmark. A general data-driven
solution is emphasized with little to no input from humans. First, currents and voltages at
both ends of a line are utilized in a subspace estimation procedure with the goal of curve
fitting. In order to increase the reliability of the solution, timers and multiple zones of
protection (boundaries) are utilized, similar to those seen in OOS protection. When an
eigenvalue drifts outside of the inner zone, a timer starts; if the eigenvalue returns to the
inner zone before the time expires, no events are flagged and the parameters of the cluster
are updated. If, on the other hand, the eigenvalue does not return to inner zone on time
or drifts outside of the outer zone, the event is flagged as a fault. The solution displayed
extreme sensitivity when detecting faults, as it was able to detect faults with a resistance
of 1000 ), which is much higher than most HIF solutions, even those utilizing PMUs. It
must be noted that this solution completely eliminates the need to model the stochastic
behavior of HIFs, and it instead establishes a reference or baseline of normal eigenvalue
behavior. The sensitivity displayed by the technique did come at a price, however, as
sudden increases in the level of noise of the measurements can result in false positives.

In [150], a solution for fault location in underground systems is developed. By lever-
aging measurements at both ends of a cable via PMUs, a model based on symmetrical
components is estimated. This solution focuses on monitoring the capacitance of the cables.
Changes in capacitance can be used to detect degrading insulation which is closely related
to faults. As it relates to underground systems, capacitance-based fault location might
offer some advantages over impedance-based fault location, in particular when dealing
with ground faults. The results of the solution are interesting; however, it was noted that
the accuracy of the solution fluctuated as the length of the line varied. In addition to
length-related limitations, this technique was not tested with resistances beyond 100 ().

The solutions presented in this section demonstrate that PMUs can be capable of
offering more than just backup protection, and in some cases they can become the primary
source of protection.

8. Discussion

In regards to estimation and observability, most solutions rely on sampling rates on the
higher end of the PMU spectrum (60 Hz or higher), which might make them unpractical in
the short term. The vast majority of buses do not have PMUs installed, and while modern
relays, such as the SEL421, produce sychrophasor measurements, they do so at rates of
30 Hz [128]. It is likely that in the future, PMU-observability will be possible through a
combination of PMUs, y-PMUs, and PMU-ready relays; however, the sampling rates will
likely be below 60 Hz, as older units are combined with newer PMU models. Researchers
should take this limitation into account when developing solutions, as solutions with less
stringent sampling rate requirements will have a higher degree of feasibility.

In the mid-term future, integrated techniques appear to be very promising as they
could be capable of delivering quasi-dynamic estimation by leveraging various types of
metering infrastructure in addition to PMUs.

Many techniques do not appear to utilize the full capabilities of PMUs and simply
take measurements and process them using traditional tools such as WLS. On the other
hand, mathematical techniques that produce predictions or estimates into the future, such
as filtering or Bayesian estimation, have produced encouraging results cross multiple areas,
yet they remain relatively unexplored.

ML- and NN-based techniques are far from general, as they require a high degree of
customization, which makes it difficult to reproduce the findings reported by their authors.

In the context of protection and control, most solutions do not take into account or
leverage status sharing and reporting that already exists in between devices and EMS, such
as breaker open/closed status. Many of the techniques presented do not offer a formal or
complete solution. When developing a solution in the area of protection, researchers should
ensure that the technique offers an improvement over modern relaying techniques. Many
of the methods discussed in this work assumed that PMUs are installed at every bus, and in
that case, it would be fair to compare those solutions to systems where modern digital relays
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are located at the ends of every line. A simple differential scheme is capable of detecting
and locating faults with accuracy while using standard, off-the-shelf equipment [151,152].

Finally, there is strong evidence that indicates that the future of synchrophasor-based
power system applications might be in the form of distributed schemes. That is due to
the immense burden that centralized dynamic PMU communication will place on the
networks [115,116]. It has been suggested that distributed solutions can deliver perfor-
mances comparable to those by centralized solutions, with lighter data traffic and with
increased network security [153].

9. Conclusions

This work provided an overview of current research trends and applications of syn-
chrophasor technology. The majority of the solutions discussed in this document were
released within the last five years, and can, therefore, be considered state of the art. These
solutions were divided into four areas: estimation, monitoring, stability, and protection. In
most cases, these solutions spanned across multiple categories, indicating that there might
be opportunities to find synergy among them. Indeed, fundamentally all of the applications
reviewed can be approached as goodness-of-fit problems. During this review, it was found that
many techniques do not utilize PMUs to their full capacity. Many of them rely on classical
processing techniques such as WLS estimation, and basic voltage—current relationships,
which have benefits as they are easy to understand and require relative low computing
power, but do not truly advance the state of the art. While some of the more experimental
techniques might not be feasible in the immediate future, they play a key role in testing
the capabilities of modern PMUs and providing a framework for future advancements.
Techniques utilizing mathematical transformations and alternative means of estimation
such as Bayesian estimation have provided very promising results, yet they remain largely
unexplored. Tools such as machine learning and neural networks can also be leveraged to
bridge gaps in existing schemes; however, ML-based solutions carry an inherent lack of
generality, which can make them impractical. Widespread dynamic solutions will likely
not be feasible in the near future due to lack of infrastructure, yet they are the focus of
the majority of research efforts related to PMUs. On the other hand, a new paradigm in
between static and dynamic, which might become feasible in the near future, is largely un-
explored. Quasi-dynamic solutions, which integrate measurements from meters at multiple
sampling rates, could become pivotal in smart grid applications in the near future. Similar
to dynamic techniques, centralized solutions are also the subject of significant research,
despite the fact that their feasibility has been called into serious question.

Author Contributions: Conceptualization, G.P.; methodology, G.P; software, G.P,; validation, G.P.;
formal analysis, G.P.; investigation, G.P.; resources, G.P.; data curation, G.P.; writing—original draft
preparation, G.P,; writing—review and editing, A.B.; visualization, G.P; supervision, A.B. and S.M.;
project administration, G.P,; funding acquisition, A.B. and S.M. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by National Science Foundation grant number ECCS-1809739.
Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.



Energies 2022, 15, 5329

27 of 32

Abbreviations

The following abbreviations are used in this manuscript:

WAMs
PMU
UF

FS

VS

TS

NN
ML

SE

SSE
DSE and DE

Wide Area Measurements
Synchronized Phasor Measurement Unit
Underfrequency
Frequency Stability
Voltage Stability
Transient Stability

Neural Network

Machine Learning

State Estimation

Static State Estimation
Dynamic State Estimation

ISE Integrated State Estimation

SCADA Supervisory control and data acquisition
KF Kalman Filter /Filtering

SM Smart Meters

WSL Weighted Least Squares

DER Distributed Energy Resources

MAP Maximum a Posteriori Estimation
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