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Abstract—With the advent of smart grid concept, Internet of
Things (IoT) and the deployment of smart meters, the cyber-
attack threats on power networks have increased due to the use
of communication systems that can be accessed by adversaries.
Attackers will have the ability to manipulate the outcomes of
smart meters which in turn influence the core application of
Energy Management System (EMS): State Estimation (SE). Bad
data analytic tools may fail to detect some attacks into mea-
surements. Meanwhile, Machine Learning (ML) solutions have
been proposed for detecting False Data Injection (FDI) attacks.
However, there is a lack of ML time-series solutions presented
in the state-of-the-art that is yet to be less complex. In signal
processing, time-series solutions does not only consider the signal,
but also the statistics of the signal over time. Therefore, in this
paper, a machine learning for time-series solutions is presented
as an application to model the measurements of the power grid
that are used in SE. The presented model takes into account
adaptive linear and non-linear filters: Finite Impulse Response
(FIR), and Infinite Impulse Response (IIR). The presented models
are implemented and performed on the IEEE-118 bus system.
The results indicate the advantage of applying those filters over
the state-of-the-art machine learning solutions.

Index Terms—false data injection, gamma filter, smart grid

I. INTRODUCTION

The implementation of Smart Grid on the power grid is
enhancing considerably because of the smart meters, control
analysis, and other technical components that’s been added to
it [1], [2]. This change has increased the smart grid’s depen-
dency on communication systems. Thus, the power network
has become susceptible to cyber attacks [3], [4]. If the power
network got attacked, the operators of the system can receive
inaccurate data that result a blackout [5], [6]. There has been
numerous cases that showed the severity of these attacks. For
example, there was a cyber-attack in Ukraine that impacted
225,000 customers with a blackout [7] and a cyber attack that
happened in Iran in [8] with the digital weapon Stuxnet. Such
cases increased researchers interest in cyber-physical security
for the power grid, which also includes machine learning-
based solutions.

Real-time monitoring is an essential tool for securing the
operation of the grid. Most utilities rely on State Estimation
(SE) as real-time monitoring tool to monitor the state of the
grid [9]. The ultimate goal of SE is to estimate the voltages at
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each bus through the process of the measurements set collected
from the grid. Bad data analytic process these measurement
as well as the outcomes of SE such as residuals in order to
remove incorrect measurements or correct any detected errors
[10]. Errors could be due to cyber-attacks on the grid or Gross
Errors (statistically large errors). Most research is emphasizing
on False Data Injection (FDI) attacks which is an attack on
the measurements data from the physics-based solution point
of view [11]–[18].

Another approach of bad data analysis, which is more recent
in power systems, is in the field of Machine Learning (ML)
and Artificial Intelligence (AI) research: such as deep learning,
deep belief networks, and clustering approaches [19]–[21]. In
addition, there are bad data analysis methods that integrate
physics-based solutions with data driven solutions [22], [23].
The advantage is to embed the temporal characteristic of real-
time data into the solution. However, because of the sudden
changes in the power system states, the prediction process of
these solutions are not able to acquire an adequate accuracy.
Moreover, aforementioned not many ML solutions consider
time series solution. The work in [24], [25] proposed ML
time-series solution where recurrent nonlinear autoregressive
exogenous neural network (RNARXNN) is used. Such model
could be complex due to the large number of parameters to be
tuned. It could also take more time to train and increase the
computational complexity of the model given an application in
real-time. The power system operation is a dynamic operation
because it involves data that is being processed through time.
The measurements of the power system typically include
voltage magnitudes, real and reactive power flows, and real
and reactive power injections [26]. Depending on the load
conditions and noise level, the measurements changes over
time which in turn changes their statistics. Hence, the machine
learning model needs to adapt to these changes in order to
improve the prediction’s accuracy.

In this paper, a simple time-series solution is presented to
overcome the aforementioned drawbacks of the ML solutions.
In particular, two type of filters are considered in this work
for measurements’ prediction: Finite Impulse Response (FIR),
and Infinite Impulse Response (IIR). The former filter is a
representative of the class of linear filters, while the latter
belongs to the class of non-linear filters. The advantage of
these filters is the ability to mitigate the effects of noise on
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the signal, which in turn provides an accurate estimation of the
measurement. The prediction of the measurements can then be
used in detecting FDI. Therefore, the contribution of this work
is two folds:

1) Applying time-series filters that takes into account the
signal’s statistics in order to provide an accurate predic-
tion of measurements

2) Mitigating the effect of noise on measurements’ predic-
tion

The remainder of the paper is organized as follows. Sec-
tion II provides background information on filters from signal
processing point of view. Section III presents the application
framework of linear and non-linear models in power network
data. A case study based on the IEEE 118-bus is shown in
Section IV. Finally, Section V presents conclusions.

II. BACKGROUND

In signal processing, a temporal signal is considered sta-
tionary if its statistics are not changing through time [27]. In
other words, two samples are only correlated by their time
difference. There are multiples of models that can be used
to predict stationary signals like the Least Mean Squared
(LMS) [28], Normalized Least Mean Squared (NLMS) [29],
and Affine Projection Algorithms (APA) [30], which are linear
models. One way of knowing if the signal is stationary or not
is through the use of auto-correlation. Auto-correlation shows
the degree of similarity between a given signal and a lagged
version of itself over time intervals [31]. For a signal x(t), the
auto-correlation can be represented as follows:

r(l) =

∑N−l
t=1 (xt − x̄)(xt−l − x̄)∑N

t=1(xt − x̄)2
(1)

where l is the lag value, x̄ is the mean of the signal, and
t is the time sample. Therefore, when l = 0, then r(0) is
the auto-correlation of the signal with itself. However, when
l = 1, then r(1) is the auto-correlation of the signal x(t) with
a lagged version of itself by 1 sample. This method has the
ability to demonstrate if the signal repeats itself after number
of lags, which identifies if the signal is stationary or not. In this
work, auto-correlation is used to classify stationary signals. In
particular, if the correlation value r(l) is close to 1 or -1 for a
substantial number of lagged values, the signal is characterized
as stationary. On the other hand, if the correlation value r(l)
is close to zero for a substantial number of lagged values, the
signal is characterized as non-stationary.

The signals that are identified as non-stationary are non-
linear signals, which are the ones that are difficult to be pre-
dicted by linear models. Therefore, non-linear models provide
accurate prediction such as: Kernel Least Mean Square [32],
Infinite Impulse Response - Gamma Filter (IIR-Gamma) [33],
or Time Delayed Neural Network (TDNN) [34]. The presented
solution in this work includes linear (Normalized Least Mean
Square - FIR filter) and non-linear (IIR-Gamma filter) models
that will be discussed in the following section.

III. PROPOSED FRAMEWORK

The goal of this work is providing a time-series solution to
predict a measurement data. Depending on the characteristics
of the data, temporal signals’ statistics could change over time.
The solution for addressing this concern is either using linear
or non-linear filters. In the following subsections, the two types
of filters are illustrated.

A. FIR Filter

The NLMS uses the FIR filter, which is a linear filter, to
process the data and build a machine learning model. Fig. 1
depicts the FIR filter [33].

Fig. 1. FIR Filter Diagram [33]

As illustrated in Fig. 1, in FIR filter, a window of K
points is selected. The feed-forward of this filter would be
mathematically written as follows:

y(n) = w0x(n) + w1x(n− 1) + ...+ wNx(n−K) (2)

where w0, w1, ..., wn are the weights, x is the input signal,
y(n) is the output of the filter, and n is the time/sample. The
number of weights determines the filter order or dimension,
(window size). The delay operator z−1 delays the input signal
by one sample in time where z is a complex number that can
be written as z = Aejϕ.

The cost function J is the prediction mismatch as follows:

J =
T∑

n=0

(d(n)− y(n))2 (3)

where d(n) is the desired true signal, and y(n) is the output of
the FIR filter. The weights are updated through the following
mechanism:

w(n+ 1) = w(n) +
η

δ + ||x(n)||2
∗ e(n) ∗ x(n) (4)

where e(n) = d(n)−y(n) is the error, ||x(n)||2 is the l2-norm
to normalize the x(n) value, η is the learning rate that can vary
between [10−3, 10−6], and δ is any small value in ranges of
[10−3, 10−6] to avoid instability and cases where the ||x(n)||2
is almost equal to zero.

B. IIR-Gamma Filter

Different from the FIR filter presented in III-A, the IIR-
Gamma Filter is a non-linear filter. In fact, it is more efficient
than FIR and Kernel filters since the number of weights in IIR-
Gamma filter is less. [33]. The FIR filter is most often used to
adapt to specific signals because of the IIR-Gamma’s difficulty
of adjusting the parameters in it. However, IIR-Gamma filters
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are more suitable for signals that are characterized by a deep
memory and a low number of free parameters (weights). Fig.
2 illustrates the IIR-Gamma filter.

Fig. 2. IIR-GAMMA Filter Diagram [33]

As observed, a processed version of the input is used. As
Fig. 2 illustrates, the previous input value is multiplied by
1−µ and then added to the current input. In such, the role of
µ in the IIR-Gamma filter is to use part of the previous inputs
instead of the previous inputs themselves. The delay operator
G(z) in IIR-Gamma filter is represented as follows:

G(z) =
µ

z − (1− µ)
(5)

For stability purposes, µ is constrained to be within the range
µ ∈ (0, 2). In order to adapt the filter, the input would be:

xk(n) = (1−µ)xk(n−1)+µxk−1(n−1), ∀k = 1, ...,K (6)

where n is a time/sample or time step, and K is the filter
order. The feed forward pass y(n) is similar to (2) and can be
found in [33]. The same MSE cost function was used for the
IIR-Gamma. To update the weights, (7) was used:

∆wk = η1

T∑
n=0

e(n)xk(n) (7)

Where η1 is the learning rate that has a range of
[10−3, 10−4]. The new parameter, µ, should also be updated:

∆µ = −η2

T∑
n=0

K∑
k=0

e(n)wkαk(n) (8)

where η2 is the learning rate that has a range of [10−4, 10−5]
and αk(n) is defined according to the following expression:

αk(n) = (1− µ)αk(n− 1) + µαk−1(n− 1)

+ [xk−1(n− 1)− xk(n− 1)], ∀k = 1, ...,K
(9)

where α starts with zero, α0(n) = 0. The weights do
not depend on µ. However, the input x does. Since this is
a gradient descent approach, the summation of the error is
there. If a stochastic gradient descent was used, then we should
remove the summation in order for it to be sample by sample
error values. Since this filter depends on memory, it would be
very sensitive to set the order of the filter. The reason is that
if the order was too high, then the model will depend on data
that is way too old, which might affect its prediction about the
current data. Therefore, there will be some cases in which the
filter order of the IIR-Gamma needs to be a small value [33].

The algorithm of conducting IIR-Gamma filter is depicted in
[33]. After applying auto-correlation on all of the data, there
were many measurements that showed an average correlation
over multiple lags of zero as Fig. 3 illustrates, which implies
non-stationary signals.

Fig. 3. Average Correlation of All Measurements

IV. RESULTS

The time-series analysis for measurements’ prediction was
validated using the IEEE 118-bus system. All simulations
are conducted on MATLAB using a personal computer iMac
with 4GHz i7 processor. Using the MATLAB package MAT-
POWER [35], 21,600 samples (i.e. one day’s worth) of mea-
surement were generated with Gaussian noise based on a
common daily load profile that contains temporal information
of a power system’s changing state. Multiple days worth of
data were generated. The training data included one day worth
of data and the test data was data generated for another day.
The measurement set included are real and reactive power
flows, real and reactive power injections, and all voltage
magnitudes, resulting in 691 measurements.

Some of the signals considered in the simulation are illus-
trated in Fig. 4. These plots show a general view of how the
generated 691 measurement signals or data look like.

Fig. 4. Measurement Signals
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After multiples of experiments, the parameters used
throughout the results are: a) For FIR filter, η = 0.001 and
δ = 0.001, b) For IIR-Gamma, η1 = 10−3, η2 = 10−4,
δ = 10−5, and an initialization of µ = 0.99. The weight values
are initialized randomly. Unlike classical machine learning
techniques in which the dimension of the model is the same as
the number of features in the data, in time series the dimension
of the model is unknown. Hence, for the time series analysis
of this paper, the order of the model is varied from 2 to 5
and applied for the two filters: NLMS and IIR-Gamma. The
average value of the Mean Square Error (MSE) of the two
filters is calculated and presented in TABLE I. The results
indicate that as the order of the filter increase, the mismatch of
the prediction increases for IIR-Gamma filter while decreases
for NLMS. The NLMS started to decrease in error because
increasing the order filter will have better results in prediction.
However, the Avg. MSE for NLMS started to increase after
order 5 because the model will start to overfit. The reason why
the IIR-Gamma Avg. MSE started to increase is that the model
will start to overfit even though the model order is not that high
due to the minor sensitivity of the filter. Overfitting is avoided
using the normalization term in the weight update equation

η1

δ+||x||2 , which normalizes the current sample and acts as a
regularizing term. This term was used for both filters. In all
cases, though, IIR-Gamma filter provided on average a lower
MSE.

691 trained models were generated. As mentioned, the
models were trained on a one day worth of data. Fig. 5
illustrates how the weight values are updating through the
training process for both filters of order K = 2. The FIR plot
illustrates that the training process went on for a large number
of samples and it is almost hard to decide if the training should
be stopped as it was the case for the other measurements. The
IIR-Gamma plot shows that there was no need to keep on
training the model for more than 5000 samples because the
weights have already converged, which means there is no need
to train the model further. It was the same case for all of the
other measurements.

Fig. 5. Filter order K = 2 Weight Track Plot for one of the 691 measurements

A comparison between state-of-the-art ML solution Multi-

TABLE I
MODEL ORDER COMPARISON

Order \ Model FIR-NLMS Avg. MSE IIR-Gamma Avg. MSE

K = 2 2.0443e-04 2.5562e-06

K = 3 1.8497e-04 8.1982e-05

K = 4 1.8267e-04 9.9069e-05

K = 5 1.8242e-04 1.4568e-04

TABLE II
MODEL COMPARISON

Value \ Model MLRM [36] FIR-NLMS IIR-Gamma

Avg. MSE 0.0041 1.8872e-04 2.6118e-06

Avg. Std. MSE 0.0040 2.7306e-04 3.7582e-06

TABLE III
MODEL COMPARISON WITH MORE NOISE ADDED TO THE DATA

Value \ Model FIR-NLMS IIR-Gamma

Avg. MSE 2.0129e-04 2.9073e-06

Avg. Std. MSE 2.9048e-04 4.1862e-06

TABLE IV
MODEL COMPARISON TEST FOR DIFFERENT DAYS

Date Value \ Model FIR-NLMS IIR-Gamma

01/08/2018 Avg. MSE 1.9129e-04 2.5564e-06
Avg. Std. MSE 2.7635e-04 3.6794e-06

01/09/2018 Avg. MSE 1.8601e-04 2.3204e-06
Avg. Std. MSE 2.6746e-04 3.3201e-06

01/10/2018 Avg. MSE 1.9490e-04 2.4348e-06
Avg. Std. MSE 2.7843e-04 3.5005e-06

01/11/2018 Avg. MSE 1.9118e-04 2.3863e-06
Avg. Std. MSE 2.8205e-04 3.5393e-06

01/12/2018 Avg. MSE 1.4546e-04 1.8205e-06
Avg. Std. MSE 2.1212e-04 2.6551e-06

01/13/2018 Avg. MSE 1.5300e-04 1.9168e-06
Avg. Std. MSE 2.2162e-04 2.7783e-06

ple Linear Regression Model (MLRM) [36] and the presented
time-series solution in this paper is illustrated in TABLE II.
As shown, the IIR-Gamma filter produced the least error. In
order to observe the behavior of the presented work, the noise
level in the data is increased. The statistics of the MSE are
empirically calculated and presented in TABLE III. Both filters
were able to produce similar results. In addition, the adaptive
filter models were tested on data set for other days of the week
(different load behaviour) as illustrated in TABLE IV. Similar
results were obtained, indicating the robustness of the model.

V. CONCLUSIONS

The development of smart grid technology is increasing
rapidly with a high potential of cyber attacks. The damages
that cyber attacks cause are huge and it is extremely costly to
fix. it is crucial to protect the smart grid from such attacks by
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enhancing the cyber-physical security of the grid with efficient
and reliable solutions. This paper proposes a machine learning
for time series solution that presented high prediction accuracy
results using the FIR and IIR-Gamma adaptive filters. Test case
illustrates the capability of the presented solution, as well as
its easiness to real-life.
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