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Yield components are widely recognized as drivers of wheat (Triticum aestivum
L.) yield across environments and genotypes. In this study, we used a hierarchical
Bayesian approach to model wheat grain yield in Oklahoma on an eco-physiological
basis using yield component traits thousand kernel weight (TKW) and nonyield
biomass (NYB). The Bayesian approach allowed us to quantify uncertainties around
the parameter values rather than obtaining a single value estimate for a parameter. The
main objectives of this study were to (a) explain wheat yield as a function of com-
ponent traits TKW and NYB, and thereby examine the implications for source-sink
balance; and (b) assess their association with weather conditions during key stages
of wheat development. A secondary objective was to introduce Bayesian estimation
for eco-physiological modeling. Fifteen wheat genotypes planted in three locations
in Oklahoma (Altus, Chickasha, and Lahoma) were evaluated across three harvest
years (2017 to 2019), whereby the combination of location and year defined an envi-
ronment. Results indicate that the environment explained a greater proportion of the
variability in yield than genotypes or than genotype X environment (G X E) interac-
tion; however, evidence for G X E was substantial. Yield was expected to increase
with increasing TKW and NYB, which would suggest a source limitation to achieve
potential yield. Yet, the contribution of early reproductive stage weather variables
to the relationship between yield and NYB pointed in the direction of sink strength
being compromised. In summary, our approach provides evidence for source-sink

co-limitation in grain yield of this sample of hard red winter wheat genotypes.

1 | INTRODUCTION

Abbreviations: elpd, expected log predictive density; G X E, genotype X
environment; HDI, highest posterior density interval; HI, harvest index;
MCMC, Markov chain Monte Carlo; NYB, nonyield biomass; OSU,
Oklahoma State University; PPI, posterior probability interval; RMSE, root
mean squared error; SKCS, single kernel characterization system; TKW,

thousand kernel weight.

Wheat (Triticum aestivum L.) is a staple food crop in many
countries that supplies the most calories and protein to the
population worldwide (Pefia-Bautista et al., 2017). However,
wheat genotypes, wheat-growing environments, and wheat
yields differ worldwide across regions, years, and growing
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seasons. Climate variation was found to explain 32-39% of
interannual yield variability in maize, rice, wheat, and soy-
bean globally (Ray et al., 2015). Yield variability exists not
only between different regions in the world but also within the
specific regions across locales and growing seasons. Under-
standing the mechanisms behind yield variability within a
wheat-growing region would allow breeding programs to
develop wheat genotypes tailored to reduce the gap between
the maximum attainable yield and observed yield.

This study was conducted in the United States in the state of
Oklahoma. The wide range of environments across the state
makes it an ideal region to study yield variability as a result of
variable weather conditions. A wide range of environmental
conditions are present in Oklahoma, driven mostly by a tem-
perature gradient from south to north and a precipitation gra-
dient from east to west, along with yearly fluctuations in tem-
perature and precipitation patterns (Tian & Quiring, 2019).
As a result, wheat yields are variable across the state (Cal-
houn et al., 2019; USDA, 2019). For instance, in 2019, wheat
yield ranged from 1.8 ton/ha in Southwest Oklahoma to 4.2
ton/ha in East Central Oklahoma (USDA, 2019).

Environmental effects, different genotypes, and genotype
x environment (G X E) interactions play an important role in
explaining yield variability (Mohammadi et al., 2010; Rooze-
boom et al., 2008). Specifically, G X E effects on wheat yield
are ultimately driven by different physiological mechanisms.
For instance, the crop environment at the early reproductive
stages of plant growth impacts wheat yield primarily through
changes in grain number (Fischer, 1985; Ugarte et al., 2007)
whereas the environmental conditions during anthesis and the
grain filling stage can affect wheat yield mainly via changes
in grain size (Serrago & Miralles, 2014; Wardlaw & Moncur,
1995). These traits are simultaneously driven by the combined
effects of genetics and environmental impact, thus leading to
G X E interaction.

Multienvironment trials are a well-established component
of crop breeding programs to study G X E interactions. These
trials are important to characterize the performance of wheat
genotypes over a wide range of environments. In this study,
we utilize data from the Oklahoma Small Grains Variety Per-
formance Tests, a multienvironment trial, conducted yearly
by Oklahoma State University (OSU). Most multienviron-
ment trials focus mainly on yield (Kaya et al., 2006; Moham-
madi et al., 2010; Roozeboom et al., 2008; Sukumaran et al.,
2017) as this is one of the more important outcomes of a cul-
tivar, for which producers base their choice. Yet, yield data
alone provide limited insight into the mechanisms for dif-
ferential responses of genetic cultivars to changing environ-
ments. Grain yield is a function of multiple component traits
including kernel weight and size, kernels per spike, spikes per
tiller, and the number of tillers amongst others, each at differ-
ent levels of trait plasticity (Slafer et al., 2014). Stable com-
ponents of yield such as grain size are placed at the lowest

Core Ideas

* Yield components serve as proxy for source and
sink.

* Association of yield components with yield is
mediated by weather conditions.

* Wheat yield is co-limited by source and sink.

* Bayesian hierarchical modeling naturally reflects
hierarchy of biological systems.

level of trait plasticity denoting that they are mostly governed
by genetic factors. In turn, components such as the number of
tillers show high plasticity as they are highly influenced by the
environment (Sadras & Slafer, 2012). We postulate that fur-
ther partitioning of yield into its component traits could help
explain the observed variability in yield and thus increase the
quality of predictions.

Wheat yield can be effectively partitioned into two main
yield component traits, namely grain number and average
grain weight; these are modulated by a source-sink balance
(Fischer, 2008; Ugarte et al., 2007). In most conditions, wheat
is a sink-limited crop (Borras et al., 2004). Sink limitations are
due to stress during early reproductive stages, which leads to
the setting of fewer grains than what can be filled later dur-
ing grain filling. In contrast, postanthesis abiotic and biotic
stresses can reduce grain size or weight; this is an example of
a source-limited condition. The balance between source and
sink is crucial to realizing yield potential.

Although analyses pertaining to understanding these sys-
tems through eco-physiological dynamics have been tradition-
ally performed within a frequentist framework, some studies
have utilized a Bayesian approach (Cotes et al., 2006; Cuevas
et al., 2017; Montesinos-Lopez et al., 2019). Bayesian hier-
archical modeling provides a useful framework for exploring
these interactions in several respects. First, the hierarchical
structure of the model corresponds to the nature of the biolog-
ical system under study. Second, a Bayesian framework pro-
vides a natural mechanism for incorporating what is already
known about a given system in the form of prior distribu-
tions. For well-defined relationships, informative priors can
be used; whereas for novel research questions, more diffuse
priors can be constructed. Third, Bayesian analysis is increas-
ingly being used due to its emphasis on quantifying poste-
rior distributions for parameters of interest rather than point
estimates alone (Alderman & Stanfill, 2017). These posterior
distributions can be used to derive point estimates, if needed,
along with a range of uncertainty around those estimates.
Doing so provides a well-rounded perspective on the nature
and strength of the relationships being explored.

Ultimately, our goal is to explain wheat yield variability on
an eco-physiological basis. The main objectives of this study
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TABLE 1 Wheat genotypes included in this study by season
Genotypes 2016-2017 2017-2018 2018-2019
Bentley X X
Billings X
Doublestop CL+ X X X
Duster X X X
Endurance X
Gallagher X X X
Iba X X X
LCS Chrome X X
Lonerider X X
Ruby Lee X X X
Smith’s Gold X X
SY Achieve CL2 X X
SY Flint X X X
SY Llano X
WB4458 X X

were to (a) explain wheat yield as a function of component
traits thousand kernel weight (TKW) and nonyield biomass
(NYB), thus examine the implications for source-sink balance
and (b) assess their association with weather conditions dur-
ing key stages of wheat development. We leverage a hierar-
chical Bayesian modeling framework to naturally reflect the
hierarchical features of the biological question. Thus, as a sec-
ondary objective, we introduce Bayesian estimation for eco-
physiological modeling.

2 | MATERIALS AND METHODS

The samples for this study were collected from the Oklahoma
Small Grains Variety Performance Tests conducted by OSU
on a yearly basis. The OSU wheat cultivar testing program
features replicated trials at more than 20 different test sites
and nonreplicated trials at more than 40 demonstration sites,
representing major wheat-growing areas in the state.

2.1 | Wheat genotypes included in this study
For this study, we selected wheat genotypes based on acreage
planted in Oklahoma (Table 1). Some of the genotypes
included in this study changed across years as newer cul-
tivars replaced older ones. The genotypes selected for this
study showed a range of plant heights, maturity, yield poten-
tial, disease resistance, test weight, kernel size, drought tol-
erance, Hessian fly resistance, and dual-purpose suitability,
but all were intended to represent the diversity of wheat
grown in Oklahoma (Marburger et al., 2018; OSU Small

Grains Extension, 2020). For example, the wheat genotypes
‘Doublestop CL+’, ‘Endurance’, and ‘Iba’ (Marburger et al.,
2021) were chosen for their late maturity, whereas ‘Gal-
lagher’ (Marburger et al., 2021), ‘Lonerider’, ‘SY Achieve
CL2’, and ‘SY Llano’ were chosen for their early matu-
rity; meanwhile, ‘Billings’ (Edwards et al., 2012), ‘SY Flint’,
and ‘WB4458’ were chosen for their medium-early maturity.
Likewise, Billings has a high grain-only yield potential but
is not suitable for dual-purpose systems (Hunger et al., 2014)
whereas Smith’s Gold has excellent yield potential and is suit-
able for both grain-only and dual-purpose production systems.
Bentley has yield stability under drought conditions but lower
test weight, and Doublestop CL+ has yield stability across a
wide range of environments along with high test weight (OSU
Small Grains Extension, 2020). The genotypes also differ in
disease resistance; Billings, ‘Duster’ (Edwards et al., 2012),
Gallagher, Iba, and ‘LCS Chrome’ exhibit good stripe and leaf
rust (caused by Puccinia striiformis and Puccinia triticina)
resistance, whereas Bentley, Doublestop CL+, Endurance,
Smith’s Gold, and SY Flint are moderately resistant. Mean-
while, ‘Ruby Lee’ is moderately susceptible to stripe rust
only. Furthermore, Duster has above-average tillering capac-
ity with intermediate straw strength, whereas LCS Chrome
has both high tillering ability and good straw strength (Mar-
burger, Hunger, et al., 2018).

2.2 | Sites and management description

For this study, a total of three sites were selected for sample
collection from the set of locations within the OSU the Okla-
homa Small Grains Variety Performance Tests, namely Altus,
Chickasha, and Lahoma. The selected sites represent diver-
sity in latitude, longitude, elevation, climatic conditions, and
soil types across the state (Table 2). The seasonal rainfall and
temperature estimates for the months of October through June
were calculated from the preceding 15 yr of data (2003-=2004
t0 2018-2019) obtained from nearby stations of the Oklahoma
Mesonet (Brock et al., 1995; McPherson et al., 2007). All tri-
als were conducted as a randomized complete block design
with four replicates using a conventional tillage system. Tri-
als at each site followed standard management practices for
the area, with a 67 kg ha~! seeding rate and 56 kg ha™! of 18-
46-0 (N—P,05—K,0) applied in-furrow at the time of plant-
ing, using a Hege 500 small-plot cone seeder (Wintersteiger).
Each plot consisted of eight rows spaced 15 cm apart.

2.3 | Experimental design and data
collection

Data were collected at the three sites over the course of three
growing seasons (2016-2017, 2017-2018, and 2018-2019),
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TABLE 2 Description of experimental sites included in the study
Site Latitude Longitude Elevation Rainfall Temperature Soil type
m mm °C
Altus 34.63° N 99.33° W 426 388 12 +7.94 Hollister silty clay loam
Chickasha 35.05°N 97.94° W 339 534 11.1+£7.9 Dale silt loam
Lahoma 36.39° N 98.09° W 380 437 9.87 +8.16 Pond creek silt loam

Note. Average seasonal cumulative rainfall (Rainfall) and average seasonal temperature (Temperature) from October through June calculated from the preceding 15 yr of

data (2003-2004 to 2018—2019) obtained from nearby Oklahoma Mesonet stations

excluding Altus in 2016-2017. Thus, we used the combina-
tion of site and year to define eight environments. A total of
10 genotypes were sampled in the first year, 12 in the sec-
ond year, and 11 in the third year from each site. Thus, not all
genotypes were observed in all environments.

From each plot in each of the four field replicates, a meter
row of the selected genotypes (0.5 m on two second from outer
rows) was hand-harvested at physiological maturity with a
sickle at ground level to produce one sample per plot. Sam-
ples were dried for 72 h at 60 °C. An ALMACO Plant and
Head Thresher (Allan Machine Company) was used to thresh
the samples, and dry biomass and grain weights were recorded
for each plot. Yield (g m~2) was calculated from sample grain
weight. Nonyield biomass (g) was calculated as the sample
grain weight (g) subtracted from the total sample biomass (g).

Average kernel weight (mg) was obtained for each sam-
ple using the Single Kernel Characterization System 4100
(SKCS, Perten Instruments North America Inc.) following
standard operating procedures as outlined in the instruction
manual (Perten Instruments, 1995). From sample of approxi-
mately 20 g per field plot, the SKCS 4100 provided a mean,
standard deviation, and distribution for single kernel weight
(mg) of 300 machine-singulated sound kernels (Martin et al.,
1993; Osborne & Anderssen, 2003). Thousand kernel weight
(g) was calculated from the mean obtained for SKCS kernel
weight.

Data on weather variables, daily values of minimum and
maximum temperatures ("C), precipitation (mm), and solar
radiation (M Jm™2), were obtained from the Oklahoma
Mesonet for each location and year (Brock et al., 1995;
McPherson et al., 2007). The air temperature was calcu-
lated as the average of minimum and maximum temperatures.
Cumulative precipitation, average solar radiation, and aver-
age air temperature were calculated to summarize the weather
variables over two growth periods per season to represent the
early reproductive stage (from 6 wk prior to the heading date,
corresponding to Zadok’s growth stage 59, until 2 wk after
the heading date) and grain filling stage (from 2 wk after the
heading date until 2 wk prior to the harvest date, Zadok’s
growth stage 93) for each trial. Heading dates and harvest
dates were obtained from the variety performance trial reports
(Calhoun et al., 2019; Marburger et al., 2017; Marburger, Cal-
houn, Carver, et al., 2018).

2.4 | Model specification and data analysis
Although the individual field trials followed a randomized
complete block design design, the combination of multiple
trials for data analysis reflected a split-plot like structure
where the field trials served as main plots. Each field trial cor-
responds to a unique site—year combination or environment
as described above. A basic statistical model was specified to
reflect the structure of the whole dataset. Specifically, random
effects included in the linear predictor were environment,
block nested within an environment (the blocking structure
for genotypes), genotype, and G X E. The residual repre-
sented the remaining noise at the individual plot level. Three
alternative models were specified according to the objective
of explaining yield as a function of its component traits,
namely:

Alternative 1: Model including G X E effects (Model GE):

Yk = Bo + Envy + Geno; + [Geno x Env]

+ Block[Env;p + e
where Y;;, = observed yield (g m~2) from the plot correspond-
ing to the ith block (i = 1, ..., 4) in the kth environment (k =1,
..., 8) planted with the jth genotype j =1, ..., 15) and By =
overall intercept, interpretable as expected yield for a “typi-
cal” genotype in a “typical” environment, whereby typical is
defined as the population expectation for genotypic effects,
environmental effects and their combination, that is,

E (Geno;) = E (Envy) = E(Geno x Env);; =0

where Geno; = differential effect of the jth geno-
type, assumed Geno; ~ NIID(0,c;,,); Env, = differ-
ential effect of the kth) environment, assumed Env; ~
NI1I1D(0, cznu); and [Geno*Env]j = differential effect of
the jth genotype planted in the kth environment, assumed
[Geno * Envlj ~ NI1ID(O0, Gze).

Block|Env];j;; = differential effect of the ith block
nested within the kth environment and assumed
Block[ Env];; ~ N11D(0, G%) and e = residual unique
to the observation collected on ijk™ plot and assumed

e;;x ~ NIID(0,c?).
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Alternative 2: Model including effects of G X E and yield
components (Model GE-YC):

},ijk = BO +Envk + Genoj +Bl * nyb,-jk + [32 * tkw,-jk

+ [Geno * Env] . + Block[Env]j) + e;jx

where Y, By, Envy, Geno;, [Geno * Env]jy, Block[Envl;,
and ey are as previously defined for model GE.
nyb;; = observed NYB corresponding to the plot in the
ith block of the kth environment planted with the jth
genotype, and expressed as the deviation from its mean;
tkw;;. = observed TKW corresponding to the plot in the ith
block of the kth environment planted with the jth genotype,
and expressed as the deviation from its mean; f§; = slope
coefficient, indicating the rate of change of yield per unit
increase in NYB, for a typical genotype and environment as
previously defined; and B, = slope coefficient, indicating the
rate of change of yield per unit increase in TKW for a typical
genotype and environment as previously defined.

Alternative 3: Model including G X E and a hierarchical
specification of yield components (Model GE-YC-hierarchy):

Yiji = Bo + Envg + Genoj + P, i * nyb;
+ Briw i * thwjy + [Geno + Envl

+ BlOCk[EnU][[k] + el-jk

with a hierarchical specification of yield components such
that:

Buybi = BrotPBiy * temply + Pyy * sradly + B3 * rainly
Birw i = Boot+Boy * temp2y + Poy * srad2y + B3 * rain2;

where Y, By, Envy, Geno;, [Geno * Enuv];, Block[ Env];,

and e;; are as previously defined for model GE; and nyb;;
and tkw;; are as previously defined for model GE-YC.
temply, sradly, rainl;, = temperature, solar radiation, and
precipitation, respectively, for the k" environment during the
early reproductive growth stage, expressed as the deviations
from their respective means. temp2k, srad2;,rain2; = tem-
perature, solar radiation, and precipitation, respectively, for
the kth environment, during the grain filling stage, expressed
as the deviations from their respective means. §;, = intercept
for the hierarchical specification of NYB, indicating the
expected rate of change of yield per unit increase in NYB
for a typical genotype at average temperature, precipitation,
and solar radiation for the early reproductive growth stage.
B11. B12s P13 = expected change in the slope of NYB on
yield per unit increase of temperature, solar radiation, and
precipitation, respectively, during the early reproductive
growth stage. B,, = Intercept for the hierarchical specifica-
tion of TKW, indicating the expected rate of change of yield

per unit increase in TKW for a typical genotype at average
temperature, precipitation, and solar radiation during the
grain filling stage. B,;, By, Po3 = Expected change in the
slope of TKW on yield per unit increase of temperature, solar
radiation, and precipitation, respectively, during the grain
filling stage.

For data analyses, the statistical models were fitted using a
hierarchical Bayesian framework.

2.5 | Prior specification

Specification of priors for all hyperparameters was performed
using the prior predictive checks approach proposed by Schad
et al. (2019). Briefly, hyperparameters were included in the
prior predictive model in a stepwise fashion of increasing
model complexity, following model hierarchy from Alterna-
tive Models 1 to 3. At each step, prior predictive checks were
performed to ensure that predictions from the priors were
within a biologically plausible, though vague, boundary. The
boundary was set based on the average wheat yields through-
out the world and was allowed to vary up to around 1,800
g m~2, which could be considered weakly informative given
that it is in excess of maximum observed wheat yields glob-
ally. A prior predictive check was conducted by sampling from
the defined priors and simulating model predictions for the
variable of interest based on those samples. If the predictions
were biophysically plausible, the priors passed the check,
but if the priors produced nonsense predictions, priors were
revised to produce predictions aligned with our beliefs and
prior knowledge about the system under study. Prior specifica-
tions for vague predictions were intended to put the weight of
posterior inference on the actual data. Prior specifications for
parameters in modeling Alternatives 1-3 are presented next
in the form of Normal(, %), such that:

By ~ Normal(300, 80%)

By ~ Normal(0, 1%)

B, ~ Normal(0, 15%)

Bio ~ Normal(0,0.5%)

Bro ~ Normal(0, 15)

By, ~ Normal(0,0.1%)



POUDEL ET AL.

By, ~ Normal(0,0.05%)
B3 ~ Normal(0, 0.1%)
By ~ Normal(0, 1%)
B,y ~ Normal(0,0.5%)

B, ~ Normal(0,1%)

/ 2 /

62, ~ Truncated normal(0,150°) such thaty/c2 >0
/02~ Truncated normal(0,807) such that y/62 >0
geno geno
,/Gge ~ Truncated normal(0, 100%) such that ,/cée >0

\/Gi ~ Truncated normal(0, 502) such that\/(si >0

\/62 ~ Truncated normal(0, 250%) such that y [62>0

2.6 | Software implementation

Statistical models were fitted using a hierarchical Bayesian
framework based on Hamiltonian Monte Carlo as imple-
mented by the software Stan (Stan Development Team, 2018)
through the R statistical software environment (R Core Team,
2020; Stan Development Team, 2019). For each model, four
Markov chain Monte Carlo (MCMC) chains with 10,000 iter-
ations and 50% burn-in were run, resulting in a total of 20,000
saved iterations for posterior inference. Traceplots and R-
hat values were used to monitor chain convergence (Gelman
et al., 2013). Auto-correlations and effective sample size for
key lower-level parameters were computed. Specifically, the
MCMC chains were tuned to ensure that effective sample size
for the hyperparameters ¢ Gonys Oge» and G, was greater
than 3,000 in all models.

Figures were generated using the ggplot2 package in R
(Wickham, 2016). The highest posterior density intervals
(HDIs) were computed using the HDInterval package (Mered-
ith & Kruschke, 2018). Figures and tables were generated or
rendered using the R packages knitr (Xie, 2020) and kableEx-
tra (Zhu, 2019). The R package tidyverse was used for data
cleaning and organization (Wickham et al., 2019; Wickham,
2017).

The computing for this project was performed on the
TIGER research cloud at the Oklahoma State University
High Performance Computing Center using a KVM virtual
machine backed by a hypervisor node with dual Intel “Sky-
lake” 6,130 CPUs and 768 GB RAM.

geno> Penv> Y ge>

cropscience I8

2.7 | Bayesian approach to data analysis
In Bayesian data analyses, estimation of parameters of interest
and subsequent inference, as well as predictions, come in the
form of posterior densities that are obtained numerically from
the MCMC. In contrast, the reader may recall that determinis-
tic methods produce parameter-specific point estimates only.
The availability of posterior densities is highly desirable as it
provides considerably more information about the parameters
of interest (or functions thereof), thus enabling not only point
estimation but also assessments of uncertainty. Specifically,
from a posterior density, one may select amongst a number
of possible location descriptors for the most appropriate point
estimate, say mean, median, or mode, depending on the sym-
metry (or lack thereof) of the posterior density for the parame-
ter of interest. Even more compelling is the fact that posterior
densities also enable an assessment of uncertainty around the
selected point estimator (Gelman et al., 2013). In a statistical
sense, uncertainty is an indicator of precision of the estimate
based on the amount of information available in the data, and
thus, an indicator of how likely we are to reproduce those esti-
mates under similar conditions. For example, posterior inter-
vals such as HDI, or alternatively, posterior probability inter-
val (PPI), indicate the range of values within which one can
expect to find the parameter of interest with 95% probabil-
ity (Gelman et al., 2013). These intervals may be considered
analogous to the concept of confidence intervals in frequentist
statistics, though their Bayesian interpretation is straightfor-
ward, thus more intuitive and directly aligned with research
objectives. That is, we are 95% confident that the parameter
takes values contained within the boundaries of the interval.
Specifically, a 95% PPI is the interval in the distribution that
contains the middle 95% of the posterior samples and thus
has equal tails (Gelman et al., 2013). In turn, the HDI of a
posterior distribution is the shortest possible interval which
captures 95% of the posterior samples with the highest prob-
ability densities (Grieve, 1991). It is worth noting that this
statistical definition of uncertainty on individual parameters
or individual predictions is different from variability across
model-derived point predictions.

In this article, we report posterior summaries for each
parameter of interest (and functions thereof) using posterior
medians and 95% HDI.

2.8 | Model comparison

Model 3: GE-YC-hierarchy was our model of preference,
because its hierarchical nature offers insights into relevant
physiological mechanisms. The model comparison was per-
formed to determine if the added complexity in Model 3:
GE-YC-hierarchy compromised the predictive ability of the
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model. Alternative models were compared using statistical
metrics for goodness-of fit and predictive ability. Specifically,
Bayesian R-squared and root mean square error (RMSE) were
calculated to assess goodness-of-fit, and expected log predic-
tive density (elpd) was calculated in a g-fold cross-validation
with Q = 10 for each alternative model. Approximately 315
data points were used as training vs. 35 holdout data points
for each fold of cross-validation.

First, a Bayesian R-squared statistic was calculated for each
MCMC iteration (s) as described in Gelman et al. (2019), such
that:

a\S
Bayesian R? = %
var(y)’ + o629
where, var(y) = variance between predicted values at itera-
tion s, whereby s = 1, 2, ..., S is the length of post-burnin
MCMC, (53 § = Posterior sample of residual variance (Gf) for

each MCMC iteration s.
Then, RMSE was also calculated for each MCMC iteration
(s) as:

N
1 A
RMSE, = | ~ > (v, = 9
n=1

where, N = Total number of data points, y, = nth observation,
and y, = Predicted value for the nth observation sampled in
MCMC iteration s.

Finally, elpd was calculated following Equations 20 and 21
in Vehtari et al. (2017) such that:

o Mq 1 S
elpd =) ) log lg Zp(ymle“”s)]
s=1

qg=1m=1

where Q = the number of folds, M, = number of observa-
tions within the gth fold, § = number of saved post burn-
in MCMC iterations, y,, = data point m within the gth fold,
and 07%* = parameters corresponding to the gth holdout sub-
set and iteration s, and p(y,,[0—%°) = probability of y,, given
095,

Models with smaller values of RMSE, and with larger
values of Bayesian R-squared, and elpd were considered
preferable.

3 | RESULTS

3.1 | Model comparison

Table 3 shows selected criteria used for model compari-
son, specifically, Bayesian R-squared and RMSE to assess
goodness-of-fit, and elpd to assess the predictive ability

of each alternative model considered. Smaller Bayesian R-
squared and larger RMSE both indicate impaired fit of Model
1: GE relative to Model 2: GE-YC and Model 3: GE-YC-
hierarchy, thus clearly suggesting a preference for the latter
two. Meanwhile, Model 3: GE-YC-hierarchy showed the the
largest value of Bayesian R-squared and the smallest RMSE.
Yet, numerical differences in both fit criteria were minor rel-
ative to Model 2: GE-YC, thus indicating little evidence for
preference of either model over the other in terms of relative
fit to data.

In terms of predictive ability, Model 3: GE-YC-hierarchy
performed best, as supported by the largest elpd value, fol-
lowed closely by Model 2: GE-YC, and lastly by Modell: GE.
Model 3: GE-YC-hierarchy and Model 2: GE-YC showed a
minor difference in predictive ability, as indicated by an elpd
difference close to zero and of smaller magnitude than the
standard error of such difference, indicating inadequate evi-
dence in favor of any one model in terms of predictive abil-
ity. For further inference, we made the decision to proceed
with Model 3: GE-YC-hierarchy based on a combination of
(a) best or comparable fit relative to other model alternatives
considered in this study, and (b) its hierarchical nature, which
enables insight into specific physiological mechanisms con-
tributing to yield differences without compromising predic-
tive ability.

Figure 1 illustrates the posterior density of the Bayesian R-
squared for Model 3 G x E and yield component (GE-YC)
hierarchy selected for further inference. Notably, the 95% HDI
for Bayesian R-squared for this model had a lower bound of
0.88 and an upper bound of 0.91, indicating a 95% probability
that Model 3: GE-YC-hierarchy captures somewhere between
88-91% of the variability observed in the data.

3.2 | Genotypic, Environmental, and G X E
effects on wheat yield

Table 4 shows posterior inference of variance components
for genotypic (c?,,,,), environmental (c;,,) and G x E effects
(G?;e), as well as residual-level (Gf), for the alternative models
considered in this study. As expected, the addition of NYB
and TKW as explanatory variable to Model 2: GE-YC and
Model 3: GE-YC-hierarchy caused a substantial decrease of
approximately one order of magnitude in the residual vari-
ance (cf) and the environmental variance (cgnu) compared
with Model 1: GE. Based on the posterior medians for Model
3: GE-YC-hierarchy, ngu showed the greatest magnitude with

oeno OT Oy, (Table 4). When comparing the point
estimates (medians) for genotype-specific and G X E effects,
their magnitudes appear similar; however, upon further anal-
ysis it was found that there is a 61.6% probability that the

genotype-specific effects were higher than the G X E effects.

six times ¢
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TABLE 3

Model comparison based on Bayesian R-squared, and root mean square error (RMSE; expressed as highest posterior density interval

[HDI]), and difference in expected log predictive density (elpd_diff + SE) for Model 1 genotype X environment (GE), Model 2 GE and yield
component (GE-YC), and Model 3 GE and YC with hierarchy (GE-YC-hierarchy)

Bayesian R-squared

Models Median HDI

1.GE 0.759 (0.718, 0.799)
2. GE-YC 0.896 (0.877,0.914)
3. GE-YC-hierarchy 0.899 (0.880,0.917)

RMSE

Median HDI elpd_diff + SE.
103.48 (98.29, 109.05) —142.6 + 28.0
67.86 (64.42,71.88) -3.6 + 283
66.77 (63.06, 70.71) 0

Note. Values for elpd_diff are expressed relative to GE-YC-hierarchy(e.g., elpd_diff for GE is elpd for GE-YC-hierarchy subtracted from elpd for GE).

80

Probability
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o o

N
o

0.75 0.80 0.85
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Bayesian R-squared for model GE-YC-hierarchy

FIGURE 1

TABLE 4

environment (>

env

Posterior distribution of Bayesian R-squared and 95% HDI as indicated by the vertical lines in the density plot

Posterior summary (posterior median and 95% highest posterior density interval [HDI]) on variance components: Genotype (6>, ),
), genotype X environment interaction (Gﬁe), and residuals (0'2,) for alternative models

geno

o2 &2 o2 &2
_geno env _ge r
Models Median HDI Median HDI Median HDI Median HDI
1. GE 1,102.54 (0.01, 3,158.75) 39,574.91 (11,592.48,93,647.42) 1,087.51 (0.0006, 2,746.35) 10,760.34 (8,937.15, 12,875)
2. GE-YC 1,181.33 (170.21, 3,098.04) 4,686.17 (428.28, 17,098.25) 1,218.47 (337.99, 2,031.73) 4,637.45 (3,849.4,5,566.9)
3.GE-YC- 1,280 (184.33,3,192.07) 7,918.37 (1,123.51,27,753.57) 1,068.13 (282.38, 1,974.75) 4,490 (3,686.04, 5,370.17)
hierarchy

Note. GE, genotype X environment; GE-YC, genotype X environment and yield components.

Figure 2 illustrates the posterior median of environment-
specific yield predictions for each of the wheat genotypes
present in all environments in this study. All predictions
were obtained using results from Model 3: GE-YC-hierarchy.
Specifically, the left panel depicts predictions based on effects
of genotype, environment, and G X E at average values of
NYB and TKW, whereas the right panel depicts predictions
based on effects of G, E, and G X E at values of NYB and
TKW specific to that environment. Both panels depict pres-
ence of G X E interaction on wheat yield, as indicated by the
change in rank of the genotypes across environments. The dif-
ference in G X E patterns depicted by the two panels may be
explained by the fact that the contributions of NYB and TKW

represent a portion of the G X E interaction that is attributable
to the eco-physiological processes for which they are proxies.
Whereas the term G X E stated explicitly in Model 3: GE-YC-
hierarchy may be interpreted as the remaining unattributable
portion of the environment-specific genotype effect on wheat
yield.

3.3 | Association between yield component
traits and wheat yield

Table 5 shows posterior summaries for location parameters
(B) of Model 3: GE-YC-hierarchy across hierarchical levels.
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FIGURE 2

Predicted wheat yield for selected genotypes across environments based on Model 3: genotype X environment and yield

components with hierarchy (GE-YC- hierarchy), considering (left panel) genotype (G), environment (E), and G X E effects at average NYB and
TKW, and (right panel) G, E, G X E effects, as well as nonyield biomass (NYB), and thousand kernel weight (TKW) at the corresponding

environments (i.e., shown as site-harvest year combinations)

TABLE 5

Posterior median and highest density posterior interval (HDI) for the intercept and the regression coefficients in the model with

genotype X environment and yield components with hierarchy (GE-YC-hierarchy)

Parameter Description Median HDI

Bo Yield at typical conditions 490 (404, 557)

Bio Expected change in yield per unit increase in NYB under average weather 0.43 (0.38, 0.47)
conditions during early reproductive stage

B Expected change in yield per unit increase in TKW under average weather 13 9, 16)
conditions during grain filling stage

By Change in B, per unit increase in early reproductive stage temperature 0.01 (=0.029, 0.054)

B Change in B, per unit increase in early reproductive stage solar radiation 0.05 (0.006, 0.098)

Bis Change in B, per unit increase in early reproductive stage precipitation 0.01 (—0.001, 0.020)

By Change in 3, per unit increase in grain filling stage temperature —0.14 (—1.425, 1.123)

Bar Change in 3, per unit increase in grain filling stage solar radiation —0.002 (=0.961, 0.960)

B3 Change in 3, per unit increase in grain filling stage precipitation 0.32 (—0.140, 0.789)

Note. NYB, nonyield biomass; TKW, thousand kernel weight.

As a benchmark reference, we articulate that the posterior
inference for P, indicates that yield for a “typical” genotype
member of the population in a “typical” environment, that
is, E(Geno;) = E(Envy) = E([Geno * Enuv] ;) = 0, at aver-
age values of NYB and TKW can be expected to be approxi-
mately 490 g¢ m~2, ranging from 404 to 557 g m~2, with 95%
probability.

Furthermore, posterior inference on P, and p2, indicates
that one may expect the behavior of wheat yield to change
as a function of the source-sink balance represented here
by NYB and TKW (Table 5). Specifically, posterior infer-
ence on f;, indicates an expected increase in yield per unit
increase in NYB of approximately 0.43 ¢ m~2 and ranging

from 0.38 to 0.47 g m~2 with 95% probability with typi-
cal weather conditions during the early reproductive growth
stage. The values for NYB in this dataset ranged from 325 to
2,326 ¢ m~2. Taking this range into account, one can expect
the yield to change by 140 to 1,000 g m™2 as a result of
change in NYB. Likewise, posterior inference on f,, sup-
ports an expected increase in yield per unit increase in TKW
of approximately 13 g m~2, ranging from 9 to 16 g m™2,
with 95% probability at typical weather conditions during
the grain-filling stage. Taking into account the range for
TKW in this dataset (14 to 39 g), the yield can be expected
to change by 182 to 507 g m~2 as a result of change in
TKW.
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between yield and nonyield biomass during the early reproductive stage

3.4 | Contribution of weather variables to
the relationships between yield and yield
component traits

Table 5 presents posterior summaries on parameters (3,
B12. B13, which characterize the contribution of temperature,
solar radiation, and precipitation, respectively, to wheat yield
through NYB during the early reproductive stage, allowing
us to look into source-sink balance in the population. Specif-
ically, at the early reproductive stage, solar radiation showed
a positive effect on p,,;,, that is the expected rate of change of
wheat yield as a function of NYB, as indicated by the posi-
tive sign of both boundaries of 95% HDI of §,,. Specifically,
for every one unit (MJm~>d~") increase in solar radiation, one
might expect an increase of 0.05 g m~2/g m~2 in the coeffi-
cient B,,,,, that quantifies the association between wheat yield
and NYB, with a 95% probability that this increase ranges
between 0.006 and 0.098. Taking into account the range in
solar radiation values for this dataset, the change in B,,,;, can be
expected to range from —0.13 to 0.09, on average, as a result
of the effects of solar radiation. These values were obtained
by multiplying the range for solar radiation values in the data
with the median for f,,. Furthermore, posterior inference on
B3 indicates a 96% probability for a positive contribution of
precipitation to the expected rate of change of wheat yield as
a function of NYB (i.e., B,,,) during the early reproductive
stage. The contribution of évery unit of increased precipita-
tion (cm) to P, has a posterior median at 0.01 with a pos-
terior standard deviation of 0.005. In context of this dataset,
this effect on f,,,;, can be expected to range from —0.12 t0 0.09.
In turn, evidence for a contribution of temperature () to the
association between yield and NYB (i.e., Bnyb) was weaker, as
the HDI for ;; shows substantial overlap with the null value
zero and the posterior probability of a nonzero positive effect
is approximately 70%.

Furthermore, the joint posterior densities for B, and f3
indicate a strong correlation between the contributions of pre-

cipitation and that of solar radiation to Bnyb, that is, the rate of
change of yield as a function of NYB during the early repro-
ductive stage (Figure 3, right panel). Specifically, this correla-
tion was estimated at 0.83, suggesting the possibility of mul-
ticollinearity between these weather contributors. In contrast,
the estimated posterior correlations between the contributions
of temperature (B;;) and any of the remaining weather vari-
ables (B, and f;3) to B,,, was small, at —0.06 and —0.01,
respectively (Figure 3 left and center panels, respectively).

Table 5 also shows posterior inference on parameters P,
55, B3, which characterize the TKW-mediated contribution
of temperature, solar radiation, and precipitation, respectively,
to wheat yield during the grain filling stage thus providing
further insight into source-sink balance. Specifically, poste-
rior inference on f,5 further indicates a 91% probability for a
nonzero positive contribution of precipitation to the expected
rate of change of wheat yield as a function of TKW (i.e., B,,,)
during the grain filling stage. The contribution of every unit of
increased precipitation to f,, had a posterior median at 0.32
with a posterior standard deviation of 0.24. For this dataset,
this effect on P,,, can be expected to range from —2.36 to
4.73. By contrast, posterior inference for the remaining coef-
ficients B,; and f,, showed 95% HDIs that overlapped with
zero, thus suggesting little, if any, contributions of tempera-
ture and solar radiation to wheat yield through TKW, given
the range of temperature in this dataset. In addition, poste-
rior correlations between B,;, B2,, fo3 during the grain filling
stage were small in magnitude (below 0.25; Figure 4), sug-
gesting negligible dependence between weather contributions
to source mechanisms for wheat yield.

4 | DISCUSSION

In this study, we implemented a hierarchical Bayesian
approach to model wheat yield in Oklahoma on an eco-
physiological basis, that is, as a function of two yield
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FIGURE 4 Pairwise joint posterior densities for parameters f8,,, f,,, ,3 characterizing the contribution of weather variables to the relationship

between yield and thousand kernel weight during the grain filling stage

component traits related to source-sink relations, namely
nonyield biomass (NYB) and thousand kernel weight (TKW).
We further leveraged hierarchical models to assess the contri-
bution of weather variables to the relationships between yield
and yield component traits at different growth stages.

4.1 | Model comparison

Based on a combination of model fit criteria and hierarchical
structure of the biological question of interest, we proceeded
with inference using Model 3: GE-YC-hierarchy. In particu-
lar, Bayesian R-squared indicated that the selected model was
well suited to fit the data, as its posterior density was centered
at 0.89 with a lower HDI bound of 0.85. In addition, the esti-
mated RMSE for this model was 67 g m~2, which is within
range of other reports in the literature ranging from as low as
10 gm~2 up to 150 g m~2 (Huang et al., 2016; Li et al., 2015;
Kogan et al., 2013; Nain et al., 2004).

4.2 | Genotypic, environmental, and G X E
interaction effects on yield

In this section, we interpret the changes in variance compo-
nents for environment (2, ), genotype (cﬁem) and G xE (626)
interaction across alternative models, GE, GE-YC, and GE-
YC-hierarchy. Recall that Model 1: GE did not account for
yield component traits NYB and TKW. As a result, a large
portion of the total variability likely fell to the environment.
The posterior estimates for environmental variance decreased
by an order of magnitude when yield component traits were
added in Model 2: GE-YC and Model 3: GE-YC-hierarchy,
indicating that a large proportion of the variance originally
explained by the environment and left-over noise in Model
1: GE was explained by the yield component traits in Mod-
els 2: GE-YC and 3:GE-YC-hierarchy. The inclusion of yield
components NYB and TKW in Models 2: GE-YC and 3:GE-

YC-hierarchy were intended to help explain yield variation in
terms of eco-physiological mechanisms. In turn, the similarity
in magnitudes of variance estimates for genotypic and G X E
components across all three models suggest that NYB and
TKW do not explain the variance associated with genotype
and G X E interaction effects.

For Model 3: GE-YC-hierarchy based on the point estimates
(medians) of the posterior distributions for the variance com-
ponents for genotypic, environmental, and G X E interaction
effects (Ggem), o2 . and Gf,e, respectively), 62, was found to
be the largest by at least 6-fold (Table 4). In addition to this
point estimate, the HDI for ng v also indicates much larger

lower and upper bounds compared with the HDIs for Géeno

and cri,e (Table 4). This suggests that the environment (i.e.,
site-year) accounted for a considerable part of the total vari-
ability in wheat yield. This finding is in accordance with the
literature whereby Munaro et al. (2020) showed that for Col-
orado, Kansas, and Oklahoma the environmental difference
across years and locations accounted for 46% of yield vari-
ability. In context of the seasons and locations included in the
study, different biotic and abiotic factors contributed to the
differences in growing environments.

In terms of overall growing conditions, the growing
season of 2016-2017 (i.e., harvest year 2017) reportedly
showed optimal growing conditions (Marburger et al., 2017).
However, during that season, the Chickasha site suffered
a severe and early infection of leaf rust; this is prob-
ably the reason behind Chickasha 2016-2017 being the
lowest yielding environment (Marburger et al., 2017). On
the other hand, the growing conditions during the season
of 2017-2018 in Oklahoma were characterized by over-
all cooler temperatures at early growth stages and record
cold temperatures in April with a spring-freeze (Marburger,
Calhoun, Carver, et al., 2018), thus resulting in slow growth
and development of the crop (Marburger, Calhoun, Carver,
et al., 2018). Weather conditions in Oklahoma were further
compounded with hotter temperatures and lack of rainfall dur-
ing the grain filling stage, including record hot temperatures
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in May (Marburger, Calhoun, Carver, et al., 2018). In addi-
tion, the wheat variety trial plots in Lahoma were also affected
by dryland root rot during the 2017-2018 season. Finally,
the 2018-2019 growing season mostly had favorable grow-
ing conditions for both growth and development and grain
filling stages, except for the occurrence of diseases such as
root rot, black chaff, and powdery mildew in some locations
(Calhoun et al., 2019). The locations under study are also dif-
ferent in their soil type and properties. However, the interan-
nual variability within locations was observed to be higher
than the spatial variability. These variations were character-
ized by biotic factors such as diseases and abiotic factors
such as drought and spring freeze. The abiotic factors such as
drought were captured by the model to some extent through
inclusion of precipitation, but further work is required to ana-
lyze the other sources of variability between years and loca-
tions. Thus, further analysis should focus on exploring meth-
ods to incorporate the biotic stresses as well as the occasional
abiotic stresses such as spring freeze.

The posterior medians for Géeno
parable order of magnitude indicating that genotypic effects,
as well as G X E interaction effects, explain yield variabil-
ity comparably. However, upon subsequent analysis, it was
revealed that the probability of effect of genotype-specific
effects on wheat yield is higher than the effect of G X E inter-
action. Although small, the G X E effects were manifested
as reranking of genotypes across environments. For instance,
SY Flint was ranked in the lowest half for yield in Altus_2018
(i.e., harvest year 2018) but ranked highly the following year,
particularly in the Altus_2019 environment (Figure 2).

and G;e Wwere on a com-

4.3 | Association between wheat yield and
yield component traits

One of the objectives of this study was to model wheat yield
as a function of yield component traits to be able to identify
physiological mechanisms contributing to source-sink bal-
ance. Specifically, we used NYB as a source indicator because
it is an independent measure of the source which does not
contain the variable we are trying to predict (yield). Hence,
it can be argued that NYB represents the source more clearly
and uniquely than total crop biomass. Specifically, the ratio
of yield to NYB can be expressed in terms of Harvest Index
(HI) as Yield/NYB = HI/(1 — HI). For clarity and detail, recall
that HI = Yield/Biomass and also, NYB = Biomass — Yield.
One may then express NYB/Yield = (Biomass — Yield)/Yield,
such that NYB/yield = 1/(HI — 1), leading to re-expressing
By as Yield/NYB = HI/(1 — HI). This identity enabled us to
draw connections between our study and the published liter-
ature. So defined, HI is commonly used to assess source-sink
balance in wheat (Reynolds et al., 2017; Zhang et al., 2010).

cropscience 1B

The slope parameter connecting wheat yield and NYB,
B, 18 €qual to By at average weather conditions in Model 3:
GE-YC-hierarchy. The HDI for B, was (0.38, 0.47 g m~/g
m~2). The positive value of B,,, indicates that source is one
of the drivers for yield in these environments. Other studies
have reported theoretical maximums for HI in wheat to be
0.62, 0.64, and 0.66 (Austin et al., 1980; Foulkes et al., 2011;
Shearman et al., 2005). However, the HI for maximum attain-
able yields in the Southern Great Plains has been estimated at
not more than 0.41 (Lollato & Edwards, 2015). In addition,
a survey on five different classes of wheat across the United
States reported the HI of hard red winter wheat (the most
commonly grown wheat in Oklahoma) to be 0.33, the lowest
among all wheat classes (Dai et al., 2016). An HI far lower
than the attainable HI suggests that yield increase could be
achieved through better utilization of available source through
improved dry matter partitioning.

Further, our results indicate a positive slope coefficient
between wheat yield and TKW (i.e., f,, in Model GE-YC-
hierarchy), suggesting that the genotypes in this population
did not consistently achieve their genetic potential for TKW
across environments. This finding could be interpreted as an
insufficient source to match the sink strength, thus a source—
sink imbalance in the population within many of the target
environments. The TKW is generally a stable trait with high
heritability. Moreover, we had expected that some portion
of the genotypic variance would be explained by the yield
component TKW, as this trait is generally considered to vary
more between genotypes than between environments (Sadras,
2007). This expectation is based on the understanding that
wheat is generally considered to be a sink-limited crop under
many conditions (Alonso et al., 2018; Serrago et al., 2013;
Zhang et al., 2010; Slafer & Savin, 1994). When the yield is
sink-limited, genetic potential TKW is consistently achieved,
the yield is limited by grain number, and the relationship
between yield and TKW is at or near zero (Reynolds et al.,
2005; Slafer et al., 2014). However, when source limitation
is at play, differences in TKW across environments would
be greater than differences between genotypes, resulting in a
nonzero slope for the relationship between yield and TKW.
Thus, our findings of a positive slope for TKW and a positive
slope between yield and NYB (i.e., an increase in yield with
an increase in the source) both point toward source limitation
for yield.

4.4 | Contribution of weather variables in
the relationships between yield and yield
component traits

We incorporated the weather variables as hierarchical regres-
sors that qualify the nature of the relationship between yield



POUDEL ET AL.

ni

and each of NYB and TKW, thus extending Model 2: GE-YC
to Model 3: GE-YC-hierarchy. If the inclusion of hierarchical
levels to account for weather variables made any contribution
to explaining noise in the data, this contribution seemed to be
mild at best, as the posterior density for the residual variance
was only slightly decreased in magnitude from Model 2:
GE-YC to Model 3: GE-YC-hierarchy (Table 4). This is not
necessarily surprising as the explanatory role of weather was
not at the first hierarchical level of the model; rather, weather
variables were fitted at a second level of the model hierarchy,
thus intended for a decomposition of the slopes connecting
wheat yield to TKW and NYB. The hierarchical structure of
the model allowed us to evaluate the contributions of weather
conditions to the rate of change of wheat yield as a function of
yield component traits. For the early reproductive stage, the
effects of solar radiation (B;,) and precipitation (f;5) on the
slope of yield vs. NYB (B,,,,) were positive. It is noted that
these two effects were also tightly correlated with each other a
posteriori. This is consistent with the previously reported rela-
tionship between radiation use efficiency and water use effi-
ciency (Caviglia & Sadras, 2001; Sadras et al., 1991). Specif-
ically, a positive correlation of substantial magnitude was
reported between cumulative water consumed and photosyn-
thetically active radiation intercepted in durum wheat (Rezig
et al., 2015).

Conditions of both higher solar radiation and adequate rain-
fall are considered favorable for plant growth. Higher solar
radiation corresponds to increased photosynthesis and higher
assimilate supply, and higher rainfall ensures no drought
stress. Therefore, the observed positive effects of solar r dia-
tion and precipitation during the early reproductive stage (B,
and f;3) on the rate of change of yield per NYB (,,;,) indi-
cate that the amount of yield produced per unit NYB is higher
under favorable conditions. These findings can be interpreted
as the source (NYB) being used more efficiently for yield for-
mation as a result of better sink strength, given that this is a
period when florets are developing and, thus, grain number is
determined (Ugarte et al., 2007; Savin & Slafer, 1991; Fischer,
1985).

For the grain filling stage, only precipitation was found
to contribute to the rate of yield change per TKW (B,),
although the evidence was weaker (i.e., posterior probability
P[B,3; > O|y] = 70%). The positive slope between yield
and TKW indicating potential source limitation during
grain filling and the weak evidence of weather variables
contributing to that points toward other factors that might
affect source strength during grain filling, such as disease
or residual soil moisture. In turn, the evidence of the pre-
cipitation effect, although weak, is consistent with a report
that the effect of precipitation during the grain filling stage
on wheat yield was mainly mediated by TKW (He et al.,
2013).

S | CONCLUSION

A major portion of the total variability in wheat yield was
explained by the environmental component. The inclusion of
yield component traits, namely NYB and TKW, as explana-
tory variables in the model helped explained a substantial
amount of environmental variance but did not seem to help
explain genotypic or G X E variance. A positive relationship
was observed between both yield component traits and wheat
yield supporting the idea that yield is driven by source mech-
anisms. However, the fact that the slope of yield as a function
of NYB was responsive to weather conditions during the early
reproductive stage indicates that sink mechanisms may also
be at play. These results suggest the presence of source-sink
co-limitation in wheat yield.
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