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Abstract
Yield components are widely recognized as drivers of wheat (Triticum aestivum
L.) yield across environments and genotypes. In this study, we used a hierarchical

Bayesian approach to model wheat grain yield in Oklahoma on an eco-physiological

basis using yield component traits thousand kernel weight (TKW) and nonyield

biomass (NYB). The Bayesian approach allowed us to quantify uncertainties around

the parameter values rather than obtaining a single value estimate for a parameter. The

main objectives of this study were to (a) explain wheat yield as a function of com-

ponent traits TKW and NYB, and thereby examine the implications for source-sink

balance; and (b) assess their association with weather conditions during key stages

of wheat development. A secondary objective was to introduce Bayesian estimation

for eco-physiological modeling. Fifteen wheat genotypes planted in three locations

in Oklahoma (Altus, Chickasha, and Lahoma) were evaluated across three harvest

years (2017 to 2019), whereby the combination of location and year defined an envi-

ronment. Results indicate that the environment explained a greater proportion of the

variability in yield than genotypes or than genotype × environment (G × E) interac-

tion; however, evidence for G × E was substantial. Yield was expected to increase

with increasing TKW and NYB, which would suggest a source limitation to achieve

potential yield. Yet, the contribution of early reproductive stage weather variables

to the relationship between yield and NYB pointed in the direction of sink strength

being compromised. In summary, our approach provides evidence for source-sink

co-limitation in grain yield of this sample of hard red winter wheat genotypes.

Abbreviations: elpd, expected log predictive density; G × E, genotype ×
environment; HDI, highest posterior density interval; HI, harvest index;

MCMC, Markov chain Monte Carlo; NYB, nonyield biomass; OSU,

Oklahoma State University; PPI, posterior probability interval; RMSE, root

mean squared error; SKCS, single kernel characterization system; TKW,

thousand kernel weight.
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1 INTRODUCTION

Wheat (Triticum aestivum L.) is a staple food crop in many

countries that supplies the most calories and protein to the

population worldwide (Peña-Bautista et al., 2017). However,

wheat genotypes, wheat-growing environments, and wheat

yields differ worldwide across regions, years, and growing
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seasons. Climate variation was found to explain 32–39% of

interannual yield variability in maize, rice, wheat, and soy-

bean globally (Ray et al., 2015). Yield variability exists not

only between different regions in the world but also within the

specific regions across locales and growing seasons. Under-

standing the mechanisms behind yield variability within a

wheat-growing region would allow breeding programs to

develop wheat genotypes tailored to reduce the gap between

the maximum attainable yield and observed yield.

This study was conducted in the United States in the state of

Oklahoma. The wide range of environments across the state

makes it an ideal region to study yield variability as a result of

variable weather conditions. A wide range of environmental

conditions are present in Oklahoma, driven mostly by a tem-

perature gradient from south to north and a precipitation gra-

dient from east to west, along with yearly fluctuations in tem-

perature and precipitation patterns (Tian & Quiring, 2019).

As a result, wheat yields are variable across the state (Cal-

houn et al., 2019; USDA, 2019). For instance, in 2019, wheat

yield ranged from 1.8 ton/ha in Southwest Oklahoma to 4.2

ton/ha in East Central Oklahoma (USDA, 2019).

Environmental effects, different genotypes, and genotype

× environment (G × E) interactions play an important role in

explaining yield variability (Mohammadi et al., 2010; Rooze-

boom et al., 2008). Specifically, G × E effects on wheat yield

are ultimately driven by different physiological mechanisms.

For instance, the crop environment at the early reproductive

stages of plant growth impacts wheat yield primarily through

changes in grain number (Fischer, 1985; Ugarte et al., 2007)

whereas the environmental conditions during anthesis and the

grain filling stage can affect wheat yield mainly via changes

in grain size (Serrago & Miralles, 2014; Wardlaw & Moncur,

1995). These traits are simultaneously driven by the combined

effects of genetics and environmental impact, thus leading to

G × E interaction.

Multienvironment trials are a well-established component

of crop breeding programs to study G × E interactions. These

trials are important to characterize the performance of wheat

genotypes over a wide range of environments. In this study,

we utilize data from the Oklahoma Small Grains Variety Per-

formance Tests, a multienvironment trial, conducted yearly

by Oklahoma State University (OSU). Most multienviron-

ment trials focus mainly on yield (Kaya et al., 2006; Moham-

madi et al., 2010; Roozeboom et al., 2008; Sukumaran et al.,

2017) as this is one of the more important outcomes of a cul-

tivar, for which producers base their choice. Yet, yield data

alone provide limited insight into the mechanisms for dif-

ferential responses of genetic cultivars to changing environ-

ments. Grain yield is a function of multiple component traits

including kernel weight and size, kernels per spike, spikes per

tiller, and the number of tillers amongst others, each at differ-

ent levels of trait plasticity (Slafer et al., 2014). Stable com-

ponents of yield such as grain size are placed at the lowest

Core Ideas
∙ Yield components serve as proxy for source and

sink.

∙ Association of yield components with yield is

mediated by weather conditions.

∙ Wheat yield is co-limited by source and sink.

∙ Bayesian hierarchical modeling naturally reflects

hierarchy of biological systems.

level of trait plasticity denoting that they are mostly governed

by genetic factors. In turn, components such as the number of

tillers show high plasticity as they are highly influenced by the

environment (Sadras & Slafer, 2012). We postulate that fur-

ther partitioning of yield into its component traits could help

explain the observed variability in yield and thus increase the

quality of predictions.

Wheat yield can be effectively partitioned into two main

yield component traits, namely grain number and average

grain weight; these are modulated by a source-sink balance

(Fischer, 2008; Ugarte et al., 2007). In most conditions, wheat

is a sink-limited crop (Borrás et al., 2004). Sink limitations are

due to stress during early reproductive stages, which leads to

the setting of fewer grains than what can be filled later dur-

ing grain filling. In contrast, postanthesis abiotic and biotic

stresses can reduce grain size or weight; this is an example of

a source-limited condition. The balance between source and

sink is crucial to realizing yield potential.

Although analyses pertaining to understanding these sys-

tems through eco-physiological dynamics have been tradition-

ally performed within a frequentist framework, some studies

have utilized a Bayesian approach (Cotes et al., 2006; Cuevas

et al., 2017; Montesinos-López et al., 2019). Bayesian hier-

archical modeling provides a useful framework for exploring

these interactions in several respects. First, the hierarchical

structure of the model corresponds to the nature of the biolog-

ical system under study. Second, a Bayesian framework pro-

vides a natural mechanism for incorporating what is already

known about a given system in the form of prior distribu-

tions. For well-defined relationships, informative priors can

be used; whereas for novel research questions, more diffuse

priors can be constructed. Third, Bayesian analysis is increas-

ingly being used due to its emphasis on quantifying poste-

rior distributions for parameters of interest rather than point

estimates alone (Alderman & Stanfill, 2017). These posterior

distributions can be used to derive point estimates, if needed,

along with a range of uncertainty around those estimates.

Doing so provides a well-rounded perspective on the nature

and strength of the relationships being explored.

Ultimately, our goal is to explain wheat yield variability on

an eco-physiological basis. The main objectives of this study
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T A B L E 1 Wheat genotypes included in this study by season

Genotypes 2016–2017 2017–2018 2018–2019
Bentley X X

Billings X

Doublestop CL+ X X X

Duster X X X

Endurance X

Gallagher X X X

Iba X X X

LCS Chrome X X

Lonerider X X

Ruby Lee X X X

Smith’s Gold X X

SY Achieve CL2 X X

SY Flint X X X

SY Llano X

WB4458 X X

were to (a) explain wheat yield as a function of component

traits thousand kernel weight (TKW) and nonyield biomass

(NYB), thus examine the implications for source-sink balance

and (b) assess their association with weather conditions dur-

ing key stages of wheat development. We leverage a hierar-

chical Bayesian modeling framework to naturally reflect the

hierarchical features of the biological question. Thus, as a sec-

ondary objective, we introduce Bayesian estimation for eco-

physiological modeling.

2 MATERIALS AND METHODS

The samples for this study were collected from the Oklahoma

Small Grains Variety Performance Tests conducted by OSU

on a yearly basis. The OSU wheat cultivar testing program

features replicated trials at more than 20 different test sites

and nonreplicated trials at more than 40 demonstration sites,

representing major wheat-growing areas in the state.

2.1 Wheat genotypes included in this study

For this study, we selected wheat genotypes based on acreage

planted in Oklahoma (Table 1). Some of the genotypes

included in this study changed across years as newer cul-

tivars replaced older ones. The genotypes selected for this

study showed a range of plant heights, maturity, yield poten-

tial, disease resistance, test weight, kernel size, drought tol-

erance, Hessian fly resistance, and dual-purpose suitability,

but all were intended to represent the diversity of wheat

grown in Oklahoma (Marburger et al., 2018; OSU Small

Grains Extension, 2020). For example, the wheat genotypes

‘Doublestop CL+’, ‘Endurance’, and ‘Iba’ (Marburger et al.,

2021) were chosen for their late maturity, whereas ‘Gal-

lagher’ (Marburger et al., 2021), ‘Lonerider’, ‘SY Achieve

CL2’, and ‘SY Llano’ were chosen for their early matu-

rity; meanwhile, ‘Billings’ (Edwards et al., 2012), ‘SY Flint’,

and ‘WB4458’ were chosen for their medium-early maturity.

Likewise, Billings has a high grain-only yield potential but

is not suitable for dual-purpose systems (Hunger et al., 2014)

whereas Smith’s Gold has excellent yield potential and is suit-

able for both grain-only and dual-purpose production systems.

Bentley has yield stability under drought conditions but lower

test weight, and Doublestop CL+ has yield stability across a

wide range of environments along with high test weight (OSU

Small Grains Extension, 2020). The genotypes also differ in

disease resistance; Billings, ‘Duster’ (Edwards et al., 2012),

Gallagher, Iba, and ‘LCS Chrome’ exhibit good stripe and leaf

rust (caused by Puccinia striiformis and Puccinia triticina)

resistance, whereas Bentley, Doublestop CL+, Endurance,

Smith’s Gold, and SY Flint are moderately resistant. Mean-

while, ‘Ruby Lee’ is moderately susceptible to stripe rust

only. Furthermore, Duster has above-average tillering capac-

ity with intermediate straw strength, whereas LCS Chrome

has both high tillering ability and good straw strength (Mar-

burger, Hunger, et al., 2018).

2.2 Sites and management description

For this study, a total of three sites were selected for sample

collection from the set of locations within the OSU the Okla-

homa Small Grains Variety Performance Tests, namely Altus,

Chickasha, and Lahoma. The selected sites represent diver-

sity in latitude, longitude, elevation, climatic conditions, and

soil types across the state (Table 2). The seasonal rainfall and

temperature estimates for the months of October through June

were calculated from the preceding 15 yr of data (2003-=2004

to 2018–2019) obtained from nearby stations of the Oklahoma

Mesonet (Brock et al., 1995; McPherson et al., 2007). All tri-

als were conducted as a randomized complete block design

with four replicates using a conventional tillage system. Tri-

als at each site followed standard management practices for

the area, with a 67 kg ha−1 seeding rate and 56 kg ha−1 of 18-

46-0 (N−P2O5−K2O) applied in-furrow at the time of plant-

ing, using a Hege 500 small-plot cone seeder (Wintersteiger).

Each plot consisted of eight rows spaced 15 cm apart.

2.3 Experimental design and data
collection

Data were collected at the three sites over the course of three

growing seasons (2016–2017, 2017–2018, and 2018–2019),
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T A B L E 2 Description of experimental sites included in the study

Site Latitude Longitude Elevation Rainfall Temperature Soil type
m mm ˚C

Altus 34.63˚ N 99.33˚ W 426 388 12 ± 7.94 Hollister silty clay loam

Chickasha 35.05˚ N 97.94˚ W 339 534 11.1 ± 7.9 Dale silt loam

Lahoma 36.39˚ N 98.09˚ W 380 437 9.87 ± 8.16 Pond creek silt loam

Note. Average seasonal cumulative rainfall (Rainfall) and average seasonal temperature (Temperature) from October through June calculated from the preceding 15 yr of

data (2003–2004 to 2018—2019) obtained from nearby Oklahoma Mesonet stations

excluding Altus in 2016–2017. Thus, we used the combina-

tion of site and year to define eight environments. A total of

10 genotypes were sampled in the first year, 12 in the sec-

ond year, and 11 in the third year from each site. Thus, not all

genotypes were observed in all environments.

From each plot in each of the four field replicates, a meter

row of the selected genotypes (0.5 m on two second from outer

rows) was hand-harvested at physiological maturity with a

sickle at ground level to produce one sample per plot. Sam-

ples were dried for 72 h at 60 ˚C. An ALMACO Plant and

Head Thresher (Allan Machine Company) was used to thresh

the samples, and dry biomass and grain weights were recorded

for each plot. Yield (g m−2) was calculated from sample grain

weight. Nonyield biomass (g) was calculated as the sample

grain weight (g) subtracted from the total sample biomass (g).

Average kernel weight (mg) was obtained for each sam-

ple using the Single Kernel Characterization System 4100

(SKCS, Perten Instruments North America Inc.) following

standard operating procedures as outlined in the instruction

manual (Perten Instruments, 1995). From sample of approxi-

mately 20 g per field plot, the SKCS 4100 provided a mean,

standard deviation, and distribution for single kernel weight

(mg) of 300 machine-singulated sound kernels (Martin et al.,

1993; Osborne & Anderssen, 2003). Thousand kernel weight

(g) was calculated from the mean obtained for SKCS kernel

weight.

Data on weather variables, daily values of minimum and

maximum temperatures (˚C), precipitation (mm), and solar

radiation (M Jm−2), were obtained from the Oklahoma

Mesonet for each location and year (Brock et al., 1995;

McPherson et al., 2007). The air temperature was calcu-

lated as the average of minimum and maximum temperatures.

Cumulative precipitation, average solar radiation, and aver-

age air temperature were calculated to summarize the weather

variables over two growth periods per season to represent the

early reproductive stage (from 6 wk prior to the heading date,

corresponding to Zadok’s growth stage 59, until 2 wk after

the heading date) and grain filling stage (from 2 wk after the

heading date until 2 wk prior to the harvest date, Zadok’s

growth stage 93) for each trial. Heading dates and harvest

dates were obtained from the variety performance trial reports

(Calhoun et al., 2019; Marburger et al., 2017; Marburger, Cal-

houn, Carver, et al., 2018).

2.4 Model specification and data analysis

Although the individual field trials followed a randomized

complete block design design, the combination of multiple

trials for data analysis reflected a split-plot like structure

where the field trials served as main plots. Each field trial cor-

responds to a unique site–year combination or environment

as described above. A basic statistical model was specified to

reflect the structure of the whole dataset. Specifically, random

effects included in the linear predictor were environment,

block nested within an environment (the blocking structure

for genotypes), genotype, and G × E. The residual repre-

sented the remaining noise at the individual plot level. Three

alternative models were specified according to the objective

of explaining yield as a function of its component traits,

namely:

Alternative 1: Model including G × E effects (Model GE):

𝑌𝑖𝑗𝑘 = β0 + 𝐸𝑛𝑣𝑘 + 𝐺𝑒𝑛𝑜𝑗 + [𝐺𝑒𝑛𝑜 ∗ 𝐸𝑛𝑣]𝑗𝑘

+ 𝐵𝑙𝑜𝑐𝑘[𝐸𝑛𝑣]𝑖[𝑘] + 𝑒𝑖𝑗𝑘

where 𝑌𝑖𝑗𝑘 = observed yield (g m−2) from the plot correspond-

ing to the ith block (i = 1, . . . , 4) in the kth environment (k = 1,

. . . , 8) planted with the jth genotype (j = 1, . . . , 15) and β0 =
overall intercept, interpretable as expected yield for a “typi-

cal” genotype in a “typical” environment, whereby typical is

defined as the population expectation for genotypic effects,

environmental effects and their combination, that is,

𝐸
(
𝐺𝑒𝑛𝑜𝑗

)
= 𝐸

(
𝐸𝑛𝑣𝑘

)
= 𝐸(𝐺𝑒𝑛𝑜 ∗ 𝐸𝑛𝑣)𝑗𝑘 = 0

where 𝐺𝑒𝑛𝑜𝑗 = differential effect of the jth geno-

type, assumed 𝐺𝑒𝑛𝑜𝑗 ∼ 𝑁𝐼𝐼𝐷(0, σ2𝑔𝑒𝑛𝑜); 𝐸𝑛𝑣𝑘 = differ-

ential effect of the kth) environment, assumed 𝐸𝑛𝑣𝑘 ∼
𝑁𝐼𝐼𝐷(0, σ2

𝑒𝑛𝑣
); and [Geno*Env]jk = differential effect of

the jth genotype planted in the kth environment, assumed

[𝐺𝑒𝑛𝑜 ∗ 𝐸𝑛𝑣]𝑗𝑘 ∼ 𝑁𝐼𝐼𝐷(0, σ2𝑔𝑒).
Block[Env]i[k] = differential effect of the ith block

nested within the kth environment and assumed

𝐵𝑙𝑜𝑐𝑘[𝐸𝑛𝑣]𝑖[𝑘] ∼ 𝑁𝐼𝐼𝐷(0, σ2𝑏) and eijk = residual unique

to the observation collected on ijkth plot and assumed

𝑒𝑖𝑗𝑘 ∼ 𝑁𝐼𝐼𝐷(0, σ2𝑟 ).
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Alternative 2: Model including effects of G × E and yield

components (Model GE-YC):

𝑌𝑖𝑗𝑘 = β0 + 𝐸𝑛𝑣𝑘 + 𝐺𝑒𝑛𝑜𝑗 + β1 ∗ 𝑛𝑦𝑏𝑖𝑗𝑘 + β2 ∗ 𝑡𝑘𝑤𝑖𝑗𝑘

+ [𝐺𝑒𝑛𝑜 ∗ 𝐸𝑛𝑣]𝑗𝑘 + 𝐵𝑙𝑜𝑐𝑘[𝐸𝑛𝑣]𝑖[𝑘] + 𝑒𝑖𝑗𝑘

where 𝑌𝑖𝑗𝑘, β0, 𝐸𝑛𝑣𝑘, 𝐺𝑒𝑛𝑜𝑗, [𝐺𝑒𝑛𝑜 ∗ 𝐸𝑛𝑣]𝑗𝑘, 𝐵𝑙𝑜𝑐𝑘[𝐸𝑛𝑣]𝑖[𝑘],
and eijk are as previously defined for model GE.

nybijk = observed NYB corresponding to the plot in the

ith block of the kth environment planted with the jth
genotype, and expressed as the deviation from its mean;

tkwijk = observed TKW corresponding to the plot in the ith
block of the kth environment planted with the jth genotype,

and expressed as the deviation from its mean; β1 = slope

coefficient, indicating the rate of change of yield per unit

increase in NYB, for a typical genotype and environment as

previously defined; and β2 = slope coefficient, indicating the

rate of change of yield per unit increase in TKW for a typical

genotype and environment as previously defined.

Alternative 3: Model including G × E and a hierarchical

specification of yield components (Model GE-YC-hierarchy):

𝑌𝑖𝑗𝑘 = β0 + 𝐸𝑛𝑣𝑘 + 𝐺𝑒𝑛𝑜𝑗 + β𝑛𝑦𝑏,𝑘 ∗ 𝑛𝑦𝑏𝑖𝑗𝑘

+ β𝑡𝑘𝑤,𝑘 ∗ 𝑡𝑘𝑤𝑖𝑗𝑘 + [𝐺𝑒𝑛𝑜 ∗ 𝐸𝑛𝑣]𝑗𝑘

+ 𝐵𝑙𝑜𝑐𝑘[𝐸𝑛𝑣]𝑖[𝑘] + 𝑒𝑖𝑗𝑘

with a hierarchical specification of yield components such

that:

β𝑛𝑦𝑏,𝑘 = β10+β11 ∗ 𝑡𝑒𝑚𝑝1𝑘 + β12 ∗ 𝑠𝑟𝑎𝑑1𝑘 + β13 ∗ 𝑟𝑎𝑖𝑛1𝑘
β𝑡𝑘𝑤,𝑘 = β20+β21 ∗ 𝑡𝑒𝑚𝑝2𝑘 + β22 ∗ 𝑠𝑟𝑎𝑑2𝑘 + β23 ∗ 𝑟𝑎𝑖𝑛2𝑘

where 𝑌𝑖𝑗𝑘, β0, 𝐸𝑛𝑣𝑘, 𝐺𝑒𝑛𝑜𝑗, [𝐺𝑒𝑛𝑜 ∗ 𝐸𝑛𝑣]𝑗𝑘, 𝐵𝑙𝑜𝑐𝑘[𝐸𝑛𝑣]𝑖[𝑘],
and eijk are as previously defined for model GE; and nybijk
and tkwijk are as previously defined for model GE-YC.

temp1k, srad1k, rain1k = temperature, solar radiation, and

precipitation, respectively, for the kth environment during the

early reproductive growth stage, expressed as the deviations

from their respective means. 𝑡𝑒𝑚𝑝2𝑘, 𝑠𝑟𝑎𝑑2𝑘, 𝑟𝑎𝑖𝑛2𝑘 = tem-

perature, solar radiation, and precipitation, respectively, for

the kth environment, during the grain filling stage, expressed

as the deviations from their respective means. β10 = intercept

for the hierarchical specification of NYB, indicating the

expected rate of change of yield per unit increase in NYB

for a typical genotype at average temperature, precipitation,

and solar radiation for the early reproductive growth stage.

β11, β12, β13 = expected change in the slope of NYB on

yield per unit increase of temperature, solar radiation, and

precipitation, respectively, during the early reproductive

growth stage. β20 = Intercept for the hierarchical specifica-

tion of TKW, indicating the expected rate of change of yield

per unit increase in TKW for a typical genotype at average

temperature, precipitation, and solar radiation during the

grain filling stage. Β21, β22, β23 = Expected change in the

slope of TKW on yield per unit increase of temperature, solar

radiation, and precipitation, respectively, during the grain

filling stage.

For data analyses, the statistical models were fitted using a

hierarchical Bayesian framework.

2.5 Prior specification

Specification of priors for all hyperparameters was performed

using the prior predictive checks approach proposed by Schad

et al. (2019). Briefly, hyperparameters were included in the

prior predictive model in a stepwise fashion of increasing

model complexity, following model hierarchy from Alterna-

tive Models 1 to 3. At each step, prior predictive checks were

performed to ensure that predictions from the priors were

within a biologically plausible, though vague, boundary. The

boundary was set based on the average wheat yields through-

out the world and was allowed to vary up to around 1,800

g m−2, which could be considered weakly informative given

that it is in excess of maximum observed wheat yields glob-

ally. A prior predictive check was conducted by sampling from

the defined priors and simulating model predictions for the

variable of interest based on those samples. If the predictions

were biophysically plausible, the priors passed the check,

but if the priors produced nonsense predictions, priors were

revised to produce predictions aligned with our beliefs and

prior knowledge about the system under study. Prior specifica-

tions for vague predictions were intended to put the weight of

posterior inference on the actual data. Prior specifications for

parameters in modeling Alternatives 1–3 are presented next

in the form of Normal(μ, σ2), such that:

β0 ∼ N𝑜𝑟𝑚𝑎𝑙(300, 802)

β1 ∼ N𝑜𝑟𝑚𝑎𝑙(0, 12)

β2 ∼ N𝑜𝑟𝑚𝑎𝑙(0, 152)

β10 ∼ N𝑜𝑟𝑚𝑎𝑙(0, 0.52)

β20 ∼ N𝑜𝑟𝑚𝑎𝑙(0, 152)

β11 ∼ N𝑜𝑟𝑚𝑎𝑙(0, 0.12)
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β12 ∼ N𝑜𝑟𝑚𝑎𝑙(0, 0.052)

β13 ∼ N𝑜𝑟𝑚𝑎𝑙(0, 0.12)

β21 ∼ N𝑜𝑟𝑚𝑎𝑙(0, 12)

β22 ∼ N𝑜𝑟𝑚𝑎𝑙(0, 0.52)

β23 ∼ N𝑜𝑟𝑚𝑎𝑙(0, 12)√
σ2
𝑒𝑛𝑣

∼ T𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 n𝑜𝑟𝑚𝑎𝑙(0, 1502) such that
√

σ2
𝑒𝑛𝑣
> 0√

σ2
𝑔𝑒𝑛𝑜

∼ T𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝑛𝑜𝑟𝑚𝑎𝑙(0, 802) such that
√

σ2
𝑔𝑒𝑛𝑜
> 0√

σ2
𝑔𝑒

∼ T𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝑛𝑜𝑟𝑚𝑎𝑙(0, 1002) such that
√

σ2
𝑔𝑒
> 0√

σ2
𝑏
∼ T𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝑛𝑜𝑟𝑚𝑎𝑙(0, 502) such that

√
σ2
𝑏
> 0√

σ2
𝑟
∼ T𝑟𝑢𝑛𝑐𝑎𝑡𝑒𝑑 𝑛𝑜𝑟𝑚𝑎𝑙(0, 2502) such that

√
σ2
𝑟
> 0

2.6 Software implementation

Statistical models were fitted using a hierarchical Bayesian

framework based on Hamiltonian Monte Carlo as imple-

mented by the software Stan (Stan Development Team, 2018)

through the R statistical software environment (R Core Team,

2020; Stan Development Team, 2019). For each model, four

Markov chain Monte Carlo (MCMC) chains with 10,000 iter-

ations and 50% burn-in were run, resulting in a total of 20,000

saved iterations for posterior inference. Traceplots and R-

hat values were used to monitor chain convergence (Gelman

et al., 2013). Auto-correlations and effective sample size for

key lower-level parameters were computed. Specifically, the

MCMC chains were tuned to ensure that effective sample size

for the hyperparameters σgeno, σenv, σge, and σb was greater

than 3,000 in all models.

Figures were generated using the ggplot2 package in R

(Wickham, 2016). The highest posterior density intervals

(HDIs) were computed using the HDInterval package (Mered-

ith & Kruschke, 2018). Figures and tables were generated or

rendered using the R packages knitr (Xie, 2020) and kableEx-

tra (Zhu, 2019). The R package tidyverse was used for data

cleaning and organization (Wickham et al., 2019; Wickham,

2017).

The computing for this project was performed on the

TIGER research cloud at the Oklahoma State University

High Performance Computing Center using a KVM virtual

machine backed by a hypervisor node with dual Intel “Sky-

lake” 6,130 CPUs and 768 GB RAM.

2.7 Bayesian approach to data analysis

In Bayesian data analyses, estimation of parameters of interest

and subsequent inference, as well as predictions, come in the

form of posterior densities that are obtained numerically from

the MCMC. In contrast, the reader may recall that determinis-

tic methods produce parameter-specific point estimates only.

The availability of posterior densities is highly desirable as it

provides considerably more information about the parameters

of interest (or functions thereof), thus enabling not only point

estimation but also assessments of uncertainty. Specifically,

from a posterior density, one may select amongst a number

of possible location descriptors for the most appropriate point

estimate, say mean, median, or mode, depending on the sym-

metry (or lack thereof) of the posterior density for the parame-

ter of interest. Even more compelling is the fact that posterior

densities also enable an assessment of uncertainty around the

selected point estimator (Gelman et al., 2013). In a statistical

sense, uncertainty is an indicator of precision of the estimate

based on the amount of information available in the data, and

thus, an indicator of how likely we are to reproduce those esti-

mates under similar conditions. For example, posterior inter-

vals such as HDI, or alternatively, posterior probability inter-

val (PPI), indicate the range of values within which one can

expect to find the parameter of interest with 95% probabil-

ity (Gelman et al., 2013). These intervals may be considered

analogous to the concept of confidence intervals in frequentist

statistics, though their Bayesian interpretation is straightfor-

ward, thus more intuitive and directly aligned with research

objectives. That is, we are 95% confident that the parameter

takes values contained within the boundaries of the interval.

Specifically, a 95% PPI is the interval in the distribution that

contains the middle 95% of the posterior samples and thus

has equal tails (Gelman et al., 2013). In turn, the HDI of a

posterior distribution is the shortest possible interval which

captures 95% of the posterior samples with the highest prob-

ability densities (Grieve, 1991). It is worth noting that this

statistical definition of uncertainty on individual parameters

or individual predictions is different from variability across

model-derived point predictions.

In this article, we report posterior summaries for each

parameter of interest (and functions thereof) using posterior

medians and 95% HDI.

2.8 Model comparison

Model 3: GE-YC-hierarchy was our model of preference,

because its hierarchical nature offers insights into relevant

physiological mechanisms. The model comparison was per-

formed to determine if the added complexity in Model 3:

GE-YC-hierarchy compromised the predictive ability of the
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model. Alternative models were compared using statistical

metrics for goodness-of fit and predictive ability. Specifically,

Bayesian R-squared and root mean square error (RMSE) were

calculated to assess goodness-of-fit, and expected log predic-

tive density (elpd) was calculated in a q-fold cross-validation

with Q = 10 for each alternative model. Approximately 315

data points were used as training vs. 35 holdout data points

for each fold of cross-validation.

First, a Bayesian R-squared statistic was calculated for each

MCMC iteration (s) as described in Gelman et al. (2019), such

that:

𝐵𝑎𝑦𝑒𝑠𝑖𝑎𝑛 𝑅2
𝑠
= 𝑣𝑎𝑟(𝑦̂)𝑠

𝑣𝑎𝑟(𝑦̂)𝑠 + σ2 𝑠
𝑟

where, 𝑣𝑎𝑟(𝑦̂) = variance between predicted values at itera-

tion s, whereby s = 1, 2, . . . , S is the length of post-burnin

MCMC, σ2 𝑠
𝑟

= Posterior sample of residual variance (σ2
𝑟
) for

each MCMC iteration s.

Then, RMSE was also calculated for each MCMC iteration

(s) as:

𝑅𝑀𝑆𝐸𝑠 =

√√√√ 1
𝑁

𝑁∑
𝑛=1

(𝑦𝑛 − 𝑦̂𝑠𝑛)
2

where, N = Total number of data points, yn = nth observation,

and 𝑦̂𝑛 = Predicted value for the nth observation sampled in

MCMC iteration s.

Finally, elpd was calculated following Equations 20 and 21

in Vehtari et al. (2017) such that:

𝑒𝑙𝑝𝑑 =
𝑄∑
𝑞=1

𝑀𝑞∑
𝑚=1
𝑙𝑜𝑔

[
1
𝑆

𝑆∑
𝑠=1
𝑝(𝑦𝑚|θ−𝑞,𝑠)

]

where Q = the number of folds, Mq = number of observa-

tions within the qth fold, S = number of saved post burn-

in MCMC iterations, ym = data point m within the qth fold,

and θ−𝑞,𝑠 = parameters corresponding to the qth holdout sub-

set and iteration s, and p(ym|θ−q,s) = probability of ym given

θ−q,s.

Models with smaller values of RMSE, and with larger

values of Bayesian R-squared, and elpd were considered

preferable.

3 RESULTS

3.1 Model comparison

Table 3 shows selected criteria used for model compari-

son, specifically, Bayesian R-squared and RMSE to assess

goodness-of-fit, and elpd to assess the predictive ability

of each alternative model considered. Smaller Bayesian R-

squared and larger RMSE both indicate impaired fit of Model

1: GE relative to Model 2: GE-YC and Model 3: GE-YC-

hierarchy, thus clearly suggesting a preference for the latter

two. Meanwhile, Model 3: GE-YC-hierarchy showed the the

largest value of Bayesian R-squared and the smallest RMSE.

Yet, numerical differences in both fit criteria were minor rel-

ative to Model 2: GE-YC, thus indicating little evidence for

preference of either model over the other in terms of relative

fit to data.

In terms of predictive ability, Model 3: GE-YC-hierarchy

performed best, as supported by the largest elpd value, fol-

lowed closely by Model 2: GE-YC, and lastly by Model1: GE.

Model 3: GE-YC-hierarchy and Model 2: GE-YC showed a

minor difference in predictive ability, as indicated by an elpd

difference close to zero and of smaller magnitude than the

standard error of such difference, indicating inadequate evi-

dence in favor of any one model in terms of predictive abil-

ity. For further inference, we made the decision to proceed

with Model 3: GE-YC-hierarchy based on a combination of

(a) best or comparable fit relative to other model alternatives

considered in this study, and (b) its hierarchical nature, which

enables insight into specific physiological mechanisms con-

tributing to yield differences without compromising predic-

tive ability.

Figure 1 illustrates the posterior density of the Bayesian R-

squared for Model 3 G × E and yield component (GE-YC)

hierarchy selected for further inference. Notably, the 95% HDI

for Bayesian R-squared for this model had a lower bound of

0.88 and an upper bound of 0.91, indicating a 95% probability

that Model 3: GE-YC-hierarchy captures somewhere between

88–91% of the variability observed in the data.

3.2 Genotypic, Environmental, and G × E
effects on wheat yield

Table 4 shows posterior inference of variance components

for genotypic (σ2
𝑔𝑒𝑛𝑜

), environmental (σ2
𝑒𝑛𝑣

) and G × E effects

(σ2
𝑔𝑒

), as well as residual-level (σ2
𝑟
), for the alternative models

considered in this study. As expected, the addition of NYB

and TKW as explanatory variable to Model 2: GE-YC and

Model 3: GE-YC-hierarchy caused a substantial decrease of

approximately one order of magnitude in the residual vari-

ance (σ2
𝑟
) and the environmental variance (σ2

𝑒𝑛𝑣
) compared

with Model 1: GE. Based on the posterior medians for Model

3: GE-YC-hierarchy, σ2
𝑒𝑛𝑣

showed the greatest magnitude with

six times σ2
𝑔𝑒𝑛𝑜

or σ2
𝑔𝑒

(Table 4). When comparing the point

estimates (medians) for genotype-specific and G × E effects,

their magnitudes appear similar; however, upon further anal-

ysis it was found that there is a 61.6% probability that the

genotype-specific effects were higher than the G × E effects.
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T A B L E 3 Model comparison based on Bayesian R-squared, and root mean square error (RMSE; expressed as highest posterior density interval

[HDI]), and difference in expected log predictive density (elpd_diff ± SE) for Model 1 genotype × environment (GE), Model 2 GE and yield

component (GE-YC), and Model 3 GE and YC with hierarchy (GE-YC-hierarchy)

Bayesian R-squared RMSE
Models Median HDI Median HDI elpd_diff ± SE.
1. GE 0.759 (0.718, 0.799) 103.48 (98.29, 109.05) −142.6 ± 28.0

2. GE-YC 0.896 (0.877, 0.914) 67.86 (64.42, 71.88) −3.6 ± 28.3

3. GE-YC-hierarchy 0.899 (0.880, 0.917) 66.77 (63.06, 70.71) 0

Note. Values for elpd_diff are expressed relative to GE-YC-hierarchy(e.g., elpd_diff for GE is elpd for GE-YC-hierarchy subtracted from elpd for GE).

F I G U R E 1 Posterior distribution of Bayesian R-squared and 95% HDI as indicated by the vertical lines in the density plot

T A B L E 4 Posterior summary (posterior median and 95% highest posterior density interval [HDI]) on variance components: Genotype (σ2
𝑔𝑒𝑛𝑜

),

environment (σ2
𝑒𝑛𝑣

), genotype × environment interaction (σ2
𝑔𝑒

), and residuals (σ2
𝑟
) for alternative models

𝛔𝟐
𝒈𝒆𝒏𝒐

𝛔𝟐
𝒆𝒏𝒗

𝛔𝟐
𝒈𝒆

𝛔𝟐
𝒓

Models Median HDI Median HDI Median HDI Median HDI
1. GE 1,102.54 (0.01, 3,158.75) 39,574.91 (11,592.48, 93,647.42) 1,087.51 (0.0006, 2,746.35) 10,760.34 (8,937.15, 12,875)

2. GE-YC 1,181.33 (170.21, 3,098.04) 4,686.17 (428.28, 17,098.25) 1,218.47 (337.99, 2,031.73) 4,637.45 (3,849.4, 5,566.9)

3. GE-YC-

hierarchy

1,280 (184.33, 3,192.07) 7,918.37 (1,123.51, 27,753.57) 1,068.13 (282.38, 1,974.75) 4,490 (3,686.04, 5,370.17)

Note. GE, genotype × environment; GE-YC, genotype × environment and yield components.

Figure 2 illustrates the posterior median of environment-

specific yield predictions for each of the wheat genotypes

present in all environments in this study. All predictions

were obtained using results from Model 3: GE-YC-hierarchy.

Specifically, the left panel depicts predictions based on effects

of genotype, environment, and G × E at average values of

NYB and TKW, whereas the right panel depicts predictions

based on effects of G, E, and G × E at values of NYB and

TKW specific to that environment. Both panels depict pres-

ence of G × E interaction on wheat yield, as indicated by the

change in rank of the genotypes across environments. The dif-

ference in G × E patterns depicted by the two panels may be

explained by the fact that the contributions of NYB and TKW

represent a portion of the G × E interaction that is attributable

to the eco-physiological processes for which they are proxies.

Whereas the term G × E stated explicitly in Model 3: GE-YC-

hierarchy may be interpreted as the remaining unattributable

portion of the environment-specific genotype effect on wheat

yield.

3.3 Association between yield component
traits and wheat yield

Table 5 shows posterior summaries for location parameters

(β) of Model 3: GE-YC-hierarchy across hierarchical levels.
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F I G U R E 2 Predicted wheat yield for selected genotypes across environments based on Model 3: genotype × environment and yield

components with hierarchy (GE-YC- hierarchy), considering (left panel) genotype (G), environment (E), and G × E effects at average NYB and

TKW, and (right panel) G, E, G × E effects, as well as nonyield biomass (NYB), and thousand kernel weight (TKW) at the corresponding

environments (i.e., shown as site-harvest year combinations)

T A B L E 5 Posterior median and highest density posterior interval (HDI) for the intercept and the regression coefficients in the model with

genotype × environment and yield components with hierarchy (GE-YC-hierarchy)

Parameter Description Median HDI
β0 Yield at typical conditions 490 (404, 557)

β10 Expected change in yield per unit increase in NYB under average weather

conditions during early reproductive stage

0.43 (0.38, 0.47)

β20 Expected change in yield per unit increase in TKW under average weather

conditions during grain filling stage

13 (9, 16)

β11 Change in β10 per unit increase in early reproductive stage temperature 0.01 (−0.029, 0.054)

β12 Change in β10 per unit increase in early reproductive stage solar radiation 0.05 (0.006, 0.098)

β13 Change in β10 per unit increase in early reproductive stage precipitation 0.01 (−0.001, 0.020)

β21 Change in β20 per unit increase in grain filling stage temperature −0.14 (−1.425, 1.123)

β22 Change in β20 per unit increase in grain filling stage solar radiation −0.002 (−0.961, 0.960)

β23 Change in β20 per unit increase in grain filling stage precipitation 0.32 (−0.140, 0.789)

Note. NYB, nonyield biomass; TKW, thousand kernel weight.

As a benchmark reference, we articulate that the posterior

inference for β0 indicates that yield for a “typical” genotype

member of the population in a “typical” environment, that

is, 𝐸(𝐺𝑒𝑛𝑜𝑗) = 𝐸(𝐸𝑛𝑣𝑘) = 𝐸([𝐺𝑒𝑛𝑜 ∗ 𝐸𝑛𝑣]𝑗𝑘) = 0, at aver-

age values of NYB and TKW can be expected to be approxi-

mately 490 g m−2, ranging from 404 to 557 g m−2, with 95%

probability.

Furthermore, posterior inference on β10 and β20 indicates

that one may expect the behavior of wheat yield to change

as a function of the source-sink balance represented here

by NYB and TKW (Table 5). Specifically, posterior infer-

ence on β10 indicates an expected increase in yield per unit

increase in NYB of approximately 0.43 g m−2 and ranging

from 0.38 to 0.47 g m−2 with 95% probability with typi-

cal weather conditions during the early reproductive growth

stage. The values for NYB in this dataset ranged from 325 to

2,326 g m−2. Taking this range into account, one can expect

the yield to change by 140 to 1,000 g m−2 as a result of

change in NYB. Likewise, posterior inference on β20 sup-

ports an expected increase in yield per unit increase in TKW

of approximately 13 g m−2, ranging from 9 to 16 g m−2,

with 95% probability at typical weather conditions during

the grain-filling stage. Taking into account the range for

TKW in this dataset (14 to 39 g), the yield can be expected

to change by 182 to 507 g m−2 as a result of change in

TKW.
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F I G U R E 3 Pairwise joint posterior densities for parameters β11, β12, β13 characterizing the contribution of weather variables to the relationship

between yield and nonyield biomass during the early reproductive stage

3.4 Contribution of weather variables to
the relationships between yield and yield
component traits

Table 5 presents posterior summaries on parameters β11,

β12, β13, which characterize the contribution of temperature,

solar radiation, and precipitation, respectively, to wheat yield

through NYB during the early reproductive stage, allowing

us to look into source-sink balance in the population. Specif-

ically, at the early reproductive stage, solar radiation showed

a positive effect on βnyb, that is the expected rate of change of

wheat yield as a function of NYB, as indicated by the posi-

tive sign of both boundaries of 95% HDI of β12. Specifically,

for every one unit (MJm−2d−1) increase in solar radiation, one

might expect an increase of 0.05 g m−2/g m−2 in the coeffi-

cient βnyb that quantifies the association between wheat yield

and NYB, with a 95% probability that this increase ranges

between 0.006 and 0.098. Taking into account the range in

solar radiation values for this dataset, the change in βnyb can be

expected to range from −0.13 to 0.09, on average, as a result

of the effects of solar radiation. These values were obtained

by multiplying the range for solar radiation values in the data

with the median for β12. Furthermore, posterior inference on

β13 indicates a 96% probability for a positive contribution of

precipitation to the expected rate of change of wheat yield as

a function of NYB (i.e., βnyb) during the early reproductive

stage. The contribution of every unit of increased precipita-

tion (cm) to βnyb has a posterior median at 0.01 with a pos-

terior standard deviation of 0.005. In context of this dataset,

this effect on βnyb can be expected to range from−0.12 to 0.09.

In turn, evidence for a contribution of temperature (β11) to the

association between yield and NYB (i.e., βnyb) was weaker, as

the HDI for β11 shows substantial overlap with the null value

zero and the posterior probability of a nonzero positive effect

is approximately 70%.

Furthermore, the joint posterior densities for β12 and β13

indicate a strong correlation between the contributions of pre-

cipitation and that of solar radiation to βnyb, that is, the rate of

change of yield as a function of NYB during the early repro-

ductive stage (Figure 3, right panel). Specifically, this correla-

tion was estimated at 0.83, suggesting the possibility of mul-

ticollinearity between these weather contributors. In contrast,

the estimated posterior correlations between the contributions

of temperature (β11) and any of the remaining weather vari-

ables (β12 and β13) to βnyb was small, at −0.06 and −0.01,

respectively (Figure 3 left and center panels, respectively).

Table 5 also shows posterior inference on parameters β21,

β22, β23, which characterize the TKW-mediated contribution

of temperature, solar radiation, and precipitation, respectively,

to wheat yield during the grain filling stage thus providing

further insight into source-sink balance. Specifically, poste-

rior inference on β23 further indicates a 91% probability for a

nonzero positive contribution of precipitation to the expected

rate of change of wheat yield as a function of TKW (i.e., βtkw)

during the grain filling stage. The contribution of every unit of

increased precipitation to βtkw had a posterior median at 0.32

with a posterior standard deviation of 0.24. For this dataset,

this effect on βtkw can be expected to range from −2.36 to

4.73. By contrast, posterior inference for the remaining coef-

ficients β21 and β22 showed 95% HDIs that overlapped with

zero, thus suggesting little, if any, contributions of tempera-

ture and solar radiation to wheat yield through TKW, given

the range of temperature in this dataset. In addition, poste-

rior correlations between β21, β22, β23 during the grain filling

stage were small in magnitude (below 0.25; Figure 4), sug-

gesting negligible dependence between weather contributions

to source mechanisms for wheat yield.

4 DISCUSSION

In this study, we implemented a hierarchical Bayesian

approach to model wheat yield in Oklahoma on an eco-

physiological basis, that is, as a function of two yield
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F I G U R E 4 Pairwise joint posterior densities for parameters β21, β22, β23 characterizing the contribution of weather variables to the relationship

between yield and thousand kernel weight during the grain filling stage

component traits related to source-sink relations, namely

nonyield biomass (NYB) and thousand kernel weight (TKW).

We further leveraged hierarchical models to assess the contri-

bution of weather variables to the relationships between yield

and yield component traits at different growth stages.

4.1 Model comparison

Based on a combination of model fit criteria and hierarchical

structure of the biological question of interest, we proceeded

with inference using Model 3: GE-YC-hierarchy. In particu-

lar, Bayesian R-squared indicated that the selected model was

well suited to fit the data, as its posterior density was centered

at 0.89 with a lower HDI bound of 0.85. In addition, the esti-

mated RMSE for this model was 67 g m−2, which is within

range of other reports in the literature ranging from as low as

10 g m−2 up to 150 g m−2 (Huang et al., 2016; Li et al., 2015;

Kogan et al., 2013; Nain et al., 2004).

4.2 Genotypic, environmental, and G × E
interaction effects on yield

In this section, we interpret the changes in variance compo-

nents for environment (σ2
𝑒𝑛𝑣

), genotype (σ2
𝑔𝑒𝑛𝑜

) and G×E (σ2
𝑔𝑒

)

interaction across alternative models, GE, GE-YC, and GE-

YC-hierarchy. Recall that Model 1: GE did not account for

yield component traits NYB and TKW. As a result, a large

portion of the total variability likely fell to the environment.

The posterior estimates for environmental variance decreased

by an order of magnitude when yield component traits were

added in Model 2: GE-YC and Model 3: GE-YC-hierarchy,

indicating that a large proportion of the variance originally

explained by the environment and left-over noise in Model

1: GE was explained by the yield component traits in Mod-

els 2: GE-YC and 3:GE-YC-hierarchy. The inclusion of yield

components NYB and TKW in Models 2: GE-YC and 3:GE-

YC-hierarchy were intended to help explain yield variation in

terms of eco-physiological mechanisms. In turn, the similarity

in magnitudes of variance estimates for genotypic and G × E

components across all three models suggest that NYB and

TKW do not explain the variance associated with genotype

and G × E interaction effects.

For Model 3: GE-YC-hierarchy based on the point estimates

(medians) of the posterior distributions for the variance com-

ponents for genotypic, environmental, and G × E interaction

effects (σ2
𝑔𝑒𝑛𝑜

, σ2
𝑒𝑛𝑣

, and σ2
𝑔𝑒

, respectively), σ2
𝑒𝑛𝑣

was found to

be the largest by at least 6-fold (Table 4). In addition to this

point estimate, the HDI for σ2
𝑒𝑛𝑣

also indicates much larger

lower and upper bounds compared with the HDIs for σ2
𝑔𝑒𝑛𝑜

and σ2
𝑔𝑒

(Table 4). This suggests that the environment (i.e.,

site-year) accounted for a considerable part of the total vari-

ability in wheat yield. This finding is in accordance with the

literature whereby Munaro et al. (2020) showed that for Col-

orado, Kansas, and Oklahoma the environmental difference

across years and locations accounted for 46% of yield vari-

ability. In context of the seasons and locations included in the

study, different biotic and abiotic factors contributed to the

differences in growing environments.

In terms of overall growing conditions, the growing

season of 2016–2017 (i.e., harvest year 2017) reportedly

showed optimal growing conditions (Marburger et al., 2017).

However, during that season, the Chickasha site suffered

a severe and early infection of leaf rust; this is prob-

ably the reason behind Chickasha 2016–2017 being the

lowest yielding environment (Marburger et al., 2017). On

the other hand, the growing conditions during the season

of 2017–2018 in Oklahoma were characterized by over-

all cooler temperatures at early growth stages and record

cold temperatures in April with a spring-freeze (Marburger,

Calhoun, Carver, et al., 2018), thus resulting in slow growth

and development of the crop (Marburger, Calhoun, Carver,

et al., 2018). Weather conditions in Oklahoma were further

compounded with hotter temperatures and lack of rainfall dur-

ing the grain filling stage, including record hot temperatures
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in May (Marburger, Calhoun, Carver, et al., 2018). In addi-

tion, the wheat variety trial plots in Lahoma were also affected

by dryland root rot during the 2017–2018 season. Finally,

the 2018–2019 growing season mostly had favorable grow-

ing conditions for both growth and development and grain

filling stages, except for the occurrence of diseases such as

root rot, black chaff, and powdery mildew in some locations

(Calhoun et al., 2019). The locations under study are also dif-

ferent in their soil type and properties. However, the interan-

nual variability within locations was observed to be higher

than the spatial variability. These variations were character-

ized by biotic factors such as diseases and abiotic factors

such as drought and spring freeze. The abiotic factors such as

drought were captured by the model to some extent through

inclusion of precipitation, but further work is required to ana-

lyze the other sources of variability between years and loca-

tions. Thus, further analysis should focus on exploring meth-

ods to incorporate the biotic stresses as well as the occasional

abiotic stresses such as spring freeze.

The posterior medians for σ2
𝑔𝑒𝑛𝑜

and σ2
𝑔𝑒

were on a com-

parable order of magnitude indicating that genotypic effects,

as well as G × E interaction effects, explain yield variabil-

ity comparably. However, upon subsequent analysis, it was

revealed that the probability of effect of genotype-specific

effects on wheat yield is higher than the effect of G × E inter-

action. Although small, the G × E effects were manifested

as reranking of genotypes across environments. For instance,

SY Flint was ranked in the lowest half for yield in Altus_2018

(i.e., harvest year 2018) but ranked highly the following year,

particularly in the Altus_2019 environment (Figure 2).

4.3 Association between wheat yield and
yield component traits

One of the objectives of this study was to model wheat yield

as a function of yield component traits to be able to identify

physiological mechanisms contributing to source-sink bal-

ance. Specifically, we used NYB as a source indicator because

it is an independent measure of the source which does not

contain the variable we are trying to predict (yield). Hence,

it can be argued that NYB represents the source more clearly

and uniquely than total crop biomass. Specifically, the ratio

of yield to NYB can be expressed in terms of Harvest Index

(HI) as Yield/NYB = HI/(1 − HI). For clarity and detail, recall

that HI = Yield/Biomass and also, NYB = Biomass − Yield.

One may then express NYB/Yield = (Biomass − Yield)/Yield,

such that NYB/yield = 1/(HI − 1), leading to re-expressing

βnyb as Yield/NYB = HI/(1 – HI). This identity enabled us to

draw connections between our study and the published liter-

ature. So defined, HI is commonly used to assess source-sink

balance in wheat (Reynolds et al., 2017; Zhang et al., 2010).

The slope parameter connecting wheat yield and NYB,

βnyb, is equal to β10 at average weather conditions in Model 3:

GE-YC-hierarchy. The HDI for β10 was (0.38, 0.47 g m−2/g

m−2). The positive value of βnyb indicates that source is one

of the drivers for yield in these environments. Other studies

have reported theoretical maximums for HI in wheat to be

0.62, 0.64, and 0.66 (Austin et al., 1980; Foulkes et al., 2011;

Shearman et al., 2005). However, the HI for maximum attain-

able yields in the Southern Great Plains has been estimated at

not more than 0.41 (Lollato & Edwards, 2015). In addition,

a survey on five different classes of wheat across the United

States reported the HI of hard red winter wheat (the most

commonly grown wheat in Oklahoma) to be 0.33, the lowest

among all wheat classes (Dai et al., 2016). An HI far lower

than the attainable HI suggests that yield increase could be

achieved through better utilization of available source through

improved dry matter partitioning.

Further, our results indicate a positive slope coefficient

between wheat yield and TKW (i.e., βtkw in Model GE-YC-

hierarchy), suggesting that the genotypes in this population

did not consistently achieve their genetic potential for TKW

across environments. This finding could be interpreted as an

insufficient source to match the sink strength, thus a source–

sink imbalance in the population within many of the target

environments. The TKW is generally a stable trait with high

heritability. Moreover, we had expected that some portion

of the genotypic variance would be explained by the yield

component TKW, as this trait is generally considered to vary

more between genotypes than between environments (Sadras,

2007). This expectation is based on the understanding that

wheat is generally considered to be a sink-limited crop under

many conditions (Alonso et al., 2018; Serrago et al., 2013;

Zhang et al., 2010; Slafer & Savin, 1994). When the yield is

sink-limited, genetic potential TKW is consistently achieved,

the yield is limited by grain number, and the relationship

between yield and TKW is at or near zero (Reynolds et al.,

2005; Slafer et al., 2014). However, when source limitation

is at play, differences in TKW across environments would

be greater than differences between genotypes, resulting in a

nonzero slope for the relationship between yield and TKW.

Thus, our findings of a positive slope for TKW and a positive

slope between yield and NYB (i.e., an increase in yield with

an increase in the source) both point toward source limitation

for yield.

4.4 Contribution of weather variables in
the relationships between yield and yield
component traits

We incorporated the weather variables as hierarchical regres-

sors that qualify the nature of the relationship between yield
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and each of NYB and TKW, thus extending Model 2: GE-YC

to Model 3: GE-YC-hierarchy. If the inclusion of hierarchical

levels to account for weather variables made any contribution

to explaining noise in the data, this contribution seemed to be

mild at best, as the posterior density for the residual variance

was only slightly decreased in magnitude from Model 2:

GE-YC to Model 3: GE-YC-hierarchy (Table 4). This is not

necessarily surprising as the explanatory role of weather was

not at the first hierarchical level of the model; rather, weather

variables were fitted at a second level of the model hierarchy,

thus intended for a decomposition of the slopes connecting

wheat yield to TKW and NYB. The hierarchical structure of

the model allowed us to evaluate the contributions of weather

conditions to the rate of change of wheat yield as a function of

yield component traits. For the early reproductive stage, the

effects of solar radiation (β12) and precipitation (β13) on the

slope of yield vs. NYB (βnyb) were positive. It is noted that

these two effects were also tightly correlated with each other a

posteriori. This is consistent with the previously reported rela-

tionship between radiation use efficiency and water use effi-

ciency (Caviglia & Sadras, 2001; Sadras et al., 1991). Specif-

ically, a positive correlation of substantial magnitude was

reported between cumulative water consumed and photosyn-

thetically active radiation intercepted in durum wheat (Rezig

et al., 2015).

Conditions of both higher solar radiation and adequate rain-

fall are considered favorable for plant growth. Higher solar

radiation corresponds to increased photosynthesis and higher

assimilate supply, and higher rainfall ensures no drought

stress. Therefore, the observed positive effects of solar r dia-

tion and precipitation during the early reproductive stage (β12

and β13) on the rate of change of yield per NYB (βnyb) indi-

cate that the amount of yield produced per unit NYB is higher

under favorable conditions. These findings can be interpreted

as the source (NYB) being used more efficiently for yield for-

mation as a result of better sink strength, given that this is a

period when florets are developing and, thus, grain number is

determined (Ugarte et al., 2007; Savin & Slafer, 1991; Fischer,

1985).

For the grain filling stage, only precipitation was found

to contribute to the rate of yield change per TKW (β20),

although the evidence was weaker (i.e., posterior probability

P[β23 > 0|𝑦] = 70%). The positive slope between yield

and TKW indicating potential source limitation during

grain filling and the weak evidence of weather variables

contributing to that points toward other factors that might

affect source strength during grain filling, such as disease

or residual soil moisture. In turn, the evidence of the pre-

cipitation effect, although weak, is consistent with a report

that the effect of precipitation during the grain filling stage

on wheat yield was mainly mediated by TKW (He et al.,

2013).

5 CONCLUSION

A major portion of the total variability in wheat yield was

explained by the environmental component. The inclusion of

yield component traits, namely NYB and TKW, as explana-

tory variables in the model helped explained a substantial

amount of environmental variance but did not seem to help

explain genotypic or G × E variance. A positive relationship

was observed between both yield component traits and wheat

yield supporting the idea that yield is driven by source mech-

anisms. However, the fact that the slope of yield as a function

of NYB was responsive to weather conditions during the early

reproductive stage indicates that sink mechanisms may also

be at play. These results suggest the presence of source-sink

co-limitation in wheat yield.
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