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Abstract: Communication networks in power systems are a major part of the smart grid paradigm.
It enables and facilitates the automation of power grid operation as well as self-healing in contin-
gencies. Such dependencies on communication networks, though, create a roam for cyber-threats.
An adversary can launch an attack on the communication network, which in turn reflects on power
grid operation. Attacks could be in the form of false data injection into system measurements, flood-
ing the communication channels with unnecessary data, or intercepting messages. Using machine
learning-based processing on data gathered from communication networks and the power grid is
a promising solution for detecting cyber threats. In this paper, a co-simulation of cyber-security
for cross-layer strategy is presented. The advantage of such a framework is the augmentation of
valuable data that enhances the detection as well as identification of anomalies in the operation of the
power grid. The framework is implemented on the IEEE 118-bus system. The system is constructed
in Mininet to simulate a communication network and obtain data for analysis. A distributed three
controller software-defined networking (SDN) framework is proposed that utilizes the Open Net-
work Operating System (ONOS) cluster. According to the findings of our suggested architecture, it
outperforms a single SDN controller framework by a factor of more than ten times the throughput.
This provides for a higher flow of data throughout the network while decreasing congestion caused
by a single controller’s processing restrictions. Furthermore, our CECD-AS approach outperforms
state-of-the-art physics and machine learning-based techniques in terms of attack classification. The
performance of the framework is investigated under various types of communication attacks.

Keywords: cyber security; software-defined networking; network security; cyber-physical systems;
cross-layered; power systems; machine learning

1. Introduction

Over the last decade, there has been a growing and significant demand for cyber-
related smart grid (SG) security. Physical operation process dependability is the focus of
current research on cyber-related power grid vulnerabilities, whereas the cyber-physical
security of SGs is still evolving. The traditional power system is often safeguarded by
isolated and uncoordinated equipment that offers ad-hoc solutions to each protection
challenge. As these tools do not work together; they are vulnerable to dispersed attacks.
The creation of cross-layer awareness of the smart grid system is a potential new technique
in this field. The current study into the cyber-security of power grid operation is centered
on a method known as State Estimation (SE). The fundamental purpose of SE is to offer a
real-time grid monitoring technique by estimating system states utilizing measurements
and static data on system topology [1]. False Data Injection Attack (FDI), which changes
the measures utilized by SE, is the most prevalent cyber-attack in the literature. Multiple
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actors exploiting diverse security weaknesses in the physical and cyber domains of the
cyber-physical system is a more realistic scenario for cyber-attacks. Denial-of-Service (DoS),
Distributed Denial-of-Service (DDoS), and Man-in-the-Middle (MITM), False Data Injection
(FDI) attacks might all be launched. These types of attacks impact data from several
layers of the grid’s physical structure. As a result, an integrated approach for identifying
numerous attacks launched from different tiers inside the SG will improve grid security.

Machine Learning (ML) technology is presently being utilized to aid in the detection
process or to acquire reliable findings through statistical data analysis. At various phases
of the SE process, the work of the data-driven anomaly detection framework and the
cross-layer viewpoint has progressed and been examined [2-6]. An integrated solution of
a cyber-physical security framework based on a cross-layer approach that focuses on the
detection of various cyber assaults is described in this study. The implementation is based
on a real-world scenario. The power grid is modeled in Simulink and data from the grid is
gathered every 4 s and delivered to the cloud for analysis. SimComponents [7] is used to
simulate communication grid data, which is created and transferred to the cloud. In the
analysis layer, SE and ML models are used to identify data threats. The SE exclusively uses
measured data from the power grid, but the ML combines data from both the power and
communication grids.

In addition, we propose an Open Network Operating System (ONOS) [8] three-
controller distributed Software Defined Networking (SDN) architecture for the commu-
nication layer, which we tested and compared to the performance of one of the first SDN
controllers, POX [9], which comes as standard with the Mininet emulation tool. SDN is
a network architecture technology that allows networks to be intelligently and centrally
managed, or programmed, using software applications. As its public release in 2009,
software-defined networking (SDN) research has seen tremendous advancements and
breakthroughs. SDN provides improved utilization, resource efficiency, network service
flexibility, and lower maintenance costs as compared to conventional networks [10].

To the best of our knowledge, our suggested SDN framework is the first of its kind
proposed in the literature. ONOS is the most widely used open-source SDN controller
for next-generation SDN and Network function virtualization (NFV) applications. ONOS
allows for network configuration as well as real-time control, removing the requirement
for routing and switching control protocols to be executed inside the network fabric.
By leveraging an SDN network topology, we can move the routing intelligence of the
network to the ONOS controller to allow for better management, response, and visibility
against cyber attacks against our network.

In a previous work [11], the authors have demonstrated that a distributed SDN frame-
work may effectively and efficiently govern and assist in the protection of a smart grid.
The authors were able to protect the smart grid from a denial of service attack by com-
bining distributed SDN controller placement, intrusion detection systems (IDS), and state
estimation. However, the framework uses a global SDN controller and a global security
controller as the network and security masters, respectively, which introduce single points
of failure. Furthermore, defense results against false data injection or man-in-the-middle
(MiTM) attacks are not discussed. In another previous work [12,13], researchers suggest
a distributed SDN framework to address scalability and reliability in smart grid systems.
The authors of this study assume controller communication by using the BGP protocol to
link two OpenDaylight controllers, allowing the controllers to share the workload of the
network. This study, however, does not address smart grid security or protect against cy-
berattacks. Furthermore, the authors do not discuss or consider controller failure resistance
in their framework.

In another previous work [4], The authors created the Ensemble CorrDetwith Adaptive
Statistics (ECD-AS) technique to analyze measurement data and packet contents. ECD-
AS is another data-driven approach for detecting FDI attacks that takes into account the
changing status of the SG. This method’s drawback is that it solely employs measurement
data, limiting its capacity to identify cyberattacks focused on the SG’s communication
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network layer. However, the work in this research will make use of the analysis layer,
which may also take into account data from the communication network that powers
the SG, notably packet inter-arrival intervals, transmission delay (TD), and packet count
(PC). Consideration of this form of data would broaden the model of an FDI cyberattack
as well as uncover models of other types of cyberattacks that would be undetected by
present methodologies in the literature. Previous work [3,14] demonstrated that ML may
be utilized in the cyber domain to enhance bad data analysis by acting on the same data
as the SE. This hybrid data-driven physics-model-based framework makes use of both
temporal data through ML and the system’s known topology through SE. However, this
approach, like the other current research investigations, solely covers FDI attacks and
relies on routine measurements of power systems. As a result, it overlooks the SG’s
cross-layer interdependence.

The remainder of the paper is organized as follows. Background information on the
major components of the framework is presented in Section 2. Section 3 contains data
flow information about the framework, and the implementation necessary to make it work.
In Section 4, we present a case study. Lastly, in Section 5, we conclude the paper. The
contribution of this work towards the state-of-the-art is two folds:

1. To the best of our knowledge, the first proposed three controllers distributed SDN
architecture for the Smart Grid’s communication layer.
2. Identification of cyber attacks against the power grid using a cross-layered framework.

2. Theoretical Background

In the following, the theoretical background of SE, ML, cyber-attack models, and com-
munication networks performance metrics are presented. The equations utilized in this
study are derived from our previous work [6].

2.1. State Estimation

In modern Energy Management Systems (EMS), the SE process is most important for
situational awareness of power system operation and is used in many EMS applications,
including the detection of bad data. The common approach to SE is using the classical
Weighted Least Squares (WLS) method described in [15]. In this approach, the power grid
is modeled as a set of non-linear equations based on the physics of the system:

z="h(x)+e 1)

where z € R4 ig the measurement vector, x € R*N is the vector of state variables,
ho: RIXN — RIxd jg continuously non-linear differentiable function, and e € R1xd
is the measurement error vector. Each measurement error, ¢;, is assumed to have zero
mean, standard deviation ¢; and Gaussian probability distribution. d is the number of
measurements and N is the number of states.

In the classical WLS approach, the best estimate of the state vector in (1) is found by
minimizing the cost function J(x):

J(x) = llz = h(x)|[% 1 = [z = h()] "R [z — h(x)] @

where R is the covariance matrix of the measurements. In [16], it is shown that the error
can be decomposed into detectable and undetectable parts where the undetectable part is
recovered through the Innovation Index. Hence, the composed measurement error CME is
then used for Bad Data analysis, one of the main applications of SE [17], as

d rCcME;1?
Jeme(%) = Z{ o } > X%,p 3)
izl i

where 0; the measurement’s standard deviation, p is the probability (typically p = 0.95)
and d the degrees of freedom.
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2.2. Machine Learning

ECD-AS is an adaptive data-driven anomaly detection framework presented in [4].
ECD-AS learns and adapts from the real-time SG data to distinguish any anomalous
behavior from the normal behavior of the system. The ECD-AS detector learns a series of
statistics (tty, Xy and T;), one for each bus m and then updates them with new incoming
data samples to adapt them. ECD-AS uses mean (y,;) and covariance matrix (X,;) of each
bus established using normal samples data to calculate squared Mahalanobis distance
(6ECD=45) and uses it as a decision score for the bus m and detects any anomalies by
comparing it to the adaptive threshold of bus m (1;). The squared Mahalanobis distance is
calculated as

5’}151CD—AS (Zm) _ (Zm - ]/lm)Tanl(Zm — ]/lm) 4)

where z,, is the measurement vector of bus m, p,, is the mean and Z,;l is the inverse
covariance matrix of normal samples related to m'™" bus. The mean, Um, and inverse
covariance matrix, ¥,,!, for each bus are updated using the Woodbury Matrix Identity
equations provided in [18]. The adaptive threshold () of bus m is updated with a sliding
window of size  over recent normal samples using the equation

Tm = Mthr,m,—p 417 % Othr,m,—p (5)

where iy, g and oy, p are the mean and standard deviation of the squared Maha-
lanobis distance values of normal samples in  most recent samples of selected measure-
ments associated with m!" bus, and 7 is a hyper-parameter that decides how many standard
deviations the threshold should be from the mean.

2.3. Software-Defined Networking

The concept and practice of SDN is enticing to those in the field of networking due to
its visibility and ease of network device programmability. In recent years, SDN has taken
shape. At Stanford University, the name SDN was coined to describe the concepts and
techniques of Openflow [19]. SDN is divided into three planes:

1.  Application Plane: It covers network management, policy implementation, and secu-
rity services SDN applications.

2. Control Plane: This is a logically centralized control framework that runs the network
operating system, operates the network operating system, and provides hardware
abstractions to SDN applications. A flow in SDN is described as a set of instructions
followed by a sequence of packets between the source and destination. Controllers
install the flows into the flow tables of the forwarding devices.

3. Data Plane: A set of forwarding components used to move traffic flows in response
to control plane instructions.

Figure 1 represents an overview example of a modern functional SDN architecture.
Routers, switches, and access points comprise the infrastructure layer, as indicated in the
diagram. The data plane is formed by this layer, which represents the physical network
equipment in the network. Information is passed across planes of the SDN architecture
through application programming interfaces (APIs). Southbound APIs like OpenFlow,
ForCES, PCEP, NetConf, or IRS are used by the controller to communicate with the data
plane. If there are multiple controllers, they interact via Westbound and Eastbound APIs like
AITO or Hyperflow. The application plane is the uppermost layer. The network operator
can use functional applications for activities like energy efficiency, access control, mobility
management, and security management at this layer. Northbound APIs such as FML,
Procera, Frenetic, or RESTful are used by the application layer to communicate with the
control layer. The network operator can use these APIs to relay the necessary modifications
to the control layer, allowing the controller to make the appropriate adjustments in the
infrastructure layer.
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Figure 1. SDN Architecture.

To emulate the SDN framework, we use Mininet. Mininet [20] is an open-source
networking software used to quickly prototype and emulate networks consisting of hosts,
links, and switches on a single system. Mininet uses process-based virtualization and
network namespaces to establish virtual networks, both of which are present in modern
Linux kernels [21]. As hosts in Mininet are simulated as bash processes running in a
network namespace, any code that would usually execute on a Linux server (e.g., web
server or client software) operates as it normally would. Each Mininet “Host” have their
own private network interface and will only be able to see the processes it is running.
Software-based switches, such as Open vSwitch or the OpenFlow reference switch, are
used in Mininet. Links are virtual ethernet pairs that reside in the Linux kernel and connect
our simulated switches and hosts.

Without a controller to manage the network, no SDN network would be complete.
The POX [22] controller is the default controller in Mininet and is an OpenFlow controller
written in Python that is useful for quick prototyping. It was built from NOX [23], the first
OpenFlow controller with only C++ language support. As the POX controller does not
support multiple, distributed controllers, East/Westbound API communication, as shown
in Figure 1, is not possible. It is, nonetheless, the go-to controller for quickly testing SDN
frameworks in Mininet due to its simplicity of setup. Because of this, we use it as our
standard of comparison for our proposed framework.

There are a variety of different controllers used in SDN literature research, such as
Floodlight [24], OpenDaylight (ODL) [25], RYU [26], and Open Network Operating System
(ONOS) [8]. Each has its own set of features and functions, as determined by the developers.
As of its relative ease of use, multiple software applications, and network visibility in
the form of a graphical user interface (GUI), we employ ONOS to construct a controller
cluster to manage our SDN network to achieve our distributed three controller architecture.
A detailed overview of our implementation of ONOS can be found in Section 4.
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2.4. Network Performance Statistics

The cross-layered analysis framework is based on the IEEE 118-bus system, which uses
TCP/IP protocols to imitate the Modbus RTU. This model, which resembles the Poisson
traffic model [27], sends packets in groups of four every four seconds. Each bus represents
the M/M/c queue [28], i.e., cc 1, in which packet arrival is Poisson and queue service time
is exponential. The traffic intensity or utilization is represented by the following equation:

A
Pytip = ﬁ (6)
The packets’ arrival rate is denoted by A, while the packets’ service time is represented
by . The time difference (At) between packet arrivals is known as the inter-arrival time
(IAT). With parameterA, it has an exponential distribution. For ¢ >0, the probability density
function is defined as follows:

f(t) = AeM. @)
The average I AT is defined as
1
IAT = 5 ®)

The service time follows an exponential distribution with parameter y. The probability
density function is as follows:
g(s) =pue™,¥>0 )

where ;’11 is the average service time of the system. Utilizing Little’s theorem, the total
waiting time is defined as transmission delays (T D), and represented as the following:

1
=TD = —— 1
w 3 (10)
The normal distribution of network packet arrivals (i.e., non-attacked packets) into
each system was decided by the probability of witnessing a number of packet arrivals in a
period from [0, T]. This equation is used to model the traffic volume of the bus:

()\T)”ef/\T

P(n arrivals in interval T) = o

(11)
whereas T is the AT, and the n represents the number of packets. The packet count (PC) is
modeled as the following:

PC=AT (12)

2.5. Communication Layer

The SCADA network (Supervisory Control and Data Acquisition) is vulnerable to
cyber-attacks. This section will detail how we implemented simulations for the DoS, MITM,
and FDI attack scenarios.

2.5.1. Denial of Service Attack Simulation

A denial-of-service (DoS) attack is a type of cyber-attack in which the perpetrator tries
to prevent intended users from accessing a node or network by temporarily or permanently
disrupting the services of a host connected to the network. A DoS attack is regularly
carried out in an attempt to overwhelm systems and prevent some or all real requests from
being handled by flooding the targeted computer or resource with unnecessary requests or
packets (e.g., TCP, UDP, SYN, etc.). Communication between nodes is disrupted during
a DoS attack because a huge number of service requests are delivered to the target node,
depleting all of the node’s resources. A spike in network traffic to the victim (i.e., arrival
rate) is created as a result of such an attack. As a result, large queues are formed, resulting



Appl. Sci. 2022,12, 6868

7 of 19

in higher wait times and transmission delays [29]. Therefore, we record interarrival times
(IAT) and transmission delays (TD) in our DoS attack datasets.

To simulate the effects of a DoS attack on our network traffic SimPy and component
toolkit SimComponents [7] are used at the communication layer to simulate network traffic
in the smart grid layer. SimPy is a discrete-event simulation framework based on Python.
Active components such as packets, packet generators, packet sinks, switch ports, and port
monitors may all be simulated using it. To define and replicate these components and their
functionality, the SimComponents toolkit is employed. To achieve synchronization between
the communication layer, smart grid layer, and machine learning model, we append the
start time and index to the sample measurements. We generate data for one day’s worth
of measurements and create datasets to reflect DoS attack scenarios. DoS Algorithm 1
illustrates our pseudo-code and shows the overview of our attack data generation. Figure 2
shows a histogram of malicious traffic sink interarrival times for DoS attacks. When the
victim node is attacked, an influx of packets is sent to it, causing the frequency of packets
received to increase.

Algorithm 1 Denial of Service Attack

1: for One day worth of measurements do
2 Create arrays for the AT & TD values
3 Append Index & Current Time
4: if An attack sample is detected then
5: Set error equal to 1
6 Create Attack Bus List
7 Extend Attack Bus List with attack bus number
8 else
9: Set error equal to 0
10: end if
11: for Each smart grid measurement do:
12: if error = 0 then
13: Simulate normal traffic
14: Append IAT & TD values to arrays
15: else
16: if a from bus is in the attack bus list then
17: Simulate malicious DoS traffic
18: Append IAT & TD values to arrays
19: else
20: Simulate normal traffic
21: Append IAT & TD values to arrays
22: end if
23: end if
24: Update IAT CSV File
25: Update TD CSV File
26: end for

27: end for
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2.5.2. False Data Injection (FDI) Attack Simulation

False Data Injection Attacks in the communication layer occur when the adversary
accesses the network layer and either manipulates the data within a packet or transmits
wrong data packets. This subsequently affects the behavior of the packets in the network
layer. Thus, FDI attacks have the capability to increase the inter-arrival time and transmis-
sion delay at the network level. Using these performance metrics, FDI attacks in the IEEE
118-bus system are emulated in the communication network based on the M/M/c queue,
where ¢ > 1. The SimComponents and SimPy libraries are used to emulate packet genera-
tion, transmission, and FDI attacks in the communication layer. The implementation of this
cyber-attack is summarized in Algorithm 2. This scenario is demonstrated by generating
the inter-arrival times and transmission delay of normal and malicious packet samples
using the SimPy environment. The start time is appended to the sample measurements
for synchronization between the network layer and the power system layer. The packet
generator function is utilized to send normal or malicious packets with a fixed inter-arrival
time distribution and packet size distribution for the sample buses. In addition, the switch
port is simulated with exponential packet inter-arrival times and exponentially distributed
packet sizes by setting the port rate and queue limits. The port rate of false data injections
is set to be lower than the normal traffic, while the queue limit of false data injections is set
to be higher than the normal traffic.

The implementation of FDI attacks in Algorithm 2 is done based on the presence of
normal and attacked buses in the generated bus list for the IEEE 118-bus system. Consider-
ing the bus list, if a normal bus is detected, the switch port parameters for the port rate and
queue limit are set to values of 10,000 and 100,000, respectively. The packet generator is
used to generate the normal packets with exponential inter-arrival times and exponentially
distributed packet sizes. Similarly, if a malicious bus is detected, the switch port parameters
for the port rate and queue limit are assigned values of 30 and 10,000,000, respectively.
Moreover, the packet generator generates malicious packets with exponential inter-arrival
times and exponentially distributed packet sizes. The packet sink records the inter-arrival
times and transmission delays and appends the values of each time measurement to a
CSV file, which is utilized by the ML model in real-time. The experiment is conducted for
21,600 packet samples.

Figure 3a,b represent the statistics of the transmission delay and inter-arrival time of
21,600 samples taken for 691 measurements, respectively. The generated values for the
packet transmission delay and inter-arrival time are exponentially distributed.
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Algorithm 2 False Data Injection Attack

1:
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[ N N el e e e e e Y
S 0 XN A RN 2

Initialize transmission delay (TD) array, inter-arrival time (I AT) array, switch function
variables; port_rate_normal, queue_limit_normal, port_rate_malicious, queue_limit-

malicious

: for all samples do
Append Index & CurrentTime to IAT array, TD array

if An attack sample is detected then
Create Attack Bus List packets sink
Setup switch port using port_rate_malicious,

. queue_limit_malicious

Simulate malicious traffic
Append IAT & TD values to arrays
else

Create the packets generator and packets sink
Setup switch port using port_rate_normal,

: queue_limit_normal

Simulate normal traffic

Append IAT & TD values to arrays
end if
Create IAT CSV File
Create TD CSV File

: end for
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Figure 3. 21,600 samples taken for 691 measurements. (a) Statistics measurements for transmission

delay. (b) Statistics measurements for Inter-arrival time.
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Figure 4a,b are the plots for the transmission delay and inter-arrival time of 21,600 sam-
ples taken for the 690th normal traffic measurement. The values for the transmission delay
and inter-arrival time fall within close ranges of each other for normal traffic measure-
ment in the figures. Figure 5a,b illustrate the transmission delay and inter-arrival time of
21,600 samples for the 690th malicious traffic measurement. An instance of an FDI attack is
demonstrated with a higher transmission delay at a maximum value of 8.30 in the 7712th
sample, indicating malicious traffic. An occurrence of malicious traffic is represented in the
7718th sample, which shows an increased inter-arrival time with a maximum value of 3.83.
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Figure 4. The 690th measurement for 21,600 samples with normal traffic. (a) Transmission delay for
normal traffic. (b) Inter-arrival time for normal traffic.

40

3s .
304 :
25 l
20

154

Transmission delay (s}
-
wosm weos »
Inter-arrival time (s)

10

0s

[V} og | Elemsebiersetnnidec et el RISTI
0 5000 10000 15000 20000 ) 5000 10000 15000 20000
Sample number Sample number
(@) (b)

Figure 5. The 690th measurement for 21,600 samples with malicious traffic. (a) Transmission delay
for malicious traffic. (b) Inter-arrival time for malicious traffic.

2.5.3. Man-in-the-Middle Attack Simulation

MITM attack is a type of attack during which malicious third parties position them-
selves between the communication of two other parties, or between a user and an appli-
cation. The attack can be passive where the adversary eavesdrops and extract sensitive
information. In this instance, communication confidentiality is compromised, and the
adversary can remain undetected if a special network penetration test or analysis is not
performed on a regular basis. The attack can also be active where the attackers hijack the
router to which the victims are connected, or advertise false information using Address
Resolution Protocol(ARP) messages. In doing so, they can gain access to the information
being shared, and manipulate the data [30].

Our simulation considers only the active type of MITM attack because our code detects
the difference in the number of packets transmitted and received between the victims.
During an active MITM attack, the adversary flood the network with ARP messages to
mislead the victims into thinking he is one of them. By doing so, there is a substantial
increase in the number of packets transmitted that can be easily detected during the analysis
of network statistics data. Moreover, active MITM attacks can also be detected with the
analysis of network latency. Since the adversary is a pass-through between the two trusting
parties, a delay is observed when the forwarding happens. We will only develop the
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concept of an increase in packet count in the following lines because this is the method
used by our machine learning model to predict the behavior of the 118 bus system.

Algorithm 3 demonstrates how the principal purpose of a MITM cyber attack may
be recognized and data collected. As we aforementioned, the traffic volume is affected by
MITM attacks. This is why the method of detection is implemented by generating and
testing packet counts. In this simulation, we alter the network traffic of randomly selected
bus samples and as indicated in the algorithm and in the simulation result of Figure 6, we
get alerts with the bus number and sample number for every bus that has an error.

Algorithm 3 Man-in-the-Middle Attack Detection

1: Create benchmark arrays from arPoisson.txt
2: Create array of sample data from matlab file
3: for the length of the victim list do

4: if An attacked sample is detected then

5: Set error equal to 1
6: Extend Attacked Bus List with attack Bus number
7: Alert of error with error number and bus number
8: else
9: Set error equal to 0
10: end if
11: for the length of victim list do:
12: if error = 0 then
13: Append packet count values to array from firsth
14: else
15: if a from bus is in the attack bus list at this index then
16: Append packet count values to array from secondh
17: else
18:
19: end if
20: end if
21: Create packet count CSV File
22: end for
23: end for

Simulation Result Showing Buses Under Attack in Each
Sample for First 210 Samples
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Figure 6. Simulation result showing buses under attack in each sample.
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In conclusion, MITM attacks typically have a low impact or no impact at all on network
performance but they are the first steps to achieve to jeopardize a cyber security system.
During MITM attacks and depending on the type of MITM attack, a flux of packets could
increase the network traffic. These kinds of attacks are amongst the most dangerous ones
because they are very hard to detect and can easily open doors to other types of attacks like
DoS or FDI.

2.6. Power Grid: FDI and Parameter Attacks

The power grid can be modeled through nodes and edges. Measurements collected
from the grid are power flows into those edges (lines) and injections into the nodes. SE reads
off those measurements and uses a model that is based on the connectivity of the nodes and
the electrical characteristics of the lines (system database). Hence, SE is a monitoring tool
to observe the healthiness of the power grid over time. Therefore, the attacks pertaining to
the power grid could affect the collected measurements or the database used by SE. FDI
attacks can be on measurements or databases [31]. Attack types result in different residual
characteristics and patterns [17]. These will be used here for the correction. This work [32]
was used towards parameter cyber-attack correction, while [33] is used for measurement
FDI attack correction.

3. Framework

The cross-layered cyber security framework takes into account the cyber-physical
domain of the concept of the smart grid. The physical domain is composed of a power grid
and communication network while in the cyber domain, the collected and communicated
data are analyzed. The top view of the cross-layer framework is illustrated in Figure 7.
As shown in Figure 7 and reading the figure from left to right, the attacker is designed as an
outside entity where the desired scenario. Data collected from the power grid and commu-
nication network are stored in files to be analyzed by the cyber-domain. The collected data
then passes through three stages: detection, identification, and correction. In the detection
stage, the data collected from the power grid as well as the communication network are
combined and analyzed by Machine Learning techniques as shown in Figure 8. It is worth
mentioning that the data stored in the “CSV” file are after the attack took place and their
effects happened. For instance, for an FDI attack on measurement, the corresponding
measurement in the “CSV” file named “Measurements” are altered based on the attack sce-
nario constructed. The output of the detection stage is a flag that corresponds to the attack
scenario initiated. In the identification stage, each flag will be passed to a corresponding
routine for identifying the location of the attack within the network of interest. For instance,
in an attack in the system database used by State Estimation (SE), the k-nearest neighbor
(KNN) routine will be activated to identify which line (Edge/Arc) in the power network is
being altered/attacked by the attack scenario.
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Figure 7. Proposed framework for cross-layer integration.
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3.1. Implementation of SDN

We use a distributed, three-controller SDN structure to serve as the communication
layer for the smart grid. To avoid a single point of failure, we use three controllers, each
of which has the same authority level in the network. This means that each controller
has equal control over the network. There isn’t a single point of failure in the network
since there aren’t any single controllers. We utilize ONOS as our SDN framework’s control
layer, which is primarily open source. It provides for network and configuration control
in real-time.

ONOS also allows for quick redistribution of controller load, allowing each controller
to function optimally for the network. We can monitor and regulate the flow of packets in
our smart grid infrastructure from the ONOS cluster GUI Furthermore, ONOS eliminates
controller single points of failure by dynamically shifting the workload from a down con-
troller to the remaining controllers if necessary. This is done by Atomix [34], a reactive java
framework for building scalable fault-tolerant distributed systems. The Atomix cluster is re-
sponsible for ONOS cluster administration, service discovery, and data storage, as depicted
in Figure 9. ONOS controllers may be quickly discovered and removed if down, thanks
to the Atomix framework. First, we utilized Docker containers to build the Atomix and
ONOS clusters in a local virtual machine (VM) installation on a local personal device, using
ONOS version 2.3, Openflow version 1.3, and Atomix version 3.1.5. Then, using a python
script with Mininet 2.3 APIs, we built 118 hosts and 45 Open vSwitches with OpenFlow
1.3, as illustrated in Figure 10. Open vSwitch [35] is an open-source distributed virtual
multilayer switch solution and one of the most popular implementations of OpenFlow.
This is our proposed SDN framework, which is modeled around the IEEE 118 bus system.
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Figure 9. Atomix framework [34].
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Figure 10. Proposed distributed three controller.

3.2. Details on the Apps: Cybersecurity Framework

The KNN (k Nearest Neighbors) algorithm is known as a non-parametric supervised
learning classifier. This algorithm is typically used as a classification algorithm in Machine
Learning. The favor of choosing this technique typically is the ease of interpretation as well
as the low computation time. The main idea of the KNN algorithm is that most similar
samples are clustered and grouped into the same class. Classification of a new sample
in KNN starts by finding k nearest neighbors of the new sample in the training dataset,
and then the new sample is classified to the major class in the k nearest neighbors.

The Cross-Layer Ensemble CorrDet with Adaptive Statistics (CECD-AS) algorithm
proposed iteAllen2022Starke is utilized as the cyber threat detection technique in this paper
and is used in conjunction with polling and synchronization steps to make it work for a real-
time system. The CECD-AS algorithm combines data from measurement collection devices
in SG and communication networks in real-time to detect any anomalous behavior caused
due to cyber attacks such as FDI, DoS, or MITM. The power grid and communication
layers generate measurement and network performance values every 4 s respectively
and save them in corresponding CSV files. The data acquisition component in the ML
layer is equipped with a polling module that polls for data every 2 s and checks if the
CSV files are updated with any new data. If the CSV files are updated, then the data
acquisition component collects newly added data samples along with index numbers and
time stamps. The index numbers and timestamp values of data samples incoming from
the communication layer and power grid layer are matched to synchronize and combine
data as needed for the CECD-AS algorithm. The CECD-AS algorithm creates and updates
statistical models for different regions of the SG using Woodbury Matrix Identities, anomaly
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scores using Mahalanobis distance measures, and updates adaptive thresholds for different
regions based on the equations provided [4,6].

4. Case Study

We built a 691 x 10,000 matrix in the form of a CSV file to create our dataset. Each
row represents a moment in time for the respective measurements, while each column
indicates a measurement point in the grid. A sample of measurements for the full grid is
considered one row of data. Mininet takes around 4 s to create one data point, or 45 min for
a given network sample, or row of data. This creates a temporal constraint because our ML
model requires 10,000 rows of data. We use SimComponent, as previously stated, to reduce
the time spent obtaining network data. In comparison, SimComponent generates the data
required for one data sample in roughly 0.80 s, which is substantially quicker than Mininet,
allowing the completion of the necessary dataset to acquire the results for the CECD-AS
method, as shown in Table 1.

Table 1. Performance results for FDI, DoS, and MITM attacks (FDI: False Data Injection attacks, DoS:
Denial of Service attacks, MITM: Man In The Middle attacks).

Attack Type Accuracy Precision Recall F1-Score
Peo £ Oco Heo £ Oco o £ Oco Heo £ Oco
MITM 9248 £00.20 91.65+00.29 86.41+00.28 88.91 + 00.24
FDI 99.95+00.01 99.46 £00.34 99.87 +£00.13 99.61 £ 00.17
DoS 99.88 £00.07 99.75+£00.09 99.80+£00.16 99.78 + 00.08
FDI-DoS 99.63 +00.08 98.42 £00.26 99.95 4 00.04 99.20 + 00.15

CBench [36], a tool for benchmarking Openflow controllers, is used to test the SDN
architecture. We can calculate the maximum throughput, or how much data was sent
from a source at any particular moment, using CBench. CBench emulates the N amount
of OpenFlow switches set by the researchers and connects it to the controller. Then, it
emulates traffic and calculates and records the throughput. In the cluster, we test each
ONOS controller individually to establish the maximum throughput for 45 open vswitches
(15 switches for each controller). We ran this test again for the single POX controller for
all 45 open vswitches at once and documented the results. Figure 11 shows the results
of our controller benchmarking test. The ONOS cluster had an average throughput of
533.121 flows/ms, whereas the POX controller had a flow rate of 50.267 flows/ms, which
is more than a tenfold improvement. Our tests revealed that a distributed controller
design not only removes a single point of failure but also improves network and resource
management throughput. By spreading the network workload, the ONOS cluster can
endure the rigors of the smart grid better than a single controller.

For parameter attack in the lines of power grid used by State Estimator, each line is
attacked to form classes for classification. In the system under study, we have 117 lines,
which are transformed into 117 classes in the KNN algorithm. For identifying which line
of the power grid is being attacked, the KNN algorithm is implemented. The dataset is
split into training and testing. For the training dataset, each line is attacked with false data
injection into its parameter. The classification accuracy of the presented KNN algorithm is
illustrated in Figure 12.



Appl. Sci. 2022,12, 6868

16 of 19

Controller Throughput

(=]
(=]
o

wu
o
(=]

s
o
=]

300
B ONOS

200 m POX

Throughput (flows/ms)
3

o

ONQOS POX
Controller

Figure 11. Throughput benchmark of controllers.

accuracy:0.85988

20

40

60

80

true class

100

120

140

160

20 40 60 80 100 120 140 160
predicted class

Figure 12. Prediction accuracy of KNN for attacks in power grid line parameter.

To validate the cyber threat detection framework, IEEE 118 bus system is selected
as the power grid under study. The power grid is simulated such that every 4 s a set
of measurements is sent to the cloud where data is stored and analyzed by SE and ML.
Hence, the data in the cloud is updated every 4 s. The data from the smart grid layer
and communication are combined in the cloud and then analyzed to detect cyber threats.
The detection results of MITM, FDI, DoS, and simultaneous FDI-DoS attacks through
the use of the real-time CECD-AS algorithm are presented in Table 1 in terms of accuracy,
precision, recall, and F1-score values. In the paper [6] where CECD-AS is presented, its cyber
threat detection performance is shown to outperform the state-of-the-art physics-based and
machine learning-based techniques. The results in this paper are based on the data and
experiments discussed [6]. Table 1 shows that the real-time CECD-AS algorithm performs
extremely well for a variety of cyber threats discussed in this paper. The enhancement in the
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detection is due to the integration (combined) data from communication and power grid
that added values to the ECD-AS algorithm. Hence, data from the two layers, i.e., power
grid and communication grid, complement each other.

5. Conclusions and Future Work

The design of a Cross-Layerered framework for safeguarding the power grid’s op-
eration from physical component or communication network threats is described in this
paper. To address power grid communication, we recommended adopting a distributed
three-controller SDN architecture. We can manage our network with increased visibility,
control, and responsiveness because of SDN. Moreover, using ONOS clusters eliminates
the single point of failure that might occur when using a single controller. We benchmarked
our proposed SDN framework against the conventional POX controller to demonstrate
the network’s increased performance and load management. SimComponents is used
to quickly build and simulate DoS, Man-in-the-Middle (MiTM), and False Data Injection
attacks (FDI) attacks. The state estimation is affected by FDI and DoS attacks, and all
attacks have an impact on the communication network. To detect the corresponding attack,
the state estimator and machine learning examine the consequences of all attacks. Simulink
is used to represent the power grid, allowing for real-time simulation. SimComponent,
a Python library, is used to simulate a communication network. To detect attacked samples,
data from each layer is synced and evaluated using a real-time cross-layered machine learn-
ing technique. According to the results of our suggested architecture, a three-controller
distributed arrangement outperforms a single controller by a factor of more than ten times
the throughput. This allows for a greater flow of data throughout the network while
reducing congestion caused by the processing constraints of a single controller. Moreover,
our CECD-AS approach outperforms state-of-the-art physics and machine learning-based
algorithms in attack classification.

In future work, we would like to extend this framework to include more types of cyber
attacks, additional controllers, and P4 [37] and Stratum [38]-enabled switches. There are
other cyber attacks we would like to defend against, such as ransomware, botnet, and host
impersonation attacks. Furthermore, we would like to build upon our failure-resistant
framework by adding additional standby controllers for each of the current controllers to
increase protection against our model from unforeseen outages that may be experienced in
the field. In addition, we would like to include P4 and Stratum-enabled switches/routers
to allow for complete “white box” control of the forwarding devices. This would allow for
the control of packet parsing at the forwarding device level to increase QoS in the network.
The framework was developed in a real-time simulated environment, making it an ideal
starting point for future research on data integrity cyber threats in smart grids.
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