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Abstract—In-silico molecular design is a challenging but
important task to advance cheminformatics, drug discovery,
biotechnology, and material science. Representation learning
by increasingly-sophisticated deep generative models is opening
a new avenue for small molecule generation in silico. Much
of the research has focused on equipping such models with
the ability to generate novel yet valid molecules, and graph-
based variational autoencoders have yielded some of the best
performance in this regard. Latest efforts have investigated
disentangled representation learning as a way of additionally
providing some interpretability. However, how to link chemical
and biological space remains a key challenge that unsupervised
representation learning cannot address. In this paper, we debut
a graph-based variational autoencoder framework to address
this challenge under the umbrella of disentangled representa-
tion learning. Specifically, the framework learns a disentangled
representation and additionally permits several inductive biases
that allow connecting the learned latent factors to molecular
properties, such as drug-likeness, synthesizability, and many
others. Extensive and rigorous comparative analysis on diverse
benchmark datasets shows that the resulting models are powerful
and open up an exciting line of research on controllable molecule
generation in support of cheminformatics, drug discovery, and
other application settings.

Index Terms—Deep latent variable models, variational autoen-
coder, disentangled representation, molecule generation, control-
lable generation, supervised representation learning

I. INTRODUCTION
In-silico molecular design is an important task to advance
cheminformatics, drug discovery, biotechnology, and material

This work is supported in part by NSF Grant No. 1907805, 1900061, and
1763233.

science [?]. About 10%° drug-like molecules are estimated to
be synthetically-accessible [?]. This is a vast chemical space
that has traditionally presented challenges in silico [?]. For
several decades, researchers have had to rely on incomplete
domain-specific knowledge to construct molecular representa-
tions [?]. Advances in deep learning have lately renewed focus
on representation learning directly from data [?].

In particular, the SMILES representation permitted address-
ing molecule generation as a string generation problem, but
SMILE-based models fell short on generating valid molecules.
The linear SMILES representation could not capture inher-
ent chemical relationships in small molecules [?], [?], [?].
By leveraging a more expressive representation of a small
molecule as a graph, graph-generative models proved more
powerful [?]. In particular, graph-based variational autoen-
coder (VAE) models were shown to generate more valid
molecules than the SMILES-based models [?].

Much of the research on deep latent variable models for
small molecule generation has focused on equipping such
models with the ability to generate novel yet valid molecules,
and graph-based variational autoencoders have yielded some
of the best performance in this regard [?], [?].

Latest efforts have investigated disentangled representation
learning for understanding what aspects of molecular structure
are controlled by the learned latent factors [?]. While disentan-
gled representations enhance interpretability, work in [?] ad-
ditionally shows that the disentanglement preserves the ability
of these models to generate novel and valid molecules, often
outperforming models that do not enforce disentanglement.



However, currently, deep latent variable models for small
molecule generation typically operate under the umbrella of
unsupervised learning and so cannot link the chemical and
biological space; that is, such models cannot control the gen-
eration towards molecules with specific biological properties.

This paper addresses the challenge of linking chemical
and biological space for small molecule generation under the
umbrella of supervised representation learning. We propose a
graph-based VAE framework that implements inductive bias
and allows us to obtain and compare various models for how
they connect the learned latent factors to molecular properties,
such as drug-likeness, synthesizability, surface accessibility,
and more properties of interest. We evaluate the various mod-
els on three different benchmark datasets. The experiments
demonstrate that the proposed framework is powerful and
opens up an exciting line of research on controllable molecule
generation in support of cheminformatics, drug discovery, and
other application settings.

The rest of this paper proceeds as follows. Section I-A
provides a concise review of related work on deep models for
small molecule generation. Section II describes the proposed
model in detail. The evaluation of the model is presented
in Section III. The paper concludes with a summary of
contributions and future directions of research in Section IV.

A. Related Work and Preliminaries

Machine learning expedited progress in in-silico small
molecule generation, but shallow models proved ineffective
at generating novel and valid molecules [?], [?], [?]. The
SMILES representation [?], permitted the application of deep
learning for molecule generation as string generation. SMILES
is a linear representation of a molecule that stands for
“molecular-input line-entry system.” It is a formal grammar
that denotes atom types and bond types by designated char-
acters and symbols. Recurrent neural network (RNN)-based
models were shown more powerful than shallow models [?],
[?], [?], but they could generate few valid molecules. The
SMILES representation could not fully capture the non-local
constraints in the chemical structure of a small molecule.

To address the validity issue, researchers added explicit syn-
tactic and semantic constraints [?], [?]. Others guided models
through active learning, reinforcement learning, and additional
training signals [?], [?]. This yielded some improvements, but
generating valid molecules remained challenging.

Seminal work in [?] demonstrated the power of graph-based
VAEs which represent a molecule as a graph with atoms as
vertices and bonds as edges. The GraphVAE model opened
the door to many other graph-based VAE models that were
shown to significantly improve our ability to generate novel
yet valid small molecules in silico.

State-of-the-art (SOTA) models for molecule generation
leverage the VAE framework to: (1) encode: learn a low-
dimensional, latent representation of a molecular graph; and
(2) decode: learn to map the latent representation back into
a molecular graph. GraphVAE [?] generates molecular graphs
by predicting their adjacency matrices. Work in [?] proposes

a constrained graph generative model that enforces validity
by generating one atom at a time in a molecule. Other works
encode the vertices into vertex-level embeddings and predict
the edges between each pair of vertices to generate a graph [?],
[?].

There is also another line of works leveraging flow-based
generative models for molecule generation [?], [?]. However,
the design of dimension partition and required same input and
latent dimensions greatly limit the power of the latent space
and prevent advances in discovering the learnt latent space for
controls.

Most recently, disentangled representation learning has been
debuted in small molecule generation. Inspired by the need
for model transparency and interpretability, researchers in [?]
evaluate a disentangled graph VAE for small molecule gen-
eration. They show that the disentangled factors result in
similar or higher validity and novelty over generated molecules
than graphVAE and other related SOTA models. In particular,
they show that the disentangled factors control interesting
aspects of molecular structure but are not powerful enough to
control desirable molecular properties due to the unsupervised
learning setting. In essence that is what we address in this
paper. We demonstrate how one can leverage a disentangled
graph VAE framework but additionally incorporate inductive
bias to carry out supervised representation learning for control-
lable molecule generation. Before we describe the proposed
framework and the models resulting from it, we summarize
here the VAE framework in the interest of completeness.

B. Preliminaries: The VAE Framework

The encoder (inference model) and the decoder (generative
model) are two connected but independently parameterized
models in the VAE framework. These two models complement
one another. The generative model receives an approximation
to its posterior over latent random variables from the inference
model, which it uses to update its parameters during an iter-
ation of “expectation maximization” learning. The generative
model acts as a form of scaffolding for the inference model
to learn meaningful representations of the data.

1) Inference Model: The input to the encoder is a datapoint
rz € X, and the encoder produces a hidden representation
z € Z as an output; the encoder has weights and biases.
It transforms the data into a latent (hidden) representation
space Z by outputting two vectors, a mean vector Z,, and a
standard deviation vector Z,, which are of significantly fewer
dimensions than the input dimensions. Because the encoder
must learn an efficient compression of the data into this lower-
dimensional region, commonly referred to as a “bottleneck,”
the VAE can sample z throughout a continuous space based
on what it has learned from the input data by using the mean
and standard deviation vectors.

2) Generative Model: The representation z is then fed into
the decoder, which outputs the parameters of the probability
distribution of the data; the decoder is also a neural network
with its own weights and biases. VAEs assume that the input
distribution inherently follows a distribution similar to the



normal/Gaussian distribution, so that the latent space regular-
ization can be expressed quite naturally. To achieved this, two
loss functions reconstruction loss and Kullback-Leibler (KL)
divergence loss are optimized.

The reconstruction loss ensures that the output gener-
ated by the decoder is similar to the input. The KL
divergence measures the divergence between two proba-
bility distributions. The latent vector z is sampled from
Z, and Z, and unit normal distribution N(0,1). KL-
divergence ensures that the latent-variables are close to the
standard normal distribution. Specifically, the loss function
L = (reconstruction_loss) + (regularization_term) =
1 N 2
~ 2m=1 |17 —yI* + KLIG(Z,,, Z5), N(0,1)].

II. METHODS

First, we represent a molecule as a graph G = (V, &, E, F),
where V is the set of N nodes (that is, the atoms) and
€ C VxV is the set of edges (that is, the bonds connecting the
atoms bonds) between pairs of nodes V. E € RV*NXE1 refers
to the edge features (bond type), where K7 is the total number
of bond types. F € RN*NXE2 refers to the node features
(atom types), where K5 is the total number of atom types.
We additionally consider L common molecular descriptors
Y = {y1,y2, ...y}, such as drug-likeness, molecular weight,
synthesis accessibility, etc., as labels. These properties are
described in some detail later in this section. Let us now
summarize the deep latent-variable framework that works with
the graph representation of a molecule before we describe in
detail the various models that we build over this framework.

A. Framework Architecture

Following the molecular graph generation literature, the
sequential generation process is essential for generating valid
molecules. We adopt a similar model architecture as in [?].
During the generation process, we first initialize each node in
a set of unconnected nodes as an initial step for the generative
process. In each step, we start with a focus node and determine
whether there is another node connecting to it. We first select
an edge, then label edge, and then we update the nodes via
message passing. We repeat the process for edge selection,
edge labeling, and node update until a special stop node is
selected. Then, we move to the next focus node in the loop, and
the process repeats. We terminate when there is no candidate
focus node in the connected sub-graph.

B. Deep Latent-Variable Framework

The deep latent-variable framework parameterizes VAEs
to learn a joint distribution over a molecular graph G and
desired properties Y, given a group of learned disentangled
latent variables Z. The generative process is formulated as
p(G|Y, Z). The objective for a VAE model here is to learn to
(i) encode a molecular graph into a continuous latent space
with p(Z,Y|G), as well as (ii) decode a molecule from the
learned latent space with p(G|Z,Y"). In our exposition of this
framework we will regularly refer to the illustration in Fig. 1.

We first illustrate this with a model that we treat as a
baseline in this paper, 5-VAE. The model has been published
before [?], so we only summarize its most salient character-
istics. The rest of the section then focuses on the novel VAE
variants with inductive biases that allow us to control for
desired properties. We refer to these models as Conditional
VAE, abbreviated from now on as CondVAE, Conditional
Space VAE, abbreviated as CSVAE, Property-Controllable
VAE, abbreviated as PCVAE, and PCVAE-nsp, a variant of
PCVAE without spectral normalization. In our exposition of
these four models, we will regularly refer to Figure 1, which
summarizes each of the models.

(a) B-VAE (b) Cond VAE
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Fig. 1. Each sub-figure depicts the generative model (right) and its model
inference (left). The enforcement of independence is shown by dotted red ar-
rows, whereas the invertible dependence between two variables is represented
by double arrows. Data is denoted by X and Z. W are two subsets of latent
variables, and Y denotes the molecular properties.

C. B-VAE

The objective here is to learn a marginal probability dis-
tribution py(G|Z) of a molecule G given a latent vari-
able Z. However, learning py(G|Z) requires the inference
of its posterior distribution py(Z|G), which, unfortunately,
is intractable. Thus, one estimates the approximated poste-
rior ¢4(Z|G) and minimizes the Kullback-leibler Divergence
(KLD) between the true posterior and the approximated poste-
rior D 1.(94(Z|G)||pe(Z|G)). This is known as maximization
of the evidence lower-bound (ELBO) [?]:

max B, (z16)ll08ps(G|12)] = BDk1(gs(Z]G)lIp(2)) (1)

In Equation 1, 6 and ¢ are learned; g4 and the prior
distribution p(Z) are each assumed to be an isotropic Gaussian
distribution, where the latent variables Z are independent of
one another. The hyperparameter 5 controls the disentangle-
ment ability of the VAE model [?]; a larger § value enforces
more disentanglement. The 5-VAE model does not guarantee
that any latent variable z € Z exposes any molecular property
y € Y; this is indicated schematically (by the red dotted arrow
between Z and Y) in the top left panel in Fig. 1. That is
the reason we use this popular model as a baseline in our
evaluation in this paper.

D. Conditional VAE (CondVAE)

One can easily modify [-VAE to explicitly control for
desired molecular properties. We do so in what we refer to



as CondVAE by incorporating ground truth properties in the
training process and selecting one-to-one pairs between latent
variables z € Z and molecular properties y € Y. To achieve
this objective, we add an Ly norm/loss which enforces the
value of one latent variable z to be the same as one specific
molecular property y of a molecule. Specifically, the objective
is updated as follows:

max g, (zi6.y) llogpe (G, Y| Z)]|=BDk 1(q4(Z]G,Y)Ip(Z))

Y la-ul? @

As Equation 2 shows, the last term allows to specify controls
over the latent space. Note that in this model, the number
of latent variables is set to the number of desired molecular
properties. Also note the dependence now between Z and Y in
the top right panel of Fig. 1. As our results show later in this
paper, this simple conditional VAE, while adding supervised
control over the latent space, is not as effective as the other
two models we propose next.

E. Conditional Subspace VAE (CSVAE)

CSAVE incorporates a new inductive bias. As the bottom
panel of Fig. 1 shows, a new latent subspace” W is introduced
between the semantic space (the molecular properties) and
the latent space. This model is inspired by work in [?]. We
leverage this inductive bias here for controllable molecule
generation, where we design a latent subspace W, a molecular
property space Y, and a regular latent space Z. We aim to
keep the information separate; the model tries to separate the
latent variable corresponding to a desired molecular property
from latent variables corresponding to unspecified molecular
properties in the two latent spaces W and Z. In the original
CSVAE model in [?], the semantic property can only be binary.
Here, we add a linear mapping from a molecular property
y € Y to the latent subspace W. To enforce this, we minimize
the mutual information between the latent space Z and the
molecular properties Y. The objective becomes:

I%%X]Eq¢(Z,W\G,Y) [logp9(G7 Y|Za W)]_ 3)
BDk1(qs(Z,W|G.Y)|lp(Z)) — I(Y; Z)

In Equation 3, I(Y; Z) denotes the mutual information be-
tween molecular properties Y and latent space Z. In practice,
we treat mutual information minimization as an adversarial
component in our model.

E. Property-controllable VAE (PCVAE)

An alternative approach to linking the latent space to a
semantic space is proposed in [?]; specifically, a mutual
dependency is enforced between the latent space W and the
semantic properties Y. We adopt this idea here by designing
an invertible ResNet [?] that enforces mutual dependency
between W and Y. Note the double arrow between these two
in the bottom right panel in Fig. 1. To learn an invertible
function f(w;y), we decompose the function f(w;y) as

f(w;y) = f(w;y)+w. As proved by work in [?], the sufficient

condition for function f to be invertible is Lip(f) < 1, where

Lip(f) is the Lipschitz-constant of f(w;y). So, the objective
becomes:

H‘glf(ibXEq¢(Z’W|G’Y)[1ng9(Ga Y|Z,W)|—- S
BDx1(4s(2, W|G,Y)||p(Z2))

In practice, we utilize the Multi-layer Perceptrons (MLP)
to model f. As the function is the composition of a linear
layer and nonlinear activation functions (e.g. ReLU), we have
Lip(f) < 1if |[|H||2 < 1, where H is the weight in all
the MLP layers, and || - ||2 denotes spectral normalization, as

introduced in [?].

G. PCVAE without Spectral Normalization (PCVAE-nsp)

Following the architecture in [?], PCVAE-nsp serves as a
baseline model for PCVAE, without spectral normalization.

ITI. RESULTS
A. Experimental Setup

We train each of five models, 8-VAE, CondVAE, CSVAE,
and PCVAE, separately on three benchmark datasets that we
describe below. The evaluation utilizes benchmark metrics,
which we described next.

1) Benchmark Datasets: We adopt three standard datasets:
QM9, ZINC, and MOSES. QM9 [?], [?] contains ~134k
stable small organic molecules with up to 9 heavy atoms (e.g.
Carbon (C), Oxygen (O), Nitrogen (N), and Fluorine (F)).
ZINC [?] contains about 250,000 purchasable compounds,
each with 23 heavy atoms on average. MOSES [?] contains
about 1.9 million molecules, each with up to 30 heavy
atoms. We use 120K/13K as training/validation set for QMO9,
60K/10K as training/validation set for ZINC, and 30K/5K as
training/validation set for MOSES.

2) Molecular Properties: We cast a wide net over chemin-
formatics literature and compile a list of 6 molecular proper-
ties: cLogP, cLogS, PSA, SA, Weight, and Drug-likeness 1z
While more detailed information can be found in the above
resources, we summarize here each of these properties. The
‘c’ in front of properties, such as cLogP and cLogS stands for
“computationally-predicted/computed.” These properties are
computed over a molecule. cLogP, for instance, computes
lipophilicity and is the ratio at the equilibrium of the concen-
tration of a compound between two phases, an oil and a liquid
phase. Lipophilicity is a critical physicochemical parameter
when developing new drugs, because it influences various
pharmacokinetic properties, such as the absorption, distribu-
tion, permeability, and routes of clearance of a candidate drug.
cLogS stands for computed logS and it measures the water
solubility of a drug. PSA stands for polar surface area and is
an important evaluator of a drug’s ability to permeate cells.
SA stands for synthetic ability and estimates our ability to
synthesize a molecule in the wet laboratory. Weight measures
molecular weight; smaller molecules are desirable. Finally,
Drug-likeness, computed with RDKIT via QED, stands for

'RDKit: Open-source cheminformatics; http://www.rdkit.org
2DataWarrior: Open-source molecules; https://openmolecules.org/datawarrior/



quantitative estimation of drug-likeness. It is calculated as a
geometric mean over individual descriptors that combine the
desirability of a new drug over the underlying distribution of
molecular properties in known drugs.

3) Evaluation Metrics: Each of the trained models (on each
of the three datasets) is used to generate 30K molecules. (1)
The quality a generated dataset is evaluated in section III-B
via 3 benchmark metrics: Novelty, Uniqueness, and Validity.
Validity measures the fraction of generated molecules that are
chemically valid. Novelty measures the fraction of generated
molecules that are not in the training dataset. Uniqueness
measures the fraction of generated molecules after and be-
fore removing duplicates. (2) The quality of controllability
is evaluated in various ways. First, we compute the mutual
information between the learned latent variables and molecular
properties and visualize it via a heatmap. Second, we evaluate
the property prediction accuracy which exposes how the latent
variables control the molecular properties. Third, we visualize
how a model can control a specific molecular property. Fourth,
we evaluate how the latent variable controls the molecular
properties in a more general setting, where we sample 100
molecules and attempt to control the molecular properties of
the generated molecules in a list of specified values (i.e. in
practice, we use the highest density region in the molecular
property distribution). We now relate these experiments in
greater detail.

B. Validity, Novelty, Uniqueness of Generated Molecules

In Fig. 2 we draw some molecules sampled at random over
the 30K molecules generated by each model on each of the
three datasets. The quality of generated molecules is evaluated
via the three metrics described above, as shown in Table 1.

Table I allows making several observations. First, all five
models are powerful and generate 100% chemically-valid
molecules (on each of the datasets). Performance on nov-
elty and uniqueness varies. CSVAE is the worst-performing
model on uniqueness on all datasets. On the QM9 dataset,
(B-VAE outperforms all models on uniqueness. On the ZINC
dataset, all five models (CSVAE excluded) perform similarly
on uniqueness. On the MOSES dataset, only CondVAE drops
from the list of similar-performing models on uniqueness.
On novelty, all models are very close in performance to one
another, above 99.9% on both the ZINC and MOSES dataset.
Slightly higher variation is observed on novelty on the QM9
dataset, but 5-VAE, PCVAE-nsp, and PCVAE are all very
close to one another in performance. The main takeaway
from these results is that the inductive bias does not hurt the
performance of the models with the exception of CondVAE;
in this model, the naive linking of the chemical and biological
space restricts the diversity of generated molecules.

C. MI between Latent Variables and Molecular Properties

We visualizing the MI between latent variables and molec-
ular properties. We do so on the QMO-trained models in
the interest of space (other settings show similar results).
Fig. 3 shows that the baseline 8 — V AE model rarely learns
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Fig. 2. We draw here molecules randomly selected from the 30K molecules
generated from each of the models, trained on each of the three datasets —
(top) QM9, (middle) ZINC, and (bottom) Moses — are drawn here.



TABLE I
NOVELTY, UNIQUENESS, AND VALIDITY, SHOWN IN %, ARE MEASURED ON A GENERATED DATASET. THE HIGHEST VALUE ACHIEVED ON A METRIC IS
HIGHLIGHTED IN BOLDFACE.

QM9 ZINC MOSES
Model Validity Novelty Uniqueness| Validity Novelty Uniqueness| Validity Novelty Uniqueness
B-VAE 100.00% 98.23% 99.28% [100.00% 100.00% 99.78% |100.00% 99.92%  99.88%
CondVAE |100.00% 92.60%  90.00% |100.00% 99.98%  98.02% (100.00% 99.98%  93.30%
CSVAE [100.00% 97.01% 27.41% [100.00% 100.00% 42.72% [100.00% 100.00%  54.28%
PCVAE-nsp |100.00% 98.57% 86.94% |100.00% 100.00% 99.74% [100.00% 99.90%  99.80%
PCVAE [100.00% 97.43% 88.24% [100.00% 100.00% 99.48% [100.00% 99.96%  98.62%

correlations between the latent variables z and the molecular
properties p. CondVAE performs similarly, suggesting that
its control mechanism is not effective. Higher MI values are
observed for CSVAE, PCVAE, and PCVAE-nsp. For CSVAE,
more latent variables participate, but with weak control.

D. Evaluation on Property Prediction

As we introduce labels for desired properties in a supervised
setting, our models offer another benefit, learning a property
predictor. We now compare the models on property prediction
accuracy, which implies learned controllability because we
expect the predicted property value to be the same as the
property value during the model training. We add a layer
to minimize an MSE loss between one latent variable and
a molecular property. We do so for each of the models and
each of the properties. Table II relates the results. It shows
that several of the properties can be predicted well by all
the proposed models, with the exception of Weight and PSA.
The two models that are able to consistently do well across
all 6 properties and on all three datasets are PCVAE-nsp and
PCVAE.

TABLE I
THE MSE BETWEEN ONE LATENT VARIABLE AND EACH MOLECULAR
PROPERTY IN A SUPERVISED SETTING. THE BEST VALUE PER ROW IS
HIGHLIGHTED IN BOLDFACE.

Dataset | Method MSE
cLogP cLogS Drug Weight PSA SA
B-VAE 254 234 1559 15113.88 1691.80 19.03
CondVAE [1.02 221 15.68 13865.48 1599.08 17.26
QM9 |CSVAE 0.89 0.61 13.88 53.72 407.72  0.87
PCVAE-nsp|1.46 1.60 3.40 35.80 7.58 1.96
PCVAE 1.39 155 8.93 36.25 13.36  1.87
-VAE 5.85 1331 30.37 114717.69 6228.77 10.13
CondVAE |[5.72 12.88 28.88 110894.66 6045.01 9.89
ZINC |CSVAE 2.04 194 28.76 112158.86 5562.85 0.69
PCVAE-nsp(3.03 255 29.65 349.74 015 1.72
PCVAE 297 261 29.66 422.27 9234 1.70
B-VAE 7.93 1438 28.89 94736.52 7168.32 5.61
CondVAE |6.02 13.36 21.12 85160.43 5633.47 4.95
MOSES |CSVAE 7.71 1421 14.89 94526.97 7157.01 4.82
PCVAE-nsp|1.65 2.04 15.44 8.73 13.13 117
PCVAE 1.63 2.04 1546 10.24 8.68 1.19

E. Evaluation on Property Control

In Fig 4, we visualize how a model allows controlling the
molecular properties of generated molecules. We illustrate this
for the cLogS property with the increasing value of a latent
variable z. Specifically, we set out to control the cLogS prop-
erty of generated molecules to be [—2, —1.5, —1,—0.5,0,0.5],

respectively. The premise is that the four models will show
different levels of controllability. We visualize this in Fig. 4.

The top panel in Fig. 4 shows results from 5-VAE, which
serves as a baseline. It is evident that the cLogS properties
of generated molecules appear randomly drawn from the
specified range, suggesting that control is rarely observed. The
second panel shows results for CondVAE, which demonstrates
a partial monotonic relationship in the first three generated
molecules but not so for the last three molecules. This indicates
that, while CondVAE may provide some improvement, the
control is not strong enough. Similar variability is observed
in the results from CSVAE, with partial control (on the last
three molecules). Fig. 4 shows that PCVAE achieves superior
performance in this qualitative evaluation. The model learns a
monotonic relationship; an increasing value of z relates very
closely here with an increase in the value of cLogS.

In Table III, we evaluate quantitatively how effective the
control is overall 6 molecular properties. In the interest of
space, we focus on the QM9 dataset. We repeat a similar
experiment as in Fig. 4 100 times for each property and carry
out statistical analysis on it. Specifically, for each property, we
generate 100 molecules with properties specified in the range
with the highest density in the molecular property distribution
(as observed over the training dataset). We report the discrep-
ancy via MSE between the properties of molecules generated
in this manner and the expected properties predefined within
the highest property density region. Again, 5 — VAFE serves
as a baseline, since it is unsupervised.

The results shown in Table III support several observations.
Even though CondVAE does not work as well as other
proposed models, it outperforms § — VAE. This is not
surprising, as there is more control specified in the model.
However, it is evident that simply incorporating an MSE-based
based constraint does not work well. Overall, the top two
performing models are CSVAE and PCVAE. PCV AE, sp,
which serves as a baseline for PCVAE, performs slightly
worse than CSVAE for most properties. PCVAE achieves the
best overall performance in this task. In summary, Table III
confirms many of our observations; namely, that weight and
PSA are difficult properties, perhaps not quite captured by the
molecular graph representation. The results show, however,
that the lowest MSE in each of the molecular properties is
obtained by one of our proposed models for property control.
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Fig. 3. MI is calculated between each of the disentangled factors learned by a (QM9-trained) model and the molecular properties computed on the molecules
generated by the model.
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The bottom axis indicates increasing the value of z from —2 to 0.5.



TABLE III
THE MSE BETWEEN THE EXPECTED VALUE OF EACH PROPERTY AND THE
VALUE OBTAINED FROM MOLECULES GENERATED BY THE A MODEL AS
DESCRIBED ABOVE. RESULTS ARE SHOWN FOR MODELS TRAINED OVER
THE QM9 DATASET.THE BEST VALUE PER COLUMN IS HIGHLIGHTED IN
BOLDFACE. THE SECOND ROW SHOWS THE RANGE OF HIGHEST DENSITY
PER PROPERTY.
Method |cLogP cLogS Drug  Weight PSA SA
[—2,2] [-2,2] [-5,5] [120,130] [20,60] [2,5]
B-VAE (245 1.01  43.83 264.59 249.72 7.03
CondVAE (220 099 2227 42.03 18343 4.87
CSVAE [0.67 096 924 39.73 810.45 1.86
PCVAE-nsp|2.15 3.18 899 3845 765.44 1.84
PCVAE |[1.13 0.62 541 3859 1554.00 1.87

IV. CONCLUSION

In this paper, we propose several deep latent-variable
models to generate small molecules with desired molecular
properties. The models operate under supervised, disentangled
representation learning and leverage both graph representation
learning to learn inherent constraints in the chemical space
and inductive bias to connect chemical and biological space.
The evaluations show that the models are a promising step
in controllable molecule generation in support of chemin-
formatics, drug discovery, and other application settings. In
practice, we observe that CSVAE is hard to train due to the
adversarial scheme. The results also altogether point towards
PCVAE-nsp and PCVAE as more effective models for property
control. Much work remains. All current models for small
molecule generation, including those proposed in this paper,
are concerned with global properties. Preserving local proper-
ties may be additionally desirable, as it may provide chemical
biologists with a better understanding of the contribution of
local elements onto global properties, as well as guide them
on how to further modify molecules in the wet laboratory.
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