GLOBAL WELL-POSEDNESS FOR THE FIFTH-ORDER KDV
EQUATION IN H~1(R)
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ABSTRACT. We prove global well-posedness of the fifth-order Korteweg-de Vries
equation on the real line for initial data in H~1(R).

Global well-posedness in L?(R) was shown previously in [§] using the method
of commuting flows. Since this method is insensitive to the ambient geometry,
it cannot go beyond the sharp L? threshold for the torus demonstrated in [3].
To prove our result, we introduce a new strategy that integrates dispersive
effects into the method of commuting flows.

1. INTRODUCTION

In view of its complete integrability, the Korteweg—de Vries equation
dg=—q" +6qq (1.1)
belongs to an infinite hierarchy of commuting flows. This equation lies second in

the hierarchy, after simple spatial translation. In this paper, we consider the next
equation in the hierarchy, namely,

4g= ¢® —20¢'q" — 10qq" + 30¢%¢'. (1.2)

All flows in the hierarchy describe the evolution of a real-valued field ¢ on the
line (or torus), are Hamiltonian, and share the common Poisson structure:

{F,G} = (;—Z(x) (fg) () dx. (1.3)

In particular, (1.2)) is the flow generated by
Haun(a) = [ 40" (@ + 50(@)q/ (0 + Ja(a)* da
and conserves the Casimir M(q) := [ ¢(z) dz, as well as

P(q) ::/%q(x)2 dr and Hgav(q) ::/%q’(m)2+q(:€)3 dz,

which generate space translations and the KdV flow, respectively.

Due to its place in the KdV hierarchy, the well-posedness problem for has
received considerable attention. Until very recently, the best result on the line was
global well-posedness in the energy space H%(R), which was proved in [2,6]. We also
recommend these papers for a discussion of earlier work in this direction, as well as
[ for a thorough discussion of results in Fourier—Lebesgue spaces. Unlike for KdV,
there is no regularity at which well-posedness can be proved directly by contraction
mapping arguments. This was proved rigorously by Pilod [14], who showed that
the data-to-solution map is not C? at the origin in H*(R) for any s € R. It was
further shown by Kwon [11] that this map is not uniformly continuous on bounded
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sets for any s > 0. We do not know of any lower bound on well-posedness for
on the line analogous to those proved for KdV in [12].

On the torus, however, Kappeler and Molnar, [3], have obtained an optimal well-
posedness result. Concretely, they show that is globally well-posed in L?(R/Z)
and conversely, that the data-to-solution map does not admit a continuous extension
to H*(R/Z) for any s < 0.

Very recently, global well-posedness of in L?(R) was proved in [§] as an
application of the method introduced there for the study of KdV. That method
applies equally well both on the line and on the torus and so cannot yield results
below L? regularity. Indeed, given the optimality of the Kappeler—Molnar L?(R/Z)
result, it would have been reasonable to guess that the L?(R) result might be
optimal. Further support for this idea comes from [4, [8 12, [I3] where it is shown
that the optimal regularity for well-posedness of KdV is the same on the line and
on the torus, namely, H~!. On the other hand, for a generic dispersive PDE, we
expect the low-regularity behaviour to be better on the line than on the torus due
to the improved dispersion — on the line, high-frequency waves may escape rapidly
to spatial infinity, while on the torus, they are trapped.

In this paper, we show that is well-posed in H~!(R); we believe that this
is optimal in the scale of H*(R) spaces:

Theorem 1.1 (Global well-posedness). The fifth-order KdV ((1.2)) is globally well-
posed for initial data in H=1(R). More precisely, the solution map extends uniquely
from Schwartz space to a jointly continuous map ®: R x H-1(R) — H~1(R).

As noted before, one expects better dispersion for problems posed on the line
than for those on the torus. One expression of this improvement is the local smooth-
ing effect. First discovered by Kato [B] in the context of the KdV equation, this
is the phenomenon that the solution appears smoother than the initial data if one
works locally in space and averages in time. We will prove the following:

Theorem 1.2 (Local smoothing). For any initial data q(0) € H~Y(R), the corre-
sponding solution q(t) constructed in Theorem obeys

to+1 pzo+l
sup / ' (8, )1 + |a(t, @) dz dt S [lg(0)I[7-+ + lg(O) |77 (1.4)
to,xo€ER Jtg—1 Jaxo—1
Moreover, for every tg,zo € R, the map q(0) — q(t — to,x — xg) is continuous as
a mapping H~1(R) — L?HL([-1,1]?). Lastly, q(t) satisfies in the sense of
spacetime distributions.

In the KdV setting of [§], an analogous local smoothing effect was derived after
the proof of the well-posedness theorem was complete. This will not work here; we
need to use the local smoothing effect in order to go beyond what is possible for the
torus. We refer rather nebulously to the local smoothing effect here, because the
crude bound is actually wholly ineffective in helping us prove Theorem
we will need rather more subtle manifestations of this phenomenon.

The distributional nature of the solutions constructed in Theorem [L1] follows
easily from the earlier parts of Theorem That Schwartz solutions are distribu-
tional solutions is self-evident; to extend this to all H~! solutions, one need simply
rewrite as

4q=02q—503[¢*] + 0. [5(¢')* + 104°], (1.5)
integrate by parts, and employ the continuity shown in Theorem
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In order to explain what is to be done in this paper, it will be helpful if we
first endeavor to follow the argument used in [8], even though we know that this
approach must surely fail. A central idea there, which we shall mimic exactly, is the
introduction of regularized Hamiltonian flows (depending on a parameter ) that
have the following properties: (1) They commute with the full flow for all values
of k. (2) They converge to the full PDE as k — oo. (3) They are well-posed on
HY(R).

The construction of the regularized Hamiltonians is inspired by a well-known
generating series for the polynomial conserved quantities:

1 1 _

The function «a(k, ¢) here is a renormalization of the logarithm of the transmission
coefficient (=perturbation determinant) at energy —x? and is known to be jointly
real-analytic on the region where

g€ Bs={gc H'(R): gl z— <3} (1.7)

and k > 1, for some fixed § < 1; see [9] [16] for details. Note that the restriction to
small ¢ appearing here is actually illusory; (|1.2]) possesses the scaling symmetry

q(t,x) — qx(t,x) := )\2q()\5t, Az), (1.8)

which means that it suffices to prove Theorems [I.1] and [I.2] for small data.
Rearranging (|1.6) suggests the definition

H,.(q) = 64k"ar; q) — 166*P(q) + 4% Hyav (q). (1.9)

afk;q) =

Indeed, H;(q) — Hswn(q) as k — oo for any Schwartz ¢ € Bs. Moreover, for finite
K the resulting flow is well-posed on H~!(R). To see this, we note that the three
constituent Hamiltonians commute; moreover, each is well-posed on H~!(R). In
the case of a, this follows from an ODE argument because « is real analytic on
H~1(R). Well-posedness of the P flow is trivial since it simply generates spatial
translations. Lastly, well-posedness of the Hixqv flow on H~1(R) was the principal
result of [8].

Let us now discuss the objective of introducing the H, flows and explain the role
of commutativity. To do this, it is convenient to adopt a compact notation for the
flow of a generic Hamiltonian; concretely, we write

q(t) = e""VHq(0) for the solution to da _ 8356—H.
dt oq
Here J formally represents 9, attendant to the Poisson structure (1.3)).

In order to prove Theorem we must show the following: For any T' > 0 and
any sequence of Schwartz functions ¢, € Bs convergent in H~1(R), the correspond-
ing sequence of solutions ¢, (t) is Cauchy in C;H'([-T,T] x R). Evidently,

4n () = @m ()l gt < Ngn(t) = €7V g (0) ¢, g
+ [lgm (t) — etJVHHQm(O)HCtH,Ql
+ HetJVHKQn(O) - etJVHKQm(O)”CtH;L

Notice that the last term here converges to zero due to the well-posedness of the
H,, flow. In this way, the proof of Theorem [I.1]is reduced to showing that the H,
flow closely tracks the full Hyy, flow (at least for x large).
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But for the commutativity of the flows, this would not be significant progress. In
view of [I1], T4], we expect the data to solution map for to be very irregular.
Indeed, it is this very irregularity that makes it difficult to conceive of any method
by which one may control the difference of two solutions. By the commutativity of
the flows, however, we can write

Gu(t) = €71 (0) = [T 1] (g, (0)).

Thus, we no longer need to estimate the divergence of two solutions; rather, we
merely need to bound the way in which a single solution (generated by the difference
of the two Hamiltonians) diverges from its initial data. The price to pay here is
that we must control this difference flow (as we shall call it) for a much richer class
of initial data, namely,

Q:={e""Mrq,(0):neN, te[-T,T), k>1}. (1.10)

We will be able to control the difference flow uniformly on @ because we can
show that it is uniformly bounded and equicontinuous in H~*(R). These assertions
follow readily from the results of [9] in a manner demonstrated already in [§]. In
fact, the arguments developed in this paper show that @ is precompact in H ~!(R);
however, we will not need this in what follows.

We turn now to the heart of the matter, namely, controlling the difference flow.
It is not difficult to write down the equation dictating the evolution of ¢ under
this flow; see (2.16). The problem lies in making sense of this equation at such
low regularity. In this regard, the difference flow is no better that the original
equation ; the regularized Hamiltonian H,, only provides good cancellation at
low frequencies — it is regularized! The first step (appearing already in []]) is to
make a change of variables, replacing the original unknown ¢(t) by 2x—1/g(5¢; q(¢)).
Here g denotes the diagonal Green’s function associated to the Schrédinger operator
with potential ¢ and s¢ > 1 is an energy parameter, which may be regarded as frozen.

It was shown already in [8] that (for ¢ small) this change of variables is a diffeo-
morphism from H~1(R) to H!(R). The virtue of this change of variables is that it
regularizes the nonlinearity. For example, under the flow ,

—q" (t,x)+3q(t,x 2 432 t,x 8sc?
i T = 3%( R ) (1.11)

Here we see that the greatest obstruction to making sense of RHS, at
least as a tempered distribution, is the appearance of ¢2. Indeed, this term (which
serves as the figurehead of a raft of related problems) is precisely what restricted
the analysis in [8] Appendix] to treating initial data in L?(R).

At first glance the remedy seems obvious (we have announced it already), namely,
local smoothing. Indeed, the a priori bound (1.4]) provides more than enough reg-
ularity to make sense of ¢ for solutions to (1.2). But here is the problem: we are
trying to control the difference flow, not (1.2]). Thus, we will need a local smooth-
ing effect for the difference flow. On the other hand, our ambition is to show that
solutions of the difference flow do not move far from their initial data, which seems
fundamentally in contradiction to the local smoothing effect — smoothing happens
because high-frequencies move away quickly. Thus, we must complete a delicate
balancing act: showing that the difference flow exhibits sufficient high-frequency
transport so as to have a local smoothing effect that is strong enough to prove
that the difference flow actually transports its initial data a negligible distance in
H~1(R). Finding a path through this narrow divide is one of the two principal
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achievements of this paper. It is accomplished by exhibiting numerous subtle can-
celations and by squeezing optimal estimates out of a number of paraproducts that
arise throughout the analysis.

The arguments described so far can only show that if g, (¢) is a solution to the
difference flow, then

. 1 1
JLH;QHQS(I) [2g(x;%,q»(t>> - 2g<x;%,q~<o>>} HLmeg,([,TVT}XR) =

for some Schwartz function ¢. The localization ¢ is inevitable, because the local
smoothing effect is indeed local. There is also a considerable loss of regularity
compared to the diffeomorphism property, which requires convergence in H', rather
than H 5.

The loss of regularity is the lesser problem here and was overcome already in [§].
The key observation was that equicontinuous sets of initial data remain equicon-
tinuous under the flow due to known conservation laws (cf. Proposition . This
then guarantees that the Green’s functions (and their reciprocals) remain equicon-
tinuous, because the mapping of ¢ to g commutes with translations. One then
uses the elementary fact that an H'-equicontinuous sequence converging at lower
regularity converges also in H'. Norm convergence of the Green’s functions is then
transferred to H ! convergence of the ¢, via the diffeomorphism property.

In order to complete the proof of Theorem we need to upgrade localized
convergence to global convergence. This necessitates a novel tightness argument
that is considerably more subtle than equicontinuity and constitutes the second
principal achievement of this paper. Our immediate discussion will focus on how
we prove such a property for the solutions g to . Together with boundedness
and equicontinuity, this tightness will yield compactness of orbits (over bounded
time intervals), which then transfers to the Green’s functions via the diffeomophism
property.

Given that we are in possession of a microscopic conservation law adapted to
regularity H~1(R), it is natural to imagine that tightness can be proved by simply
localizing this conservation law near infinity and controlling the increment, say using
local smoothing. Closer inspection, however, reveals that this would be circular
reasoning. Local smoothing is proved by localizing the energy and observing that
the dominant term in the increment is coercive.

The key to breaking this cycle is proving that the high-frequency contribution
to the local smoothing norm is small; see Proposition 4.1} The low-frequency
contribution is controlled by using the global L& H_ ! bound.

Proposition also plays a key role in proving continuous dependence on the
initial data in the local smoothing norm; see Theorem Specifically, it reduces
our attention to the low-frequency contribution, whose continuity follows from that
shown in Theorem [[11

Taken together, our boundedness, equicontinuity, and tightness arguments show
a strong compactness phenomenon for : Given a bounded time interval [T, T]
and an H~!(IR)-precompact set of initial data, the corresponding orbits all lie inside
a compact subset of H~!(R). This is weaker than saying that the orbits are pre-
compact in CyH~([-T,T] x R), which will follow from Theorem The missing
ingredient is equicontinuity in time (cf. the Arzela—Ascoli Theorem). This is one of
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two key roles played by the difference flow. The second is guaranteeing the unique-
ness of subsequential limits (which exist by compactness) of sequences of solutions
with convergent initial data.

An alternate approach to showing the uniqueness of subsequential limits would be
to identify a suitable collection of properties that intrinsically and uniquely identify
the solutions constructed in this paper. This is an important open problem. Note
that we regard the solutions we construct as canonical, since by Theorem [I.1] no
distinct notion of solution can lead to well-posedness. For further musings on this
question (framed in the KdV setting), see [7].

It is natural to ask what may be said of the whole KdV hierarchy using the
methods presented herein. While the analytical techniques we develop are not tied
to any particular level of the hierarchy, the quantity and complexity of the requi-
site algebraic manipulations grows quite rapidly as one progresses. A systematic
approach to finding all the requisite cancellations simultaneously at all levels of the
hierarchy is currently far beyond us. In fact, even the implications for the whole
hierarchy of the first-generation methods of [§] have not been fully worked out and
that would certainly be very much simpler indeed.

The paper is organized as follows: We begin Section [2| by introducing notation
and reviewing some basic estimates. We then move on to a review of the material
developed in [§] that we will need; see Subsection We then develop a variety
of commutator estimates, which in turn inspire our choice of a family of local
smoothing norms; see Definition 2.8

Section [3] is devoted to the analysis of various paraproducts that arise in the
subsequent analysis. An guiding principle here is that we must obtain large negative
powers of the frequency parameter s in all our estimates. This is only possible (at
the low regularity at which we work) by the proper use of the local smoothing norm.

The centerpiece of Section [d]is the proof of Proposition As discussed above,
this goes beyond merely providing the basic local smoothing estimate (|1.4]). It also
demonstrates that the high-frequency contribution to the local smoothing norm is
small (for equicontinuous sets of initial data). This is then deployed in Section to
prove compactness of trajectories; see Proposition [5.1]

In Section [6] we prove local smoothing for the difference flow. This is Proposi-
tion [6.1] which is then used in Corollary [6.4] to control the divergence of the H,
and Hsy, flows. The analysis in this section is relatively short, because we rely on
numerous cancellations exhibited earlier in the analysis, particularly in Section

The paper ends with Section [7] which brings together all the foregoing analysis
to complete the proofs of Theorems and

Acknowledgements. R. K. was supported by NSF grants DMS-1600942 and
DMS-1856755. M. V. was supported by NSF grant DMS-1763074.

2. PRELIMINARIES

We begin by reviewing our basic notation and a few elementary results.
Unless indicated otherwise, spacetime norms are taken over the slab [—1,1] X R:

”‘JHL{’HS = || HQ(t)HHS(R)HLp(dt;[_Ll])

In addition to the usual H® spaces, we employ the notation

s = €+ 12715 de (2.1)
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where our convention for the Fourier transform is

f©) = [t @) e sothat |1 Flz = £l

The particular formulation of (2.1), including the factor of 4, is explained by its
appearance in (2.6). Throughout this paper, we shall only consider s > 1.
We will frequently use the elementary facts

lwfllgz S {lwllee + 1wl Il gz and  Jwfllgz S lwllgp 1z (2:2)

Note that by duality, the results for H_! are equivalent to those for HL.

We will use the Littlewood—Paley decomposition extensively in our treatment
of paraproducts. It is based on a smooth partition of unity in Fourier space: Fix
¢ : R — [0,1] that is C°° and satisfies p(§) = 1if |§] < 1 and ¢(§) = 0if |¢] > 2.
We then define Littlewood—Paley pieces as follows:

Fole) {w(f)f(&) o cifN=1
[(p(é/N) - @(2£/N)]f(£) DifN € {2,4,8,. : }

Evidently, f = > fx where the sum is over N € {1,2,4,8,...}.

We write J, for the Schatten classes (= trace ideals) defined over the Hilbert
space L?(R), with the particular convention that J., denotes the space of bounded
operators endowed with the operator norm. This differs from the text [I7] where
Joo denotes compact operators (with the same norm). These classes of operators
obey the Holder inequality in the form

[AB|l5, < |All3, I1Bll5,, whenever % =141
Throughout the paper, Ry(3¢) denotes the resolvent

Ro(5) = (0% + »*)™'  with kernel (3, Ro(5)8,) = ;e 74l (2.3)

Since we only consider » > 1, Ry(x) is positive definite. By its square-root, we
shall always mean the positive definite square-root.

The natural compactness criterion for subsets of H~1(R) is easily intuited from
the classical case of LP(R?) settled already by Kolmogorov, Tamarkin, and Riesz
(cf. [I5]). As in this classical case, the following is readily proved by using smooth
mollification and smooth truncation to reduce matters to the Arzela—Ascoli Theo-
rem:

Lemma 2.1. A bounded subset Q C H~Y(R) is precompact in H=1(R) if and only
if it is both equicontinuous, which is to say

A~ 2d
lim sup/ |q(?#:(), (2.4)
N=oo geq Jig>n &8 +4

and tight, which means that
lim sup sup{(f,q) : ||fllz: <1 and supp(f) CR\ [-R,R]} = 0. (2.5)
R—oo 4eq

Evidently, the equicontinuity and tightness criteria could also be formulated
using a smooth cutoff (to large values of £ and x, respectively). Although a sharp
Fourier cutoff is acceptable, one cannot use a sharp spatial cutoff because this is
not a bounded operator in H~!(R).
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2.1. The diagonal Green’s function. This subsection is primarily devoted to re-
counting material from [§], which can be consulted for further details. A workhorse
of the analysis therein is the following computation:

Lemma 2.2. For ¢ € H }(R),

IVEaGav/RaC3, = & [ H4 de = Liall. (2.

For g € Bs, » > 1, and § > 0 sufficiently small, this lemma guarantees that it is
possible to use a Neumann series to construct the resolvent
oo
—1 4
R(3) = (—82 +q+ %2) = Z(—l)l\/Ro(%) (\/RO(%)q\/RO(%) ) \/Ro(%). (2.7)

£=0

Using this series, one may show that R(3¢) admits a continuous integral kernel.
Restricting this to the diagonal, yields what we term the diagonal Green’s function:

9(55¢,q) == (00, R(30)6,) = 5= + Y hy(w;3¢,q) (2.8)
=1

where

he(w;52,q) = (~1)*(\/Ro()0s, (v/Ro(2)av/Ro(32) ) /Ro(50)3). (2.9)

Arguing by duality and using Lemma [2.2] one readily sees that

el gy < s EFD/2||g|l4 _y for all £ > 1. (2.10)
From ([2.10) and Cauchy—Schwarz in Fourier space, we deduce that
el < 5~ E272]igl1 2.11)

which shows that g will be non-vanishing for all ¢ > 1 if § > 0 is sufficiently small.
From these estimates and the inverse function theorem, one can then show:

Lemma 2.3 (Diffeomorphism property). For § > 0 sufficiently small, both
qu—i and q»—>2%—%
are diffeomorphisms from Bs into HL(R) for every s > 1; both map zero to zero.

A natural prerequisite for well-posedness in H~!(R) is an a priori bound on this
norm, say, for Schwartz solutions. In the case of KdV, such results were proved in
[9, 10l [16]; these can be readily adapted to due to their presence in the same
integrable hierarchy. In order to prove local smoothing, however, it will be essential
for us to have a microscopic conservation law attendant to this low regularity. In
this paper, we will use the density

p(x; 52, q) = 236* — T T 452 [Ro(25)q](z), (2.12)

which is shown in [§] to be positive and integrable for ¢ € Bs, 3 > 1, and § > 0
sufficiently small. Moreover, for such parameters we have

o)
r §2 + 452
Caution. The definition of p here differs from that used in [§] by the numerical factor

25¢. This change connects p more closely with the H_! norm and will simplify our
analysis of local smoothing estimates in a comparable way.

/ p(x; 52, q) dx = 255, q) = de. (2.13)
R
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The quantity «(q; ») appearing in coincides with the renormalized loga-
rithm of the perturbation determinant discussed in [9, [16]; its asymptotic expansion
appeared already in . In this way, the conservation of o under can be in-
ferred from the general framework of the inverse scattering technique. Alternately,
one may deduce this from the associated microscopic conservation law derived in
[8, Appendix]. Concretely, for Schwartz solutions to (L.2)),

Otp + Oz Jstn = 0, (2.14)
where
Jsth = *%[16%5@(;{) — 83 + 43%q + ¢ — 3¢%]
—4°Ro(20) [ = 5(¢*)" + 5(¢)? +104°]; (2.15)

indeed the first term here originates in the time derivative of the reciprocal of the
Green’s function, while the second term arises by substituting into the last
term in .

It will also be important for us to have analogous information regarding the H,
flow, that is, the flow induced by the Hamiltonian via the symplectic structure

(1.3). Under this flow,
4q={—64r"g(r) + 326" — 16x"q + 4> [—q" + 3¢*] }' (2.16)
and correspondingly, 0;p + 0,j, = 0 with

32673 g(k) _ &%2%2&2—1-2%2—(1 32k2 58

m T R (o0 902) "2

— 16K%3* Ry (22) [~ 16K g(k) + 8kt —4k%q — ¢ + 3¢%]. (2.17)

Once again, we have grouped the terms according to their origin. It is important
here to distinguish between s > 1, which denotes the energy parameter in p, and
k > 1 which describes the flow under consideration.

As remarked earlier, these computations provide an elementary justification for
the conservation of a(g) under these flows and so, by , of the following:

Proposition 2.4 (A priori bound). For d > 0 sufficiently small,

||etJVHn+sJVH5m+TJVPq||H;l(R) ~ lall gz ) (2.18)
uniformly fort,s, 7 € R, Kk, > 1, and ¢ € BsNS(R). Moreover, if Q C BsNS(R)
is H™'-equicontinuous, then so is

Q. = {etJVH”+SJVH5"L+TJVPq it,s,T€R, K>1, and g € Q}.

The equicontinuity claim here follows directly from due to the uniformity
in s¢; this is discussed in Section 4 of [§].

It will be essential for our analysis to understand the large-sc behavior of g(x; »).
Our next lemma provides important information in this direction. The exact for-
mulation of the identities that follow is dictated by the need to exhibit certain
cancellations later on. At this moment, however, it is instructive to imagine that
our goal is to show that the RHS converges to the RHS as Kk — 0o. We
do not include a corresponding expression for the cubic terms because it is so com-
plicated as to be of little use in the subsequent analysis. Although the key identities
and were derived already in [§], this result does not appear there and
so we include a proof.
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Lemma 2.5. For ¢ € H *(R) and 5 > 1, we have

452216550y + 452 + '] = 420 = —¢@ 4 {0 (2.19)
165°hy + 326 (hY)? — 3¢° = —4¢*[5(h})? — 503 (h7)]
+ 45407 Ro(250) [(h})? + 207 (hY)]. (2.20)
Proof. From the explicit kernel for Ry, we deduce
hi(z) = — (64, Ro(5)qRo()d,) = —iRO(Z%)q(x). (2.21)

Thus, the claims (2.19)) follow from the symbol identities

4 244 6
L [—a%m T4 — &) = —Fm =~ aip

We turn now to the quadratic term hg, for which we have (cf. [8, Appendix]),
_ 1 / &+ (E—m)? +° + 2457
250\/2m Jr (62 4 452%)((§ — n)? + 4¢2) (” + 45¢)
We note that the definition (2.9) yields a double-integral representation for ha; to
obtain (2.22), one then needs to integrate out one variable. This is easily done by

the method of residues, for example.
In this way, (2.20) reduces to the algebraic identity

ha(€)

4 —=mn)g(n)dn. (2.22)

85467 + (€ —m)” + 1 + 2457 3n° (€ —n)? B
@+ B2 1) T )+ 42) | (€ 1P + 42)(F + 52)
_ 20— + €] 4522 (€ — n) + 267

(€ =m?+42)(n® +42%) (& +4:2)((§ = 1)* + 42°) (1 + 452)

2.2. Commutator estimates. In this subsection, we present several commutator
estimates, which will then inform our definition of a local smoothing norm.

Lemma 2.6 (Basic commutator identity).

[Ro, ¢] = Ro(¢'0 + 0¢') Ro = Ro(2¢'0 + ¢") Ry = Ro(20¢" — ¢"') Ro.

Proof. Follows directly from [—0? + »?, ¢] = —0¢' — ¢/0. O
Lemma 2.7 (Multiplicative commutation). Assume w: R — (0,00) satisfies
|w” ()| + |w'(z)| S w(x) and wa; < ele—vl/2 (2.23)
w(z

uniformly for x,y € R. Then

| wdRo (5 =

» and  ||wRo(> < ? (2.24)

)iHLp_}Lp S )%HLP—}LP ~

for every 1 < p < co. Moreover, the operator B = B(3) defined by the identity

w(x)Ro(3) = \/Ro(5)(Id +B)\/Ro(3) w(x) satisfies ||Bl5. < »"t  (2.25)

uniformly for » > 1.

Proof. The estimate (2.24)) follows from Schur’s test by using the explicit kernel for
Ry and just the second inequality in (2.23)).
Let us now consider the operators

B(2) = (=02 + 32)*Ro(50)(w'd + Ow') Ry (3¢) L (=02 + »2)1~%. (2.26)

1
w
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Note that by Lemma this reduces to B when z = 1/2. Our goal is to bound
B(1/2) via complex interpolation. As imaginary powers of positive operators are
unitary, this reduces the proof of (2.25)) to showing that

IBO)]l5.. +[I1BM)]l5.. <"
The latter is the simpler of the two. As
B(1) = (20’9 + w")Ro(3) £,

we need only apply the first relation in ([2.23]) and then (2.24).
Analogously, B(0) can be handled by writing

B(0) = Ro() (20w’ — ") Ro(3) 5 (~0° + )
= Ra(o0) (20— %57) ~ Ro()(20u! —w" ) Rolo) (201 — (£2))
and then employing and (2:24). .

In connection with proving local smoothing, we shall have to deal extensively
with localizing weights. With this in mind, it is convenient to make a definitive
choice of such a weight for use throughout the paper. We select

Y(x) :=sech() and 1. (z) == p(z — 2). (2.27)

While much about this choice is arbitrary, let us quickly mention two particular
considerations. First,
|(@30™)(2)] S ¥™(2) (2.28)

for any pair of integers m,s > 1. In particular, w(z) = ¢ (z)™ satisfies the first
constraint in . Our second consideration was that the number 99 is large
enough to guarantee that w(x) = ¢(x)™ also satisfies the second hypotheses of
Lemma [2.7] for all powers 1 < m < 12.

With the choice of cutoff made, we may now introduce the norm that will be
central to all our local smoothing analysis:

Definition 2.8. For s > 1, we define

lall,s,, = Sup ||(wgq)//HLfH;l([—l,l]x]R)' (2.29)

The time interval is fixed as [—1, 1] both for expository simplicity and because
allowing for a general time interval, say [—7T,7T], does not produce meaningfully
better results. Indeed, high-frequency wave packets can accumulate their entire
local-smoothing norm in an arbitrarily short time interval and so our bounds will
not improve in the limit 7" — 0. Conversely, for long time intervals, our arguments
do not yield better results than can be obtained a posteriori by covering [—T,T]
with unit intervals.

The power 6 appearing in is chosen for its divisibility properties — it will
allow us to redistribute weights among multiple copies of ¢ without introducing
fractions. In view of such changes in powers and because derivatives of the weight
will appear from commutators arising in the analysis, it is important that we prove
the following:

Lemma 2.9. Given ¢ € S(R),

160)" |2 gz So lallrs.. + llall pee gz (2.30)
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Analogously, for any s € {0,1,2}, we have
s—2
10°00) 2zt + 160l 2 s So 56T {allor +lalles, ). (231)

Proof. We begin with (2.30). By construction,

[eBi= adso 10260 < o [ 10360200 =
R

by the triangle inequality.
On the other hand, using (2.2)),

16v220) | grz2 < I(92) (W20) | przr + N(@%2) (W20) | gror + 1(902) Wlall o
S ||¢w6||,,3{|| (W) Lz + 1S 1522, - lall 2, + lall oz -
The estimate now follows by integrating in time and noting that
St ez 51
Let us now turn our attention to . By Plancherel,

s—2
10°@0) | = S 55 {Igall—r + 11(60)" N1z } (2.32)
holds pointwise in time. Thus, by (2.2]) and (2.30]) we have
s=2
10°(60) 2 rzr So 25 { Il + s }- (2.33)
The remaining parts of (2.31) now follow by writing ¢¢' = (¢q)" — ¢'q and ¢q¢" =
(9q)" —2¢'q' — ¢"q. O

The very subtlest parts of our analysis require us to exhibit certain cancellations
that appear when performing two commutations in a symmetrical way. This will
be important, for example, in the proofs of Lemmas [£.3] and [£.4]

Lemma 2.10 (Double commutators). There is a finite collection of operators
{4,, AL} satisfying

HAHH;1_>H;1¢ S 1 (2.34)
so that, writing Rg = Ro(3) we have
Ryt Ry — SRS = 372 "4, Ajy)S. (2.35)

Moreover, there is another finite collection of operators {A;, AL} satisfying (2.34)
so that

¥* RoqRoty* = Rot* qRo—45 Ry [)* ' q)' R —40RG [0y q) ORG+52 Y A0 q Al

(2.36)

Proof. We begin with two basic operator identities
Rof = fRo + 2f'OR% + Rof"(30% + »*)R% + 2Ry f" OR2 (2.37)
ORof — fORy = 5°Ro f' Ry + ORo f'ORy (2.38)

valid for any smooth function f. These can be verified by iterating Lemma
or by writing the corresponding integral kernels in Fourier variables. For example,
(2.38]) corresponds to

[ﬁfﬁ]f@*n)—%ﬂf n).
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Combining (2.37) with Lemma[2.7 and (2.28) shows
Roy® = ¥ORo + 120"/ ORg + 3 *¢° A with  [[A| =10 S 1. (2.39)

By taking adjoints (in the L? — L? sense), we deduce that
PRy = Roy)® — 120R5y°Y + 2 2A* Y with A0 ST (240)

~

Multiplying out (2.39)) and (2.40]) brings us very close to proving (2.35)); the only

terms not conforming to the desired representation in an obvious way are
120°0 ORS — 1208 ORGYY = 120° | 4 OR] — RS [0
_ 6 "\ p3 3 6
= 120°[—(%)'R} - o[ B3, %",
To handle this, we write [R3, ¢] = R[Ro, ¢] + Ro[Ro, $|Ro + [Ro, | R% and apply
Lemmas 2.6] and
To prove ([2.36]), we begin with the following analogue of (2.39):
Roy® = ¢ Ro + 49/ ORG + »*9* A with  [|Allg-1 5 S 1. (2.41)

Let us multiply out LHS(2.36) using (2.41) and its adjoint. When we compare
the result with RHS([2.36)), we find ourselves left to represent

—40R%)3Y qRy + 4Ro > qOR2 4 452 R[> q)' R2 + 40 R[4 q] OR2

in the form 3 A;1?qAL. Actually, this term is even better; (2.38) shows that it is
Zero. (I

3. PARAPRODUCTS

The initial thrust of this section is to develop basic estimates on the diagonal
Green’s function in terms of the local smoothing norm. In view of the series ,
this amounts to the discussion of the paraproducts hy. Later (beginning with
Lemma , we treat certain nonlinear combinations of these terms that arise
naturally in our analysis.

Although the paraproducts that follow fit the mold of the Coifmann—Meyer the-
ory, their symbols rapidly become so complicated as to render that approach un-
tenable. Rather, we employ a method that synthesizes the traditional Littlewood-
Paley techniques with trace-ideal technology.

Commutation will also play a major role, because we will need to obtain localizing
factors next to every copy of ¢ in the expressions in order to employ the local
smoothing norm. We can then break into Littlewood—Paley pieces and deploy our
basic trace-ideal estimates, such as,

[V Ro() fn v/ Ro(39)| 5, S min{se 2 N, s N 2H{[ fll g+ + [|0%f ]| o}, (B1)
which follows from Lemma and

[V/Ro() v/ Ro(29) || 5 S min{se N2, 572} fl| s+, (3.2)

which also utilizes the Bernstein estimate || f||pe < N3/2(|f||g-1.

Evidently, these inequalities incorporate two distinct modes of estimation and
ensure that we employ the optimal one for each pair N, »c. Experience has shown us
that this optimization, as well as the proper assignment of these estimates (based on
frequency comparisons), is essential in order to obtain sufficient decay (as » — 00)
to complete the analysis in the sections that follow.
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Proposition 3.1. Given 2 < { < 4, a collection of operators Ay, ..., Apr1 obeying
1Al o <1 (3.3)
a collection of Schwartz functions ¢1,...,oe, and q : [—1,1] = Bs, we write
Fy(t) == A191q(t) A202q(t) As . .. Aegeq(t) Aeya. (3.4)
Then
1Fell s, S 2300262 + llallEs, |- (3.5)

The implicit constant depends on ¢1, ..., ¢, but is independent of » > 1.
Proof. We begin by noting that (3.3)) guarantees that
Aj = /Ro()Bj\/Ro(5) with [|Bjll5. S 1.

Decomposing all ¢;q into their Littlewood—Paley pieces and using Holder’s inequal-
ity in Schatten classes, we deduce that

£
1Fdli. £ 30 IVRGAIL . TTIVRGA@s0)n, VRS 25,

Ni,...,N¢

provided Y 1/p; = 1. Actually, we only need a simple form of Holder’s inequality,
namely, when two of the exponents are 2 and all others are co. However, it is
important that we place the two highest frequency terms in Jo, while the remaining
terms we place in operator norm. Concretely, we use

|VRG(6a)x v Bal)| 3, So minfoe IN o AN} [5 4 lalss.].  (3.6)
v/ Ro(32)(¢0) v v/ Ro(52)]| ooy S min{oe? N2, 3}0, (3.7)
which follow from and by applying and Lemma In this way,

matters reduce to controlling the sum over frequencies, which we relabel so that
they are ordered. We are led to bound

2 ¢
3
Z Hmin{%ngj,%féNj_Q}Hmin{%ié,%f%\g"}

N12>--->Ng>1 j=1 Jj=3
2
3
< Z (H min{%_%Nj7 %_%N]fz}) min{%_% log(2 + %)7 %_2N22 }5_2
Ni>Ny j=1

3
< Z min{%_%,%_%NJQ} min{%_%Ng, %_%NQ_Q} min{%_% log(2 + £2), 2 N7 } 2
N

2
_ 3 _ 3 p
SN AN L ST AN ST N log(2 + A2
1

1
1SN <5 25 <Na < Nazs
2_3y 4 £ 2_3y
S w3 2% 4 3¢ 2 S %372

and the result follows. Evidently, the result can be extended to £ > 5, albeit with
a different power of s. O

Corollary 3.2. Fiz ¢ € S(R). For any q:[-1,1] = Bs and » > 1,

£

_5_5
phsllL: S 2 °756{6% + |lallis.. } (3.8)
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D lbhellpy, ST 520" + lall3 s, }- (3.9)
>4

Proof. Our proof rests on the following representation

1
[@hellry = sup /_1 TY{fquo(qRo)f} dt (3.10)

where the supremum is over f € L°°([—1,1] x R) of unit norm. By the same
partition of unity argument exhibited in the proof of Lemma we see that it
suffices to assume that ¢ is some positive power of 1. For example, if we prove
(3.8) with ¢ = 13, it then follows that it holds uniformly for translates (due to the
uniformity under translation of ¢) and finally, we have

lphsllz:, < 512||¢1/)9||L1L N2hs |l peory, So 27 °86{6% + lalEs, }-
Beginning with , we write
VP RoqRoqRoqRo = [IZJSRO#]Z/JQ[WRO%WQ WRoi]i/Jq [Ro]. (3.11)

Notice that by Lemma each operator in square brackets is bounded as a map-
ping H;! — H.. In this way, (3.8) follows from Proposition
Analogously, the £ = 4 term in (3.9)) follows from

VY Ro(qRo)® = [W‘Roﬁ]wq [Y/JSROﬁ]TﬂQWQRoﬁ]?M [¥Ro;]va[Ro).
It remains to treat ¢ > 4, which we shall do by reducing consideration to the
case £ = 4. Cycling the trace in (3.10)) yields

Te{ v Ro(aRo) } = Te{(vRoav/Ro)*VRo v o/ Ro(VRoav/Ro )} (3.12)

When ¢ = 4, the operators to the left and right of f are adjoints of one another.
Therefore, the trace is monotone in f and so maximized by taking f = 1. Thus,

lhal ey, = [|(VRoav/Ro)*V/Ro v2| 355,

Returning to (3.12)) for general ¢ > 5, we then deduce that

ey, < [|(VRoav/Ro)* VRow? (|7, IV Roav/Rol 5 < 16 hall g 672
As 0 < 1, this can be summed to yield (3.9 . O

Our next proposition and corollary are close analogues of the previous ones;
however, we now estimate the H. norm and (more importantly) only use one copy
of the local smoothing norm to do so.

Proposition 3.3. Given ¢ > 2, a collection of operators Ai,...,Asr1 obeying
(3.3), a collection of Schwartz functions ¢1,...,¢s, and f,q : [-1,1] — Bs, we
write

=/ Ro(5) f(t)A101q(t) Aadaq(t)As . . . Aedeq(t)\/ Ro(5).
Then

_£_13 p_
1Eel g, S 272756 {0+ llallns. I Fll =t (3.13)

The implicit constant is independent of » > 1.
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Proof. Asin the proof of the previous proposition, we proceed by Holder’s inequality
and decomposing into Littlewood—Paley pieces. This time, we apply only to
the highest frequency term, and to the remainder. Regarding f, we simply
use Lemma [2.2)

VRGN R 25 < VRGN R ) 13, S 5 1 Lz

In this way, we are once again led to a sum over ordered frequencies:
¢ 3
1, _3 1 . o3 1
g » 2 min{sx 2Ny, » 2N] 2}”mln{% 2]\7]?,% 2}

Ni>->N; =2
_1 . _3 P ) . 2 % _1 N /—1
< E s 2min{sx 2Ny, 2Ny “}min{s “Np, " 2 log(2 + =1)}
Ny
14 £ 14
< FTE L3 < 5

Once again, the last step involves breaking the sum into three pieces. Note that
45

for ¢ > 3, we can obtain a slightly better power, namely, >~ = . (I
Corollary 3.4. Fiz ¢ € S(R) and 2 < m < 12. Then for ¢ sufficiently small,
D lghellizny S 5 7560+ llglus. ), (3.14)

>m
uniformly for q : [-1,1] — Bs and » > 1.
Proof. We begin by proving that for each f:[—1,1] — H~! and ¢ < 12,
IV Rofé(Roa) Vo | 15, S 32756 o+ llalls Il pzprsne (315)
Imagine first that ¢ = ¢£. Mimicking the proof of Corollary we write

PL(Roq)" = [WERov; Tob-q(vt Ropol~“Nboq - - [ Rov ib-q
and note that Lemma applies to all operators in square brackets. In view of
translation invariance, it then follows from Proposition [3.9] that

£ 13

IV Rofvi(Rog)" v Rollpsepian S w2 e 5 s+ HQHLSn}”fHLfH;l'
This then implies (3.15)) by the partition of unity argument used earlier:

v/ Bofé(Roa) v/ Roll 113, < / I/ Rof 2 6(Roa) v/ Roll 1, dz

_L_18 4
S 54615 4 Nallus, W |y e
_L_13 p_
S 2w 8T+ allns HIvEdlnem Il gz
While the limit £ < 12 applied in (3.15) is rather arbitrary, it seems untenable
to keep track of the dependence of the implicit constant on ¢; thus, it cannot be
applied directly to control the tail of the series in (3.14)).
Given m < 12 and £ > m, we deduce from (3.15)) and (2.6]) that

[ st@hatt,asn)pit.) dwdt < |V Rofo(Raay™ v Roll s, 1V Foav/Roll 5

J4

_£__ 13 —
<ot 1{5+||QHLSK}“JCHL$H;1’

where the implicit constant depends on m and ¢, but not on £. The lemma now
follows by duality. [
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Although not strictly a paraproduct, we record here several key estimates for h;
similar in nature to that of Corollary

Proposition 3.5. Given ¢ € S(R) and ¢ : [-1,1] — By,
s _8=s
lon{)l s S5 {0+ llalles..} (3.16)
for each s € {0, 1,2}; moreover,

|60 |y S {0+ llallzs, ) and [|omi]fy, <o

Proof. By (2.21] -, f%wh(s) [wRO(Q}r) J4q®). Thus, by Lemmasand
AN S h oy, S ez S 575 {0+ lallzs.. )

which proves (3.16)) and the first inequality in (3.17)), provided ¢ = 1. The case of
general ¢ then follows by the partition of unity argument exhibited already in the

proof of Lemma
Turning now to the second inequality in (3.17), we write ¢h} = (ph1) — ¢’'hy
and apply the Gagliardo—Nirenberg and Hoélder inequalities:

||¢h11||%§z S H(éha)"ll Lz, ||¢h1|\L°°, + (@' 1) Iz 116"l g, -
The result now follows from and - O

T
2

6{0+ llallzs..}. (3.17)

The diagonal Green’s function appears in the denominator in both (2.15) and
(2.17). Our next lemma provides us with an efficient means of handling this situa-
tion in terms of the results we have already developed.

Lemma 3.6. Fiz ¢ € S(R). For q:[—1,1] — Bs and ¢ sufficiently small, we have
5 1
Hd)[* —2x+ 1i-2;fﬁl] HLgH}{ S¢ 65{5 + HqHLS%}- (3.18)

Proof. There is no fear of division by zero here: From (2.10) we see that

_2xhy <4
)

125¢hy||poorn S 6 andso || T 2schs HL;XJH; ~

provided ¢ is sufﬁciently small. Combining this with the identity

45h 2 2xh
g 2t 1+2xﬁl =79 [1 o (1+2%}11)] lg - 2% hal, (3.19)
we see that the lemma then follows from Corollary O

In the remainder of this section, we prove two further paraproduct bounds on
nonlinear combinations of the h, that arise later in the analysis. While these terms
can be bounded by combining the estimates proved already, this does not yield
sufficient decay. It is essential for what follows that the exponent of s~! in
exceeds 7 and that in exceeds 8. This does not seem to be possible other
than by treating these paraproducts holistically.

Lemma 3.7. Fir A € {Id, 0*Ro(25), ®Ro(25)}. Then
[w P hAR R s+ [P R AR R, ST E8{8% + lallis. ), (3:20)

uniformly for q : [-1,1] — Bs.
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Proof. Schur’s test shows that ¢8A is LP-bounded for every 1 < p < oo, for each
choice of A, and uniformly for sz > 1
In a similar vein, we note that

Yihy =~ W Ry e [Utq] and  why = — Y Rog[(va) — (v1)'dl.

Combining these observations with Lemma and Bernstein inequalities, we
see that it suffices to show

N, N:
> ; 2| Ro(é1a) i 122, [ Ro(620) ol 2 1 Ro(d3) w1, S RES(B:20),

N1>N3>N3

for any trio of Schwartz functions ¢; € {¢*, 9,9%}.
We sum over Nj first using

N3/2 - 3/2 - 3/4 Ar3/4
S RGeS Y srnmllalen S %7 20N; 2 S s 2N NG
N3SN2 NSSN2
To complete the proof, we substitute this into the above, and use

S ONHRo(dsa)wllze, S D0 X
N

N§%1/3 N>31/3

_13
A HQHLS S {6+ |qllis, }

to sum over N; and Ny (we may now neglect the ordering). O

Lemma 3.8. For q:[—1,1] = Bs and §, we have
1612 hgll oy S #5362 (6% + al2s, }- (3.21)

Proof. As in the proof of Corollary we employ duality, writing LHS as
1
s [ eV Ra b [0 Ros 0 [ o e 0 a0 Ro ] vav/ B Y (3:2)
-1

where the supremum is over f € L*°([—1, 1] x R) of unit norm.
To proceed, we decompose ¢3h; = >y un with

uy =~ G Ro(250) L [(47) ).

Using Lemmas and we deduce the following analogues of (3.6)) and (3.7):

IVRoun fV/Ro |l 25, S 3 2llunlizz, S 2 min{se 2N, 57 2N} 5 + [la]|1s..]
H\/RouNf\/ HLOO:" < ||uN||LtIN%_ min{%_2N§,%_§}6.

Returning to , we divide each copy of ¥q into its Littlewood-Paley pieces,
yielding a sum over four frequencies. As in the proof of Corollary we now
apply Holder’s inequality in trace ideals, placing the two highest frequencies pieces
in L?J5 and the remainder in L{°J... But for the prefactor »~3, the resulting sum
is exactly that appearing in the proof of Proposition [3.1] when ¢ = 4 and so the
result follows from the computations given there. [
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4. LOCAL SMOOTHING

This section is primarily devoted to the proof of the following;:

Proposition 4.1. Fiz § sufficiently small. For any initial data ¢(0) € S(R) N By,
the corresponding solution q(t) to (1.2) satisfies

1
lallZs, < lla(0)][F,-x + 554 (4.1)
uniformly for »x > 1. For the definition of LS,., see (2.29)).

Later in Corollary we will observe that this yields as an a priori bound
for initial data in S(R) N Bs. This can then be extended to large Schwartz data by
employing the scaling .

Following the pattern introduced already by Kato in [5], we will be proving
the local smoothing estimate by localizing the microscopic conservation law .
While the dominant term in the current will reproduce LHS nicely, a wide
variety of the errors arising in our analysis must be bootstrapped. This necessitates
a smallness parameter. For terms cubic and higher in ¢, the parameter § could be
used; however, there are also quadratic error terms (arising from commutators) and
so an alternate source of smallness is required. This smallness will be obtained by
requiring s > s for some absolute s > 1. This restriction can be removed at
the end by employing the equivalence of norms (individually for H;! and LS.,,) as
» > 1 varies over bounded intervals.

To proceed, we let U(z) = [ ¢ (2’)'? dz’ and so observe that

1 00
/[p(l,sc) —p(=1,2)|¥(z)dx = — [1[ j5th(t,z)w(x)12 dz dt, (4.2)

where js1, is defined in . Note that we have omitted the translation parameter
z that appears in the definition of LS,, to avoid cumbersome notation; it will be
recovered at the end by employing the translation symmetry of solutions.

Let us begin our analysis by identifying two key constituents of the current jsiy:

J1 o= 452%[3¢% — 1657 ha (32)] — 4562 Ro(259) [ — 5(¢%)" + 5(¢')?] + 85¢*h (50) 1 ()
Jo = —643¢"hy(5) — 10¢°.

The first part collects all quadratic terms and will be the source of the coercivity
we seek. The second current represents the dominant cubic error term; extensive
analysis will be required in order to illustrate the main cancellation therein and
then control the remainder.

The next lemma controls the contributions of the remaining parts of js:, in a
satisfactory manner.

Lemma 4.2. Forq:[-1,1] = BsNS(R) and ¢ sufficiently small,

1 o]
[t = o) dear] o 8+ Jalls,
—1J—-o00
Proof. Let us begin by recalling the definition of jsyy:
Jsth = = 11652 [9(50) — o] +45%q +¢" = 3¢°}
— 452 Ro(25¢) [¢'Y — 5(¢%)" + 5(¢')* + 10¢°].



20 BJOERN BRINGMANN, ROWAN KILLIP, AND MONICA VISAN

To proceed, we expand out g(») using the series and discuss the main calcu-
lations attendant to each value of £ in succession. In this way, we will ‘discover’
the terms in j; and jo as we progress and identify four key quantities to be esti-
mated, which we label E1,...,Es. As there is no other energy parameter under
consideration, we omit the argument 3¢ from both g and hy below.

We start with £ = 1. From (2.19)) and (2.21),
2?”[—4%2(1 —q" = 165°hy] — 45 Ro(25¢) g™ = 3¢[4s* — %‘]hg‘g.
)

Removing the quadratic term 8s¢*h; h§4 which appears in j;, we are left to estimate

By = // 25% (25 — L — 4521 | WY1 da dt. (4.3)
We turn now to £ = 2 and consider the contribution of

2—"[3(]2 — 16%5/12] — 4% Ro(22) [ —5(¢*)" + 5(q')2].

g()
Setting aside those terms which appear in ji, we are left to estimate

By := // 25¢[§ — 2] [3¢” — 165" ho])"? du dt. (44)

For ¢ = 3, we consider the combination

22 [165¢"h3] — 42¢° Ro(2) [10¢°].

Setting aside the contrilg)]iltion of jo, we are left to estimate
Esq = — // 325°[1 — 25| hgyp® da dt (4.5)
and
Esp =10 / / ([Id — 432 Ry (25)] q3)w12 dz dt. (4.6)

Finally, we consider those £ > 4. This yields

Ey:= Z//%[—M%Shg]d)wdxdt,

which is easily estimated: By and Corollary
1Bal S 55l o D20 2Rl y | S 575678 + Nl -
>4 ’”

We now turn our attention to estimating the remaining three error terms, be-
ginning with F;. From (3.18]) and Proposition

22 4 1
‘// 2562 [1 — 250 el | {12 dy dt’ S s {6+ |lallis, }- (4.7)
Thus the estimation of E; is reduced to controlling
5 4
Ei, = / / 8 3R{ Yyt da dt. (4.8)

Integrating by parts twice and employing (2.11)) shows
|Bral © 5720071172 + 52 10hT 2 w112

x

+ 372 h |z _Nlohdllzz  + 572 0h Iz [whallzs -
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In view of the results of Proposition [3.5] it follows that
_1
|Bral S 572{6% + llallZs.. }

which is acceptable.
We now turn our attention to Fo, which we break into three pieces:

- // 2[4 — 23] [35%(h)* |9 da dt

Fon = // 2%[l B 1i};2£ﬁl][3q2 — 165¢°hg — 35 (hY)*|*? da dt

// 23— ﬁ};fﬁl [3¢* — 165°hg — 35¢°(hY)?]yp*? dx dt.
The first of these is easily estimated via and Proposition

Buul 583 — 2] o 012, 5 o346 + el ).
On the other hand, from we have

3¢> — 165°hy — 35°(hY)? = —45¢* [10h B + 5(h})?]
— 45" 92 Ry (25) [4h1 B + 5(R})?].
Using Proposition |3.5] we may then deduce that
I13¢* — 16%5h2 =35 (h) 2, < s 10 ez, 10ha e, + s lwhiIZs
S {5+ |lllLs. }
Combining this with , it follows that
B € 5 {8% + lall7s.. )

In view of (4.9 ., integration by parts allows one to reduce Fs. to terms covered
by Lemma [3.7] Thus

(4.9)

| Bac| S 57 50{0% + llallLs,. }-

It remains only to consider F3, and Fs3,. Employing (2.11]), Corollary and
Lemmas [3.6] and [3.8] we find

e [ T P T

_1
S 36{0 + |ldlles.. }-

To estimate Esp, we first write Id —43c2 Ry(22) = —0?Ry(25) and integrate by
parts. Next employing Lemma and the algebra property of H!, we deduce that
Bl S 52002 s S 200

But then by Plancherel and Lemma[2.9]

_2 _2
|Esp| S 53 0{IlWallige — + 1(00) |72y 0 b S 57 36{0% +lldllis. } O

We now demonstrate the coercivity of the quadratic current j;. It was the
knowledge of precisely the nature of this coercivity that led to the definition of the
local-smoothing norm back in . For the purposes of this section, it is
below that is important; however, we also isolate in a part of the argument
that will be useful in Section [6]
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Lemma 4.3 (Quadratic current). Given q:[—1,1] = Bs NS(R), let

/ / {645¢"ho(3¢) — 125%¢* + 5(¢')* — 5(¢q%)" — 85 [nY ()]* }1'? da dt.
Then
_1
1(¥°q )”IILQH 1)) ~ L09) + 5{0% + llqlis,.} (4.10)

and analogously,

1(%°q) N||L2H (I=1,1]xR) ~ // ' dzdt + > 3{52+HQ||LS} (4.11)

Proof. The greater part of the work here is demonstrating (4.10) ; this is were we

focus our attention first. At the end, we will see how to deduce from this.

Throughout the proof we employ the abbreviations hy = hy(3¢) and Ry = Rg(2x).
Looking at , we are lead naturally to estimate

%6/ [0 Row'?][(R})? + 2(h3)"] d dt

S A hilTs st hlZ;

_2
S5 {07 + llallis, b (4.12)

by using that |92 Roy'?| + |0 Rowr'?| < 52412 and Proposition
Looking at the remaining terms in (2.20) and incorporating them into I(3), we
find ourselves needing to consider

5 / / ([ — 16:503] — 42 + [(¢) — 165512 Vo 2 dodt. (4.13)

To proceed, we shall estimate the three terms inside the braces, working from left
to right.
The first term makes a negligible contribution: As g = —(—08? + 45¢%)hy, so

q? — 165502 = 52 (h))? — 45 (h2)" + 8544 (h))?.

Thus by Proposition we see that
Y e e R N A e o
2
<3 {07 + lalis,. }- (4.14)
Turning now to the middle term from (4.13]), we see from Lemma that

|52 [Fov™Ro = v* REu g gy S 5
Thus, recalling (2-21)) and Lemma[2.9]
/4%4[h11/]2'¢112 dr — 4%2<,¢]6q//’ R(Q)'(/Jﬁq”>

] S P
f,

S {0% + ldllis, }-

Continuing from here, we note that by Lemma
4% H<¢6q// R ¢6 //> _ <(,(/}6 )// R (11)6 )//>
< (100" Lz + 190 | pzrrzr + 1l 2z ) (190 s + 1l 2z

1
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S5 {82+ lals, }-

Putting these two pieces together, we find
/ /4%4[]1,1/]2'(/}12 d.%'—4%2<(¢6q>”,R%(1/)6q)”>
Proceeding in a similar way, we find that

[ 10202 do — 1656 (00 B

dt S 58+ alis, ). (4.15)

< 212, 1
L! ¢

<S5 0%+ lall3s, )
and also that
(g, [1d+452Ro] Ro(w')') = ((6°9)", [1a+45¢2 Ro] Ro (v°4)")

Ly
S (lw)qﬂHLgH;l + ||¢ql||L§H;1 + Hw(I”LfH;l) (H¢q/||LgH;1 + ||1/’(I||L$H;1)
S5 {0 + lallEs. )
Hence, writing Id —165*R3 = —9[Id +45¢* Ry Ro0, we find
H / [(¢')7 =165 (h})?] "2 dar — ((1°0)", [1d +45¢° Ro] Ro (4°9)") |, £16)
S5 + ldllis, }-
Aggregating our estimates (4.12)), (4.14), (4.15)), and (4.16]), we discover that
15 [(@he Rty S lalls ) @D

which proves (4.10)). We now turn our attention to (4.11])

Comparing the definition of I(3¢) with f —j1912, we see two discrepancies. The
first is easily estimated via integration by parts and Proposition [3.5

‘8%4 //wu [h1h§4) — (W))?] dadt| < %4{“%/1”@,1 + l[hallze MR Il:

S 3 {07 + lalis,. }- (4.18)

Regarding the second discrepancy, we write Id —43¢% Ro(25) = —92 Ro(2) and then
integrate by parts to estimate it as follows:

[[ @R 50 )? - 56" dode] S bl S 8+ lals. )

Together with (4.18)), this estimate allows us to deduce (4.11)) from (4.10). O

Lemma 4.4 (Cubic current). For q:[—1,1] = BsNS(R) and § sufficiently small,

1 0o
[ e St (6 4 lalls. (4.19)
—1J—-o00
Proof. Our first two reductions are based on Lemma and the representation
/ / 645 hath'2 dr dt = — 6457 / Tr{ROzpl?ROqRoqRoq} dt. (4.20)

Here and below Ry = Ro(¢).
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Employing , we may write
Te{ [Rop'2Ro — w0 R3u®)gRoqRoq } = 52> Tr{ A%q[0* Rk | aRoq® A, },

where the sum has finitely many terms and each of the operators 4; and A} satisfy
(2.34]). This allows us to apply Proposition and so deduce that

‘%7 / Te{ [Rov'? Ro — wO R3u®|qRogRoa } dt| S 5 6{6% + lall}s, }.  (4.21)

which constitutes an acceptable error.
Next we seek to apply (2.36) in a similar way to prove

’”7/ Te{ Rogu* (v* RogRot? — Ro*qRo ) qur* o | dt’ S 508" + lals. )
(4.22)

The terms involving A; are readily seen to be acceptable via Proposition [3.1] How-
ever this leaves us to prove

" / Tr{ Roqu! (52 R3[0*0'q)' RS + OR3[0*0'q)'OR3 ) av* o } dt‘ < RHS(E2).

To do this, we cycle the trace and apply Holder’s inequality, using the following
two inputs: First, by (3.5), we have

| Roqv* Rgv g/ Ro|\i§¢,2 = [[Roqv* RSy qRoq* Rgw qRo|| 15,
S TR0+ alis, )
Second, using Lemma and , we see that
152 RS [00) Ro + ORY (60 ORo |75, S 572 [6) |37
S {8 4 allis, )

for any Schwartz function ¢.
Writing u := 9*q and combining (4.20), (#.21]), and (4.22)), we finally achieve
our sought-after reduction: To prove the lemma, it suffices to show that

/

In order to exhibit the required cancellation, it is convenient to freeze the time
variable and show instead that

At S5 58{6% + |lal2s. ). (423)

64" Tr{RouRouRouRo} — / 100 dz

‘64%7 Tr{ROuROuROuRO} —/10u3 dz| < %_é5{52 + ||u”||§1,1}. (4.24)

This then yields (4.23)) by integrating in time and applying Lemma We begin
by writing out the trace as a paraproduct with an explicit symbol. Concretely, if
(mom) = [ ad
m 5 = ’
TR J 2nle +PPIE+ ) + A + m)” + 7]
then using that u is real-valued, we may evaluate the trace (in Fourier variables)
as follows:

Tr{RguRouRouRo} = \/% // m(n1, n2)a(m + n2)t(n2)t(n1) dny dns.
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/u3 dx = \/% //mﬁ(ﬂzm(m) dm dna.

By contour integration (or partial fractions), we find

By comparison,

_ 6405°+485¢* (2074 2n3 + (1 —m2)*|4+-45¢% [3n] —4ni na+4nTng —4mnS +3n5] 4005 (m —n2)*
456307 +45e2]2 05 +452]2[(n1 —12) 2 +45¢2] )

With patient computation (we recommend collecting terms by power of ), this
yields the key cancellation:

nin3 N i+ 03 + (m — m2)?]
03 + 452][n3 + 452] * [nF + 452] [0 + 452][(m — m2)? + 45¢2]

uniformly for 11,72 € R.
To estimate the contribution of the first term, we use Cauchy—Schwarz:

mnglu m 4 n2)u(n2)a(n)|
dn, d
// 771 +4%2 [772 + 45 ] e

< ” //HQ // |U m +772)|2 dn. d vz < —1/2H //H2 || ”
u x u —1||U —1.
[1F + 45¢2][n3 + 45¢2] h e ~ Eaail

|645¢"m — 10| <

Exploiting the n; <> n2 symmetry, the contribution of the second term is con-

trolled by
// nila(m + n2)t(n2)d (m)ldmdnz (4.25)
Ima|<|m: |

N3 + 4522

We split this integral into two parts depending on whether |n; + 72| > |n2| or
conversely, |1 + 12| < |n2]. In the former case, our next inequality is elementary;
in the latter, one must first make the change of variables (1 = 11, (2 = —n1 — 12 to
obtain

n?la(n)] v (m +n2)2 + Lla(m +n2)| |a(n2)|
(4.25) 5// dny dny.
VL A 452 V(1 +m2)? + 4522 Vs +1

Although used to arrive at this final form of the integrand, we have now abandoned
the constraints on 71,72. To complete our estimation of (4.25), we now seek to
employ Schur’s test. Setting N = /3 € [1, 5], Cauchy—Schwarz shows

Sp/\/n+< ]a(n + ¢)
VO + 02+ 452
/ E+1Jag) VEFT i)
El<N /€2 + 42 \/§2+1 ey & \/524—4%2
S 5l + 1}

Employing this bound in Schur’s test, we deduce that (4.25) < RHS(4.24). This
completes the proof of (4.24]) and with that, of the lemma. O

With these preliminaries complete, we are now ready to prove the local smooth-
ing estimate.
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Proof of Proposition[{.1 As noted at the beginning of this section, it suffices to
prove the result for » large (relative to some absolute constant).
Looking back to the basic identity (4.2) for the localized conservation law and

employing Lemmas [£.2] [£-3] and [4:4] we find that

(' >”||L2H draem S ol 482 4 lal3s, ). (426)

On the other hand, p > 0, so by (2.13)) and Proposition we deduce
1) 121y (1agey S II(J(O)IIfq;l +o7 5 {07 + |lallis, }- (4.27)
The final estimate (4.1]) now follows by taking a supremum over all (spatial) trans-
lates of the solution ¢ and choosing s sufficiently large. ([

Corollary 4. 5 Fiz § > 0 sufficiently small and ¢ € S(R). For every initial data
q € Bs NS(R), the corresponding solution q(t) to (L.2)) satisfies

to+1
sup / / oz —x0)?[|q (t, ) + |q(t, 2)*] dzdt Sy 6°. (4.28)
zo,t0ER Jig
Moreover, given any Q C Bs N S(R) that is H(R)-equicontinuous,
to+1
lim sup sup / / Lo (2=20)?[|¢/ (¢, 2)[% + |q(t, 2)|?] de dt = 0. (4.29)
R=00 geQ woto€R Jio

Proof. The supremum over tg,zg is ultimately a red herring, because the space-

time translation can be transferred to q. The boundedness and equicontinuity of

the correspondingly larger set of initial data was demonstrated in Proposition
To prove (| , we first observe that

[[o@?ldwa)? +lato)P) dode S loalzm +16am (430
and then that
I6aliZ 1 S 6l rr-1 + 1(6)" 2251 (4.31)

(as well as the analogous assertion with ¢ — ¢'). In this way, follows from
the sr =1 cases of Lemma Proposition and .

We turn now to and adopt the notation ¢p(z) = R™/2¢(z/R). As it
is our intention to employ , we should also consider ¢, = R73/2¢/(z/R) in
what follows; however, given the generality afforded ¢, this is covered by the same
analysis.

By first looking on the Fourier side, and then applying , we find

lorallin S s 6rallfi- + 1(6r0)" %1 S % lallf—s + 1(6ra) % (432)

uniformly for » > 1.
We now focus our attention on the right-most term in (4.32). As

(R <¢6f7 [ Ro(2:)02 |02 f]) dz (4.33)
for any f, so it follows from Lemmam 2.7 that

e e A P T P CE T
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Next we apply (2.2). Noting that

[ Wm0 s + 1602 e = S (435)
uniformly in R, we are lead to the conclusion
2 2 2
(era) 131 S Sgp{ [@2a)" || py=r + (|92 || =2 + WfqllH;l}, (4.36)
uniformly in R. By applying (2.30) and (2.31), we then obtain
_2
1680) 121 S lall2 s + 56 Hlalies + lalids,. (437)
Returning to (4.32) and employing Propositions and We now deduce that
P -1
loralZerm S % 19(0) 131 + q(0) 2, + a2 (438)

This quantity can be made arbitrarily small, uniformly in ¢, by choosing s large
and then R even larger still. The uniformity here uses the equicontinuity of the set
of initial data. O

5. COMPACTNESS

This section is devoted to proving a key compactness property of solutions to

[2):

Proposition 5.1. Fizd > 0 sufficiently small and let Q C BsNS(R) be precompact
in H-1(R). Then

Q« = {etJVH“h'q :qg€Q andt € [-1, 1]}
is also precompact in H~1(R).

Evidently, this conclusion would follow from Theorem because the continu-
ous image of the compact set [—1,1] x @ is compact. However, we will need this
compactness result in order to prove that theorem. Its principal role is to lessen
the continuity requirements we need to show on sequences of solutions, by reducing
the question of norm convergence to one of weak convergence.

As discussed earlier, precompactness comprises three ingredients: boundedness,
equicontinuity, and tightness. The first two follow from Proposition our central
enemy in this section is tightness.

In order to control the transport of the H~! norm of a solution, it is convenient
to employ the density p. While it has been shown previously that f p controls the
global H~! norm (cf. ), we need such an equivalence that holds locally in
space. This is new and the subject of our next lemma:

Lemma 5.2. Fiz 6 > 0 sufficiently small and w : R — (0,00) that satisfies
7 / < d w(y) < |x—y\/2. 51
W@+ @) < u) md T < (51)
Then for sy > 1 sufficiently large (independent of w),

Ul g < llw?p(o) ey < 2wl g (5.2)

uniformly for »x > s and ¢ € Bs N S(R).
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Proof. Notice that guarantees that holds with an absolute constant.
This will be important for ensuring that s does not depend on w.

Recall that for » > 1 and ¢ sufficiently small, both p > 0 and g > 0. From this
and , we may then deduce that for § sufficiently small,

llo - 2gbu?ll, 5 Hlpw?,. S o 2mgpu?]

~ ~

In this way, we see that it suffices to prove (5.2]) with p replaced by 2s¢gp.
The benefit of this reduction (indeed equivalency) is that it removes g from the
denominator:

2egp = (456°hy — 85 hT) — 8sc* (g — 3 — ha)ha + 45 he (5.3)
>3

From Lemmas 2.7 and B.2] we see that

/h2w2 dx = Tr{ Ro(»)wqRo(3)*wq Ro(%)} + O(%_4qu||§{;1) (5.4)
2

/h(ng dx
>3

Next we employ Lemma [2.7] and (2.21) in a similar fashion to see that

and analogously that

~

< 538 |wgl? - (5.5)

/h§w2 dz = 3 *(wgq, Ro(250)*wq) + 0(%—5||wq||§1;1). (5.6)

As our last preliminary before treating the terms in (5.3)), we observe that the
techniques just used show

g — 2 — mle?|, < o2 lwgll?y (5.7)

We use this with (2.11]) to handle the middle term in (5.3).
Putting everything together, we find that

/2%gpw2 dx = 44 Tr{ Ro(»)wqRo(3)%wq RO(%)}
— 8% (wq, Ro(25)*wq) + O(}F% ||wq||i1;1)

_1
= Jwgll2ys + O (5 ¥ fwall? ).

Note that the last step here just involves exact computation of the leading term,
as can be done, for example, by differentiating the identity with respect to s.

The sought-after equivalence now follows by choosing s sufficiently large relative
to the (absolute) constant implicit in the big Oh notation. O

In what follows, we will use the following localization to large positive x:
Up(z) = 3 + L tanh (Z22))  with  a0(R) = R? (5.8)

and the corresponding localization Ur(—z) to large negative x. The exact choice of
zo(R) is not important; we merely require that xg/R — oo as R — oo. Evidently,
we have

Up(2) == 5=0r(x)® if weset @p(z) = sech(ZF2). (5.9)
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We write the derivative in this way, to draw an analogy with Corollary [I.5] We
also note that the hypotheses of Lemma are satisfied with w(z) = \/ VY g(+x),
provided R is sufficiently large.

Our last observation about this choice of cut-off is that

1T Ly < 5l (5.10)
uniformly for » > 1 and f € H'(R) with supp(f) C [R, ).

Proof of Proposition[5.1 As noted earlier, the boundedness and equicontinuity of
Q. follow from Proposition[2:4] As well as their direct contribution to compactness,
these properties will also play a key role in the proof of tightness.

From the compactness of () we find

A sup [lgy W |- =0
Indeed, as @ is totally bounded, it suffices to verify this for individual g. Combining
this with Lemma [5.2] we deduce that for s sufficiently large,
lim sup / p(x; 52,q) [Yr(z) + Yr(—z)] dz = 0. (5.11)
R

R—o0 q€Q

Henceforth, > will remain fixed and implicit constants will be permitted to depend
on it. In the converse direction, Lemmaand (5.10)) show us that the compactness
of Q. will follow if we can prove

lim sup sup / p(x;22,q(t)) [Vr(z) + Up(—2)] dz =0, (5.12)
R—00 4e@ te[-1,1] /R
where ¢(t) is defined from its initial data ¢(0) = g € Q by the Hsp,-flow.
Comparing (5.11)) and (5.12]) and invoking the basic microscopic conservation
law, we see that the proposition can be proved by showing

lim sup /Rjg,th(m; ,q(t)) [Vr(z) — Vi(—2)] do

R—o0 q€Q

=0. (5.13)
Li
This is what we shall do. To improve readability, we will drop the ¥/, (—z) term in
what follows. Its contributions may be handled in a parallel manner.

The analysis of will be much simpler than the parallel analysis in Section
because we no longer need to demonstrate decay in s. This decay was essential for
proving Corollary which we will now use to verify (5.13)). Recall that

Joth = g 130 — 45Pq — ¢ — 165" [9() — 3]}
_ 4%2R0(2%) [q(4) _ 5(q2)// + 5((1/)2 + 1Oq3].
Working our way through the terms in the first row using (5.9)), we have

%/ /%q%ﬁdw

1 82 042 d

R 90 4PR 4T

7 / ’ / Zq"0hdo|dt S | L0nll o 2 {l0nd Iz, + 6Ralzz }
6

B[] [ #i00 - Z1ehas

dt < H%HLgfmﬁWRQH%;m

dt S |51l 10rl 2 7l émal 2z,

dt S %l 5l ee llg = 2l NORlL2,
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all of which are acceptable thanks to Corollary [£.5] and elementary calculations.
Looking now at the second row of terms in the definition of jsin, we find that
the operator 43¢ Ry (25¢) causes some irritation. To handle this, we write

452 Ro(25) Vg, = Up — Ro(25¢) Uy .

While the operator remains in the second term, the two additional powers of R~!
arising from the derivatives make this term trivial to handle. Focusing instead on
the dominant terms we estimate as follows:

%/ /q(4)¢%d$
1 / / 5(¢%)' 6% da|dt S kllord [z |lokallze
I / ‘ / 5(¢)° ¢ du
4[] [ 100k

Once again, these are readily seen to be acceptable via Corollary (]

dt S ”(JHL;’CH*l%”(bQRHL;”Hf)

dt S %lordII7:

dt < Ellallpee ||¢RQH%§H1~

6. LOCAL SMOOTHING FOR THE DIFFERENCE FLOW

Our primary goal in this section is to prove the following local smoothing estimate
for the difference flow, that is, the flow generated by the Hamiltonian Hsi, — H.
At the end of the section, we apply this to control how the two flows diverge from
one another; see Corollary [6.4]

Proposition 6.1 (Local smoothing for the difference flow). For ¢ sufficiently small
and kg > 1 sufficiently large,

V(H oy 2
Heu (Hon HK')qHLsK Sl (6.1)
uniformly for ¢ € Bs NS(R) and k > Kg.

Once again, we employ a spatially localized version of the conservation laws
discussed in subsection In this section, the parameter » will be regarded as
fixed (it would suffice to set » = 1) and correspondingly, all implicit constants will
be permitted to depend on it. While we will be reusing many of the same estimates
exhibited in Section [4 the nature of the cancellations involved is rather different.
Let us explain this more fully.

Recall that the currents and split naturally into two parts, corre-
sponding to the second and third summands in : in each formula, the top line
originates in the time derivative of the diagonal Green’s function, while the second
line comes from 9;¢. In Section[4] the essential cancellations were between the two
parts of jsi,. Here, cancellations will arise between corresponding terms in js¢, and
jx. In particular, the two parts of the currents may be treated independently and
that is what we shall do. The dominant part of the current jsin — j. comes from
0;q and takes the form

Jo = — 43 Ry(25¢) [64&7 [9(k) — =] + 16K%q + 4k%¢" + ¢

—1262¢% — 5(¢*)" + 5(¢')* + 1043 |. (6.2)
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Regarding the remainder, we have that under the difference flow,

5 = listn — jn — Jol". (6.3)

Note that the smoothing effect of Rg(2s¢) in is not helpful: this current is
to be integrated against a bump function (the derivative of the localizing cutoff)
and applying this operator to that bump function simply produces another bump
function. In fact, in order to simplify the treatment of this (the most significant)
term, we shall adapt our localizing function ¥(z) accordingly:

V() := é /OO (=0 + 452)¢"?] () d’. (6.4)

Clearly, ¥'(z) is a Schwartz function.
As evidence that jj really does capture the dominant terms, we now show that
the remainder can be estimated in a satisfactory way:

Q.‘&

Lemma 6.2. Fiz > > 1 and ¢ € S(R). If ¢ is sufficiently small, then

’/_11 /_O; [stn — Jx = Jo](t, ) d(x) da dt

6.5
w1t llallgs, )+ 110258 e e {0+ alls, 3, Y
uniformly for q : [—1,1] — Bs N S(R) and k > 1.
Proof. After considerable rearrangement, and vield
Jown = r = o = =25 {1687 [g(r) = L] +4r%a+¢" =3} (66)
- m{wm lg(e) = %] + 44} (6.7)
2216w [gn) - ]} (6.8)
- ﬁ{—,{ [kg(x) — 2g(>9)] }. (6.9)

While this can be written in a more compact way, this expression helps highlight
an underlying pattern. In estimating the contribution of these terms, it will be
convenient to employ an auxiliary ¢ € S(R), chosen so that |¢| < >

From and the diffeomorphism property (Lemma , we see that

w3 lg(w) = 5ell e + 196 Iz, + N5t — 2l S1

and so the contributions of and are clearly acceptable.
We now turn our attention to and (6.7), which include cancellations. The
parts of these terms that do not involve cancellations are easily settled by using

Corollaries [3.2 and 3.4}

>k loheWllzy, + K2 Iha() 1z, S w8 {6+ lallEs, }-
>3
This is acceptable since ( € Ly, and ¢ € L2.

For the remaining part of (6.7)), we use (2.21)) and then (3.16):
lolastha(s) + s S RIER e S m {1+ lali3s, }-
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This leaves us to exhibit two cancellations in (6.6). By (2.20) and the results of
Proposition [3.5
61168 ha) — 3621, S RZIGHEIZ + iRy IEhllzs, + w205 s
_2
SkT3{% + lallis, }-

It remains to handle the contribution of 16x°hy (k) + 4x%q + ¢”. Using (2.19),
, and integration by parts, its contribution simplifies to

// by ¢dxdt—2%/<( (%)) ,ORo(2k)q") dt

+ 2% / / [59" +2(555) ¢'] kb1 (x) da dt.

In the first line, we write pRy = Ro¢ + [¢, Ro] and apply Lemma for the
commutator. Both the commutator term and the terms in the second line are

easily seen to be
O(s {1+l })

by using (3.16)) and Cauchy—Schwarz. On the other hand, (2.31)) shows that

()" Ba(2ryoyat| < 1102 5 ey 46+ s,

which is precisely the origin of the final term in (6.5)). O

(6.10)

Next, we demonstrate the key coercivity that we require. The argument will be
rather short, because we have deliberately styled our presentation in Section {4 to
make this possible.

Lemma 6.3. Fiz x> 1 and § sufficiently small. Then

_1
16012 iy S // Jolt. )W (@) dedt + k(8% + lall3s, )

uniformly for ¢ : [-1,1] = Bs NS(R) and k > 1.
Proof. Recall that ¥ was chosen so that —43c? Ry(2s)¥’ = 112, Employing this
and the series (2.8]), we find

// GoU' dx dt = // [64k7hy (k) + 166%q + 4k%q" + ¢ D] p'? dz dt (6.11)
+ // [64K"ha (k) — 126%¢° — 5(¢*)" + 5(¢')?|y"? dzdt (6.12)

//[IOq + 6457 hy(r ]zpl?dxdt (6.13)

£>3
Applying (2.19)) in , we are lead to estimate

J[ it 02 s ] < simloz, o

by integration by parts and .

To estimate , we look to Lemma Indeed, what appears here is greater
than I(x) due to the absence of the —8x*[h}(k)]? term.

Looking now at , we note that the £ = 3 term is handled by Lemma
while ¢ > 4 is bounded acceptably by Corollary (]
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Proof of Proposition[6.4 Choosing ¥ as in ((6.4), we begin with the identity

/[p(l,m) (=1 dm—// 2 () dedt,  (6.14)

valid for any Schwartz solution to the difference flow. We then apply Lemmas
and on the right-hand side; on the left-hand side, we use (2.13)) and Proposi-
tion 2.4] In this way, we find that

@) 13 s S 1+ 675 llallLs, + 102535 ooy {0+ llallzs, ). (6.15)
Next we use Lemma [2.3] and Proposition 2.4] to see that
102 e < oty 2l o, S350

and thence that
H g(%)HLooH—l”q”LS 571"’5”(]”%5‘&7

uniformly for £ > 0. The result now follows by plugging this into (6.15]), taking a
supremum over translates of ¢ (to recover the LS, norm on the left-hand side) and
finally by choosing k¢ large enough and e small enough. O

Having proved our local smoothing estimate for the difference flow, we now
demonstrate its role in the proof of well-posedness, namely, to show that the H,
flows closely track the full Hsy, flow (for & large). This proximity is expressed
through the reciprocal Green’s function and in the weak topology. These limitations
will be removed in the next section by using the compactness demonstrated in
Section [l

Corollary 6.4. Fiz > > 1 and § > 0 sufficiently small. Given any Q@ C Bs NS(R)
that is H—1(R)-equicontinuous and any ¢ € S(R),

lim sup sup ‘ ) S | ‘:0_ 616
K00 geQ [t|<1 <¢ [g(t) gn(t)]> ( )

Here we use the notations
g(t) = g(x; », etJVH“hq) and gx(t) = g(ax; », etJVH"q). (6.17)

Proof. Let us define

Q.= {eVHrg:tc[-1,1] and ¢ € Q} and gaig(t) = g(; 5, e“v(HS“‘_H*‘)q).

Then, by the commutativity of the flows, we need only show

limsup sup sup ‘ b, [——~ — —L ‘:O.
k=00 qEQ. [|t[<1 < [Qd-ff gdlff(O)D

Also, from Proposition[2.4] we see that the set Q). inherits boundedness and equicon-
tinuity from @. This will be important.
Beginning with (6.3]) and then applying Lemmal[6.2 and Proposition we find

H<¢7 8tgdif1f(t)>||L,} SHE + H Qd,ff(t)HLooH L

uniformly for ¢ € Q. and kK > k. In this way, the proof of the proposition reduces
to verifying the equicontinuity property

hgfolip qs;g)* EF<p1 |62 [gd,ff(t) %]HH;1 =0. (6.18)
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The justification for calling this an equicontinuity property lies in the proof: Let
Qur = {etJv(HL”“‘_H”)q cte[-1,1, ¢€Q.} and G={ —2:q € Qus}.

Then Proposition shows that Q.. is H '-bounded and equicontinuous. It then
follows that G is H'-bounded and equicontinuous; this relies on both the diffeo-
morphism property (Lemma and the fact that the mapping ¢ — (1/g — 2x)
commutes with translations. This commutation property is not profound; it simply
says that the Green’s function for a translated potential is the corresponding trans-
late of the original Green’s function. (On the other hand, even linear isomorphisms
such as the Fourier transform on L?(R) need not preserve equicontinuity.)
Returning now to , we must show that

limsup sup E4|f( i
K—o0  feg §2+ 2

9(% q)

d¢ =0.
This follows immediately from boundedness and equicontinuity. 0

7. WELL-POSEDNESS

In this section, we prove Theorem [1.1} This result will then allow us to upgrade
the a priori bound proved in Section El to a complete proof of Theorem [I.2}

Proof of Theorem[I.d. Our immediate goal is to show that for any sequence of
initial data ¢, € Bs N S(R) that is H~!-convergent, the corresponding solutions
q(t) to are Cauchy in C;H1([~1,1] x R). Here § > 0 is assumed sufficiently
small. All claims in Theorem can readily be deduce from this and the scaling

transformation ((1.8)).
Mimicking the notations used in Corollary let us define

gn(t) = g(a:; e qn) and  gp (1) = g(x; 2, e“v}j[”qn)7 (7.1)

where » > 1 is fixed here and for the remainder of the proof.
Given any ¢ € S(R), we clearly have

e W’ "® ) ‘ = < W’ [ mm i ’<¢’ ® - mm

tJV Hsen

+Sup\<¢’ ik ~ 5]

[t1<1

The significance of this is that by Corollary[6.4} the first line can be made arbitrarily
small (uniformly in n and m) by choosing & sufficiently large. Moreover, having
chosen &, the term on the second line can be made arbitrarily small by choosing n
and m large enough; this is a consequence of the well-posedness of the H,, flow and
the diffeomorphism property (Lemma .

Thus we have a form of weak-H! convergence of g% — 23¢ with some uniformity
in t. However, by Proposition and the diffeomorphism property,

g:{g?%(t)—sznENandtG[—lvl]}

is precompact in H'. Thus (e.g., arguing by contradiction), we see that

_1
gn (t)

Thus, by the diffeomorphism property, g, (t) is Cauchy in C;H!([-1,1] x R). O

— 25 is a Cauchy sequence in C;H'([-1,1] x R).
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Proof of Theorem[1.4 In view of the scaling (L.8), it suffices to prove all claims
for small initial data. Note that for such small data, the last term on RHS is
redundant; it arises when undoing the scaling.

Given that solutions for general data are defined as limits of Schwartz solutions,
it suffices to prove adequate estimates for such Schwartz solutions. Concretely, we
will show that for any sequence of initial data ¢,(0) € Bs N S(R) that is H -
convergent, the corresponding solutions satisfy

sup [ [ 6@ = 20 [[an = ) (O + (00— a)t,2)] dodt 0. (7.2
To€

as n,m — oo. As ever, the spacetime integral is over [—1, 1] x R. We have dropped
the parameter ty here since this can be restored a posteriori by applying Theo-
rem (1.1l We also recall that the boundedness of LHS(7.2) was shown already in
Corollary [4.5

Adapting (4.30]) and (4.32)) to our current setting and then applying Lemma
we find that

LHS(7.2) < %4||qn - QmH%;?CHfl + ||Qn||%sk + ||Qm||%s,(

uniformly in > > 1. By Proposition and the equicontinuity of {g,(0)}nen, we
see that the latter two terms can be made arbitrarily small (uniformly in n and m)
by choosing » > 1 sufficiently large. But then Theorem guarantees that the
first summand can be made arbitrarily small by merely requiring n and m to be
sufficiently large. This proves .

The fact that the solutions constructed in Theorem [L1] are distributional solu-
tions is readily deduced from the earlier parts of Theorem see the discussion
following the statement of Theorem [1.2 O

Remark. Due to the uniformity in xg, the assertion ([7.2)) is actually stronger than
what is needed to prove Theorem [I.2] This uniformity guarantees that

lim /71 / d(x — x0)2[|¢'(t, )% + |q(t, @) [*] da dt = 0 (7.3)

xro—Foo

for all solutions constructed in Theorem Indeed, one simply combines ([7.2)
with the observation that ([7.3]) is trivially true for Schwartz solutions.

REFERENCES

[1] A. Griinrock, On the hierarchies of higher order mKdV and KdV equations. Cent. Eur. J.
Math. 8 (2010), no. 3, 500-536.

[2] Z. Guo, C. Kwak, and S. Kwon, Rough solutions of the fifth-order KAV equations. J. Funct.
Anal. 265 (2013), no. 11, 2791-2829.

[3] T. Kappeler and J.-C. Molnar, On the wellposedness of the KdV/KdV2 equations and their
frequency maps. Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018), no. 1, 101-160.

[4] T. Kappeler and P. Topalov, Global wellposedness of KAV in H~!(T, R). Duke Math. J. 135
(2006), no. 2, 327-360.

[5] T. Kato, On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Studies
in applied mathematics, 93-128, Adv. Math. Suppl. Stud., 8, Academic Press, New York,
1983.

[6] C. Kenig and D. Pilod, Well-posedness for the fifth-order KAV equation in the energy space.
Trans. Amer. Math. Soc. 367 (2015), no. 4, 2551-2612.

[7] R. Killip, J. Murphy, and M. Visan, Invariance of white noise for KdV on the line. Preprint
arXiv:1904.11910.

[8] R. Killip and M. Visan, KdV is wellposed in H~1. Ann. Math. 190 (2019), no. 1, 249-305.



36

BJOERN BRINGMANN, ROWAN KILLIP, AND MONICA VISAN

[9] R. Killip, M. Visan, and X. Zhang, Low regularity conservation laws for integrable PDE.

Geom. Funct. Anal. 28 (2018), no. 4, 1062-1090.

[10] H. Koch and D. Tataru, Conserved energies for the cubic nonlinear Schrodinger equation in

one dimension. Duke Math. J. 167 (2018), no. 17, 3207-3313.

[11] S. Kwon, On the fifth-order KAV equation: local well-posedness and lack of uniform continuity

of the solution map. J. Differential Equations 245 (2008), no. 9, 2627-2659.

[12] L. Molinet, A note on ill posedness for the KdV equation. Differential Integral Equations 24

(2011), no. 7-8, 759-765.

[13] L. Molinet, Sharp ill-posedness results for the KdV and mKdV equations on the torus. Adv.

Math. 230 (2012), no. 4-6, 1895-1930.

[14] D. Pilod, On the Cauchy problem for higher-order nonlinear dispersive equations. J. Differ-

ential Equations 245 (2008), no. 8, 2055-2077.

[15] M. Riesz, Sur les ensembles compacts de fonctions sommable. Acta Sci. Math. (Szeged) 6

(1933), 136-142.

[16] A. Rybkin, Regularized perturbation determinants and KdV conservation laws for irregular

initial profiles. Topics in operator theory. Volume 2. Systems and mathematical physics,
427444, Oper. Theory Adv. Appl., 203, Birkhduser Verlag, Basel, 2010.

[17] B. Simon, Trace ideals and their applications. Second edition. Mathematical Surveys and

Monographs, 120. American Mathematical Society, Providence, RI, 2005.

BJOERN BRINGMANN, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS AN-

GELES, CA 90095, USA

E-mail address: bringmann@math.ucla.edu

RoOwAN KILLIP, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES,

CA 90095, USA

E-mail address: killip@math.ucla.edu

MONICA VISAN, DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, LOS ANGELES,

CA 90095, USA

E-mail address: visan@math.ucla.edu



	1. Introduction
	Acknowledgements

	2. Preliminaries
	2.1. The diagonal Green's function
	2.2. Commutator estimates

	3. Paraproducts
	4. Local smoothing
	5. Compactness
	6. Local smoothing for the difference flow
	7. Well-posedness
	References

