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Abstract. We prove global well-posedness of the fifth-order Korteweg-de Vries

equation on the real line for initial data in H−1(R).
Global well-posedness in L2(R) was shown previously in [8] using the method

of commuting flows. Since this method is insensitive to the ambient geometry,

it cannot go beyond the sharp L2 threshold for the torus demonstrated in [3].
To prove our result, we introduce a new strategy that integrates dispersive

effects into the method of commuting flows.

1. Introduction

In view of its complete integrability, the Korteweg–de Vries equation

d
dtq = −q′′′ + 6qq′ (1.1)

belongs to an infinite hierarchy of commuting flows. This equation lies second in
the hierarchy, after simple spatial translation. In this paper, we consider the next
equation in the hierarchy, namely,

d
dtq = q(5) − 20q′q′′ − 10qq′′′ + 30q2q′. (1.2)

All flows in the hierarchy describe the evolution of a real-valued field q on the
line (or torus), are Hamiltonian, and share the common Poisson structure:

{F,G} =

∫
δF

δq
(x)

(
δG

δq

)′
(x) dx. (1.3)

In particular, (1.2) is the flow generated by

H5th(q) :=

∫
1
2q
′′(x)2 + 5q(x)q′(x)2 + 5

2q(x)4 dx

and conserves the Casimir M(q) :=
∫
q(x) dx, as well as

P (q) :=

∫
1
2q(x)2 dx and HKdV(q) :=

∫
1
2q
′(x)2 + q(x)3 dx,

which generate space translations and the KdV flow, respectively.
Due to its place in the KdV hierarchy, the well-posedness problem for (1.2) has

received considerable attention. Until very recently, the best result on the line was
global well-posedness in the energy space H2(R), which was proved in [2, 6]. We also
recommend these papers for a discussion of earlier work in this direction, as well as
[1] for a thorough discussion of results in Fourier–Lebesgue spaces. Unlike for KdV,
there is no regularity at which well-posedness can be proved directly by contraction
mapping arguments. This was proved rigorously by Pilod [14], who showed that
the data-to-solution map is not C2 at the origin in Hs(R) for any s ∈ R. It was
further shown by Kwon [11] that this map is not uniformly continuous on bounded
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sets for any s > 0. We do not know of any lower bound on well-posedness for (1.2)
on the line analogous to those proved for KdV in [12].

On the torus, however, Kappeler and Molnar, [3], have obtained an optimal well-
posedness result. Concretely, they show that (1.2) is globally well-posed in L2(R/Z)
and conversely, that the data-to-solution map does not admit a continuous extension
to Hs(R/Z) for any s < 0.

Very recently, global well-posedness of (1.2) in L2(R) was proved in [8] as an
application of the method introduced there for the study of KdV. That method
applies equally well both on the line and on the torus and so cannot yield results
below L2 regularity. Indeed, given the optimality of the Kappeler–Molnar L2(R/Z)
result, it would have been reasonable to guess that the L2(R) result might be
optimal. Further support for this idea comes from [4, 8, 12, 13] where it is shown
that the optimal regularity for well-posedness of KdV is the same on the line and
on the torus, namely, H−1. On the other hand, for a generic dispersive PDE, we
expect the low-regularity behaviour to be better on the line than on the torus due
to the improved dispersion — on the line, high-frequency waves may escape rapidly
to spatial infinity, while on the torus, they are trapped.

In this paper, we show that (1.2) is well-posed in H−1(R); we believe that this
is optimal in the scale of Hs(R) spaces:

Theorem 1.1 (Global well-posedness). The fifth-order KdV (1.2) is globally well-
posed for initial data in H−1(R). More precisely, the solution map extends uniquely
from Schwartz space to a jointly continuous map Φ: R×H−1(R)→ H−1(R).

As noted before, one expects better dispersion for problems posed on the line
than for those on the torus. One expression of this improvement is the local smooth-
ing effect. First discovered by Kato [5] in the context of the KdV equation, this
is the phenomenon that the solution appears smoother than the initial data if one
works locally in space and averages in time. We will prove the following:

Theorem 1.2 (Local smoothing). For any initial data q(0) ∈ H−1(R), the corre-
sponding solution q(t) constructed in Theorem 1.1 obeys

sup
t0,x0∈R

∫ t0+1

t0−1

∫ x0+1

x0−1

|q′(t, x)|2 + |q(t, x)|2 dx dt . ‖q(0)‖2H−1 + ‖q(0)‖12
H−1 . (1.4)

Moreover, for every t0, x0 ∈ R, the map q(0) 7→ q(t − t0, x − x0) is continuous as
a mapping H−1(R) → L2

tH
1
x([−1, 1]2). Lastly, q(t) satisfies (1.2) in the sense of

spacetime distributions.

In the KdV setting of [8], an analogous local smoothing effect was derived after
the proof of the well-posedness theorem was complete. This will not work here; we
need to use the local smoothing effect in order to go beyond what is possible for the
torus. We refer rather nebulously to the local smoothing effect here, because the
crude bound (1.4) is actually wholly ineffective in helping us prove Theorem 1.1;
we will need rather more subtle manifestations of this phenomenon.

The distributional nature of the solutions constructed in Theorem 1.1 follows
easily from the earlier parts of Theorem 1.2: That Schwartz solutions are distribu-
tional solutions is self-evident; to extend this to all H−1 solutions, one need simply
rewrite (1.2) as

d
dtq = ∂5

xq − 5∂3
x

[
q2
]

+ ∂x
[
5(q′)2 + 10q3

]
, (1.5)

integrate by parts, and employ the continuity shown in Theorem 1.2.
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In order to explain what is to be done in this paper, it will be helpful if we
first endeavor to follow the argument used in [8], even though we know that this
approach must surely fail. A central idea there, which we shall mimic exactly, is the
introduction of regularized Hamiltonian flows (depending on a parameter κ) that
have the following properties: (1) They commute with the full flow for all values
of κ. (2) They converge to the full PDE as κ → ∞. (3) They are well-posed on
H−1(R).

The construction of the regularized Hamiltonians is inspired by a well-known
generating series for the polynomial conserved quantities:

α(κ; q) =
1

4κ3
P (q)− 1

16κ5
HKdV(q) +

1

64κ7
H5th(q) +O(κ−9). (1.6)

The function α(κ, q) here is a renormalization of the logarithm of the transmission
coefficient (=perturbation determinant) at energy −κ2 and is known to be jointly
real-analytic on the region where

q ∈ Bδ :=
{
q ∈ H−1(R) : ‖q‖H−1 < δ

}
(1.7)

and κ ≥ 1, for some fixed δ � 1; see [9, 16] for details. Note that the restriction to
small q appearing here is actually illusory; (1.2) possesses the scaling symmetry

q(t, x) 7→ qλ(t, x) := λ2q(λ5t, λx), (1.8)

which means that it suffices to prove Theorems 1.1 and 1.2 for small data.
Rearranging (1.6) suggests the definition

Hκ(q) := 64κ7α(κ; q)− 16κ4P (q) + 4κ2HKdV(q). (1.9)

Indeed, Hκ(q)→ H5th(q) as κ→∞ for any Schwartz q ∈ Bδ. Moreover, for finite
κ the resulting flow is well-posed on H−1(R). To see this, we note that the three
constituent Hamiltonians commute; moreover, each is well-posed on H−1(R). In
the case of α, this follows from an ODE argument because α is real analytic on
H−1(R). Well-posedness of the P flow is trivial since it simply generates spatial
translations. Lastly, well-posedness of the HKdV flow on H−1(R) was the principal
result of [8].

Let us now discuss the objective of introducing the Hκ flows and explain the role
of commutativity. To do this, it is convenient to adopt a compact notation for the
flow of a generic Hamiltonian; concretely, we write

q(t) = etJ∇Hq(0) for the solution to
dq

dt
= ∂x

δH

δq
.

Here J formally represents ∂x, attendant to the Poisson structure (1.3).
In order to prove Theorem 1.1, we must show the following: For any T > 0 and

any sequence of Schwartz functions qn ∈ Bδ convergent in H−1(R), the correspond-
ing sequence of solutions qn(t) is Cauchy in CtH

−1([−T, T ]× R). Evidently,

‖qn(t)− qm(t)‖CtH−1
x
≤ ‖qn(t)− etJ∇Hκqn(0)‖CtH−1

x

+ ‖qm(t)− etJ∇Hκqm(0)‖CtH−1
x

+ ‖etJ∇Hκqn(0)− etJ∇Hκqm(0)‖CtH−1
x
.

Notice that the last term here converges to zero due to the well-posedness of the
Hκ flow. In this way, the proof of Theorem 1.1 is reduced to showing that the Hκ

flow closely tracks the full H5th flow (at least for κ large).
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But for the commutativity of the flows, this would not be significant progress. In
view of [11, 14], we expect the data to solution map for (1.2) to be very irregular.
Indeed, it is this very irregularity that makes it difficult to conceive of any method
by which one may control the difference of two solutions. By the commutativity of
the flows, however, we can write

qn(t)− etJHκqn(0) =
[
etJ(H5th−Hκ) − Id

](
etJHκqn(0)

)
.

Thus, we no longer need to estimate the divergence of two solutions; rather, we
merely need to bound the way in which a single solution (generated by the difference
of the two Hamiltonians) diverges from its initial data. The price to pay here is
that we must control this difference flow (as we shall call it) for a much richer class
of initial data, namely,

Q :=
{
etJHκqn(0) : n ∈ N, t ∈ [−T, T ], κ ≥ 1

}
. (1.10)

We will be able to control the difference flow uniformly on Q because we can
show that it is uniformly bounded and equicontinuous in H−1(R). These assertions
follow readily from the results of [9] in a manner demonstrated already in [8]. In
fact, the arguments developed in this paper show that Q is precompact in H−1(R);
however, we will not need this in what follows.

We turn now to the heart of the matter, namely, controlling the difference flow.
It is not difficult to write down the equation dictating the evolution of q under
this flow; see (2.16). The problem lies in making sense of this equation at such
low regularity. In this regard, the difference flow is no better that the original
equation (1.2); the regularized Hamiltonian Hκ only provides good cancellation at
low frequencies — it is regularized! The first step (appearing already in [8]) is to
make a change of variables, replacing the original unknown q(t) by 2κ−1/g(κ; q(t)).
Here g denotes the diagonal Green’s function associated to the Schrödinger operator
with potential q and κ ≥ 1 is an energy parameter, which may be regarded as frozen.

It was shown already in [8] that (for q small) this change of variables is a diffeo-
morphism from H−1(R) to H1(R). The virtue of this change of variables is that it
regularizes the nonlinearity. For example, under the flow (1.2),

d
dt

1
2g(x;κ,q(t)) = ∂x

(
−q′′(t,x)+3q(t,x)2−4κ2q(t,x)+8κ4

g(x;κ,q(t))

)
. (1.11)

Here we see that the greatest obstruction to making sense of RHS(1.11), at
least as a tempered distribution, is the appearance of q2. Indeed, this term (which
serves as the figurehead of a raft of related problems) is precisely what restricted
the analysis in [8, Appendix] to treating initial data in L2(R).

At first glance the remedy seems obvious (we have announced it already), namely,
local smoothing. Indeed, the a priori bound (1.4) provides more than enough reg-
ularity to make sense of q2 for solutions to (1.2). But here is the problem: we are
trying to control the difference flow, not (1.2). Thus, we will need a local smooth-
ing effect for the difference flow. On the other hand, our ambition is to show that
solutions of the difference flow do not move far from their initial data, which seems
fundamentally in contradiction to the local smoothing effect — smoothing happens
because high-frequencies move away quickly. Thus, we must complete a delicate
balancing act: showing that the difference flow exhibits sufficient high-frequency
transport so as to have a local smoothing effect that is strong enough to prove
that the difference flow actually transports its initial data a negligible distance in
H−1(R). Finding a path through this narrow divide is one of the two principal
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achievements of this paper. It is accomplished by exhibiting numerous subtle can-
celations and by squeezing optimal estimates out of a number of paraproducts that
arise throughout the analysis.

The arguments described so far can only show that if qκ(t) is a solution to the
difference flow, then

lim
κ→∞

∥∥∥φ(x)
[

1
2g(x;κ,qκ(t)) −

1
2g(x;κ,qκ(0))

]∥∥∥
L∞H−5([−T,T ]×R)

= 0

for some Schwartz function φ. The localization φ is inevitable, because the local
smoothing effect is indeed local. There is also a considerable loss of regularity
compared to the diffeomorphism property, which requires convergence in H1, rather
than H−5.

The loss of regularity is the lesser problem here and was overcome already in [8].
The key observation was that equicontinuous sets of initial data remain equicon-
tinuous under the flow due to known conservation laws (cf. Proposition 2.4). This
then guarantees that the Green’s functions (and their reciprocals) remain equicon-
tinuous, because the mapping of q to g commutes with translations. One then
uses the elementary fact that an H1-equicontinuous sequence converging at lower
regularity converges also in H1. Norm convergence of the Green’s functions is then
transferred to H−1 convergence of the qn via the diffeomorphism property.

In order to complete the proof of Theorem 1.1, we need to upgrade localized
convergence to global convergence. This necessitates a novel tightness argument
that is considerably more subtle than equicontinuity and constitutes the second
principal achievement of this paper. Our immediate discussion will focus on how
we prove such a property for the solutions q to (1.2). Together with boundedness
and equicontinuity, this tightness will yield compactness of orbits (over bounded
time intervals), which then transfers to the Green’s functions via the diffeomophism
property.

Given that we are in possession of a microscopic conservation law adapted to
regularity H−1(R), it is natural to imagine that tightness can be proved by simply
localizing this conservation law near infinity and controlling the increment, say using
local smoothing. Closer inspection, however, reveals that this would be circular
reasoning. Local smoothing is proved by localizing the energy and observing that
the dominant term in the increment is coercive.

The key to breaking this cycle is proving that the high-frequency contribution
to the local smoothing norm is small; see Proposition 4.1. The low-frequency
contribution is controlled by using the global L∞t H

−1
x bound.

Proposition 4.1 also plays a key role in proving continuous dependence on the
initial data in the local smoothing norm; see Theorem 1.2. Specifically, it reduces
our attention to the low-frequency contribution, whose continuity follows from that
shown in Theorem 1.1.

Taken together, our boundedness, equicontinuity, and tightness arguments show
a strong compactness phenomenon for (1.2): Given a bounded time interval [−T, T ]
and an H−1(R)-precompact set of initial data, the corresponding orbits all lie inside
a compact subset of H−1(R). This is weaker than saying that the orbits are pre-
compact in CtH

−1([−T, T ]×R), which will follow from Theorem 1.1. The missing
ingredient is equicontinuity in time (cf. the Arzela–Ascoli Theorem). This is one of
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two key roles played by the difference flow. The second is guaranteeing the unique-
ness of subsequential limits (which exist by compactness) of sequences of solutions
with convergent initial data.

An alternate approach to showing the uniqueness of subsequential limits would be
to identify a suitable collection of properties that intrinsically and uniquely identify
the solutions constructed in this paper. This is an important open problem. Note
that we regard the solutions we construct as canonical, since by Theorem 1.1 no
distinct notion of solution can lead to well-posedness. For further musings on this
question (framed in the KdV setting), see [7].

It is natural to ask what may be said of the whole KdV hierarchy using the
methods presented herein. While the analytical techniques we develop are not tied
to any particular level of the hierarchy, the quantity and complexity of the requi-
site algebraic manipulations grows quite rapidly as one progresses. A systematic
approach to finding all the requisite cancellations simultaneously at all levels of the
hierarchy is currently far beyond us. In fact, even the implications for the whole
hierarchy of the first-generation methods of [8] have not been fully worked out and
that would certainly be very much simpler indeed.

The paper is organized as follows: We begin Section 2 by introducing notation
and reviewing some basic estimates. We then move on to a review of the material
developed in [8] that we will need; see Subsection 2.1. We then develop a variety
of commutator estimates, which in turn inspire our choice of a family of local
smoothing norms; see Definition 2.8.

Section 3 is devoted to the analysis of various paraproducts that arise in the
subsequent analysis. An guiding principle here is that we must obtain large negative
powers of the frequency parameter κ in all our estimates. This is only possible (at
the low regularity at which we work) by the proper use of the local smoothing norm.

The centerpiece of Section 4 is the proof of Proposition 4.1. As discussed above,
this goes beyond merely providing the basic local smoothing estimate (1.4). It also
demonstrates that the high-frequency contribution to the local smoothing norm is
small (for equicontinuous sets of initial data). This is then deployed in Section 5 to
prove compactness of trajectories; see Proposition 5.1.

In Section 6, we prove local smoothing for the difference flow. This is Proposi-
tion 6.1, which is then used in Corollary 6.4 to control the divergence of the Hκ

and H5th flows. The analysis in this section is relatively short, because we rely on
numerous cancellations exhibited earlier in the analysis, particularly in Section 4.

The paper ends with Section 7 which brings together all the foregoing analysis
to complete the proofs of Theorems 1.1 and 1.2.

Acknowledgements. R. K. was supported by NSF grants DMS-1600942 and
DMS-1856755. M. V. was supported by NSF grant DMS-1763074.

2. Preliminaries

We begin by reviewing our basic notation and a few elementary results.
Unless indicated otherwise, spacetime norms are taken over the slab [−1, 1]×R:

‖q‖LptHs =
∥∥‖q(t)‖Hs(R)

∥∥
Lp(dt;[−1,1])

In addition to the usual Hs spaces, we employ the notation

‖f‖2Hsκ(R) :=

∫
(ξ2 + 4κ2)s|f̂(ξ)|2 dξ, (2.1)
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where our convention for the Fourier transform is

f̂(ξ) = 1√
2π

∫
e−iξxf(x) dx so that ‖f̂‖L2 = ‖f‖L2 .

The particular formulation of (2.1), including the factor of 4, is explained by its
appearance in (2.6). Throughout this paper, we shall only consider κ ≥ 1.

We will frequently use the elementary facts

‖wf‖H±1
κ
.
{
‖w‖L∞ + ‖w′‖L∞

}
‖f‖H±1

κ
and ‖wf‖H±1

κ
. ‖w‖H1‖f‖H±1

κ
. (2.2)

Note that by duality, the results for H−1
κ are equivalent to those for H1

κ .
We will use the Littlewood–Paley decomposition extensively in our treatment

of paraproducts. It is based on a smooth partition of unity in Fourier space: Fix
ϕ : R → [0, 1] that is C∞ and satisfies ϕ(ξ) = 1 if |ξ| ≤ 1 and ϕ(ξ) = 0 if |ξ| ≥ 2.
We then define Littlewood–Paley pieces as follows:

f̂N (ξ) =

{
ϕ(ξ)f̂(ξ) : if N = 1,

[ϕ(ξ/N)− ϕ(2ξ/N)]f̂(ξ) : if N ∈ {2, 4, 8, . . .}.

Evidently, f =
∑
fN where the sum is over N ∈ {1, 2, 4, 8, . . .}.

We write Ip for the Schatten classes (= trace ideals) defined over the Hilbert
space L2(R), with the particular convention that I∞ denotes the space of bounded
operators endowed with the operator norm. This differs from the text [17] where
I∞ denotes compact operators (with the same norm). These classes of operators
obey the Hölder inequality in the form

‖AB‖Ip ≤ ‖A‖Ip1‖B‖Ip2 whenever 1
p = 1

p1
+ 1

p2
.

Throughout the paper, R0(κ) denotes the resolvent

R0(κ) = (−∂2
x + κ2)−1 with kernel 〈δx, R0(κ)δy〉 = 1

2κ e
−κ|x−y|. (2.3)

Since we only consider κ ≥ 1, R0(κ) is positive definite. By its square-root, we
shall always mean the positive definite square-root.

The natural compactness criterion for subsets of H−1(R) is easily intuited from
the classical case of Lp(Rd) settled already by Kolmogorov, Tamarkin, and Riesz
(cf. [15]). As in this classical case, the following is readily proved by using smooth
mollification and smooth truncation to reduce matters to the Arzela–Ascoli Theo-
rem:

Lemma 2.1. A bounded subset Q ⊆ H−1(R) is precompact in H−1(R) if and only
if it is both equicontinuous, which is to say

lim
N→∞

sup
q∈Q

∫
|ξ|≥N

|q̂(ξ)|2 dξ
ξ2 + 4

= 0, (2.4)

and tight, which means that

lim
R→∞

sup
q∈Q

sup{〈f, q〉 : ‖f‖H1 ≤ 1 and supp(f) ⊆ R \ [−R,R]
}

= 0. (2.5)

Evidently, the equicontinuity and tightness criteria could also be formulated
using a smooth cutoff (to large values of ξ and x, respectively). Although a sharp
Fourier cutoff is acceptable, one cannot use a sharp spatial cutoff because this is
not a bounded operator in H−1(R).
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2.1. The diagonal Green’s function. This subsection is primarily devoted to re-
counting material from [8], which can be consulted for further details. A workhorse
of the analysis therein is the following computation:

Lemma 2.2. For q ∈ H−1(R),∥∥√R0(κ)q
√
R0(κ)

∥∥2

I2
= 1

κ

∫
|q̂(ξ)|2
ξ2+4κ2 dξ = 1

κ ‖q‖
2
H−1

κ
. (2.6)

For q ∈ Bδ, κ ≥ 1, and δ > 0 sufficiently small, this lemma guarantees that it is
possible to use a Neumann series to construct the resolvent

R(κ) =
(
−∂2 + q+κ2

)−1
=
∞∑
`=0

(−1)`
√
R0(κ)

(√
R0(κ)q

√
R0(κ)

)`√
R0(κ). (2.7)

Using this series, one may show that R(κ) admits a continuous integral kernel.
Restricting this to the diagonal, yields what we term the diagonal Green’s function:

g(x;κ, q) := 〈δx, R(κ)δx〉 = 1
2κ +

∞∑
`=1

h`(x;κ, q) (2.8)

where

h`(x;κ, q) := (−1)`
〈√

R0(κ)δx,
(√

R0(κ)q
√
R0(κ)

)`√
R0(κ)δx

〉
. (2.9)

Arguing by duality and using Lemma 2.2, one readily sees that

‖h`‖H1
κ
≤ κ−(`+1)/2‖q‖`

H−1
κ

for all ` ≥ 1. (2.10)

From (2.10) and Cauchy–Schwarz in Fourier space, we deduce that

‖h`‖L∞ ≤ κ−(`+2)/2‖q‖`
H−1

κ
, (2.11)

which shows that g will be non-vanishing for all κ ≥ 1 if δ > 0 is sufficiently small.
From these estimates and the inverse function theorem, one can then show:

Lemma 2.3 (Diffeomorphism property). For δ > 0 sufficiently small, both

q 7→ g − 1
2κ and q 7→ 2κ − 1

g

are diffeomorphisms from Bδ into H1
κ(R) for every κ ≥ 1; both map zero to zero.

A natural prerequisite for well-posedness in H−1(R) is an a priori bound on this
norm, say, for Schwartz solutions. In the case of KdV, such results were proved in
[9, 10, 16]; these can be readily adapted to (1.2) due to their presence in the same
integrable hierarchy. In order to prove local smoothing, however, it will be essential
for us to have a microscopic conservation law attendant to this low regularity. In
this paper, we will use the density

ρ(x;κ, q) := 2κ2 − κ
g(x;κ,q) + 4κ2[R0(2κ)q](x), (2.12)

which is shown in [8] to be positive and integrable for q ∈ Bδ, κ ≥ 1, and δ > 0
sufficiently small. Moreover, for such parameters we have∫

R
ρ(x;κ, q) dx = 2κα(κ, q) ≈

∫
R

|q̂(ξ)|2

ξ2 + 4κ2
dξ. (2.13)

Caution. The definition of ρ here differs from that used in [8] by the numerical factor
2κ. This change connects ρ more closely with the H−1

κ norm and will simplify our
analysis of local smoothing estimates in a comparable way.
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The quantity α(q;κ) appearing in (2.13) coincides with the renormalized loga-
rithm of the perturbation determinant discussed in [9, 16]; its asymptotic expansion
appeared already in (1.6). In this way, the conservation of α under (1.2) can be in-
ferred from the general framework of the inverse scattering technique. Alternately,
one may deduce this from the associated microscopic conservation law derived in
[8, Appendix]. Concretely, for Schwartz solutions to (1.2),

∂tρ+ ∂xj5th = 0, (2.14)

where

j5th = − 2κ
g(κ) [16κ5g(κ)− 8κ4 + 4κ2q + q′′ − 3q2]

− 4κ2R0(2κ)
[
q(4) − 5(q2)′′ + 5(q′)2 + 10q3

]
; (2.15)

indeed the first term here originates in the time derivative of the reciprocal of the
Green’s function, while the second term arises by substituting (1.2) into the last
term in (2.12).

It will also be important for us to have analogous information regarding the Hκ

flow, that is, the flow induced by the Hamiltonian (1.9) via the symplectic structure
(1.3). Under this flow,

d
dtq =

{
−64κ7g(κ) + 32κ6 − 16κ4q + 4κ2

[
−q′′ + 3q2

]}′
(2.16)

and correspondingly, ∂tρ+ ∂xjκ = 0 with

jκ = 32κ7κ
κ2−κ2

g(κ)
g(κ) − 8κ2κ 2κ2+2κ2−q

g(κ) − 32κ2κ6

κ2−κ2

− 16κ2κ2R0(2κ)
[
−16κ5g(κ) + 8κ4 − 4κ2q − q′′ + 3q2

]
. (2.17)

Once again, we have grouped the terms according to their origin. It is important
here to distinguish between κ ≥ 1, which denotes the energy parameter in ρ, and
κ ≥ 1 which describes the flow under consideration.

As remarked earlier, these computations provide an elementary justification for
the conservation of α(q) under these flows and so, by (2.13), of the following:

Proposition 2.4 (A priori bound). For δ > 0 sufficiently small,∥∥etJ∇Hκ+sJ∇H5th+τJ∇P q
∥∥
H−1

κ (R)
≈ ‖q‖H−1

κ (R), (2.18)

uniformly for t, s, τ ∈ R, κ,κ ≥ 1, and q ∈ Bδ ∩S(R). Moreover, if Q ⊂ Bδ ∩S(R)
is H−1-equicontinuous, then so is

Q∗ =
{
etJ∇Hκ+sJ∇H5th+τJ∇P q : t, s, τ ∈ R, κ ≥ 1, and q ∈ Q

}
.

The equicontinuity claim here follows directly from (2.18) due to the uniformity
in κ; this is discussed in Section 4 of [8].

It will be essential for our analysis to understand the large-κ behavior of g(x;κ).
Our next lemma provides important information in this direction. The exact for-
mulation of the identities that follow is dictated by the need to exhibit certain
cancellations later on. At this moment, however, it is instructive to imagine that
our goal is to show that the RHS(2.16) converges to the RHS(1.5) as κ→∞. We
do not include a corresponding expression for the cubic terms because it is so com-
plicated as to be of little use in the subsequent analysis. Although the key identities
(2.21) and (2.22) were derived already in [8], this result does not appear there and
so we include a proof.
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Lemma 2.5. For q ∈ H−1(R) and κ ≥ 1, we have

4κ2
[
16κ5h1 + 4κ2q + q′′

]
= 4κ3h

(4)
1 = −q(4) + κh(6)

1 (2.19)

16κ5h2 + 3κ2(h′′1)2 − 3q2 = −4κ4
[
5(h′1)2 − 5∂2

x(h2
1)
]

+ 4κ4∂2
xR0(2κ)

[
(h′1)2 + 2∂2

x(h2
1)
]
. (2.20)

Proof. From the explicit kernel (2.3) for R0, we deduce

h1(x) = −〈δx, R0(κ)qR0(κ)δx〉 = − 1
κR0(2κ)q(x). (2.21)

Thus, the claims (2.19) follow from the symbol identities

4κ2
[
− 16κ4

ξ2+4κ2 + 4κ2 − ξ2
]

= − 4κ2ξ4

ξ2+4κ2 = −ξ4 + ξ6

ξ2+4κ2 .

We turn now to the quadratic term h2, for which we have (cf. [8, Appendix]),

ĥ2(ξ) =
1

2κ
√

2π

∫
R

ξ2 + (ξ − η)2 + η2 + 24κ2

(ξ2 + 4κ2)((ξ − η)2 + 4κ2)(η2 + 4κ2)
q̂(ξ − η)q̂(η) dη. (2.22)

We note that the definition (2.9) yields a double-integral representation for ĥ2; to
obtain (2.22), one then needs to integrate out one variable. This is easily done by
the method of residues, for example.

In this way, (2.20) reduces to the algebraic identity

8κ4[ξ2 + (ξ − η)2 + η2 + 24κ2]

(ξ2 + 4κ2)((ξ − η)2 + 4κ2)(η2 + 4κ2)
+

3η2(ξ − η)2

((ξ − η)2 + 4κ2)(η2 + 4κ2)
− 3

= − 20κ2[−η(ξ − η) + ξ2]

((ξ − η)2 + 4κ2)(η2 + 4κ2)
+

4κ2ξ2[η(ξ − η) + 2ξ2]

(ξ2 + 4κ2)((ξ − η)2 + 4κ2)(η2 + 4κ2)
. �

2.2. Commutator estimates. In this subsection, we present several commutator
estimates, which will then inform our definition of a local smoothing norm.

Lemma 2.6 (Basic commutator identity).

[R0, φ] = R0(φ′∂ + ∂φ′)R0 = R0(2φ′∂ + φ′′)R0 = R0(2∂φ′ − φ′′)R0.

Proof. Follows directly from [−∂2 + κ2, φ] = −∂φ′ − φ′∂. �

Lemma 2.7 (Multiplicative commutation). Assume w : R→ (0,∞) satisfies

|w′′(x)|+ |w′(x)| . w(x) and
w(y)

w(x)
. e|x−y|/2 (2.23)

uniformly for x, y ∈ R. Then∥∥w∂R0(κ) 1
w

∥∥
Lp→Lp . κ−1 and

∥∥wR0(κ) 1
w

∥∥
Lp→Lp . κ−2 (2.24)

for every 1 ≤ p ≤ ∞. Moreover, the operator B = B(κ) defined by the identity

w(x)R0(κ) =
√
R0(κ)(Id +B)

√
R0(κ)w(x) satisfies ‖B‖I∞ . κ−1 (2.25)

uniformly for κ ≥ 1.

Proof. The estimate (2.24) follows from Schur’s test by using the explicit kernel for
R0 and just the second inequality in (2.23).

Let us now consider the operators

B(z) := (−∂2 + κ2)zR0(κ)(w′∂ + ∂w′)R0(κ) 1
w (−∂2 + κ2)1−z. (2.26)
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Note that by Lemma 2.6, this reduces to B when z = 1/2. Our goal is to bound
B(1/2) via complex interpolation. As imaginary powers of positive operators are
unitary, this reduces the proof of (2.25) to showing that

‖B(0)‖I∞ + ‖B(1)‖I∞ . κ−1.

The latter is the simpler of the two. As

B(1) = (2w′∂ + w′′)R0(κ) 1
w ,

we need only apply the first relation in (2.23) and then (2.24).
Analogously, B(0) can be handled by writing

B(0) = R0(κ)(2∂w′ − w′′)R0(κ) 1
w (−∂2 + κ2)

= R0(κ)(2∂ w
′

w −
w′′

w )−R0(κ)(2∂w′ − w′′)R0(κ)
(
2∂ w

′

w2 − ( w
′

w2 )′
)

and then employing (2.23) and (2.24). �

In connection with proving local smoothing, we shall have to deal extensively
with localizing weights. With this in mind, it is convenient to make a definitive
choice of such a weight for use throughout the paper. We select

ψ(x) := sech
(
x
99

)
and ψz(x) := ψ(x− z). (2.27)

While much about this choice is arbitrary, let us quickly mention two particular
considerations. First, ∣∣(∂sxψm)(x)

∣∣ . ψm(x) (2.28)

for any pair of integers m, s ≥ 1. In particular, w(x) = ψ(x)m satisfies the first
constraint in (2.23). Our second consideration was that the number 99 is large
enough to guarantee that w(x) = ψ(x)m also satisfies the second hypotheses of
Lemma 2.7 for all powers 1 ≤ m ≤ 12.

With the choice of cutoff made, we may now introduce the norm that will be
central to all our local smoothing analysis:

Definition 2.8. For κ ≥ 1, we define∥∥q∥∥
LSκ

:= sup
z∈R

∥∥(ψ6
zq)
′′∥∥

L2
tH
−1
κ ([−1,1]×R)

. (2.29)

The time interval is fixed as [−1, 1] both for expository simplicity and because
allowing for a general time interval, say [−T, T ], does not produce meaningfully
better results. Indeed, high-frequency wave packets can accumulate their entire
local-smoothing norm in an arbitrarily short time interval and so our bounds will
not improve in the limit T → 0. Conversely, for long time intervals, our arguments
do not yield better results than can be obtained a posteriori by covering [−T, T ]
with unit intervals.

The power 6 appearing in (2.29) is chosen for its divisibility properties — it will
allow us to redistribute weights among multiple copies of q without introducing
fractions. In view of such changes in powers and because derivatives of the weight
will appear from commutators arising in the analysis, it is important that we prove
the following:

Lemma 2.9. Given φ ∈ S(R),

‖(φq)′′‖L2
tH
−1
κ
.φ ‖q‖LSκ + ‖q‖L∞t H−1

κ
. (2.30)
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Analogously, for any s ∈ {0, 1, 2}, we have

‖∂s(φq)‖L2
tH
−1
κ

+ ‖φ∂sq‖L2
tH
−1
κ
.φ κ

s−2
3

{
‖q‖L∞t H−1 + ‖q‖LSκ

}
. (2.31)

Proof. We begin with (2.30). By construction,∫
R
ψ12
z (x) dz ≡ 512

7 and so ‖∂2(φq)‖H−1
κ
≤ 7

512

∫
‖∂2(φψ12

z q)‖H−1
κ
dz,

by the triangle inequality.
On the other hand, using (2.2),

‖(φψ12
z q)

′′‖H−1
κ
. ‖(φψ6

z)(ψ6
zq)
′′‖H−1

κ
+ ‖(φψ6

z)′(ψ6
zq)
′‖H−1

κ
+ ‖(φψ6

z)′′ψ6
zq‖H−1

κ

.
∥∥φψ6

z

∥∥
H3

{
‖(ψ6

zq)
′′‖H−1

κ
+ ‖(ψ6

zq)
′′‖1/2
H−1

κ
· ‖q‖1/2

H−1
κ

+ ‖q‖H−1
κ

}
.

The estimate (2.30) now follows by integrating in time and noting that∫ ∥∥φψ6
z

∥∥
H3 dz .φ 1.

Let us now turn our attention to (2.31). By Plancherel,

‖∂s(φq)‖H−1
κ
. κ

s−2
3

{
‖φq‖H−1 + ‖(φq)′′‖H−1

κ

}
(2.32)

holds pointwise in time. Thus, by (2.2) and (2.30) we have

‖∂s(φq)‖L2
tH
−1
κ
.φ κ

s−2
3

{
‖q‖L∞t H−1 + ‖q‖LSκ

}
. (2.33)

The remaining parts of (2.31) now follow by writing φq′ = (φq)′ − φ′q and φq′′ =
(φq)′′ − 2φ′q′ − φ′′q. �

The very subtlest parts of our analysis require us to exhibit certain cancellations
that appear when performing two commutations in a symmetrical way. This will
be important, for example, in the proofs of Lemmas 4.3 and 4.4.

Lemma 2.10 (Double commutators). There is a finite collection of operators
{Ai , A′i} satisfying

‖A‖H−1
κ →H1

κ
. 1, (2.34)

so that, writing R0 = R0(κ) we have

R0ψ
12R0 − ψ6R2

0ψ
6 = κ−2

∑
ψ6AiA

′
iψ

6. (2.35)

Moreover, there is another finite collection of operators {Ai , A′i} satisfying (2.34)
so that

ψ2R0qR0ψ
2 = R0ψ

4qR0−4κ2R2
0[ψ3ψ′q]′R2

0−4∂R2
0[ψ3ψ′q]′∂R2

0+κ−2
∑

Aiψ
2qA′i.

(2.36)

Proof. We begin with two basic operator identities

R0f = fR0 + 2f ′∂R2
0 +R0f

′′(3∂2 + κ2)R2
0 + 2R0f

′′′∂R2
0 (2.37)

∂R0f − f∂R0 = κ2R0f
′R0 + ∂R0f

′∂R0 (2.38)

valid for any smooth function f . These can be verified by iterating Lemma 2.6,
or by writing the corresponding integral kernels in Fourier variables. For example,
(2.38) corresponds to[

iξ
ξ2+κ2 − iη

η2+κ2

]
f̂(ξ − η) = i(κ2−ξη)(ξ−η)

(ξ2+κ2)(η2+κ2) f̂(ξ − η).
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Combining (2.37) with Lemma 2.7 and (2.28) shows

R0ψ
6 = ψ6R0 + 12ψ5ψ′∂R2

0 + κ−2ψ6A with ‖A‖H−1
κ →H1

κ
. 1. (2.39)

By taking adjoints (in the L2 → L2 sense), we deduce that

ψ6R0 = R0ψ
6 − 12∂R2

0ψ
5ψ′ + κ−2A∗ψ6 with ‖A∗‖H−1

κ →H1
κ
. 1. (2.40)

Multiplying out (2.39) and (2.40) brings us very close to proving (2.35); the only
terms not conforming to the desired representation in an obvious way are

12ψ5ψ′∂R3
0ψ

6 − 12ψ6∂R3
0ψ

5ψ′ = 12ψ6
[
ψ′

ψ ∂R
3
0 − ∂R3

0
ψ′

ψ

]
ψ6

= 12ψ6
[
−
(
ψ′

ψ

)′
R3

0 − ∂
[
R3

0,
ψ′

ψ

]]
ψ6.

To handle this, we write [R3
0, φ] = R2

0[R0, φ] + R0[R0, φ]R0 + [R0, φ]R2
0 and apply

Lemmas 2.6 and 2.7.
To prove (2.36), we begin with the following analogue of (2.39):

R0ψ
2 = ψ2R0 + 4ψψ′∂R2

0 + κ−2ψ2A with ‖A‖H−1
κ →H1

κ
. 1. (2.41)

Let us multiply out LHS(2.36) using (2.41) and its adjoint. When we compare
the result with RHS(2.36), we find ourselves left to represent

−4∂R2
0ψ

3ψ′qR0 + 4R0ψ
3ψ′q∂R2

0 + 4κ2R2
0[ψ3ψ′q]′R2

0 + 4∂R2
0[ψ3ψ′q]′∂R2

0

in the form
∑
Aiψ

2qA′i. Actually, this term is even better; (2.38) shows that it is
zero. �

3. Paraproducts

The initial thrust of this section is to develop basic estimates on the diagonal
Green’s function in terms of the local smoothing norm. In view of the series (2.8),
this amounts to the discussion of the paraproducts h`. Later (beginning with
Lemma 3.6), we treat certain nonlinear combinations of these terms that arise
naturally in our analysis.

Although the paraproducts that follow fit the mold of the Coifmann–Meyer the-
ory, their symbols rapidly become so complicated as to render that approach un-
tenable. Rather, we employ a method that synthesizes the traditional Littlewood–
Paley techniques with trace-ideal technology.

Commutation will also play a major role, because we will need to obtain localizing
factors next to every copy of q in the expressions (2.9) in order to employ the local
smoothing norm. We can then break into Littlewood–Paley pieces and deploy our
basic trace-ideal estimates, such as,∥∥√R0(κ)fN

√
R0(κ)

∥∥
I2
. min{κ− 3

2N,κ−
1
2N−2}

{
‖f‖H−1 +

∥∥∂2f
∥∥
H−1

κ

}
, (3.1)

which follows from Lemma 2.2, and∥∥√R0(κ)fN
√
R0(κ)

∥∥
I∞
. min{κ−2N

3
2 ,κ−

1
2 }‖f‖H−1 , (3.2)

which also utilizes the Bernstein estimate ‖fN‖L∞ . N3/2‖f‖H−1 .
Evidently, these inequalities incorporate two distinct modes of estimation and

ensure that we employ the optimal one for each pair N,κ. Experience has shown us
that this optimization, as well as the proper assignment of these estimates (based on
frequency comparisons), is essential in order to obtain sufficient decay (as κ →∞)
to complete the analysis in the sections that follow.
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Proposition 3.1. Given 2 ≤ ` ≤ 4, a collection of operators A1, . . . , A`+1 obeying

‖Aj‖H−1
κ →H1

κ
≤ 1, (3.3)

a collection of Schwartz functions φ1, . . . , φ`, and q : [−1, 1]→ Bδ, we write

F`(t) := A1φ1q(t)A2φ2q(t)A3 . . . A`φ`q(t)A`+1. (3.4)

Then ∥∥F`∥∥L1
tI1
. κ−

4
3−

3
2 `δ`−2

{
δ2 + ‖q‖2LSκ

}
. (3.5)

The implicit constant depends on φ1, . . . , φ`, but is independent of κ ≥ 1.

Proof. We begin by noting that (3.3) guarantees that

Aj =
√
R0(κ)Bj

√
R0(κ) with ‖Bj‖I∞ . 1.

Decomposing all φjq into their Littlewood–Paley pieces and using Hölder’s inequal-
ity in Schatten classes, we deduce that

‖F`‖L1
tI2
.

∑
N1,...,N`

∥∥√R0(κ)
∥∥2

I∞

∏̀
j=1

∥∥√R0(κ)(φjq)Nj
√
R0(κ)

∥∥
L
pj
t Ipj

provided
∑

1/pj = 1. Actually, we only need a simple form of Hölder’s inequality,
namely, when two of the exponents are 2 and all others are ∞. However, it is
important that we place the two highest frequency terms in I2, while the remaining
terms we place in operator norm. Concretely, we use∥∥√R0(κ)(φq)N

√
R0(κ)

∥∥
L2
tI2
.φ min{κ− 3

2N,κ−
1
2N−2}

[
δ + ‖q‖LSκ

]
, (3.6)∥∥√R0(κ)(φq)N

√
R0(κ)

∥∥
L∞t I∞

.φ min{κ−2N
3
2 ,κ−

1
2 }δ, (3.7)

which follow from (3.1) and (3.2) by applying (2.2) and Lemma 2.9. In this way,
matters reduce to controlling the sum over frequencies, which we relabel so that
they are ordered. We are led to bound∑
N1≥···≥N`≥1

2∏
j=1

min{κ− 3
2Nj ,κ−

1
2N−2

j }
∏̀
j=3

min{κ− 1
2 ,κ−2N

3
2
j }

.
∑

N1≥N2

( 2∏
j=1

min{κ− 3
2Nj ,κ−

1
2N−2

j }
)

min{κ− 1
2 log(2 + N2

κ ),κ−2N
3
2

2 }`−2

.
∑
N2

min{κ− 7
6 ,κ−

1
2N−2

2 }min{κ− 3
2N2,κ−

1
2N−2

2 }min{κ− 1
2 log(2 + N2

κ ),κ−2N
3
2

2 }`−2

.
∑

1≤N2≤κ
1
3

κ
4
3−2`N

−2+ 3
2 `

2 +
∑

κ
1
3≤N2≤κ

κ3−2`N
−7+ 3

2 `
2 +

∑
N2≥κ

κ−
`
2N−4

2 log(2 + N2

κ )`−2

. κ
2
3−

3
2 ` + κ−4− `2 . κ

2
3−

3
2 `

and the result follows. Evidently, the result can be extended to ` ≥ 5, albeit with
a different power of κ. �

Corollary 3.2. Fix φ ∈ S(R). For any q : [−1, 1]→ Bδ and κ ≥ 1,

‖φh3‖L1
t,x
. κ−5− 5

6 δ
{
δ2 + ‖q‖2LSκ

}
, (3.8)
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`≥4

‖φh`‖L1
t,x
. κ−7− 1

3 δ2
{
δ2 + ‖q‖2LSκ

}
. (3.9)

Proof. Our proof rests on the following representation

‖φh`‖L1
t,x

= sup
f

∫ 1

−1

Tr
{
fφR0

(
qR0

)`}
dt (3.10)

where the supremum is over f ∈ L∞([−1, 1] × R) of unit norm. By the same
partition of unity argument exhibited in the proof of Lemma 2.9, we see that it
suffices to assume that φ is some positive power of ψ. For example, if we prove
(3.8) with φ = ψ3, it then follows that it holds uniformly for translates (due to the
uniformity under translation of q) and finally, we have

‖φh3‖L1
t,x
≤ 512

7 ‖φψ
9
z‖L1

zL
∞
t,x
‖ψ3

zh3‖L∞z L1
t,x
.φ κ−5− 5

6 δ
{
δ2 + ‖q‖2LSκ

}
.

Beginning with (3.8), we write

ψ3R0qR0qR0qR0 =
[
ψ3R0

1
ψ3

]
ψq
[
ψ2R0

1
ψ2

]
ψq
[
ψR0

1
ψ

]
ψq
[
R0

]
. (3.11)

Notice that by Lemma 2.7, each operator in square brackets is bounded as a map-
ping H−1

κ → H1
κ . In this way, (3.8) follows from Proposition 3.1.

Analogously, the ` = 4 term in (3.9) follows from

ψ4R0(qR0)3 =
[
ψ4R0

1
ψ4

]
ψq
[
ψ3R0

1
ψ3

]
ψq
[
ψ2R0

1
ψ2

]
ψq
[
ψR0

1
ψ

]
ψq
[
R0

]
.

It remains to treat ` > 4, which we shall do by reducing consideration to the
case ` = 4. Cycling the trace in (3.10) yields

Tr
{
fψ4R0

(
qR0

)`}
= Tr

{(√
R0q

√
R0

)2√
R0 ψ

2fψ2
√
R0

(√
R0q

√
R0

)l−2
}
. (3.12)

When ` = 4, the operators to the left and right of f are adjoints of one another.
Therefore, the trace is monotone in f and so maximized by taking f ≡ 1. Thus,

‖ψ4h4‖L1
t,x

=
∥∥(√R0q

√
R0

)2√
R0 ψ

2
∥∥2

L2
tI2
.

Returning to (3.12) for general ` ≥ 5, we then deduce that

‖ψ4h`‖L1
t,x
≤
∥∥(√R0q

√
R0

)2√
R0 ψ

2
∥∥2

L2
tI2

∥∥√R0q
√
R0

∥∥`−4

L∞t I∞
≤ ‖ψ4h4‖L1

t,x
δ`−4.

As δ � 1, this can be summed to yield (3.9). �

Our next proposition and corollary are close analogues of the previous ones;
however, we now estimate the H1

κ norm and (more importantly) only use one copy
of the local smoothing norm to do so.

Proposition 3.3. Given ` ≥ 2, a collection of operators A1, . . . , A`+1 obeying
(3.3), a collection of Schwartz functions φ1, . . . , φ`, and f, q : [−1, 1] → Bδ, we
write

F`(t) :=
√
R0(κ) f(t)A1φ1q(t)A2φ2q(t)A3 . . . A`φ`q(t)

√
R0(κ).

Then

‖F`‖L1
tI1
. κ−

`
2−

13
6 δ`−1

{
δ + ‖q‖LSκ

}
‖f‖L2

tH
−1
κ
. (3.13)

The implicit constant is independent of κ ≥ 1.
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Proof. As in the proof of the previous proposition, we proceed by Hölder’s inequality
and decomposing into Littlewood–Paley pieces. This time, we apply (3.6) only to
the highest frequency term, and (3.7) to the remainder. Regarding f , we simply
use Lemma 2.2:∥∥√R0(κ)f

√
R0(κ)

∥∥
L2
tI∞
≤
∥∥√R0(κ)f

√
R0(κ)

∥∥
L2
tI2
. κ−

1
2 ‖f‖L2

tH
−1
κ
.

In this way, we are once again led to a sum over ordered frequencies:∑
N1≥···≥N`

κ−
1
2 min{κ− 3

2N1,κ−
1
2N−2

1 }
∏̀
j=2

min{κ−2N
3
2
j ,κ

− 1
2 }

.
∑
N1

κ−
1
2 min{κ− 3

2N1,κ−
1
2N−2

1 }min{κ−2N
3
2

1 ,κ
− 1

2 log(2 + N1

κ )}`−1

. κ−
3`
2 −

1
6 + κ−

`
2−

5
2 . κ−

`
2−

13
6 .

Once again, the last step involves breaking the sum into three pieces. Note that

for ` ≥ 3, we can obtain a slightly better power, namely, κ−
`+5
2 . �

Corollary 3.4. Fix φ ∈ S(R) and 2 ≤ m ≤ 12. Then for δ sufficiently small,∑
`≥m

‖φh`‖L2
tH

1
κ
. κ−

m
2 −

13
6 δm−1

{
δ + ‖q‖LSκ

}
, (3.14)

uniformly for q : [−1, 1]→ Bδ and κ ≥ 1.

Proof. We begin by proving that for each f : [−1, 1]→ H−1 and ` ≤ 12,∥∥√R0fφ(R0q)
`
√
R0

∥∥
L1
tI1
. κ−

`
2−

13
6 δ`−1

{
δ + ‖q‖LSκ

}
‖f‖L2

tH
−1
κ
. (3.15)

Imagine first that φ = ψ`z. Mimicking the proof of Corollary 3.2, we write

ψ`z(R0q)
` = [ψ`zR0ψ

−`
z ]ψzq[ψ

`−1
z R0ψ

1−`
z ]ψzq · · · [ψzR0ψ

−1
z ]ψzq

and note that Lemma 2.7 applies to all operators in square brackets. In view of
translation invariance, it then follows from Proposition 3.3 that

‖
√
R0fψ

`
z(R0q)

`
√
R0‖L∞z L1

tI
1
κ
. κ−

`
2−

13
6 δ`−1

{
δ + ‖q‖LSκ

}
‖f‖L2

tH
−1
κ
.

This then implies (3.15) by the partition of unity argument used earlier:

‖
√
R0fφ(R0q)

`
√
R0‖L1

tI1
.
∫
R
‖
√
R0fψ

2`
z φ(R0q)

`
√
R0‖L1

tI1
dz

. κ−
`
2−

13
6 δ`−1

{
δ + ‖q‖LSκ

}
‖φψ`zf‖L1

zL
2
tH
−1
κ

. κ−
`
2−

13
6 δ`−1

{
δ + ‖q‖LSκ

}
‖ψ`zφ‖L1

zH
1‖f‖L2

tH
−1
κ
.

While the limit ` ≤ 12 applied in (3.15) is rather arbitrary, it seems untenable
to keep track of the dependence of the implicit constant on `; thus, it cannot be
applied directly to control the tail of the series in (3.14).

Given m ≤ 12 and ` ≥ m, we deduce from (3.15) and (2.6) that∫∫
φ(x)h`(t, x;κ)f(t, x) dx dt ≤

∥∥√R0fφ(R0q)
m
√
R0

∥∥
L1
tI1

∥∥√R0q
√
R0

∥∥`−m
L∞t I∞

. κ−
`
2−

13
6 δ`−1

{
δ + ‖q‖LSκ

}
‖f‖L2

tH
−1
κ
,

where the implicit constant depends on m and φ, but not on `. The lemma now
follows by duality. �
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Although not strictly a paraproduct, we record here several key estimates for h1

similar in nature to that of Corollary 3.4.

Proposition 3.5. Given φ ∈ S(R) and q : [−1, 1]→ Bδ,∥∥φh(s)
1

∥∥
L2
t,x
. κ−

8−s
3

{
δ + ‖q‖LSκ

}
(3.16)

for each s ∈ {0, 1, 2}; moreover,∥∥φh′′1∥∥L2
tH

1
κ
. κ−1

{
δ + ‖q‖LSκ

}
and

∥∥φh′1∥∥2

L4
t,x
. κ−

7
2 δ
{
δ + ‖q‖LSκ

}
. (3.17)

Proof. By (2.21), −κ ψh(s)
1 = [ψR0(2κ) 1

ψ ]ψq(s). Thus, by Lemmas 2.7 and 2.9,

κ2
∥∥ψh(s)

1

∥∥
L2
t,x
. κ

∥∥ψh(s)
1

∥∥
L2
tH

1
κ
. ‖ψq(s)‖L2

tH
−1
κ
. κ

s−2
3

{
δ + ‖q‖LSκ

}
,

which proves (3.16) and the first inequality in (3.17), provided φ = ψ. The case of
general φ then follows by the partition of unity argument exhibited already in the
proof of Lemma 2.9.

Turning now to the second inequality in (3.17), we write φh′1 = (φh1)′ − φ′h1

and apply the Gagliardo–Nirenberg and Hölder inequalities:

‖φh′1‖2L4
t,x
. ‖(φh1)′′‖L2

t,x
‖φh1‖L∞t,x + ‖(φ′h1)′‖L2

t,x
‖φ′h1‖L∞t,x .

The result now follows from (3.16) and (2.11). �

The diagonal Green’s function appears in the denominator in both (2.15) and
(2.17). Our next lemma provides us with an efficient means of handling this situa-
tion in terms of the results we have already developed.

Lemma 3.6. Fix φ ∈ S(R). For q : [−1, 1]→ Bδ and δ sufficiently small, we have∥∥φ[ 1
g − 2κ + 4κ2h1

1+2κh1

]∥∥
L2
tH

1
κ
.φ κ−

7
6 δ
{
δ + ‖q‖LSκ

}
. (3.18)

Proof. There is no fear of division by zero here: From (2.10) we see that

‖2κh1‖L∞t H1
κ
. δ and so

∥∥ 2κh1

1+2κh1

∥∥
L∞t H

1
κ
. δ,

provided δ is sufficiently small. Combining this with the identity

1
g − 2κ + 4κ2h1

1+2κh1
= − 2κ

g

[
1− 2κh1

(1+2κh1)

]
[g − 1

2κ − h1], (3.19)

we see that the lemma then follows from Corollary 3.4. �

In the remainder of this section, we prove two further paraproduct bounds on
nonlinear combinations of the h` that arise later in the analysis. While these terms
can be bounded by combining the estimates proved already, this does not yield
sufficient decay. It is essential for what follows that the exponent of κ−1 in (3.20)
exceeds 7 and that in (3.21) exceeds 8. This does not seem to be possible other
than by treating these paraproducts holistically.

Lemma 3.7. Fix A ∈ {Id, ∂2R0(2κ), κ2R0(2κ)}. Then∥∥ψ12h1A[h′1h
′
1]
∥∥
L1
t,x

+
∥∥ψ12h′1A[h′1h1]

∥∥
L1
t,x
. κ−7− 1

6 δ
{
δ2 + ‖q‖2LSκ

}
, (3.20)

uniformly for q : [−1, 1]→ Bδ.
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Proof. Schur’s test shows that ψ8A 1
ψ8 is Lp-bounded for every 1 ≤ p ≤ ∞, for each

choice of A, and uniformly for κ ≥ 1.
In a similar vein, we note that

ψ4h1 = −κ−1ψ4R0
1
ψ4 [ψ4q] and ψ4h′1 = −κ−1ψ4R0

1
ψ4 [(ψ4q)′ − (ψ4)′q].

Combining these observations with Lemma 2.7 and Bernstein inequalities, we
see that it suffices to show∑
N1≥N2≥N3

N1N2

κ3
‖R0(φ1q)N1

‖L2
t,x
‖R0(φ2q)N2

‖L2
t,x
‖R0(φ3q)N3

‖L∞t,x . RHS(3.20),

for any trio of Schwartz functions φi ∈ {ψ4, ∂xψ
4}.

We sum over N3 first using∑
N3≤N2

‖R0(φ3q)N3‖L∞t,x .
∑

N3≤N2

N
3/2
3

N2
3 +κ2 ‖q‖L∞t H−1 . κ−2δN

3/2
2 . κ−2δN

3/4
1 N

3/4
2 .

To complete the proof, we substitute this into the above, and use∑
N

N
7
4 ‖R0(φ3q)N‖L2

t,x
.

∑
N≤κ1/3

N
11
4

κ2 δ +
∑

N≥κ1/3

N
7
4

κN2 ‖q‖LSκ . κ−
13
12

{
δ2 + ‖q‖2LSκ

}
to sum over N1 and N2 (we may now neglect the ordering). �

Lemma 3.8. For q : [−1, 1]→ Bδ and δ, we have

‖ψ12h1h3‖L1
t,x
. κ−8− 1

3 δ2
{
δ2 + ‖q‖2LSκ

}
. (3.21)

Proof. As in the proof of Corollary 3.2, we employ duality, writing LHS(3.21) as

sup
f

∫ 1

−1

Tr
{√

R0 ψ
3h1f

[
ψ9R0

1
ψ9

]
ψ3q

[
ψ6R0

1
ψ6

]
ψ3q

[
ψ3R0

1
ψ3

]
ψ3q

√
R0

}
dt (3.22)

where the supremum is over f ∈ L∞([−1, 1]× R) of unit norm.
To proceed, we decompose ψ3h1 =

∑
N uN with

uN := −κ−1ψ3R0(2κ) 1
ψ3 [(ψ3q)N ].

Using Lemmas 2.7 and 2.2, we deduce the following analogues of (3.6) and (3.7):∥∥√R0 uNf
√
R0

∥∥
L2
tI2
. κ−

3
2 ‖uN‖L2

t,x
. κ−3 min{κ− 3

2N,κ−
1
2N−2}

[
δ + ‖q‖LSκ

]
∥∥√R0 uNf

√
R0

∥∥
L∞t I∞

. κ−2‖uN‖L∞t,x . κ−3 min{κ−2N
3
2 ,κ−

1
2 }δ.

Returning to (3.22), we divide each copy of ψ3q into its Littlewood–Paley pieces,
yielding a sum over four frequencies. As in the proof of Corollary 3.2, we now
apply Hölder’s inequality in trace ideals, placing the two highest frequencies pieces
in L2

tI2 and the remainder in L∞t I∞. But for the prefactor κ−3, the resulting sum
is exactly that appearing in the proof of Proposition 3.1 when ` = 4 and so the
result follows from the computations given there. �
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4. Local smoothing

This section is primarily devoted to the proof of the following:

Proposition 4.1. Fix δ sufficiently small. For any initial data q(0) ∈ S(R) ∩Bδ,
the corresponding solution q(t) to (1.2) satisfies

‖q‖2LSκ
. ‖q(0)‖2

H−1
κ

+ κ−
1
6 δ2 (4.1)

uniformly for κ ≥ 1. For the definition of LSκ, see (2.29).

Later in Corollary 4.5, we will observe that this yields (1.4) as an a priori bound
for initial data in S(R)∩Bδ. This can then be extended to large Schwartz data by
employing the scaling (1.8).

Following the pattern introduced already by Kato in [5], we will be proving
the local smoothing estimate by localizing the microscopic conservation law (2.14).
While the dominant term in the current will reproduce LHS(4.1) nicely, a wide
variety of the errors arising in our analysis must be bootstrapped. This necessitates
a smallness parameter. For terms cubic and higher in q, the parameter δ could be
used; however, there are also quadratic error terms (arising from commutators) and
so an alternate source of smallness is required. This smallness will be obtained by
requiring κ ≥ κ0 for some absolute κ0 � 1. This restriction can be removed at
the end by employing the equivalence of norms (individually for H−1

κ and LSκ) as
κ ≥ 1 varies over bounded intervals.

To proceed, we let Ψ(x) =
∫∞
x
ψ(x′)12 dx′ and so observe that∫

[ρ(1, x)− ρ(−1, x)]Ψ(x) dx = −
∫ 1

−1

∫ ∞
−∞

j5th(t, x)ψ(x)12 dx dt, (4.2)

where j5th is defined in (2.15). Note that we have omitted the translation parameter
z that appears in the definition of LSκ to avoid cumbersome notation; it will be
recovered at the end by employing the translation symmetry of solutions.

Let us begin our analysis by identifying two key constituents of the current j5th:

j1 := 4κ2[3q2 − 16κ5h2(κ)]− 4κ2R0(2κ)
[
− 5(q2)′′ + 5(q′)2

]
+ 8κ4h1(κ)h

(4)
1 (κ)

j2 := −64κ7h3(κ)− 10q3.

The first part collects all quadratic terms and will be the source of the coercivity
we seek. The second current represents the dominant cubic error term; extensive
analysis will be required in order to illustrate the main cancellation therein and
then control the remainder.

The next lemma controls the contributions of the remaining parts of j5th in a
satisfactory manner.

Lemma 4.2. For q : [−1, 1]→ Bδ ∩ S(R) and δ sufficiently small,∣∣∣∣∫ 1

−1

∫ ∞
−∞

[j5th − j1 − j2](t, x)ψ(x)12 dx dt

∣∣∣∣ . κ−
1
6

{
δ2 + ‖q‖2LSκ

}
.

Proof. Let us begin by recalling the definition of j5th:

j5th = − 2κ
g(κ)

{
16κ5

[
g(κ)− 1

2κ
]

+ 4κ2q + q′′ − 3q2
}

− 4κ2R0(2κ)
[
q(4) − 5(q2)′′ + 5(q′)2 + 10q3

]
.
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To proceed, we expand out g(κ) using the series (2.8) and discuss the main calcu-
lations attendant to each value of ` in succession. In this way, we will ‘discover’
the terms in j1 and j2 as we progress and identify four key quantities to be esti-
mated, which we label E1, . . . , E4. As there is no other energy parameter under
consideration, we omit the argument κ from both g and h` below.

We start with ` = 1. From (2.19) and (2.21),

2κ
g [−4κ2q − q′′ − 16κ5h1]− 4κ2R0(2κ)q(4) = κ

[
4κ2 − 2κ

g

]
h

(4)
1 .

Removing the quadratic term 8κ4h1h
(4)
1 which appears in j1, we are left to estimate

E1 :=

∫∫
2κ2

[
2κ − 1

g − 4κ2h1

]
h

(4)
1 ψ12 dx dt. (4.3)

We turn now to ` = 2 and consider the contribution of

2κ
g(κ) [3q2 − 16κ5h2]− 4κ2R0(2κ)

[
− 5(q2)′′ + 5(q′)2

]
.

Setting aside those terms which appear in j1, we are left to estimate

E2 :=

∫∫
2κ
[

1
g − 2κ

]
[3q2 − 16κ5h2]ψ12 dx dt. (4.4)

For ` = 3, we consider the combination

2κ
g(κ) [−16κ5h3]− 4κ2R0(2κ)

[
10q3

]
.

Setting aside the contribution of j2, we are left to estimate

E3a := −
∫∫

32κ6
[

1
g − 2κ

]
h3ψ

12 dx dt (4.5)

and

E3b := 10

∫∫ ([
Id−4κ2R0(2κ)

]
q3
)
ψ12 dx dt. (4.6)

Finally, we consider those ` ≥ 4. This yields

E4 :=
∑
`≥4

∫∫
2κ
g(κ) [−16κ5h`]ψ

12 dx dt,

which is easily estimated: By (2.11) and Corollary 3.2,

|E4| . κ6
∥∥ 1
g

∥∥
L∞

∑
`≥4

∥∥ψ12h`
∥∥
L1
t,x
. κ−

1
3 δ2
{
δ2 + ‖q‖2LSκ

}
.

We now turn our attention to estimating the remaining three error terms, be-
ginning with E1. From (3.18) and Proposition 3.5,∣∣∣∣∫∫ 2κ2

[
1
g − 2κ + 4κ2h1

1+2κh1

]
h

(4)
1 ψ12 dx dt

∣∣∣∣ . κ−
1
6

{
δ2 + ‖q‖2LSκ

}
. (4.7)

Thus the estimation of E1 is reduced to controlling

E1a =

∫∫
16κ5

1+2κh1
h2

1h
(4)
1 ψ12 dx dt. (4.8)

Integrating by parts twice and employing (2.11) shows

|E1a| . κ7/2‖ψh′′1‖2L2
t,x

+ κ5‖ψh′′1‖L2
t,x
‖ψh′1‖2L4

t,x

+ κ7/2‖ψh′′1‖L2
t,x
‖ψh′1‖L2

t,x
+ κ7/2‖ψh′′1‖L2

t,x
‖ψh1‖L2

t,x
.
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In view of the results of Proposition 3.5, it follows that

|E1a| . κ−
1
2

{
δ2 + ‖q‖2LSκ

}
,

which is acceptable.
We now turn our attention to E2, which we break into three pieces:

E2a =

∫∫
2κ
[

1
g − 2κ

]
[3κ2(h′′1)2]ψ12 dx dt

E2b =

∫∫
2κ
[

1
g − 2κ + 4κ2h1

1+2κh1

]
[3q2 − 16κ5h2 − 3κ2(h′′1)2]ψ12 dx dt

E2c =

∫∫
2κ
[
− 4κ2h1

1+2κh1

]
[3q2 − 16κ5h2 − 3κ2(h′′1)2]ψ12 dx dt.

The first of these is easily estimated via (2.11) and Proposition 3.5:

|E2a| . κ3
∥∥ 1
g − 2κ

∥∥
L∞t,x

∥∥ψh′′1∥∥2

L2
t,x
. κ−

1
2

{
δ2 + ‖q‖2LSκ

}
.

On the other hand, from (2.20) we have

3q2 − 16κ5h2 − 3κ2(h′′1)2 = −4κ4
[
10h1h

′′
1 + 5(h′1)2

]
− 4κ4∂2

xR0(2κ)
[
4h1h

′′
1 + 5(h′1)2

]
.

(4.9)

Using Proposition 3.5, we may then deduce that

‖3q2 − 16κ5h2 − 3κ2(h′′1)2‖L2
t,x
. κ4‖ψh′′1‖L2

t,x
‖ψh1‖L∞t,x + κ4‖ψh′1‖2L4

t,x

. κ
1
2

{
δ + ‖q‖LSκ

}
.

Combining this with (3.18), it follows that

|E2b| . κ−
2
3

{
δ2 + ‖q‖2LSκ

}
.

In view of (4.9), integration by parts allows one to reduce E2c to terms covered
by Lemma 3.7. Thus

|E2c| . κ−
1
6 δ
{
δ2 + ‖q‖2LSκ

}
.

It remains only to consider E3a and E3b. Employing (2.11), Corollary 3.4, and
Lemmas 3.6 and 3.8, we find

|E3a| . κ6
∥∥ψ3

[
1
g − 2κ + 4κ2h1

1+2κh1

]∥∥
L2
t,x

∥∥ψ9h3

∥∥
L2
t,x

+ κ8‖ψ12h1h3‖L1
t,x

. κ−
1
3 δ
{
δ + ‖q‖LSκ

}
.

To estimate E3b, we first write Id−4κ2R0(2κ) = −∂2R0(2κ) and integrate by
parts. Next employing Lemma 2.7 and the algebra property of H1, we deduce that

|E3b| . κ−2‖ψ2q3‖L1
tH
−1 . κ−2δ‖ψq‖2L2

tH
1 .

But then by Plancherel and Lemma 2.9,

|E3b| . κ−
2
3 δ
{
‖ψq‖2L∞t H−1 + ‖(ψq)′′‖2

L2
tH
−1
κ

}
. κ−

2
3 δ
{
δ2 + ‖q‖2LSκ

}
. �

We now demonstrate the coercivity of the quadratic current j1. It was the
knowledge of precisely the nature of this coercivity that led to the definition of the
local-smoothing norm back in (2.29). For the purposes of this section, it is (4.11)
below that is important; however, we also isolate in (4.10) a part of the argument
that will be useful in Section 6.
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Lemma 4.3 (Quadratic current). Given q : [−1, 1]→ Bδ ∩ S(R), let

I(κ) :=

∫ 1

−1

∫ ∞
−∞

{
64κ7h2(κ)− 12κ2q2 + 5(q′)2 − 5(q2)′′ − 8κ4[h′′1(κ)]2

}
ψ12 dx dt.

Then

‖(ψ6q)′′‖2
L2
tH
−1
κ ([−1,1]×R)

. I(κ) + κ−
1
3

{
δ2 + ‖q‖2LSκ

}
(4.10)

and analogously,

‖(ψ6q)′′‖2
L2
tH
−1
κ ([−1,1]×R)

. −
∫ 1

−1

∫ ∞
−∞

j1ψ
12 dx dt+ κ−

1
3

{
δ2 + ‖q‖2LSκ

}
. (4.11)

Proof. The greater part of the work here is demonstrating (4.10); this is were we
focus our attention first. At the end, we will see how to deduce (4.11) from this.
Throughout the proof we employ the abbreviations h1 = h1(κ) and R0 = R0(2κ).

Looking at (2.20), we are lead naturally to estimate

κ6

∣∣∣∣∫∫ [∂2R0ψ
12
][

(h′1)2 + 2(h2
1)′′
]
dx dt

∣∣∣∣ . κ4‖ψ6h′1‖2L2
t,x

+ κ4‖ψ6h1‖2L2
t,x

. κ−
2
3

{
δ2 + ‖q‖2LSκ

}
, (4.12)

by using that |∂2R0ψ
12|+ |∂4R0ψ

12| . κ−2ψ12 and Proposition 3.5.
Looking at the remaining terms in (2.20) and incorporating them into I(κ), we

find ourselves needing to consider

5

∫∫ {
−∂2

x

[
q2 − 16κ6h2

1

]
− 4κ4[h′′1 ]2 +

[
(q′)2 − 16κ6(h′1)2

]}
ψ12 dx dt. (4.13)

To proceed, we shall estimate the three terms inside the braces, working from left
to right.

The first term makes a negligible contribution: As q = −κ(−∂2
x + 4κ2)h1, so

q2 − 16κ6h2
1 = κ2(h′′1)2 − 4κ4(h2

1)′′ + 8κ4(h′1)2.

Thus by Proposition 3.5, we see that∣∣∣∣∫∫ {∂2
x

[
q2 − 16κ6h2

1

]}
ψ12 dx dt

∣∣∣∣ . κ2‖ψh′′1‖2L2
t,x

+ κ4‖ψh1‖2L2
tH

1

. κ−
2
3

{
δ2 + ‖q‖2LSκ

}
. (4.14)

Turning now to the middle term from (4.13), we see from Lemma 2.10 that∥∥ 1
ψ2

[
R0ψ

12R0 − ψ6R2
0ψ

6
]

1
ψ2

∥∥
H−1

κ →H1
κ
. κ−4.

Thus, recalling (2.21) and Lemma 2.9,∥∥∥∥∫ 4κ4[h′′1 ]2ψ12 dx− 4κ2
〈
ψ6q′′, R2

0ψ
6q′′
〉∥∥∥∥
L1
t

. κ−2‖ψ2q′′‖2
L2
tH
−1
κ

. κ−2
{
δ2 + ‖q‖2LSκ

}
.

Continuing from here, we note that by Lemma 2.9,

4κ2
∥∥∥〈ψ6q′′, R2

0ψ
6q′′
〉
−
〈
(ψ6q)′′, R2

0(ψ6q)′′
〉∥∥∥
L1
t

.
(
‖ψq′′‖L2

tH
−1
κ

+ ‖ψq′‖L2
tH
−1
κ

+ ‖ψq‖L2
tH
−1
κ

)(
‖ψq′‖L2

tH
−1
κ

+ ‖ψq‖L2
tH
−1
κ

)
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. κ−
1
3

{
δ2 + ‖q‖2LSκ

}
.

Putting these two pieces together, we find∫ ∣∣∣∣∫ 4κ4[h′′1 ]2ψ12 dx− 4κ2
〈
(ψ6q)′′, R2

0(ψ6q)′′
〉∣∣∣∣ dt . κ−

1
3

{
δ2 + ‖q‖2LSκ

}
. (4.15)

Proceeding in a similar way, we find that∥∥∥∥∫ 16κ6[h′1]2ψ12 dx− 16κ4
〈
ψ6q′, R2

0ψ
6q′
〉∥∥∥∥
L1
t

. ‖ψ2q′‖2
L2
tH
−1
κ

. κ−
1
3

{
δ2 + ‖q‖2LSκ

}
and also that∥∥∥〈(ψ6q′)′,

[
Id +4κ2R0

]
R0(ψ6q′)′

〉
−
〈
(ψ6q)′′,

[
Id +4κ2R0

]
R0(ψ6q)′′

〉∥∥∥
L1
t

.
(
‖ψq′′‖L2

tH
−1
κ

+ ‖ψq′‖L2
tH
−1
κ

+ ‖ψq‖L2
tH
−1
κ

)(
‖ψq′‖L2

tH
−1
κ

+ ‖ψq‖L2
tH
−1
κ

)
. κ−

1
3

{
δ2 + ‖q‖2LSκ

}
.

Hence, writing Id−16κ4R2
0 = −∂

[
Id +4κ2R0

]
R0∂, we find∥∥∥∫ [(q′)2 − 16κ6(h′1)2

]
ψ12 dx−

〈
(ψ6q)′′,

[
Id +4κ2R0

]
R0(ψ6q)′′

〉∥∥∥
L1
t

. κ−
1
3

{
δ2 + ‖q‖2LSκ

}
.

(4.16)

Aggregating our estimates (4.12), (4.14), (4.15), and (4.16), we discover that∣∣∣∣I − 5

∫ 〈
(ψ6q)′′, R0(ψ6q)′′

〉
dt

∣∣∣∣ . κ−
1
3

{
δ2 + ‖q‖2LSκ

}
, (4.17)

which proves (4.10). We now turn our attention to (4.11)
Comparing the definition of I(κ) with

∫
−j1ψ12, we see two discrepancies. The

first is easily estimated via integration by parts and Proposition 3.5:∣∣∣∣8κ4

∫∫
ψ12
[
h1h

(4)
1 − (h′′1)2

]
dx dt

∣∣∣∣ . κ4
{
‖ψh′1‖L2

t,x
+ ‖ψh1‖L2

t,x

}
‖ψh′′1‖L2

t,x

. κ−
1
3

{
δ2 + ‖q‖2LSκ

}
. (4.18)

Regarding the second discrepancy, we write Id−4κ2R0(2κ) = −∂2
xR0(2κ) and then

integrate by parts to estimate it as follows:∣∣∣∣∫∫ [∂2
xR0(2κ)ψ12

][
5(q′)2 − 5(q2)′′

]
dx dt

∣∣∣∣ . κ−2‖ψq‖2L2
tH

1 . κ−
2
3

{
δ2 + ‖q‖2LSκ

}
.

Together with (4.18), this estimate allows us to deduce (4.11) from (4.10). �

Lemma 4.4 (Cubic current). For q : [−1, 1]→ Bδ ∩S(R) and δ sufficiently small,∣∣∣∣∫ 1

−1

∫ ∞
−∞

j2ψ
12 dx dt

∣∣∣∣ . κ−
1
6 δ
{
δ2 + ‖q‖2LSκ

}
. (4.19)

Proof. Our first two reductions are based on Lemma 2.10 and the representation∫∫
64κ7h3ψ

12 dx dt = −64κ7

∫
Tr
{
R0ψ

12R0qR0qR0q
}
dt. (4.20)

Here and below R0 = R0(κ).
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Employing (2.35), we may write

Tr
{[
R0ψ

12R0 − ψ6R2
0ψ

6
]
qR0qR0q

}
= κ−2

∑
Tr
{
A′iψ

3q
[
ψ3R0

1
ψ3

]
ψ3qR0qψ

6Ai

}
,

where the sum has finitely many terms and each of the operators Ai and A′i satisfy
(2.34). This allows us to apply Proposition 3.1 and so deduce that∣∣∣∣κ7

∫
Tr
{[
R0ψ

12R0 − ψ6R2
0ψ

6
]
qR0qR0q

}
dt

∣∣∣∣ . κ−
5
6 δ
{
δ2 + ‖q‖2LSκ

}
, (4.21)

which constitutes an acceptable error.
Next we seek to apply (2.36) in a similar way to prove∣∣∣∣κ7

∫
Tr
{
R0qψ

4
(
ψ2R0qR0ψ

2 −R0ψ
4qR0

)
qψ4R0

}
dt

∣∣∣∣ . κ−
1
2 δ
{
δ2 + ‖q‖2LSκ

}
.

(4.22)

The terms involving Ai are readily seen to be acceptable via Proposition 3.1. How-
ever this leaves us to prove∣∣∣∣κ7

∫
Tr
{
R0qψ

4
(
κ2R2

0[ψ3ψ′q]′R2
0 + ∂R2

0[ψ3ψ′q]′∂R2
0

)
qψ4R0

}
dt

∣∣∣∣ . RHS(4.22).

To do this, we cycle the trace and apply Hölder’s inequality, using the following
two inputs: First, by (3.5), we have∥∥R0qψ

4R2
0ψ

4q
√
R0

∥∥2

L2
tI2

=
∥∥R0qψ

4R2
0ψ

4qR0qψ
4R2

0ψ
4qR0

∥∥
L1
tI1

. κ−11− 1
3 δ2
{
δ2 + ‖q‖2LSκ

}
.

Second, using Lemma 2.2 and (2.31), we see that∥∥κ2R
3/2
0 [φq]′R0 + ∂R

3/2
0 [φq]′∂R0

∥∥2

L2
tI2
. κ−3

∥∥[φq]′
∥∥2

L2
tH
−1
κ

. κ−
11
3

{
δ2 + ‖q‖2LSκ

}
for any Schwartz function φ.

Writing u := ψ4q and combining (4.20), (4.21), and (4.22), we finally achieve
our sought-after reduction: To prove the lemma, it suffices to show that∫ ∣∣∣∣64κ7 Tr

{
R0uR0uR0uR0

}
−
∫

10u3 dx

∣∣∣∣ dt . κ−
1
6 δ
{
δ2 + ‖q‖2LSκ

}
. (4.23)

In order to exhibit the required cancellation, it is convenient to freeze the time
variable and show instead that∣∣∣∣64κ7 Tr

{
R0uR0uR0uR0

}
−
∫

10u3 dx

∣∣∣∣ . κ−
1
6 δ
{
δ2 + ‖u′′‖2

H−1
κ

}
. (4.24)

This then yields (4.23) by integrating in time and applying Lemma 2.9. We begin
by writing out the trace as a paraproduct with an explicit symbol. Concretely, if

m(η1, η2) =

∫
R

dξ

2π[ξ2 + κ2]2[(ξ + η1)2 + κ2][(ξ + η2)2 + κ2]
,

then using that u is real-valued, we may evaluate the trace (in Fourier variables)
as follows:

Tr
{
R0uR0uR0uR0

}
= 1√

2π

∫∫
m(η1, η2)û(η1 + η2)û(η2)û(η1) dη1 dη2.
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By comparison, ∫
u3 dx = 1√

2π

∫∫
û(η1 + η2)û(η2)û(η1) dη1 dη2.

By contour integration (or partial fractions), we find

m =
640κ6+48κ4[2η21+2η22+(η1−η2)2]+4κ2[3η41−4η31η2+4η21η

2
2−4η1η

3
2+3η42 ]+η21η

2
2(η1−η2)2

4κ3[η21+4κ2]2[η22+4κ2]2[(η1−η2)2+4κ2]
.

With patient computation (we recommend collecting terms by power of κ), this
yields the key cancellation:∣∣64κ7m− 10

∣∣ . η2
1η

2
2

[η2
1 + 4κ2][η2

2 + 4κ2]
+

κ4[η2
1 + η2

2 + (η1 − η2)2]

[η2
1 + 4κ2][η2

2 + 4κ2][(η1 − η2)2 + 4κ2]

uniformly for η1, η2 ∈ R.
To estimate the contribution of the first term, we use Cauchy–Schwarz:∫∫

η2
1η

2
2 |û(η1 + η2)û(η2)û(η1)|
[η2

1 + 4κ2][η2
2 + 4κ2]

dη1 dη2

. ‖u′′‖2
H−1

κ

(∫∫
|û(η1 + η2)|2

[η2
1 + 4κ2][η2

2 + 4κ2]
dη1 dη2

)1/2

. κ−1/2‖u′′‖2
H−1

κ
‖u‖H−1

κ
.

Exploiting the η1 ↔ η2 symmetry, the contribution of the second term is con-
trolled by ∫∫

|η2|≤|η1|

η2
1 |û(η1 + η2)û(η2)û(η1)| dη1 dη2

[η2
1 + 4κ2]

. (4.25)

We split this integral into two parts depending on whether |η1 + η2| > |η2| or
conversely, |η1 + η2| < |η2|. In the former case, our next inequality is elementary;
in the latter, one must first make the change of variables ζ1 = η1, ζ2 = −η1 − η2 to
obtain

(4.25) .
∫∫

η2
1 |û(η1)|√
η2

1 + 4κ2

√
(η1 + η2)2 + 1 |û(η1 + η2)|√

(η1 + η2)2 + 4κ2

|û(η2)|√
η2

2 + 1
dη1 dη2.

Although used to arrive at this final form of the integrand, we have now abandoned
the constraints on η1, η2. To complete our estimation of (4.25), we now seek to
employ Schur’s test. Setting N = κ1/3 ∈ [1,κ], Cauchy–Schwarz shows

sup
ζ

∫ √
(η + ζ)2 + 1 |û(η + ζ)|√

(η + ζ)2 + 4κ2
dη

=

∫
|ξ|≤N

ξ2 + 1√
ξ2 + 4κ2

|û(ξ)|√
ξ2 + 1

dξ +

∫
|ξ|≥N

√
ξ2 + 1

ξ2

ξ2 |û(ξ)|√
ξ2 + 4κ2

dξ

. κ−1/6
{
‖u‖H−1 + ‖u′′‖H−1

κ

}
.

Employing this bound in Schur’s test, we deduce that (4.25) . RHS(4.24). This
completes the proof of (4.24) and with that, of the lemma. �

With these preliminaries complete, we are now ready to prove the local smooth-
ing estimate.
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Proof of Proposition 4.1. As noted at the beginning of this section, it suffices to
prove the result for κ large (relative to some absolute constant).

Looking back to the basic identity (4.2) for the localized conservation law and
employing Lemmas 4.2, 4.3, and 4.4, we find that

‖(ψ6q)′′‖2
L2
tH
−1
κ ([−1,1]×R)

. ‖ρ‖L∞t L1
x

+ κ−
1
6

{
δ2 + ‖q‖2LSκ

}
. (4.26)

On the other hand, ρ ≥ 0, so by (2.13) and Proposition 2.4, we deduce

‖(ψ6q)′′‖2
L2
tH
−1
κ ([−1,1]×R)

. ‖q(0)‖2
H−1

κ
+ κ−

1
6

{
δ2 + ‖q‖2LSκ

}
. (4.27)

The final estimate (4.1) now follows by taking a supremum over all (spatial) trans-
lates of the solution q and choosing κ sufficiently large. �

Corollary 4.5. Fix δ > 0 sufficiently small and φ ∈ S(R). For every initial data
q ∈ Bδ ∩ S(R), the corresponding solution q(t) to (1.2) satisfies

sup
x0,t0∈R

∫ t0+1

t0−1

∫ ∞
−∞

φ(x− x0)2
[
|q′(t, x)|2 + |q(t, x)|2

]
dx dt .φ δ

2. (4.28)

Moreover, given any Q ⊂ Bδ ∩ S(R) that is H−1(R)-equicontinuous,

lim
R→∞

sup
q∈Q

sup
x0,t0∈R

∫ t0+1

t0−1

∫ ∞
−∞

1
Rφ
(
x−x0

R

)2[|q′(t, x)|2 + |q(t, x)|2
]
dx dt = 0. (4.29)

Proof. The supremum over t0, x0 is ultimately a red herring, because the space-
time translation can be transferred to q. The boundedness and equicontinuity of
the correspondingly larger set of initial data was demonstrated in Proposition 2.4.

To prove (4.28), we first observe that∫∫
φ(x)2

[
|q′(t, x)|2 + |q(t, x)|2

]
dx dt . ‖φq‖2L2

tH
1 + ‖φ′q‖2L2

tH
1 (4.30)

and then that

‖φq‖2L2
tH

1 . ‖φq‖2L∞t H−1 + ‖(φq)′′‖2L2
tH
−1 (4.31)

(as well as the analogous assertion with φ 7→ φ′). In this way, (4.28) follows from
the κ = 1 cases of Lemma 2.9, Proposition 4.1, and (2.18).

We turn now to (4.29) and adopt the notation φR(x) = R−1/2φ(x/R). As it
is our intention to employ (4.30), we should also consider φ′R = R−3/2φ′(x/R) in
what follows; however, given the generality afforded φ, this is covered by the same
analysis.

By first looking on the Fourier side, and then applying (2.2), we find

‖φRq‖2H1 . κ4‖φRq‖2H−1 + ‖(φRq)′′‖2H−1
κ
. κ4

R ‖q‖
2
H−1 + ‖(φRq)′′‖2H−1

κ
(4.32)

uniformly for κ ≥ 1.
We now focus our attention on the right-most term in (4.32). As

‖f‖2
H−1

κ
= 512

7

∫
R

〈
ψ6
zf,
[

1
ψ6
z
R0(2κ)ψ6

z

]
ψ6
zf
]
〉 dz (4.33)

for any f , so it follows from Lemma 2.7 that

‖(φRq)′′‖2H−1
κ
.
∫
R

∥∥φRψ6
zq
′′∥∥2

H−1
κ

+
∥∥φ′Rψ6

zq
′∥∥2

H−1
κ

+
∥∥φ′′Rψ6

zq
∥∥2

H−1
κ
dz. (4.34)
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Next we apply (2.2). Noting that∫
R
‖φRψ3

z‖2H2 + ‖φ′Rψ3
z‖2H2 + ‖φ′′Rψ3

z‖2H2 dz . 1 (4.35)

uniformly in R, we are lead to the conclusion

‖(φRq)′′‖2H−1
κ
. sup

z

{ ∥∥(ψ3
zq)
′′∥∥2

H−1
κ

+
∥∥ψ3

zq
′∥∥2

H−1
κ

+
∥∥ψ3

zq
∥∥2

H−1
κ

}
, (4.36)

uniformly in R. By applying (2.30) and (2.31), we then obtain

‖(φRq)′′‖2L2
tH
−1
κ
. ‖q‖2

L∞t H
−1
κ

+ κ−
2
3 ‖q‖2L∞t H−1 + ‖q‖2LSκ

. (4.37)

Returning to (4.32) and employing Propositions 2.4 and 4.1 we now deduce that

‖φRq‖2L2
tH

1 . κ4

R ‖q(0)‖2H−1 + ‖q(0)‖2
H−1

κ
+ κ−

1
6 δ2. (4.38)

This quantity can be made arbitrarily small, uniformly in q, by choosing κ large
and then R even larger still. The uniformity here uses the equicontinuity of the set
of initial data. �

5. Compactness

This section is devoted to proving a key compactness property of solutions to
(1.2):

Proposition 5.1. Fix δ > 0 sufficiently small and let Q ⊆ Bδ∩S(R) be precompact
in H−1(R). Then

Q∗ =
{
etJ∇H5thq : q ∈ Q and t ∈ [−1, 1]

}
is also precompact in H−1(R).

Evidently, this conclusion would follow from Theorem 1.1, because the continu-
ous image of the compact set [−1, 1] × Q is compact. However, we will need this
compactness result in order to prove that theorem. Its principal role is to lessen
the continuity requirements we need to show on sequences of solutions, by reducing
the question of norm convergence to one of weak convergence.

As discussed earlier, precompactness comprises three ingredients: boundedness,
equicontinuity, and tightness. The first two follow from Proposition 2.4; our central
enemy in this section is tightness.

In order to control the transport of the H−1 norm of a solution, it is convenient
to employ the density ρ. While it has been shown previously that

∫
ρ controls the

global H−1 norm (cf. (2.13)), we need such an equivalence that holds locally in
space. This is new and the subject of our next lemma:

Lemma 5.2. Fix δ > 0 sufficiently small and w : R→ (0,∞) that satisfies

|w′′(x)|+ |w′(x)| ≤ w(x) and
w(y)

w(x)
≤ e|x−y|/2. (5.1)

Then for κ0 ≥ 1 sufficiently large (independent of w),

1
2‖wq‖

2
H−1

κ (R)
≤ ‖w2ρ(κ)‖L1(R) ≤ 2‖wq‖2

H−1
κ (R)

(5.2)

uniformly for κ ≥ κ0 and q ∈ Bδ ∩ S(R).
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Proof. Notice that (5.1) guarantees that (2.25) holds with an absolute constant.
This will be important for ensuring that κ0 does not depend on w.

Recall that for κ ≥ 1 and δ sufficiently small, both ρ ≥ 0 and g ≥ 0. From this
and (2.11), we may then deduce that for δ sufficiently small,∥∥[ρ− 2κgρ]w2

∥∥
L1 . κ−

1
2

∥∥ρw2
∥∥
L1 . κ−

1
2

∥∥2κgρw2
∥∥
L1 .

In this way, we see that it suffices to prove (5.2) with ρ replaced by 2κgρ.
The benefit of this reduction (indeed equivalency) is that it removes g from the

denominator:

2κgρ =
(
4κ3h2 − 8κ4h2

1

)
− 8κ4

(
g − 1

2κ − h1

)
h1 + 4κ3

∑
`≥3

h`. (5.3)

From Lemmas 2.7 and 2.2 we see that∫
h2w

2 dx = Tr
{√

R0(κ)wqR0(κ)2wq
√
R0(κ)

}
+O

(
κ−4‖wq‖2

H−1
κ

)
(5.4)

and analogously that ∑
`≥3

∣∣∣∣∫ h`w
2 dx

∣∣∣∣ . κ−
9
2 δ‖wq‖2

H−1
κ
. (5.5)

Next we employ Lemma 2.7 and (2.21) in a similar fashion to see that∫
h2

1w
2 dx = κ−2

〈
wq, R0(2κ)2wq

〉
+O

(
κ−5‖wq‖2

H−1
κ

)
. (5.6)

As our last preliminary before treating the terms in (5.3), we observe that the
techniques just used show∥∥[g − 1

2κ − h1]w2
∥∥
L1 . κ−3‖wq‖2

H−1
κ
. (5.7)

We use this with (2.11) to handle the middle term in (5.3).
Putting everything together, we find that∫

2κgρw2 dx = 4κ3 Tr
{√

R0(κ)wqR0(κ)2wq
√
R0(κ)

}
− 8κ2

〈
wq, R0(2κ)2wq

〉
+O

(
κ−

1
2 ‖wq‖2

H−1
κ

)
= ‖wq‖2

H−1
κ

+O
(
κ−

1
2 ‖wq‖2

H−1
κ

)
.

Note that the last step here just involves exact computation of the leading term,
as can be done, for example, by differentiating the identity (2.6) with respect to κ.

The sought-after equivalence now follows by choosing κ sufficiently large relative
to the (absolute) constant implicit in the big Oh notation. �

In what follows, we will use the following localization to large positive x:

ΨR(x) := 1
2 + 1

2 tanh
(x−x0(R)

R

)
with x0(R) = R2 (5.8)

and the corresponding localization ΨR(−x) to large negative x. The exact choice of
x0(R) is not important; we merely require that x0/R →∞ as R →∞. Evidently,
we have

Ψ′R(x) := 1
2RφR(x)2 if we set φR(x) = sech

(
x−x0

R

)
. (5.9)
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We write the derivative in this way, to draw an analogy with Corollary 4.5. We
also note that the hypotheses of Lemma 5.2 are satisfied with w(x) =

√
ΨR(±x),

provided R is sufficiently large.
Our last observation about this choice of cut-off is that∥∥f/√ΨR

∥∥
H1

κ
. ‖f‖H1

κ
(5.10)

uniformly for κ ≥ 1 and f ∈ H1(R) with supp(f) ⊆ [R,∞).

Proof of Proposition 5.1. As noted earlier, the boundedness and equicontinuity of
Q∗ follow from Proposition 2.4. As well as their direct contribution to compactness,
these properties will also play a key role in the proof of tightness.

From the compactness of Q we find

lim
R→∞

sup
q∈Q

∥∥q√ΨR

∥∥
H−1 = 0.

Indeed, as Q is totally bounded, it suffices to verify this for individual q. Combining
this with Lemma 5.2, we deduce that for κ sufficiently large,

lim
R→∞

sup
q∈Q

∫
R
ρ(x;κ, q)

[
ΨR(x) + ΨR(−x)

]
dx = 0. (5.11)

Henceforth, κ will remain fixed and implicit constants will be permitted to depend
on it. In the converse direction, Lemma 2.1 and (5.10) show us that the compactness
of Q∗ will follow if we can prove

lim
R→∞

sup
q∈Q

sup
t∈[−1,1]

∫
R
ρ(x;κ, q(t))

[
ΨR(x) + ΨR(−x)

]
dx = 0, (5.12)

where q(t) is defined from its initial data q(0) = q ∈ Q by the H5th-flow.
Comparing (5.11) and (5.12) and invoking the basic microscopic conservation

law, we see that the proposition can be proved by showing

lim
R→∞

sup
q∈Q

∥∥∥∥∫
R
j5th(x;κ, q(t))

[
Ψ′R(x)−Ψ′R(−x)

]
dx

∥∥∥∥
L1
t

= 0. (5.13)

This is what we shall do. To improve readability, we will drop the Ψ′R(−x) term in
what follows. Its contributions may be handled in a parallel manner.

The analysis of (5.13) will be much simpler than the parallel analysis in Section 4,
because we no longer need to demonstrate decay in κ. This decay was essential for
proving Corollary 4.5, which we will now use to verify (5.13). Recall that

j5th = 2κ
g(κ)

{
3q2 − 4κ2q − q′′ − 16κ5

[
g(κ)− 1

2κ
]}

− 4κ2R0(2κ)
[
q(4) − 5(q2)′′ + 5(q′)2 + 10q3

]
.

Working our way through the terms in the first row using (5.9), we have

1
R

∫ ∣∣∣∣ ∫ 6κ
g(κ)q

2φ2
R dx

∣∣∣∣ dt . ∥∥ 1
g

∥∥
L∞t,x

1
R‖φRq‖

2
L2
t,x

1
R

∫ ∣∣∣∣ ∫ 8κ3

g(κ)qφ
2
R dx

∣∣∣∣ dt . ∥∥ 1
g

∥∥
L∞t,x
‖φR‖L2

x

1
R‖φRq‖L2

t,x

1
R

∫ ∣∣∣∣ ∫ 2κ
g(κ)q

′′φ2
R dx

∣∣∣∣ dt . ∥∥ 1
gφR

∥∥
L∞t H

1
1
R

{
‖φRq′‖L2

t,x
+ ‖φ′Rq‖L2

t,x

}
1
R

∫ ∣∣∣∣ ∫ 32κ6

g(κ) [g(κ)− 1
2κ
]
φ2
R dx

∣∣∣∣ dt . 1
R

∥∥ 1
g

∥∥
L∞t,x

∥∥g − 1
2κ
∥∥
L2
t,x
‖φ2

R‖L2
x
,
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all of which are acceptable thanks to Corollary 4.5 and elementary calculations.
Looking now at the second row of terms in the definition of j5th, we find that

the operator 4κ2R0(2κ) causes some irritation. To handle this, we write

4κ2R0(2κ)Ψ′R = Ψ′R −R0(2κ)Ψ′′′R .

While the operator remains in the second term, the two additional powers of R−1

arising from the derivatives make this term trivial to handle. Focusing instead on
the dominant terms we estimate as follows:

1
R

∫ ∣∣∣∣ ∫ q(4)φ2
R dx

∣∣∣∣ dt . ‖q‖L∞t H−1
1
R‖φ

2
R‖L∞t H5

1
R

∫ ∣∣∣∣ ∫ 5(q2)′′φ2
R dx

∣∣∣∣ dt . 1
R‖φRq

′‖L2
t,x
‖φ′Rq‖L2

t,x

1
R

∫ ∣∣∣∣ ∫ 5(q′)2φ2
R dx

∣∣∣∣ dt . 1
R‖φRq

′‖2L2
t,x

1
R

∫ ∣∣∣∣ ∫ 10q3φ2
R dx

∣∣∣∣ dt . 1
R‖q‖L∞t H−1‖φRq‖2L2

tH
1 .

Once again, these are readily seen to be acceptable via Corollary 4.5. �

6. Local smoothing for the difference flow

Our primary goal in this section is to prove the following local smoothing estimate
for the difference flow, that is, the flow generated by the Hamiltonian H5th −Hκ.
At the end of the section, we apply this to control how the two flows diverge from
one another; see Corollary 6.4.

Proposition 6.1 (Local smoothing for the difference flow). For δ sufficiently small
and κ0 ≥ 1 sufficiently large,∥∥etJ∇(H5th−Hκ)q

∥∥2

LSκ
. 1 (6.1)

uniformly for q ∈ Bδ ∩ S(R) and κ ≥ κ0.

Once again, we employ a spatially localized version of the conservation laws
discussed in subsection 2.1. In this section, the parameter κ will be regarded as
fixed (it would suffice to set κ = 1) and correspondingly, all implicit constants will
be permitted to depend on it. While we will be reusing many of the same estimates
exhibited in Section 4, the nature of the cancellations involved is rather different.
Let us explain this more fully.

Recall that the currents (2.15) and (2.17) split naturally into two parts, corre-
sponding to the second and third summands in (2.12): in each formula, the top line
originates in the time derivative of the diagonal Green’s function, while the second
line comes from ∂tq. In Section 4, the essential cancellations were between the two
parts of j5th. Here, cancellations will arise between corresponding terms in j5th and
jκ. In particular, the two parts of the currents may be treated independently and
that is what we shall do. The dominant part of the current j5th − jκ comes from
∂tq and takes the form

j0 :=− 4κ2R0(2κ)
[
64κ7

[
g(κ)− 1

2κ

]
+ 16κ4q + 4κ2q′′ + q(4)

− 12κ2q2 − 5(q2)′′ + 5(q′)2 + 10q3
]
. (6.2)
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Regarding the remainder, we have that under the difference flow,

d
dt

κ
g(κ) = [j5th − jκ − j0]′. (6.3)

Note that the smoothing effect of R0(2κ) in (6.2) is not helpful: this current is
to be integrated against a bump function (the derivative of the localizing cutoff)
and applying this operator to that bump function simply produces another bump
function. In fact, in order to simplify the treatment of this (the most significant)
term, we shall adapt our localizing function Ψ(x) accordingly:

Ψ(x) :=
1

4κ2

∫ ∞
x

[
(−∂2 + 4κ2)ψ12

]
(x′) dx′. (6.4)

Clearly, Ψ′(x) is a Schwartz function.
As evidence that j0 really does capture the dominant terms, we now show that

the remainder can be estimated in a satisfactory way:

Lemma 6.2. Fix κ ≥ 1 and φ ∈ S(R). If δ is sufficiently small, then∣∣∣∣∫ 1

−1

∫ ∞
−∞

[j5th − jκ − j0](t, x)φ(x) dx dt

∣∣∣∣
. κ−

1
2

{
1 + ‖q‖2LSκ

}
+
∥∥∂2

x
1

g(κ)

∥∥
L∞t H

−1
κ

{
δ + ‖q‖LSκ

}
,

(6.5)

uniformly for q : [−1, 1]→ Bδ ∩ S(R) and κ ≥ 1.

Proof. After considerable rearrangement, (2.15) and (2.17) yield

j5th − jκ − j0 = − 2κ
g(κ)

{
16κ5

[
g(κ)− 1

2κ

]
+ 4κ2q + q′′ − 3q2

}
(6.6)

− 2κ3

g(κ)

{
16κ3

[
g(κ)− 1

2κ

]
+ 4q

}
(6.7)

− 2κ5

g(κ)

{
16κ

[
g(κ)− 1

2κ

]}
(6.8)

− 2κ7

g(κ)

{
16

κ2−κ2

[
κg(κ)− κg(κ)

]}
. (6.9)

While this can be written in a more compact way, this expression helps highlight
an underlying pattern. In estimating the contribution of these terms, it will be
convenient to employ an auxiliary ϕ̃ ∈ S(R), chosen so that |φ| ≤ ϕ̃2.

From (2.11) and the diffeomorphism property (Lemma 2.3), we see that

κ
3
2

∥∥g(κ)− 1
2κ

∥∥
L∞t,x

+ ‖g(κ)‖L∞t,x + ‖ 1
g(κ) − 2κ‖L∞t H1 . 1

and so the contributions of (6.8) and (6.9) are clearly acceptable.
We now turn our attention to (6.6) and (6.7), which include cancellations. The

parts of these terms that do not involve cancellations are easily settled by using
Corollaries 3.2 and 3.4:∑

`≥3

κ5‖φh`(κ)‖L1
t,x

+ κ3‖ϕ̃h2(κ)‖L2
t,x
. κ−

5
6

{
δ2 + ‖q‖2LSκ

}
.

This is acceptable since 1
g(κ) ∈ L

∞
t,x and ϕ̃ ∈ L2

x.

For the remaining part of (6.7), we use (2.21) and then (3.16):

‖φ[4κ3h1(κ) + q]‖L1
t,x
. κ‖ϕ̃h′′1‖L2

t,x
. κ−1

{
1 + ‖q‖2LSκ

}
.



32 BJOERN BRINGMANN, ROWAN KILLIP, AND MONICA VISAN

This leaves us to exhibit two cancellations in (6.6). By (2.20) and the results of
Proposition 3.5,∥∥φ[16κ5h2(κ)− 3q2]

∥∥
L1
t,x
. κ2‖ϕ̃h′′1‖2L2

t,x
+ κ4‖ϕ̃h′′1‖L2

t,x
‖ϕ̃h1‖L2

t,x
+ κ4‖ϕ̃h′1‖2L2

t,x

. κ−
2
3

{
δ2 + ‖q‖2LSκ

}
.

It remains to handle the contribution of 16κ5h1(κ) + 4κ2q + q′′. Using (2.19),
(2.21), and integration by parts, its contribution simplifies to

−
∫∫

2κ
g(κ)κh

(4)
1 (κ)φdx dt = 2κ

∫ 〈(
1

g(κ)

)′′
, φR0(2κ)q′′

〉
dt

+ 2κ
∫∫ [

1
g(κ)φ

′′ + 2
(

1
g(κ)

)′
φ′
]
κh′′1(κ) dx dt.

(6.10)

In the first line, we write φR0 = R0φ + [φ,R0] and apply Lemma 2.6 for the
commutator. Both the commutator term and the terms in the second line are
easily seen to be

O
(
κ−1

{
1 + ‖q‖2LSκ

})
by using (3.16) and Cauchy–Schwarz. On the other hand, (2.31) shows that∣∣∣∣∫ 〈( 1

g(κ)

)′′
, R0(2κ)φq′′

〉
dt

∣∣∣∣ . ∥∥∂2
x

1
g(κ)

∥∥
L∞t H

−1
κ

{
δ + ‖q‖LSκ

}
,

which is precisely the origin of the final term in (6.5). �

Next, we demonstrate the key coercivity that we require. The argument will be
rather short, because we have deliberately styled our presentation in Section 4 to
make this possible.

Lemma 6.3. Fix κ ≥ 1 and δ sufficiently small. Then

‖(ψ6q)′′‖2
L2
tH
−1
κ ([−1,1]×R)

.
∫ 1

−1

∫ ∞
−∞

j0(t, x)Ψ′(x) dx dt+ κ−
1
6

{
δ2 + ‖q‖2LSκ

}
uniformly for q : [−1, 1]→ Bδ ∩ S(R) and κ ≥ 1.

Proof. Recall that Ψ was chosen so that −4κ2R0(2κ)Ψ′ = ψ12. Employing this
and the series (2.8), we find∫∫

j0Ψ′ dx dt =

∫∫ [
64κ7h1(κ) + 16κ4q + 4κ2q′′ + q(4)

]
ψ12 dx dt (6.11)

+

∫∫ [
64κ7h2(κ)− 12κ2q2 − 5(q2)′′ + 5(q′)2

]
ψ12 dx dt (6.12)

+

∫∫ [
10q3 + 64κ7

∑
`≥3

h`(κ)

]
ψ12 dx dt. (6.13)

Applying (2.19) in (6.11), we are lead to estimate∣∣∣∣∫∫ κh
(6)
1 (κ)ψ12 dx dt

∣∣∣∣ . κ‖h1‖L∞t,x . κ
− 1

2 δ,

by integration by parts and (2.11).
To estimate (6.12), we look to Lemma 4.3. Indeed, what appears here is greater

than I(κ) due to the absence of the −8κ4[h′′1(κ)]2 term.
Looking now at (6.13), we note that the ` = 3 term is handled by Lemma 4.4,

while ` ≥ 4 is bounded acceptably by Corollary 3.2. �
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Proof of Proposition 6.1. Choosing Ψ as in (6.4), we begin with the identity∫
[ρ(1, x)− ρ(−1, x)]Ψ(x) dx =

∫ 1

−1

∫ ∞
−∞

[j5th − jκ](t, x)Ψ′(x) dx dt, (6.14)

valid for any Schwartz solution to the difference flow. We then apply Lemmas 6.2
and 6.3 on the right-hand side; on the left-hand side, we use (2.13) and Proposi-
tion 2.4. In this way, we find that

‖(ψ6q)′′‖2
L2
tH
−1
κ
. 1 + κ−

1
6 ‖q‖2LSκ +

∥∥∂2
x

1
g(κ)

∥∥
L∞t H

−1
κ

{
δ + ‖q‖LSκ

}
. (6.15)

Next we use Lemma 2.3 and Proposition 2.4 to see that∥∥∂2
x

1
g(κ)

∥∥
L∞t H

−1
κ
.
∥∥ 1
g(κ) − 2κ

∥∥
L∞t H

1
κ
. δ . 1

and thence that ∥∥∂2
x

1
g(κ)

∥∥
L∞t H

−1
κ
‖q‖LSκ . ε−1 + ε‖q‖2LSκ ,

uniformly for ε > 0. The result now follows by plugging this into (6.15), taking a
supremum over translates of q (to recover the LSκ norm on the left-hand side) and
finally by choosing κ0 large enough and ε small enough. �

Having proved our local smoothing estimate for the difference flow, we now
demonstrate its role in the proof of well-posedness, namely, to show that the Hκ

flows closely track the full H5th flow (for κ large). This proximity is expressed
through the reciprocal Green’s function and in the weak topology. These limitations
will be removed in the next section by using the compactness demonstrated in
Section 5.

Corollary 6.4. Fix κ ≥ 1 and δ > 0 sufficiently small. Given any Q ⊂ Bδ ∩S(R)
that is H−1(R)-equicontinuous and any φ ∈ S(R),

lim
κ→∞

sup
q∈Q

sup
|t|≤1

∣∣∣〈φ, [ 1
g(t) −

1
gκ(t)

]〉∣∣∣ = 0. (6.16)

Here we use the notations

g(t) = g
(
x;κ, etJ∇H5thq

)
and gκ(t) = g

(
x;κ, etJ∇Hκq

)
. (6.17)

Proof. Let us define

Q∗ = {etJ∇Hκq : t ∈ [−1, 1] and q ∈ Q} and gdiff(t) = g
(
x;κ, etJ∇(H5th−Hκ)q

)
.

Then, by the commutativity of the flows, we need only show

lim sup
κ→∞

sup
q∈Q∗

sup
|t|≤1

∣∣∣〈φ, [ 1
gdiff(t)

− 1
gdiff(0)

]〉∣∣∣ = 0.

Also, from Proposition 2.4, we see that the setQ∗ inherits boundedness and equicon-
tinuity from Q. This will be important.

Beginning with (6.3) and then applying Lemma 6.2 and Proposition 6.1, we find∥∥〈φ, ∂t 1
gdiff(t)

〉∥∥
L1
t
. κ−

1
2 +

∥∥∂2
x

1
gdiff(t)

∥∥
L∞t H

−1
κ
,

uniformly for q ∈ Q∗ and κ ≥ κ0. In this way, the proof of the proposition reduces
to verifying the equicontinuity property

lim sup
κ→∞

sup
q∈Q∗

sup
|t|≤1

∥∥∂2
x

[
1

gdiff(t)
− 2κ

]∥∥
H−1
κ

= 0. (6.18)
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The justification for calling this an equicontinuity property lies in the proof: Let

Q∗∗ =
{
etJ∇(H5th−Hκ)q : t ∈ [−1, 1], q ∈ Q∗

}
and G =

{
1

g(κ;q) − 2κ : q ∈ Q∗∗
}
.

Then Proposition 2.4 shows that Q∗∗ is H−1-bounded and equicontinuous. It then
follows that G is H1-bounded and equicontinuous; this relies on both the diffeo-
morphism property (Lemma 2.3) and the fact that the mapping q 7→ (1/g − 2κ)
commutes with translations. This commutation property is not profound; it simply
says that the Green’s function for a translated potential is the corresponding trans-
late of the original Green’s function. (On the other hand, even linear isomorphisms
such as the Fourier transform on L2(R) need not preserve equicontinuity.)

Returning now to (6.18), we must show that

lim sup
κ→∞

sup
f∈G

∫
ξ4|f̂(ξ)|2

ξ2 + κ2
dξ = 0.

This follows immediately from boundedness and equicontinuity. �

7. Well-posedness

In this section, we prove Theorem 1.1. This result will then allow us to upgrade
the a priori bound proved in Section 4 to a complete proof of Theorem 1.2.

Proof of Theorem 1.1. Our immediate goal is to show that for any sequence of
initial data qn ∈ Bδ ∩ S(R) that is H−1-convergent, the corresponding solutions
q(t) to (1.2) are Cauchy in CtH

−1([−1, 1]× R). Here δ > 0 is assumed sufficiently
small. All claims in Theorem 1.1 can readily be deduce from this and the scaling
transformation (1.8).

Mimicking the notations used in Corollary 6.4, let us define

gn(t) = g
(
x;κ, etJ∇H5thqn

)
and gn,κ(t) = g

(
x;κ, etJ∇Hκqn

)
, (7.1)

where κ ≥ 1 is fixed here and for the remainder of the proof.
Given any φ ∈ S(R), we clearly have

sup
|t|≤1

∣∣∣〈φ, [ 1
gn(t) −

1
gm(t)

]〉∣∣∣ ≤ sup
|t|≤1

∣∣∣〈φ, [ 1
gn(t) −

1
gn,κ(t)

]〉∣∣∣+
∣∣∣〈φ, [ 1

gm(t) −
1

gm,κ(t)

]〉∣∣∣
+ sup
|t|≤1

∣∣∣〈φ, [ 1
gn,κ(t) −

1
gm,κ(t)

]〉∣∣∣.
The significance of this is that by Corollary 6.4, the first line can be made arbitrarily
small (uniformly in n and m) by choosing κ sufficiently large. Moreover, having
chosen κ, the term on the second line can be made arbitrarily small by choosing n
and m large enough; this is a consequence of the well-posedness of the Hκ flow and
the diffeomorphism property (Lemma 2.3).

Thus we have a form of weak-H1 convergence of 1
gn
− 2κ with some uniformity

in t. However, by Proposition 5.1 and the diffeomorphism property,

G =
{

1
gn(t) − 2κ : n ∈ N and t ∈ [−1, 1]

}
is precompact in H1. Thus (e.g., arguing by contradiction), we see that

1
gn(t) − 2κ is a Cauchy sequence in CtH

1([−1, 1]× R).

Thus, by the diffeomorphism property, qn(t) is Cauchy in CtH
−1([−1, 1]×R). �
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Proof of Theorem 1.2. In view of the scaling (1.8), it suffices to prove all claims
for small initial data. Note that for such small data, the last term on RHS(1.4) is
redundant; it arises when undoing the scaling.

Given that solutions for general data are defined as limits of Schwartz solutions,
it suffices to prove adequate estimates for such Schwartz solutions. Concretely, we
will show that for any sequence of initial data qn(0) ∈ Bδ ∩ S(R) that is H−1-
convergent, the corresponding solutions satisfy

sup
x0∈R

∫∫
φ(x− x0)2

[
|(qn − qm)′(t, x)|2 + |(qn − qm)(t, x)|2

]
dx dt→ 0. (7.2)

as n,m→∞. As ever, the spacetime integral is over [−1, 1]×R. We have dropped
the parameter t0 here since this can be restored a posteriori by applying Theo-
rem 1.1. We also recall that the boundedness of LHS(7.2) was shown already in
Corollary 4.5.

Adapting (4.30) and (4.32) to our current setting and then applying Lemma 2.9,
we find that

LHS(7.2) . κ4‖qn − qm‖2L∞t H−1 + ‖qn‖2LSκ
+ ‖qm‖2LSκ

uniformly in κ ≥ 1. By Proposition 4.1 and the equicontinuity of {qn(0)}n∈N, we
see that the latter two terms can be made arbitrarily small (uniformly in n and m)
by choosing κ ≥ 1 sufficiently large. But then Theorem 1.1 guarantees that the
first summand can be made arbitrarily small by merely requiring n and m to be
sufficiently large. This proves (7.2).

The fact that the solutions constructed in Theorem 1.1 are distributional solu-
tions is readily deduced from the earlier parts of Theorem 1.2; see the discussion
following the statement of Theorem 1.2. �

Remark. Due to the uniformity in x0, the assertion (7.2) is actually stronger than
what is needed to prove Theorem 1.2. This uniformity guarantees that

lim
x0→±∞

∫ 1

−1

∫
φ(x− x0)2

[
|q′(t, x)|2 + |q(t, x)|2

]
dx dt = 0 (7.3)

for all solutions constructed in Theorem 1.1. Indeed, one simply combines (7.2)
with the observation that (7.3) is trivially true for Schwartz solutions.
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