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Abstract—This study elucidates the conformation dynamics
of the free and antigen-bound antibody. Previous work has
verified that antigen binding allosterically promotes Fc receptor
recognition. Analysis of extensive molecular dynamics simulations
finds that the energy landscape may play a decisive role in coor-
dinating conformation changes but does not provide connections
between the various conformational states. Here we provide such
a connection. To obtain a detailed understanding of the impact of
antigen binding on antibody conformation dynamics, this study
utilizes Markov State Models to summarize the conformation
dynamics probed in silico. We additionally equip these models
with the ability to directly exploit the energy landscape view of
dynamics via a computational method that detects energy basins
and so allows utilizing detected basins as macrostates for the
Markov State Model. Our study reveals many interesting findings
and suggests that the antigen-bound form with high energy may
provide many dynamic processes to further enhance co-factor
binding of the antibody in the next step.

Keywords—Antibody, Basin, Conformation, Energy landscape,
Molecular dynamics, Markov state model.

I. INTRODUCTION

The specificity and affinity of antibody-antigen recognition
is mainly decided by the variable domains and, in particular,
the complementarity-determining regions (CDRs). The recog-
nition process involves conformation transitions mediated by
the antibody’s inherent flexibility [1], [2]. Recent studies sug-
gest allosteric effects during antibody-antigen recognition [3],
with both the variable and constant domains playing a role [4],
[5]. For instance, antibodies with identical variable domains
but different constant domains, may have significantly different
affinities to Aβ [6]. Engineering CH and CL in Trastuzumab
and Pertuzumab recombinant models also affect antigen-
binding [7]. A previous antibody structural analysis finds that
distant CH1-1 loops undergoing significant fluctuations upon
antigen binding [8].

Many works have shown a two-way communication be-
tween the Fc and Fv domains; modifications of Fc can
influence the Fv antigen recognition. Upon antigen binding,

the C domains can affect the V region paratope conforma-
tion, as indicated by circular dichroism [9], NMR [10], and
crystallography [11]. Simulations and experiments show that
modification of the constant domain influences binding affin-
ity [12]–[14] and specificity [15], [16] of the antibody-antigen
interaction. For example, IgA Fc mutations reduce Her2
binding [17]. Our previous study has verified that antigen
binding allosterically promotes Fc receptor recognition [1].
Analysis of molecular dynamics (MD) simulations suggests
that energy landscape may play a decisive role in coordinating
conformation changes. However, current works do not provide
connections between the various conformational states.

In this study we aim to provide such connections. This
study utilizes Markov State Models (MSMs) to summarize the
conformation dynamics probed via MD simulation [18], [19].
Since Zwanzig’s first report on short memory approximations
in 1983 [20], MSMs have evolved from art to science [21], and
now their theoretical underpinnings, as well as rigorous statis-
tical analysis, make them reliable tools to describe conforma-
tion dynamics. The focus of this study is Immunoglobulin
G (IgG), which binds to cognate antigens. IgGs are central
to providing immunity to pathogens, and tumors and are a
common template for antibody drugs [22]. MD simulation is
utilized to navigate the energy landscape of the free antibody
and the energy landscape of the antigen-antibody complex.
As related in Section III, different random conformations are
generated in each setting (free versus bound) to initialize
various MD trajectories that seek collectively to provide a
broad view of the energy landscape.

Separately for each setting, the free antibody and the
antigen-antibody complex, the conformations accessed via
MD simulation are collected and organized into macrostates.
A computational method that takes into account both con-
formation geometry and energetics is able to detect energy
basins and, making the connection between basins and macro-
states, the method organizes collected conformations into
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macrostates. That means, this method handles the state space
discretization. An MSM construction software is then uti-
lized to reveal the inter-conversions between the so-identified
macro-states and compute the precise state-to-state transition
probabilities that provide a quantitative view of the confor-
mation dynamics in each setting, allowing a more detailed
understanding of the impact of the bound antigen on the
conformation dynamics of the antibody.

II. RELATED WORK

Various MSM packages are available, with the two most
popular being MSMBuilder [23] and EMMA [24], [25];
PyEMMA provides a Python implementation of EMMA. Due
to ease of use, rich analysis tools, and ability to control various
steps of the computational process, we employ PyEMMA [25],
as we have done in earlier work on peptide dynamics [26].

Both MSMBuilder and EMMA find wide applicability in
computational molecular biology to uncover the multi-state
folding kinetics of small proteins and peptides [27], estimate
the kinetics of protein-ligand binding to determine drug effi-
cacy [28] and the kinetics of protein-protein associations to
reveal insights into macro-molecular recognition [29], as well
as reveal antibody conformation dynamics to identify effective
cancer therapies [30]. In particular, EMMA provides many
statistical techniques to evaluate constructed MSMs [31].

At the core of any MSM construction package lies the
ability to identify conformational states (macrostates). Theory
dictates that conformations capable of rapid inter-conversion
should be aggregated into the same macrostate, while confor-
mations with slow inter-conversion rate should be separated
into different macrostates [32]. In practice, MSM construc-
tion packages cluster conformations to organize them into
macrostates. The inherent assumption is that a molecule con-
verts/switches between geometrically-similar conformations
more rapidly than between less similar conformations.

The above assumption does not consider energetics. Two
conformations can be proximal in conformation space but
separated by an energy barrier that slows the inter-conversion
rate. This realization prompted us to evaluate an alterna-
tive approach to the identification of macrostates in recent
work [26]; we demonstrate that taking into account energy
in the identification of macrostates results in higher-quality
MSMs. Our work on summarizing energy landscapes via
energy basins [33] provides us with the tools to assign con-
formations obtained via MD simulation into energy basins.

In this paper, we collect conformations from various MD
trajectories and group them into basins. We treat such basins as
macrostates. We then make use of the capabilities in PyEMMA
to compute state-to-state transition probabilities and so obtain
an MSM summarizing the dynamics probed via the MD
trajectories. We now proceed to relate further methodological
details in Section III.

III. METHODS

We first describe the methodology and then provide further
details on the MD trajectories employed to obtain conforma-
tions of the free and antigen-bound antibody, as well as on

the various settings employed to represent and prepare such
conformations for analysis.

A. From MD Trajectories to an MSM of Dynamics

At its core, the pipeline takes in MD trajectories and returns
an MSM transition probability matrix, where each entry spec-
ifies the probability of transition between a pair of identified
macrostates. The first objective is to identify such macrostates.
Once such states are identified, the second objective is to
use the temporal information available in the MD trajectories
to extract information on the accessibility of macrostates in
terms of state-to-state probabilities of transition. The result is
an MSM that summarizes the dynamics captured in the MD
trajectories. Various statistical techniques then inform on the
quality of the obtained MSM.

Each MD trajectory is a series of conformations accessed
consecutively in an MD simulation. An important decision
with implications for the ability of the pipeline to identify
macrostates relates to the degree of the retained conformation
representation detail for the purpose of assigning confor-
mations to macrostates. This is known as featurization in
MSM literature and is computationally ill-posed. We address it
empirically, by considering several reasonable representations
and analyzing their impact on the resulting MSMs.

The second important decision concerns the lag time. It is
often not feasible to analyze all the conformations obtained
via MD simulation. Most MSM construction software allow
the user to select a lag time. This can be a multiple of the
original time step between two successive conformations in an
MD trajectory. Selection of the lag time is in its essence a data
reduction strategy, as it allows skipping over conformations;
as it can result in loss of temporal and spatial resolution of
the constructed MSM, we analyze its impact on the quality of
the resulting MSM, as well.

1) From MD Trajectories to Macrostates (Basins in the
Landscape): As we have shown in earlier works [26], [34], a
better strategy to identify macrostates is to utilize (rather than
ignore) the energies of conformations obtained via MD simu-
lation. The motivation is clear. Clustering only harnesses the
geometrical similarity, ignoring energetic similarity. However,
the landscape contains information on how conformations with
similar energies inter-convert into one another and so provides
an opportunity to quantitatively understand the underlying
dynamics of a system of interest [35]. Our definition of
macrostates utilizes this energy landscape view of dynamics.
A macrostate, which is a thermodynamically-stable (or semi-
stable) state does not directly rely on geometric similarity but
instead corresponds to basins/wells in the energy landscape.
So we leverage our earlier work on summarizing sampled
conformation-energy pairs via energy basins [33].

Identification of basins relies on embedding the conforma-
tions collected over all MD trajectories into a nearest-neighbor
graph [36], where each vertex is a conformation-energy pair.
We skip over methodological details here in the interest of
space, noting that the methodology to identify basins has



been utilized by our laboratories to support several molecular
structure-function enquiries [26], [37]–[39].

In summary, the methodology groups conformations into
distinct, non-overlapping energy basins. The conformation that
sits at the very bottom of a basin is denoted as its focal
minimum and is used as a unique identifier of a basin. Since
basins contain actual conformations, a basin can be summa-
rized in terms of energies of the conformations in it (minimum,
mean, maximum energy), as well as the geometric dissim-
ilarity among conformations, measured, for instance, via the
maximum pairwise root-mean-squared-deviation (RMSD) [40]
between conformations in a basin. We consider the identified
basins to be the macrostates.

2) From Macrostates to State-to-State Transition Probabil-
ities (The Construction of the MSM): State-to-state transition
probabilities are now computed. The MD trajectories are
utilized for this purpose. In a given MD trajectory, a confor-
mation a is followed by a conformation b. Let us consider
that the process above, which has assigned conformations
into macrostates, has assigned some conformation a to some
macrostate Si and some conformation b to some macrostate
Sj . The observed transition from a to b is the evidence of
the transition from macrostate Si to macrostate Sj and thus
contributes one count to the total counts of transitions from
Si to Sj . In this way, the various MD trajectories contribute
to “counts” of transitions between macrostates. The counts are
normalized to turn them into probabilities.

Let us assume that the basin identification process above
has resulted in M disjoint states S1, S2, . . ., SM . A matrix
of conditional transition probabilities between these states
is estimated from the simulation trajectories xt. [19] The
transition matrix, T ≡ ( Pij): Pij(τ ) = Prob (xt+τ ∈ Sj | xt ∈
Si), where τ is the chosen lag time. This transition matrix is the
tangible product of what is referred to as the construction of
the MSM. It contains all the information needed, as every entry
in the transition matrix specifies the probability with which
two states inter-convert into each-other, thus summarizing the
dynamics of the system under investigation.

The transition matrix can provide more information
about the system under investigation through its eigen-
decomposition into eigenvectors and eigenvalues. The high-
est eigenvalue (with a value of 1) and its correspond-
ing eigenvector represents the equilibrium/stationary distribu-
tion. The higher the population of a macrostate, the more
thermodynamically-stable the macrostate is.

3) Statistical Evaluation: The MSM resulting from the
computational process described above is subjected to rigorous
analysis in order to evaluate whether the constructed MSM is
reliable to utilize for making predictions regarding dynamics.
As in other studies, we employ two main tests, the convergence
analysis and the Chapman-Kolmogorov (CK) test. Both test for
the Markov property that the MSM is memory-less; that is,
the conditional probability distribution of future macrostates
depends only upon the current macrostate and not on prior
macrostates. [31] In our analysis, we conduct both evaluations

whether the state-space decomposition (assignment of confor-
mations into macrostates) results in a high-quality MSM.

a) Convergence Analysis: The convergence analysis tests
whether the duration of the lag time is sufficient to guarantee
that the state space discretization maintains the Markov prop-
erty. If the state space decomposition is accurate, conforma-
tions within a state inter-convert on timescales faster than the
lag time and transition to other states on slower timescales.
It is standard practice to verify this property visually, via
interpretation of the generated implied timescale plot of the
model relaxation timescale versus model lag time. One expects
to see an exponential decay in the plot to system equilibrium.
With relaxation timescales being physical properties of the
system, ideally, the implied timescales need to be independent
of the lag time. According to the variational principle of
conformation dynamics [41], it is desirable for the model
to have a longer timescale. For an ideal model with good
discretization, the implied timescales plot exhibit convergence
within fewer steps.

b) CK Test: Discretization error can result in a determin-
istic fluctuation of the MSM dynamics from the actual dy-
namics that remains persistent even when excluding statistical
error by means of excessive sampling. [42] The propagation
error on the discrete space is measured by checking whether
the approximation, [T̂(τ)]k ≈ T̂(kτ) holds within statistical
uncertainty where, T̂(τ) is the transition matrix estimated from
the data at lag time τ , and T̂(kτ) is the transition matrix
estimated from the same data at longer lag times kτ . The
software we use for this purpose, PyEMMA, allows testing
different models. Given a model estimated at lag time τ , a
prediction can be made of a model quantity for lag time kτ ;
the prediction can then be compared to an independently-
estimated model at kτ . The CK test computes the transition
probability between meta-stable states for increasing lag times.
The determination is made visually; ideally, plots show that the
estimated and the predicted model exhibit negligible deviation.

B. Conformation Generation and Preparation

1) MD Simulations for Conformation Generation: The
free antibody molecule (PDB ID: 1IGT) contains 20, 544
atoms(1, 322 amino acids). The antigen-antibody complex
contains 21, 092 atoms (1, 356 amino acids). Initial antibody
random conformations are generated by adjusting three sets
of torsion angles: 231C-232N-232CA-232C, 232N-232CA-
232C-233N, and 232CA-232C-233N-233CA (numbering in
1IGT), each step with 60◦ rotation. During the conformation
randomization, the Fc domain is kept fixed, whereas the Fab
domains move freely, leading to 216 conformations. Excluding
conformations with closed Fab domain or with Fc domain
clashes, 12 conformations are selected as the starting points
for the MD simulations. That is, we perform 12 independent
MD simulations of the antibody with 12 different initial con-
formations. Each MD trajectory is 53−54ns long, with a time
step of 4ps between two consecutive frames/conformations.
Thus, a total of 160, 000 conformations are generated for the
free antibody and the antibody-antigen complex, respectively,



in this manner. The MD simulations are conducted using the
NAMD software [43] with CHARMM force field [1]. Further
details regarding the process of conformation generation can
be found in Ref [1].

C. Preparation of Conformations for Analysis

From a given trajectory file (.dcd format), conformations
are extracted using the mdconvert command-line script from
the MDTraj python library. Considering a time lag of 128ps,
which corresponds to selecting every 32nd frame in a trajec-
tory file, we obtain 5, 000 conformations for the free antibody
and the antigen-antibody complex, respectively. We consider
several options for representing conformations of each system.

1) Cartesian Coordinate-based Representations: Setting 1:
In this setting, each conformation is simplified to a high-
dimensional point (CA1.x, CA1.y, CA1.z, CA5.x, CA5.y,
CA5.z, CA10.x, CA10.y, CA10.z, . . . ), effectively skipping
every 4 consecutive CA atoms. This makes it computationally
feasible to compare conformations, which is a central step
to embedding conformations in a nearest-neighbor graph for
the purpose of identifying basins. Setting 2: In this setting,
we consider all CA atoms; it is more computationally costly
to compare conformations via this representation and identify
basins but one does retain more detail.

2) Principal Component-based Representations: We rely
on Principal Component Analysis (PCA) to identify a few
variance-preserving dimensions along which to project col-
lected conformations and obtain “reduced” coordinates for
them. PCA is popular to analyze protein conformations [37],
[44]–[46]. Specifically, we construct a matrix A3k×n, where
n = 5, 000 conformations (see above) and k is the number
of CA atoms in the molecule of interest. All conformations
are first optimally superimposed over the first conformation
(chosen arbitrarily to be the reference conformation). The
reference conformation is then “subtracted” from each of the
conformations, and the matrix stores the resulting deviations.
The purpose for this is to capture internal conformation
changes rather than differences due to rigid-body motions
(translations and rotations in three-dimensional space). A
singular value decomposition of 1

n−1 · A is then carried out
to obtain the (eigen-)decomposition 1

n−1 · A3k×n = U3k×n ·
Sn×n · V Tn×n. The procedure employed for this decompo-
sition here is the dgesvd routine, which is available in
Python (scipy.linalg.lapack.dgesvd) as part of the
scipy.linalg.lapack library. While more informa-
tion can be obtained in the corresponding documentation, in
summary, the eigenvectors/PCs are 3k-dimensional vectors
stored in the columns of U , in order of corresponding highest-
to-lowest singular values; these are stored in the diagonal
of the S matrix. The singular values σi are square roots of
the eigenvalues ei, which provide the variance of the original
(displacement) data over the corresponding eigenvector PCi.

The main decision after utilizing PCA is to determine
how many (projection) coordinates to employ to represent a
conformation. Typically, an accumulation of variance analysis

is conducted. After ordering the PCs by corresponding eigen-
value (highest to lowest), at each PCi, the cumulative variance
of {PC1, . . . , PCi} is plotted (not shown here in the interest
of space). The individual variance of each PC is its eigenvalue,
normalized over all eigenvalues (of all n obtained PCs).

For the free antibody, the first five PCs cumulatively cover
80.89% of the total variance. The first eight PCs cover 90.51%
of the variance, and the first 23 PCs cover 99.05% of the
variance. Similarly, for the antigen-antibody complex, the first
five PCs cumulatively cover 82.01% of the variance; the first
nine PCs cover 91.77% of the variance, and the first 24
PCs cover 99.09% of the variance. Setting 3: We set our
goal at capturing no lower than 90% of the total variance.
This means that for the free antibody, each conformation is
represented with 8 coordinates (projections of a conformation
on the top 8 PCs); for the antigen-antibody complex, this
threshold means that each conformation is represented with 9
coordinates. Setting 4: We set the goal at capturing no lower
than 99% of the variance. This means that for the free anti-
body, each conformation is represented with 23 coordinates;
for the antigen-antibody complex, this threshold means that
each conformation is represented with 24 coordinates.

3) Time-lagged independent component-based Representa-
tions: TICA is a linear transformation method. In contrast
to PCA, which finds coordinates of maximal variance, TICA
finds coordinates of maximal auto-correlation at the given lag
time. TICA is useful to find the slow components in a dataset
and a reasonable choice to transform MD data. Setting 5:
In this setting, our goal is to capture no lower than 90% of
the total variance. This means that for the free antibody, each
conformation is represented with 2273 co-ordinates (projec-
tions of a conformation on the top 2273 components); for
the antigen-antibody complex, this threshold means that each
conformation is represented with 2341 coordinates. Setting
6: We now set the goal at capturing no lower than 99%
of the variance. This means that for the free antibody, each
conformation is represented with 3189 coordinates; for the
antigen-antibody complex, this threshold means that each
conformation is represented with 3275 coordinates.

D. Evaluation Setup

Whether for the free antibody or the antigen-antibody
complex, we construct six different MSMs corresponding to
the settings described above. Convergence analysis and CK
tests are utilized to evaluate the quality of each MSM. The
best MSM (setting-1) obtained for each system is investigated
in greater detail in Section IV, and comparisons are made to
understand the main differences in the conformation dynamics
between the free and antigen-bound antibody.

IV. RESULTS

In the interest of space, the basins obtained in each of the
six settings, as well as the resulting MSMs and the evaluation
of their quality (in terms of the Markov property) for the free
antibody and antigen-antibody complex are spared. According
to the convergence analysis and the CK test (results not shown



in the interest of space), the best MSM obtained for the
free antibody as well as for the antigen-antibody complex
results from Setting 1. The rest of the analysis in this section
focuses on the basins and MSMs resulting from this setting,
respectively.

A. Visual Comparison of Embedded Landscapes

We first relate in Fig. 1 a two-dimensional embedding of the
energy landscape of the free antibody and the antigen-antibody
complex, respectively. The 5000 conformations sampled from
the 12 MD trajectories for each system (as described in Sec-
tion III), are subjected to PCA. Each dot shows the projection
of a conformation on the top two (highest-variance) PCs; two
PCs capture close to 60% of the total variance for the free
antibody and more than 60% of the variance for the antigen-
antibody complex. The color-coding relates the energies of
the projected conformations, with a blue-to-red color-scheme
denoting low-to-high internal energies.

Free Antibody Landscape Embedding

Antigen-antibody Landscape Embedding

Fig. 1. Embedding of sampled conformations over the top two PCs;
projections are color-coded by the energies of corresponding conformations
(low-to-high in a blue-to-red color scheme).

The energy landscape of the free antibody contains four
main clusters with a diffused distribution of low-energy con-
formations (see top panel). After antigen binding, the distri-
bution of the clusters becomes more diffusive (see bottom
panel), and the low-energy conformations are enriched in
only two clusters. These observations hold even when more

conformations are included in the analysis; adding 5, 000 more
conformations for each system (selected every 16th frame over
the MD trajectories) does not change the main features of the
embedded landscapes; existing clusters do not merge, and no
new clusters emerge (data not shown).

B. Basin Analysis

Thirteen basins are identified over the free antibody land-
scape; twelve basins are identified over the antigen-antibody
conformations. We evaluate whether the identification of
basins is biased by the starting conformation of the various
MD trajectories as follows. The focal minimum conformation
that sits at the bottom of a basin is considered as an identi-
fier and representative conformation of a basin. The RMSD
between this conformation and each conformation starting an
MD trajectory is calculated. This calculation is repeated for
each basin (representative conformation) against all starting
conformations (of all MD trajectories), and related in Fig. 2.

Fig. 2 shows that the identification of basins is not biased
by the conformations starting the MD trajectories. The method
does not trivially assign the conformation that initiates an MD
trajectory as the focal minimum of a basin. For the majority
of the basins, the focal minimum conformation that uniquely
represents a basin (its deepest point) resides on average more
than 10Å away from the starting conformation of a trajectory.
Some lower values are noted: between 5 and 10Å for 3 of
the focal minima identified for the free antibody and for 2 of
the focal minima identified for the antigen-antibody complex;
in the latter case, one of the focal minima resides closer than
5Å to the starting conformation of an MD trajectory.

Free Antibody Antigen-Antibody Complex

Fig. 2. The minimum RMSD (Å) (over backbone atoms) between the focal
minimum conformation representing a basin and the conformations starting
each of the MD trajectories is shown. The x axis shows the pairs corresponding
to the minimum RMSD values. B* denotes (the focal minimum conformation
of) a basin, numbered B1-13 for the free antibody and B1-12 for the antigen-
antibody complex. S* denotes the conformation starting an MD trajectory,
numbered S1-12.

C. Summarization and Comparison of Dynamics

The best MSMs constructed for each system, free antibody
versus antigen-antibody complex, are related in Fig. 3. For
each system, the equilibrium/stationary distribution is shown
first in the top panel via a pie chart limited to the 6 most
populous macrostates (labeled as B1-6 for basins; the num-
bering of basins observes the basin size). In each pie chart,
the population of the remaining macrostates is accumulated



and labeled as B*. The bottom panel shows the transitions
(again limited to the 6 most populous macrostates identified
by the stationary distribution analysis).

Interesting observations can be drawn for the free antibody
from the left panel of Fig. 3. One macrostate (largest basin), is
significantly more thermodynamically-stable than the others,
with an equilibrium population (31%) close to being 1.5 times
than that of the next stable macrostate (23.95%). Three other
macrostates have populations in the 8 − 16% range, and the
rest are 5.04% or lower. The self-transition probabilities are
large. For four of the six basins, the self-transition probabilities
are very high (above 0.94). Two exceptions are noted. Basin
1 has a lower self-transition probability of 0.8412. Basin 5
has an even lower self-transition probability of 0.623. While
the cumulative out-of-basin transition probabilities for four
basins (B2,B3,B4,B6) are just below 0.045; basin 5 transitions
to basin 1 with a higher probability of 0.325, and basin 1
transitions to basin 5 with a probability of 0.1195.

A similar analysis can be carried out over the MSM shown
in the right panel of Fig. 3 for the antigen-antibody complex.
The stationary distribution is not as skewed as for the free
antibody. There is no single macrostate with a population
significantly higher than others; three macrostates (B1,B4,B6)
have comparable populations in the 23 − 27% range. The
self-transition probabilities for the antigen-antibody complex
are lower than those observed for the free antibody. Basins
1-3 have self-transition probabilities between 0.92 and 0.93.
Basins 4-6 have much lower self-transition probabilities in the
range 0.6-0.88. Basin 4 transitions to basin 1 with a probability
of 0.11. Basin 5 transitions to basin 3 with a probability of 0.13
and to basin 2 with a probability of 0.1. Basin 6 transitions
to basin 1 with a probability of 0.3. This suggests that the
energy landscape of the antigen-antibody complex allows for
more transitions among the various basins than the energy
landscape of the free antibody.

D. Visualization of the Largest Basins.

Finally, we visualize the focal minima conformations cor-
responding to the 6 largest/most-populous basins for the free
antibody and the antigen-antibody complex. Fig. 4 draws these
conformations, using different colors for the various IgG
domains and the antigen and the “NewCartoon” graphical
representation in the VMD software. [47].

V. CONCLUSION

Based on the first two PCs and the conformational energies,
we find that the conformational energy landscape of the
free antibody mainly contains four clusters with a diffused
distribution of low-energy conformers. After antigen binding,
the distribution of the four cluster becomes more diffusive.
However, the low-energy conformers’ distributions narrowed
and are enriched only in two of the four clusters. Such behavior
provides new insights into previous analyses. Previous studies
found that the free antibody has one major cluster that splits
into two clusters after antigen binding. Both the current work
and previous studies agree on the two major clusters of

antigen-antibody complexes, but the analysis in this paper
provides a more detailed view of the energy landscape.

The MSM-based analysis in this study shows that, with
antigen binding, there are considerable conformation transi-
tions among the different basins. These results suggest that
the antigen-bounded form with high energy may provide many
dynamic processes to further enhance co-factor binding of the
antibody in the next step. We also observe that antigen binding
causes reduction in the number of macrostates/basins across
all the settings. Simulating the dynamics of large proteins and
their complexes places large computational demands. Analyz-
ing their conformation dynamics poses additional difficulties.
Our current study indicates that rigorous MD simulations
combined with a master equation framework represented by
an MSM provides additional insights into antibody dynamics.

ACKNOWLEDGMENT

This work is supported in part by NSF Grant No. 1900061.
Computations were run on ARGO, a research computing clus-
ter provided by the Office of Research Computing at George
Mason University, VA (URL:https://orc.gmu.edu/).
This material is additionally based upon work by AS sup-
ported by (while serving at) the National Science Foundation.
Any opinion, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science
Foundation. This project has been funded in whole or in part
with federal funds from the National Cancer Institute, National
Institutes of Health, under contract HHSN261201500003I. The
content of this publication does not necessarily reflect the
views or policies of the Department of Health and Human Ser-
vices, nor does mention of trade names, commercial products
or organizations imply endorsement by the US Government.
This Research was supported (in part) by the Intramural Re-
search Program of the NIH, National Cancer Institute, Center
for Cancer Research and the Intramural Research Program of
the NIH Clinical Center.

REFERENCES

[1] J. Zhao, R. Nussinov, and B. Ma, “Antigen binding allosterically
promotes Fc receptor recognition,” MAbs, vol. 11, no. 1, pp. 58–74,
2019.

[2] Y. Chen, G. Wei, J. Zhao, R. Nussinov, and B. Ma, “Computational
investigation of Gantenerumab and Crenezumab recognition of Abeta
fibrils in Alzheimer’s disease brain tissue,” ACS Chem Neurosci, vol. 11,
no. 20, pp. 3233–3244, 2020.

[3] I. Sela-Culang, V. Kunik, and Y. Ofran, “The structural basis of antibody-
antigen recognition,” Front Immunol, vol. 4, p. 302, 2013.

[4] T. Li, M. B. Tracka, S. Uddin, J. Casas-Finet, D. J. Jacobs, and D. R.
Livesay, “Rigidity emerges during antibody evolution in three distinct
antibody systems: Evidence from QSFR analysis of Fab fragments,”
PLoS Comput Biol, vol. 11, no. 7, p. e1004327, 2015.

[5] A. Janda, A. Bowen, N. S. Greenspan, and A. Casadevall, “Ig constant
region effects on variable region structure and function,” Front Micro-
biol, vol. 7, p. 22, 2016.

[6] J. Zhao, R. Nussinov, and B. Ma, “Mechanisms of recognition of
amyloid-β (aβ) monomer, oligomer, and fibril by homologous antibod-
ies,” J Biol Chem, vol. 292, no. 44, pp. 18 325–18 343, 2017.

[7] W. Lua, W. Ling, J. I. Yeo, J. Poh, D. P. Lane, and S. K. Gan,
“The effects of antibody engineering CH and CL in trastuzumab and
pertuzumab recombinant models: Impact on antibody production and
antigen-binding,” Sci Rep, vol. 8, p. 718, 2018.



Free Antibody Antigen-Antibody Complex

Fig. 3. Top Panel: Pie chart of adjusted state populations, showing the stationary distribution for the 6 top-populated macrostates/basins, with the other states
accumulated in B*. Bottom Panel: MSM schematic. Basins are drawn as disks, with radii proportional to size (number of conformations). Transitions between
basins are drawn as arrows, and transition probabilities are shown. The visual summary is restricted to the six top-populated states. Trailing arrows indicate
transitions to other states.

Free Antibody

Antigen-Antibody Complex

Fig. 4. Focal minima conformations corresponding to basins B1-6 in the MSMs shown schematically above are drawn here with VMD [47] for (top panel)
the free antibody and the (bottom panel) antigen-antibody complex, respectively. Chains are drawn in different colors.



[8] I. Sela-Culang, S. Alon, and Y. Ofran, “A systematic comparison of free
and bound antibodies reveals binding-related conformational changes,”
J Immunol, vol. 189, no. 10, pp. 4890–4899, 2012.

[9] A. Janda and A. Casadevall, “Circular dichroism reveals evidence of cou-
pling between immunoglobulin constant and variable region secondary
structure,” Mol Immunol, vol. 47, no. 7-8, pp. 1421–1425, 2010.

[10] A. Janda, E. Eryilmaz, A. Nakouzi, D. Cowburn, and A. Casadevall,
“Variable region identical immunoglobulins differing in isotype express
different paratopes,” J Biol Chem, vol. 287, no. 42, pp. 35 409–35 417,
2012.

[11] A. Correa, F. Trajtenberg, G. Obal, O. Pritsch, G. Dighiero, P. Oppezzo,
and A. Buschiazzo, “Structure of a human IgA1 Fab fragment at 1.55Å
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