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Abstract: High impedance faults present unique challenges for power system protection engineers.
The first challenge is the detection of the fault, given the low current magnitudes. The second
challenge is to locate the fault to allow corrective measures to be taken. Corrective actions are
essential as they mitigate safety hazards and equipment damage. The problem of high impedance
fault detection and location is not a new one, and despite the safety and reliability implications,
relatively few efforts have been made to find a general solution. This work presents a hybrid data
driven and analytical-based model for high impedance fault detection in distribution systems. The
first step is to estimate a state space model of the power line being monitored. From the state space
model, eigenvalues are calculated, and their dynamic behavior is used to develop zones of protection.
These zones of protection are generated analytically using machine learning tools. High impedance
faults are detected as they drive the eigenvalues outside of their zones. A metric called eigenvalue
drift coefficient was formulated in this work to facilitate the generalization of this solution. The
performance of this technique is evaluated through case studies based on the IEEE 5-Bus system
modeled in Matlab. Test results are encouraging indicating potential for real-life applications.

Keywords: high impedance faults; power system state estimation; power system protection; power
system monitoring; eigenvalue estimation; state space representation; fault detection

1. Introduction

High impedance faults in electric power systems (EPS) represent a liability in regards
to safety and reliability. High impedance faults (HIFs) arise when a connection is made
between an energized conductor and a surface with high resistance that is not part of
the EPS. Common surfaces that can lead to HIFs include trees, asphalt, concrete, sand,
and grass [1]. Significant damage to equipment, property, and even fatalities have been
attributed to this phenomenon [2]. Despite these significant implications, the problem
of HIFs remains unsolved [3]. One of the main challenges in this area is presented by
the unique nature of HIFs [4]: The nonlinear relationship between currents and voltages,
the presence of electrical arcs, and most importantly the low current magnitudes. These
characteristics make it difficult to detect HIF by the traditional means of over-current
protection. A protection device on a heavily loaded feeder will most likely not operate in
the presence of HIFs. On the other hand, choosing to set a protective device too close to
the expected loading level can lead to nuisance tripping. To compound the problem even
further, the dynamic behavior of both the fault and the load must be taken into account.

As a result of the clear limitations of over-current protection in the detection of
HIFs, efforts have been made to find alternate solutions to this problem. Several tech-
niques have been proposed in recent years, but a unified and general solution is yet
to be accepted by the industry [5]. Most techniques can be divided into the following
groups: knowledge-based techniques, network topology based techniques, and apparent
impedance-based techniques.
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Knowledge-based techniques leverage data acquired by meters and utilize machine
learning (ML) approaches to identify outliers [6]. One of the drawbacks of these techniques
is the reliance on meters, and the infrastructure necessary to process large amounts of data.

Methods based on network topology are somewhat similar to knowledge-based
solutions in that they rely on metering [7]. Meter sensors in key areas are deployed to
create a network capable of detecting HIFs. This approach requires a significant investment
in terms of equipment, installation and maintenance of meters. Moreover, this type of
approach suffers from a lack of generality, which means that significant engineering is
needed in real-life applications.

Transmission protection techniques have inspired researchers to develop solutions
for HIFs based on methods such as Apparent Impedance. These techniques are appealing
due to the relatively low investment cost and the familiarity of protection engineers with
the underlying principle of impedance (distance) relaying. A significant obstacle these
techniques face is the stochastic behavior of HIFs. Several of these solutions make the
assumption that the impedance at the fault point is purely resistive, which would lead to
a fault signature that is fairly linear and constant [8]. These techniques were advanced
by taking into account the non-linear behavior of an electrical arc. These models face
two challenges: Being able to detect the change in impedance, and doing so in small time
windows. Still, despite having multiple unresolved issues, impedance-based techniques
have gone on to become accepted as the framework for the development of new HIF
detection and location solutions [9].

Solutions based on state estimators, such Weighted Least Squares (WLS) [10,11], have
been proposed more recently. These solutions aim to detect HIFs by identifying statistical
outliers during the estimation process. Estimation-based methods such as [12] have been
proposed in the time domain, as well as in the frequency domain as presented in [8,13].
In regards to state estimators for HIFs, frequency domain techniques appear to have greater
momentum compared to time domain approaches due to reported advantages such as noise
suppression and relative ease of implementation. Despite encouraging results produced by
Frequency Domain Estimators, several limitations of this approach must be noted: First,
there is a lack of a generalized solution, particularly in regards to the system’s topology,
and secondly, the estimation of system parameters, including the fault itself, has not been
standardized. Some of the solutions based on frequency domain estimators attempt to
streamline the process by modeling and estimating a reduced number of parameters, which
leads to marginal observability and near singular Jacobian matrices. Both of these lead
to reduced redundancy and a possible magnification of errors [1,14]. Another important
limitation of WSL estimators to be considered is that the vast majority of them only consider
the residual of the error, which does not always represent the total error [15,16].

An approach based on neural networks is used in [17], which derives estimates of the
parameters of a feeder during fault conditions. The estimation is carried out in the time
domain, and utilizes polynomial approximation techniques. This approach is hindered by
assumptions related to the time-frame when measurements are taken and the location of
the load [18].

Recently, in [19], the harmonic distortion generated during the fault is analyzed in
the spectral domain. This solution detects HIFs by identifying parameter errors in the
fundamental and the third harmonic through a WLS estimator. This technique yields
a high rate of detection and an accurate location of the fault, however, implementation
presents serious challenges as some of the parameters required to solve the estimator must
be calculated manually.

Finally, solutions based on WAMs technology were utilized by studies in [20-22].
In [20], a Fourier Series based approach is proposed in which parameters are estimated
from harmonics measured by PMUs. This approach is similar to other frequency domain
approaches, and although the idea seems promising, implementation could be an issue due
to short windows of time when measurements must be made, and the use of specialized
measurements and parameters that could lead to singular matrices. It must also be noted
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that [20] was not evaluated in a recognized environment such as an IEEE Test Feeder.
In [21], a combination of measurements and simulations are used to locate faults. As men-
tioned before, the need to simulate parameters leads to solutions that are not general
and can be difficult to implement. In [22], measurements from multiple sections of a line
are utilized to derive a model based on symmetrical components with emphasis on line
capacitance to detect and locate faults. The results were interesting; however, it was noted
that the performance of the algorithm is affected by the length of the line, and the solution
was not tested with resistances beyond 100 (). Moreover, this solution appears to be geared
towards systems with underground cables.
This review of the literature has lead to the following conclusions:

Most acceptable solutions are based on the Apparent Impedance framework.

The Time Domain vs. Frequency Domain debate is still open.

Most solutions focus on modeling and identifying specific aspects of HIFs.

Most solutions suffer from a lack of generality, meaning that manual adjustments
have to be made each time the solution is deployed.

LS

In view of the limitations of existing solutions and the current state of smart grid
technology, this work presents a unified, dynamic hybrid data-driven and analytical-based
model, which advances the state-of-the-art of HIFs detection in the following ways:

1. Presents a data-driven and analytical model, based on novel statistical metrics, for the
identification of eigenvalue drift patterns.

2. Temporal characteristics of a real-life power system are modeled through autonomously
generated protection zones in the eigenvalue space.

The remainder of this paper is organized as follows. Section 2 provides theoretical
background on state estimation, clustering techniques, power system protection, and eigen-
value properties. Section 3 presents the unified model with the accompanying metrics
formulated for this work. Test results of a case study are shown in Section 4. Finally,
Section 5 presents conclusions and remarks on the future direction of this work.

2. Background Information
2.1. State Space Representation

Mathematical tools such as differential equations make it possible to model the be-
havior of physical systems. Once these equations have been derived, multiple techniques
such as transformations can be applied to refine the model. Transformations can be used
to take the mathematical model of a system from one domain into another in order to
unveil a desired characteristic. A system can also be represented in a way that highlights a
desired feature or relationship. One particular model which emphasizes the relationship
between the input (stimuli) and the output (the observable behavior) is the State Space
representation [23]:

X = Ax + Bu 1

y=Cx+ Du

where the state vector x, contains a set of state variables. State variables provide information
about the system, which makes it possible to estimate a transition from the current state
into a future state. y is the output vector that represent the linear combination of observable
behavior of the system. u is a vector that contains the set of inputs or stimuli that drive the
behavior of the states. A and B are constant matrices that define the relationship between
the input and the state variables. C and D are constant matrices that define the relationship
between the state variables and input with the output. Matrix A is particularly important
for this work, as it is the matrix that is used to estimate the eigenvalues of the system.
State Space was chosen for this work as it facilitates system estimation in the presence
of multiple inputs and outputs, and doesn’t require the initial conditions of the system to
be known, which seldom is the case when estimating an operational power system. Finally
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state space simplifies the process of generalization as all systems of the same type and
order will have the same State Space structure.

Many techniques have been developed for dynamic state state estimation, most of
them are based on the Kalman Filter [23-25]. Subspace estimation, used in this work, is
now introduced.

2.2. Subspace Estimation

Multiple techniques can be used to estimate the eigenvalues of a system. These
techniques include approximate realizations and subspace identification. A linear time
invariant approximate realization aims to derive a minimum order model using the impulse
response of the system through Markov Parameters as follows. Starting with a State Space
model [23]:

x(k+1) = Ax(k) + Bu(k) )

y(k) = Cx(k) + Du(k)

which has a transfer function

G(z) =Y g(k)z* &)

The state matrices and the transfer function share the following relationship:
G(z) =D+ C(zI— A)"'B (4)

The matrices can be computed from the impulse as follows,

D fork=0
k) = 5
8k {CAle fork> 1 ©)

The Ho-Kalman algorithm is applied to find matrices A, B, and C through the Hankel
matrix H

g(1) 2(2) 2(3) . g(ne)
§2) 53 g@ o gln+)

Hurpe = g(3) 8(4) g(S) ce g(l’lc + 2) 6)
g0) g0n +1) gl +2) - gln+ne—1)

The Hankel matrix can be represented in the following form:

C

CA
Huppe = | [B AB .- A"HB} @)

cam-1

The rank n of the Hankel matrix is equal to the rank of matrix A. Singular Value
decomposition is used to determine the rank of the Hankel matrix as follows:

H=U,Z, V] (8)
where U, and V), are unitary matrices

uru, =vriv, =1, ©)
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Y, is a diagonal matrix with positive singular values on the diagonal. The number of
non-zero singular values across the diagonal of the matrix is equivalent to the rank of the
Hankel matrix, which is also, as discussed previously, the rank of A.

The Hankel matrix can then be expressed as

H=u,xl?zl?vT (10)

where £}/2 represents a diagonal matrix composed of the square roots of the singular
values. Matrix B is the first column of Z}/ 2 VnT , while C is the first row of UnZ,l/ 2,
Finally, A can be defined as

A=z 12Ul H v,z 172 (11)

where H represents the shifted Hankel matrix

g(1) g(2) g(3) e g(ne)
g(2) g(3) g(4) e g(ne+1)

Free |$3)  g@ g6 - glne+2) 12
gm) g +1) gln+2) - gl +ne—1)

A limitation of the Approximate Realization approach is that system parameters are
estimated from the response of the system to an impulse. In real-life, at least in the context
of power systems, this is not practical. As a result, alternative methods that use information
from the system’s inputs and outputs to achieve similar results have been developed.
In subspace identification the State Space model of the system can be expressed in the
innovation form as [23]:

Xgr1 = Axyx + Buy + Key (13)

Yk = Cxg + Duy + ¢

where 1y represents the input vector, and is yy the output. ¢, represents a source of noise
and K contains parameters of the noise model.
The output can be defined as

Y = G(z)ug + H(z)ex (14)
where
G(z) =C(zI—A)"'B+D (15)
and
H(z) = C(zI — A) 'K+ 1 (16)

A key part of this estimation procedure is the derivation of the Observability matrix:

CA
o=1 . (17)

CA.rfl

Once again Singular Value Decomposition can be used to find the rank of the Observ-
ability matrix, which is also the rank of the A matrix. Applying linear regression techniques
to the relationships described above the matrices A, B, C, D, noise components, and initial
states can be estimated [23].
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2.3. Eigenvalue Space

As previously mentioned, one of the advantages of the State Space representation
is that it offers inherent access to the eigenvalues of a system. In the context of this
work, the eigenvalues represent the frequencies of oscillation of a system, which can be
represented as complex numbers. These eigenvalues evolve overtime and thus provide
an estimation of the system’s operating condition. In this work, the impedance of the
transmission line is referred to as the system, and the eigenvalues are the frequencies
of oscillation of the powerline. This work takes advantage of the unique nature of the
eigenvalues of a system. One can think of eigenvalues as the finger-prints of the system,
a unique identifier arising from a combination of resistance, capacitance, and inductance
seen across the system. The temporal characteristics of the eigenvalues are accounted
for in this work, as they are estimated dynamically, and their drift over time is used to
make decisions regarding the status of the system. Eigenvalues are mapped into a space
this works refers to as the Eigenvalue Space, which is based on the Cartesian Coordinate
System. This is done to avoid complications related to the handling of complex numbers.

2.4. Protection Schemes

Distance and Out-of-Step relaying schemes served in part as the basis for the de-
velopment of the solution presented in the next section. These schemes are introduced
briefly as follows: Distance relays utilize voltage and current measurements to estimate the
impedance of a powerline. This resulting impedance is graphed in the X-R plane, and is
usually accompanied by a circle. The diameter and location of this circle with respect to the
axis are predetermined for each line, and define the abnormal zones of operation for the
power line [26]. When a fault occurs, the magnitude of the current increases bringing the
impedance seen by the relay to an area inside the zone of protection. Once the impedance is
inside the zone of protection, and after a pre-programmed delay, the relay makes a decision
to initiate a trip sequence. Figure 1 illustrates the characteristics of a version of the Distance
Relay, the Mho Relay.

X Mho characteristic
Trip area

Increasing load

Load Limit

R

Figure 1. Mho Relay Characteristic [26].

Out-of-Step Relays distinguish acceptable operating conditions from potentially haz-
ardous conditions by leveraging the spatial characteristics and rate of change of the system’s
impedance. Zones of protection similar to those seen in distance relays are established in
Out-of-Step Relays, but in addition to tracking the angle and magnitude of the impedance,
the relay times impedance as it moves in the R-X plane. Decisions are made based on how
far inside the zone of protection the impedance has traveled, and how long it has been
there. Figure 2 illustrates the characteristics of an Out-of-Step Relay.
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Figure 2. Out of Step Relay characteristics [26].

2.5. Clustering

The principles of protection discussed in the previous sub-section are used to estimate
the region were the eigenvalues reside during normal operation. In order to accommodate
the unique location and drift patterns of the eigenvalues of a line, eigenvalues are separated
into clusters. In this work k-means clustering was utilized to develop the eigenvalue
clusters [27].

The goal of k-means clustering is to find patterns or similarities among the members
of a dataset. These patterns are then used to separate the data points into groups where
the members share similar characteristics [28]. Typically, metrics such as the Squared
Euclidean Distance are used as the basis of the algorithm. The Squared Euclidean Distance
is expressed as a sum of squares:

E(p.q) = (p1— )+ (p2— 02)* + -+ (pn — qu)? (18)

where d is the distance between two points, while p and g are the coordinates of a point in
the Euclidean Space. k-means clustering is an iterative algorithm, where the clusters are
re-calculated and cluster members are reassigned to different clusters until a convergence
criteria is met.

3. HIF Detection in Eigenvalue Space

Merely a decade ago, proposing a solution based on advanced metering at multiple
ends of a line, with the end goal of estimating eigenvalues, would have been met with
significant scepticism regarding the feasibility of the solution’s implementation. However,
due to increased integration of synchrophasor technology into the grid, solutions based on
Wide Area Measurements (WAMS) made possible by Phasor Measurement Units (PMUs)
are gaining momentum. Even at the distribution level, smaller and cheaper units called
Micro-PMUs are being added to the smart grid [24].

This work envisions PMUs, as the metering devices collecting information for the
eigenvalue estimation step. This is due to their high sampling rates (120 Hz), and wide
area measuring capabilities. These two characteristics are critical as higher sampling rates
increase the robustness of the estimates, while the ability to operate over a wide area means
that this solution could be implemented on lines of varying length. Figure 3 illustrates the
configuration of the system proposed in this work.
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TO BUSA1 TO BUS-2
1
Current PMU
Powerline
TO USER
1
v > 2 .
Voltage PMU Estimator

L

Figure 3. Diagram of the proposed configuration.

One of the key features that distinguishes this work from other solutions is that
this method doesn’t attempt to identify HIFs or their characteristics, but instead focuses
on identifying deviations in the Eigenvalue Space (ES). Identifying HIFs by focusing on
the characteristics of the fault presents an immense engineering challenge, but this is a
challenge that can be avoided altogether.

As mentioned in the previous section, each powerline has a unique set of eigenvalues
determined by the parameters illustrated in Figure 4, and these eigenvalues are sensitive to
changes in impedance, such as the deviations seen during a fault.

i(t) R L

W

+
vi(t) v(t) TC

Figure 4. RLC circuit schematic.

Therefore, instead of trying to predict the magnitude and order of the harmonics
generated by an electrical arc, or how a highly resistive surface will change the angle
of an apparent impedance, this works presents a method that establishes a baseline of
acceptable values in the ES and makes decisions when eigenvalues drift outside of these
zones. Focusing on deviations from a baseline allows this solution to:

1.  Utilize alternative means of monitoring, in this case eigenvalues.

2. Create a significantly higher degree of generalization as the solution can applied to just
about any system with virtually zero human interaction (other than the installation of
the metering infrastructure).

3.1. Framework for Eigenvalue Identification

The first step of this solution is to estimate the eigenvalues of the powerline being
monitored. Figure 5 is an example of the estimation result. Using PMUs, voltage readings
from one end of the line can be integrated with current measurements at the opposite end
of the line. These two measurements are then sent to an estimator. Physically, the estimator
can reside at either a centralized location, such as a control center or database, or at a secure
distributed location such as a substation. This versatility regarding the location of the
equipment adds to the generality of the solution.
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Figure 5. Estimated eigenvalues in eigenvalue space.

As discussed in the previous section, Subspace Estimation was used to realize the
eigenvalues of the system, however, other algorithms can be used to process the data
collected by the PMUs and estimate the eigenvalues. The choice of the estimation algorithm
is not critical, as long as the output provided by the estimator is reliable and consistent. This
work is not concerned with identifying the parameters of the system with great accuracy
with respect to the real (physical) values. The algorithms used in this work establish a
benchmark of acceptable operating regions in the Eigenvalue Space.

3.2. Framework for Zones of Protection in Eigenvalue Space

The output of the Subspace estimator is used to build eigenvalue clusters. These
clusters are created using k-means clustering techniques. The clusters are dynamic, and can
be updated at user specified intervals or whenever new data becomes available. In this
work, simulated PMU readings collected over a 24-h period were used to train the clustering
algorithm. The load profile, illustrated in Figure 6, was modeled after Houston, TX with
data provided by ERCOT [29].

Load (PU)

0.8
Time (Hours)

Figure 6. Houston load 24-h profile in PU [29].

In order to facilitate the creation of the zones of protection and improve their reliability,
statistical metrics are used to evaluate the suitability of the clusters. As part of this work
a metric referred to as the Eigenvalue Drift Coefficient (EDC) was developed. After the
clustering algorithm has converged, vectors containing the Euclidean distance between
pairs of eigenvalues in each cluster are created. From this set of values, the mean distance
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and standard deviation within each cluster is computed. The EDC of each cluster is
calculated as follows:

(o
EDC = = (19)
Z

where ¢ is the standard deviation, and y is the mean of the distances.

Clusters with a high EDC tend to have a relatively uniform distribution compared to
clusters with a low EDC. Clusters with high EDC yield zones of protection which are more
secure. The clustering step is repeated until all clusters produce acceptable EDC values.
Polynomial curve fitting is then used to define the zones of protection. Low and high EDC
clusters are illustrated in Figures 7 and 8, respectively. High EDC values allow for the use
of lower degree polynomials for curve fitting.

Eigenvalues

Y-Axis Coordinates

X-Auxis Coordinates

Figure 7. Low EDC cluster.
Figenvalues
7] K
2 S ‘
£ - TESssssaall
B TEEss 1
=] g =
847 L==FTTTT TTEEseeaal TEsal 2w
2 | R
> SEeal 27
X-Axis Coordinates

Figure 8. High EDC cluster.

The number of clusters used by the algorithm is determined iteratively, starting with
6 clusters, and decreasing the number of clusters until EDCs higher than 1.7 are achieved
for all clusters. At EDCs higher than 1.7, polynomials of degree 3 and less can be used to
produce the zones of protection. For clusters with an EDC at or less 1.7, polynomials of
degrees 3 and less might not provide a suitable fit. In addition to having to utilize higher
degree polynomials for curve fitting, a low EDC also leads to protection zones where most
of the eigenvalues are not at the center of the zone. Off-centered eigenvalues ultimately lead
to zones with inconsistent safety margins, which could lead to false positives if eigenvalues
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near the edge of the zone drift outside during normal operation, or delayed reaction during
an abnormal condition for eigenvalues located in a particularly wide area of the zone.

Safety margins are created using the mean y of the cluster, and a multiplier correspond-
ing to the magnitude of y . For higher values of y, the algorithm uses smaller multipliers,
while higher multipliers are used for smaller values of . Two zones of protection are used
for each cluster. An inner zone where the eigenvalues reside during normal operation,
and an outer zone that generates an immediate reaction. If an eigenvalue drifts to the area
in between the two zones, a timer is started. If the eigenvalue returns to the inner zone
before the timer expires, no action is taken. However, if the eigenvalue doesn’t return to
the inner zone before the time expires or continues to drift beyond the second zone, action
is taken. For this work, a time period equivalent to the cluster update time was used.

3.3. High Impedance Fault Detection

As stated in previous sections, the eigenvalues of each powerline have a distinct
drift pattern in the eigenvalue space. These patterns are determined by the components
that make up the impedance of the line, combined with the apparent impedance of the
load. When foreign agents are introduced during abnormal conditions, such as a resistive
element during a HIF, the eigenvalues of the line will drift away from their normal zones of
operation. During a fault the eigenvalues of the line drift towards a point in the Eigenvalue
Space determined by the characteristics of the fault. The higher the magnitude of the fault,
the closer the eigenvalues move to this point in the Eigenvalue Space. For low impedance
faults, this drift is quite dramatic, this is analogous to the changes in current magnitude
seen during a bolted fault. Although not as dramatic as the changes seen during a bolted
fault, the disturbances seen during a HIF are enough to produce a distinguishable deviation
from the normal zones. This sensitivity to disturbances allows this solution to identify
HIFs with a resistance of over 1 k(). Figure 9 illustrates a case of eigenvalue drift during a
fault with a resistance of 10 (), while Figure 10 shows the drift of eigenvalues in response
to a fault with a resistance of 100 Q).

_E -
. *  Mormal Eigenvalue Drift
gl #*  Eigenvalue Dift Under Fault
*
e -10r
E
E a2t
£ 141
I
)_
16
—18 Il *. L Il Il |
-2h =20 -15 -10 -b 0

X-Axis Coordinates

Figure 9. Eigenvalue drift during a fault with a resistance of 10 ().
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Figure 10. Eigenvalue drift during a fault with a resistance of 100 Q.

3.4. Robustness to Noise

High sensitivity can be a double-edged sword as increased dependability can lead
to false positives. The performance of the solution presented in this work was studied in
the presence of noise. Noise injections do not change the general pattern followed by the
eigenvalues, the overall pattern in simply shifted. Figure 11 illustrates this behavior.

O
ol &
ﬁ
£ 100
TE o] O
2 50 © q
o opel
ST =200 [ o & 8
(o} 17 o _
| S o ® 1| Standard Deviation of noise
L ® 7 Standard Deviation of noise
o 3 Standard Deviation of noise
'GDD 1 i i i i i i
-300 -250 -200 -150 -100 -50 0
X-Axis Coordinates

Figure 11. Eigenvalue estimation in eigenvalue space with noise.

In extreme cases where the magnitude of the noise can be classified as a gross error
in measurement, the eigenvalues travel far beyond their normal zones, somewhat similar
to the behavior seen during high magnitude faults. A scheme for the identification of
gross errors in measurements can be developed from this solution: when the Subspace
Estimator sees a dramatic Eigenvalue drift, the estimator could verify the status of the
relay(s) protecting the line. If over-current elements in the relay have not been picked up,
this would indicate an erroneous reading. This could improve the robustness of WAMS
based State Estimation solutions.

Eigenvalue space could also be integrated into relaying schemes to enhance the
security of the scheme. Similar to a permissive scheme, a relay could poll the status of the
estimator before sending a trip or a block command. Figure 12 illustrates the algorithm of
the model introduced in this work.
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Figure 12. Flowchart illustrating the eigenvalue space analysis model.

4.

A case study and the associated findings are presented in the next section.

Case Study
The IEEE 5-Bus system modeled in Matlab [30] is used to evaluate the performance of

the framework presented in this work. Table 1 presents system data. Two scenarios were
examined: First a single phase to ground fault is simulated on C-Phase of the line between
Bus-4 and Bus-5. The results are presented in Fault Scenario I. Then, a single phase to
ground fault is simulated on A-Phase of the line between Bus-1 and Bus-2. These results
are presented in Fault Scenario II. Each scenario is set up as follows:

All Loads follow the trend shown in Figure 7.

The system is in steady state per the powerflow results shown in Table 2.

Each scenario consists of three fault iterations with fault resistances of 10 (3, 100 (),
and 1000 Q).

During each iteration, the line is faulted twenty four (24) times to evaluate all the
cluster zones and to account for dynamic loading conditions.

Clusters are built using historical loading data.

One standard deviation of Gaussian white noise is added to all the current measurements.

Table 1. Impedance parameters of the 5-Bus system.

Line Line Impedance Line Charging
R (PU) X ([PU) Y/2 (PU)
1-2 0.02 0.06 0.0 +0.030
1-3 0.08 0.24 0.0 +j0.025
2-3 0.06 0.25 0.0 +0.020
24 0.06 0.18 0.0 +j0.020
2-5 0.04 0.12 0.0 +j0.015
34 0.01 0.03 0.0 +0.010

4-5 0.08 0.24 0.0 +j0.025
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Table 2. Power flow results of the 5-Bus system.

Bus Generation Demand Bus Voltage
MW MVAR MW MVAR Voltage (PU) Angle
1 130 —74 0 0 1.06 0
2 40 30 20 10 1.047 —2.806
3 0 0 45 15 1.024 —4.997
4 0 0 40 5 1.023 —5.329
5 0 0 60 10 1.017 —6.1503

4.1. Fault Scenario I

Baseline eigenvalues are estimated as seen in Figure 13:

0r * ** *
| #*  Normal Eigenvalue Drift
* *
L *
-10 *
® *
& *
c 20
S 30 * Fy
>
E: ¥
5T
40 #
*
* %
_50 i i 1 i i i ]
-80 =70 60 -50 =40 -30 =20 -10
X-Aoas Coordinates

Figure 13. Baseline eigenvalues.

Clusters are generated using k-means clustering and the EDC, as seen in Figure 14:

D -
* *
-10 * *
o *
o *
c 20
e 80T * ¥
< 4
}_
40t Cluster 1 _gf
@ Cluster 2 *
e Cluster 3 * ¥
-SD i i i 1 i i i
-80 -70 -60 -50 -40 -30 -20 -10

X-Axis Coordinates

Figure 14. Clusters.

The solution successfully detects a C-Phase to ground fault with a fault resistance of
10 ), as illustrated in Figure 15:
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Figure 15. 10 Q) fault identified.
Statistics for this case study are presented in Table 3:
Table 3. 10 ) fault statistics.
Euclidean Distance Statistics Normal Conditions Fault Conditions
Mean 27.7125 0.3400
Standard Deviation 18.9314 0.2334

The solution successfully detects a C-phase to ground fault with a fault resistance of
100 ), as illustrated in Figure 16:
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X-Axis Coordinates
Figure 16. 100 () fault identified.
Statistics for this case study are presented in Table 4:
Table 4. 100 () fault statistics.
Euclidean Distance Statistics Normal Conditions Fault Conditions
Mean 27.7125 1.3481
Standard Deviation 18.9314 0.8519

The solution successfully detects a C-phase to ground fault with a fault resistance of
1000 O, as illustrated in Figure 17:
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Figure 17. 1000 Q) fault identified.

Table 5. 1000 Q) fault statistics.
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Statistics for this case study are presented in Table 5:

Euclidean Distance Statistics

Normal Conditions

Fault Conditions

Mean

Standard Deviation

27.7125
18.9314

171.1992
228.4471

4.2.

Y-Axis Coordinates

Figure 18. Baseline eigenvalues.

Fault Scenario I1

Baseline eigenvalues are estimated as seen in Figure 18:
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Clusters are generated using k-means clustering and the EDC, as seen in Figure 19:
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Figure 19. Clusters.

The solution successfully detects a C-phase to ground fault with a fault resistance of
10 (), as seen in Figure 20:
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Figure 20. 10 Q) fault identified.
Statistics of this case study are presented in Table 6:
Table 6. 10 ) fault statistics.
Euclidean Distance Statistics Normal Conditions Fault Conditions
Mean 109.4366 0.0213
Standard Deviation 90.7864 0.0151

The solution successfully detects a C-phase to ground fault with a fault resistance of
100 €}, as illustrated in Figure 21:
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Figure 21. 100 Q) fault identified.
Statistics of this case study are presented in Table 7:
Table 7. 100 () fault statistics.
Euclidean Distance Statistics Normal Conditions Fault Conditions
Mean 109.4366 0.0215
Standard Deviation 90.7864 0.0145

The solution successfully detects an C-phase to ground fault with a fault resistance of
1000 Q), as illustrated in Figure 22:
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Figure 22. 1000 Q) fault identified.

Statistics for this case study are presented in Table 8:

Table 8. 1000 () fault statistics.

Euclidean Distance Statistics Normal Conditions Fault Conditions

Mean 109.4366 169.0397
Standard Deviation 90.7864 152.1032
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As expected, during faults of lower impedance the profile of the estimated system is
dominated by the fault. This pushes the eigenvalues far away from their normal zones as
they congregate around a single point determined by the fault. The mean and standard
deviation values seen during the 10 () and 100 (2 faults are evidence of this, as the values
are almost the same for both fault conditions, and far from the normal values. In this
context, a fault with a resistance of 100 Q) is considered a HIF, this illustrates the robustness
of this framework.

At 1000 Q), the eigenvalue drift is no longer dominated by the fault, however, the in-
crease in resistance experienced by the system moves the Eigenvalues to new locations in
the Eigenvalue Space. This deviation is still large enough for this solution to observe the
change and issue an alarm.

5. Conclusions

This work presented a model for the detection of high impedance faults. The frame-
work leverages WAMS technology, protective relaying schemes, and state estimation
algorithms to produce a solution that yields high detection rates, 100% in the scenarios
studied as part of this work. Encouraging results combined a philosophy that empha-
sizes generality, making this framework a promising alternative to solve the HIF problem.
The performance of this method was studied in simulations based on IEEE benchmark
systems. The key outcome of this work is a solution that is highly effective at detecting
HIFs, well beyond 100 Q) of fault resistance. This is done by observing the characteristics of
the system during normal operation and measuring deviations from the normal, in contrast
to other HIF solutions, which focus on the characteristics of the faults.

Factors such as line impedance, loading on the line, and available fault current impact
how the eigenvalues behave during normal operating conditions. To a lesser extent,
these factors also affect how eigenvalues drift during fault conditions. Drift during fault
conditions is mainly driven by the characteristics of the fault. The size of the system (the
number of buses, lines, and sources) also has direct influence on the signature (eigenvalue
drift pattern) of the lines. Changing the size of the system is equivalent to changing the
overall impedance of the system. One of the strengths of the method presented in the paper
is that it adapts to changing conditions and to virtually any topology. The only requirement
is that the system be allowed to establish a baseline of acceptable values, and then the
algorithm will look for deviations.

Presently, the main limitation of this framework seems to be distinguishing HIFs (over
500 ) in fault resistance) from large injections of measurement noise, however, statistical
tools and machine learning could hold the key to overcoming this challenge. Another
limitation is the lack of a fault location module. Future work will focus on addressing those
two limitations in addition to expanding the framework to include detection of faults of
multiple impedance profiles and faults of a dynamic and transient nature.
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