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Abstract: Simultaneous real-time monitoring of measurement and parameter gross errors poses a
great challenge to distribution system state estimation due to usually low measurement redundancy.
This paper presents a gross error analysis framework, employing uPMUs to decouple the error
analysis of measurements and parameters. When a recent measurement scan from SCADA RTUs and
smart meters is available, gross error analysis of measurements is performed as a post-processing
step of non-linear DSSE (NLSE). In between scans of SCADA and AMI measurements, a linear state
estimator (LSE) using yPMU measurements and linearized SCADA and AMI measurements is used
to detect parameter data changes caused by the operation of Volt/Var controls. For every execution
of the LSE, the variance of the unsynchronized measurements is updated according to the uncertainty
introduced by load dynamics, which are modeled as an Ornstein—Uhlenbeck random process. The
update of variance of unsynchronized measurements can avoid the wrong detection of errors and can
model the trustworthiness of outdated or obsolete data. When new SCADA and AMI measurements
arrive, the LSE provides added redundancy to the NLSE through synthetic measurements. The
presented framework was tested on a 13-bus test system. Test results highlight that the LSE and NLSE
processes successfully work together to analyze bad data for both measurements and parameters.

Keywords: distribution system state estimation; measurement gross error analysis; micro-phasor
measurement units; parameter gross error analysis

1. Introduction

The introduction of distributed energy resources (DER) presents further technical
challenges besides the obvious advantages. The dynamics of the distribution systems
operation are becoming more complicated with fluctuating voltages and power flows.
These adverse impacts impose technical challenges to distribution management systems
(DMS) and micro phasor measurements units (4PMUs) are the perfect tool to address these
new challenges [1]. Algorithms for adequately estimation of synchrophasors in distribution
systems have specific properties, such as rejection of harmonics and steady uncertainty
values under transients [2].

The importance of having real-time, accurate monitoring processes and constant
situational awareness in any power system cannot be overstated. State estimation (SE) is a
fundamental process for real-time monitoring of the power system. Distribution system
state estimation (DSSE) especially has its own share of technical difficulties. The low
availability of measurements is a huge burden on its reliability. This can cause the system
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to be unobservable, thus making a full state estimate infeasible [3,4]. Even if the system is
observable, a lack of measurement redundancy increases vulnerability of its state estimate
to bad data [5]. A popular method of ensuring the observability or adding redundancy to
a system’s measurement set is the use of pseudo-measurements. Pseudo-measurements
are estimates, or forecasts, of measurements based on historical data. The extrapolation
of pseudo-measurements using past data or their interpolation when forecast of load or
generation is available has been proposed to capture the trend in which measurements
evolve over time to improve the accuracy of pseudo-measurements [6]. It has been shown
that, since these are less accurate than real-time measurements, they can introduce errors
to the state estimate [7,8].

Voltage fluctuations due to the intermittent nature of the DER have a direct effect
on the operation of Volt/Var control (VVC) schemes, which actuate capacitor banks and
linear tap changers (LTCs) in order to maintain voltage within American National Stan-
dards Institute (ANSI) limits. In a scenario where measurements are scarce, as in DSSE,
additional parameter variations due to VVC actions not reported to the DMS represent yet
another technical challenge for accurate real-time monitoring of distributions systems. The
current inclusion of advanced metering infrastructure (AMI), such as smart meters, in the
distribution system will increase measurement redundancy level. yPMU-based systems
are a candidate solution for monitoring VVC changes and there are applications of these
systems for event detection in distributed systems [9]. Recently, an experiment has shown
that yPMUs can be used to identify capacitor bank operations in a real-life distribution
feeder using both steady-state and transient synchrophasor data analysis [10].

Unlike GPS-synchronized measurements produced by PMUs, SCADA, and AMI scans
are taken in different points in time, which means that each measurement provides a piece
of information with a different time-delay. Characterizing the statistics of consecutive time
scans as a Gaussian independent process for each meter and using linear interpolations to
obtain their expected mean and variance has been presented as a solution to the problem
of processing unsynchronized measurements [11]. However, while we can assume that the
Gaussian noise in measurement process might be uncorrelated, it is not possible to assert
that the changes in state and load variations captured by any two meters are independent.

Tracking state estimation for distribution systems using compensation theorem has
been proposed to incorporate synchrophasor measurements to slow-scale DSSE by up-
dating the states following the detection of an important change in an element of the
system [12]. The iterated Kalman filter (IKF) has been proposed for performing state
estimation in active distribution networks [13].

This paper presents a method of using yPMU data in DSSE which incorporates a
linear DSSE to decouple the gross error analysis for measurements and parameters. Added
redundancy improves measurement gross error detection and identification through while
detecting parameter changes on the system between SCADA and AMI scans. Unlike
dynamic state estimators, this method does not require the estimation of additional states
present in dynamic state estimation, such as frequency [14,15], nor does it assume constant
impedance load models [14]. Furthermore, during most of the process, the estimator
does not require time-consuming iterative processes, unlike, for example, traditional non-
linear (including tracking) state estimators or IKF [13]. This method presents two specific
contributions towards the state of the art:

1. The decoupling of gross error analysis in measurements and parameters in two
different time scales: a slow time scale for processing gross errors in measurements
and a fast time scale for gross error analysis in parameters due to operation of VVC;

2. The use of unsynchronized and linearized SCADA measurements with load model-
based temporal update of uncertainty combined with yPMU measurements for DSSE.

The remainder of this paper is organized as follows. Section 2 presents the yPMU
based framework for DSSE gross error analysis. Section 3 presents the modified non-linear
state estimation model. Section 4 presents the modified linear state estimation model.
Section 5 presents a case study. Conclusions of this work are presented in Section 6.
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2. yPMU-Enhanced DSSE Gross Error Analysis

Assuming that the parameters of the devices (e.g., line and transformer parameters)
in a distribution system are known at a given point in time, then the process of gross error
analysis is narrowed down to the identification of bad data in measurements and, with
respect to parameters, in the position of LTCs and capacitor banks. If those assumptions
hold true, then bad data analysis requires far less redundancy than if simultaneous estima-
tion of parameters and states is performed. The idea of decoupling gross errors analysis of
measurements and parameters is thus most appropriate. Considering such, we present
an on-line DSSE gross error analysis framework composed of two loops: the linear state
estimation loop (LSE) and the non-linear state estimation loop (NLSE). An overview of the
presented method is shown in Figure 1.
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Figure 1. Flowchart showing the yPMU-Enhanced DSSE gross error analysis method.

The goal of NLSE is to perform gross error analysis in measurements when the maxi-
mum level of redundancy is available, i.e., when recent SCADA, AMI, yPMU, and synthetic
measurements (SM) [16] are available. Although #PMUs are capable of taking 120 phasor
measurements per second [17], SCADA systems can poll measurements from RTUs in
a smaller sampling rate, every 2—4 s [6]. In this paper, we make a more conservative
consideration and assume that new SCADA readings are available every 1 min [18]. AMI
measurements are usually obtained every 15 min [6]. Currently, most utilities only collect
smart meter data once or twice a day [19], however we envision that in the near future this
data-rate might increase and it will be possible to obtain measurements every 15 min [6,20].

The objective of the LSE loop is to take advantage of the high sampling rate and
accuracy of yPMU measurements to detect the operation of the VVC devices, identify the
parameter that has changed and update system parameters accordingly. Given that proper
gross error analysis in parameters is performed by the LSE, accurate bad data processing
in measurements is possible for the NLSE.

Identifying the changed parameter accurately is a challenging task because any VVC
operation will instantaneously change the state of the system and consequently the SCADA
or AMI measurements will become obsolete. To make this detection possible, we will con-
sider that the feeder has at least two yPMUs: one in the substation and the other anywhere



Electricity 2021, 2

426

downstream of the LTC. Additionally, both capacitor banks and LTC have discrete states,
an information that the state estimator will use to perform the correction properly.

The process of DSSE starts with a flat start and the topology processing so that a
bus-branch model of the distribution system is obtained. As soon as the SCADA system
receives the most recent batch of measurements from the distribution feeder, the latest
uPMU data are collected and NLSE is performed. SM are only included after the first
NLSE iteration. Once NLSE converges, innovation-based error detection is performed to
detect gross errors in measurements [21]. It should be clear that other parameter errors are
possible, as of devices. This condition though is not considered in this work.

3. Non-Linear State Estimation

The NLSE follows the traditional formulation of the SE problem, represented by the
set of non-linear equations, (1).
z=h(x)+e 1)

where z € R™ is the measurement vector, x € RY is the state variables vector, i : RN —
R™, (m > N) is a continuously non-linear differentiable function, e € R™ is the measure-
ment error vector assumed having zero mean and Gaussian probability distribution and
covariance R,. N = 2n — 1 is the number of unknown state variables to be estimated
(n is the number of electrical nodes in the network). The measurements are composed
by three sets of data: AMI, SCADA, and yPMU. The set of AMI measurements is com-
posed of aggregated real and reactive bus power injections and estimated bus voltage
magnitudes, obtained at a very slow sampling rate, in the order of 15 min. SCADA mea-
surements include power flows, injections and voltage magnitudes obtained once every
minute. Bus voltage phasors along with branch current flow and bus current injection
phasor measurements are obtained at a very fast sampling rate through yPMUs.

The problem of NLSE is set as a weighted least-squares state estimation problem as
described in [22]. It is in an optimization problem where we want to find the optimal value
of the states, X, that minimizes the weighted sum of the squares of the residuals, defined as
the difference between the measurements and the measurement function, divided by the
standard deviation. This problem is described by (2).

mxin](x) = i(@—l@(x))z 2)

i=1 Ji

where the objective function can be represented as J(x) = [z — h(x)] TR, ! [z—h(x)]. The
NLSE problem solved using the Gauss—Newton algorithm [22]. Starting from an initial
guess for the solution, this algorithm iteratively solves the non-linear set of equations
by successfully linearizing the equations, (3), at a point of operation, X, and solving the
resulting linear system (4) and (5). Once a solution to each linearized problem is obtained,
the incumbent solution is updated by the state correction vector, Ax, where the equations
are linearized again. The process is repeated until a very small Ax is obtained, implying
that the first-order optimality condition is met and an optimal solution was found.

h(% + Ax) ~ h(X) + HAx ©)
z—h(X) 2 Az =HAx +e 4)
H'WHA% = H' WAz (5)

where H is the Jacobian matrix, G & H'WH is the gain matrix and W = R ! is the
weight matrix. The vector of state correction is obtained by solving (6). The vector of states
updated according to (7).

. , - T ,
A% = G(¥)TH(¥) WAZ (6)
Xt = x/ + A%/ 7)
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It is important to note that the NLSE presented in [22] includes only measurement
models for SCADA and AMI type measurements. In order to include the current measure-
ments obtained by uPMUs as well, Method 2 from [23] is adapted in this paper’s NLSE
measurement models. The procedure for bad data analysis follows [21,24-26].

4. Linear State Estimation

In between NLSE iterations, on-line system monitoring is performed by the LSE. The
goal is to leverage the high granularity of the yPMU measurements to detect and identify
changes in parameters due to VVC operation, so that when the next batch of SCADA and
AMI measurements is available, the system parameters are up-to-date. Due to the higher
sampling rate of yPMUs, an iterative state estimation algorithm is ill-suited to solve the
problem of state estimation because of the very short time in which the SE problem must
be solved and bad data be processed. The solution is then to speed-up the solution by
linearizing the problem, thus enabling LSE that can be solved directly with no need for
iterations.To maximize redundancy and avoid unobservability, SCADA, AMI, and uPMU
data are used simultaneously as inputs to LSE. Therefore, a linearization of non-linear
SCADA and AMI measurement functions is necessary.

The first step is to linearize the non-linear SCADA and AMI measurement model
components, such as voltage magnitudes, power flows, and injections, by transforming
them into current phasors of voltage, flows, and injections, respectively, based on the
results of the NLSE. The LSE is composed by two parts: the purely yPMU-based estimation,
top equations of (8), and the linearized estimation of unsynchronized AMI and SCADA
measurements, bottom equations of (8). The solution of this system of equations will be

explained on Section 4.4.
Zy| _ |Hy
zZr Hp

where the vector of states is given by V € C", the measurement set of the linearized part
is composed of branch current flows, I Lfls bus current injections, I Lyinjs and bus voltages,

V4 |®

€

®)

_ L S 1T .
Vi, and is given by z; = {I{ fi I injr VH € C"L for mL unsynchronized measurements.
Similarly, the set of yPMU measurements, Z,, is composed of current flows and injections

+
. . oot ot
and voltage measurements, respectively, represented as z, = [I%ﬂ,ly/in]-, VH} e Cm,

where y is the total number of yPMU measurements.

4.1. Linearization of Unsynchronized Measurements

To linearize the system of equations, it is necessary to obtain the equations that relate
the linear and non-linear measurement models. For V|, which represents the linearized
measurements of voltage phasors, it is necessary to replace the vector of voltage magnitude
measurements V,, from NLSE in LSE, such that Vil = leiééi = Vl-l'R +i VZ-I'I , where 6; is
the estimated angle of the voltage phasor V; and Vil’R and Vil’I are, respectively, its real and
imaginary components [27]. I ;;; represents the linearized measurements of current injec-
tion phasors that replace the complex power injection measurements, S;;;j = Pj; + jQinj,
for real bus power injections P;,; and reactive power injections Q;,;. To do so, it is neces-

1

= *
. S . )
sary to calculate the current injections as I Il inj £ (lv’”) , Where V; is the estimated bus

voltage phasor obtained by the NLSE and S; ;,,; is the complex power injected in bus i. I ¢
represent the linearized measurements of current flow phasors that replace the complex

= *
branch power flows Sy, from NLSE in LSE, such that | L2 (Si’Q’f l> [28]. Both current

ij, fl = v;

injection and flow can be linearized as (9).

ARSI .
! ViRz + Vilz
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where P; and Q; can be power injections or flows from bus i to a neighboring bus. Since
some of these transformations are non-linear, the calculation of the covariances of these
linearized measurements will be approximated using the truncated Taylor expansion of
their functions. Let us first define the i-th vector of linearized real and imaginary parts

T P
of currents as Z; = [I .I’I I ?'R} and the independent variables as &; = [Pi, Q;, Vil , VlR]
Let E[Z;] = pz; and E[X]] = py ;. Then, the Taylor series expansion can be represented
by (10).

T = uzi+ VaLi(Xi — px,) (10)

where V yZ; is the Jacobian of (9) with respect to A;. The variance can be calculated using
the same expansion as (11).

Var[Il-] ~ V;(IiVar[Xi]VXIZ-T (11)

The variance and covariance elements of 171-1 and ‘71-R can be extracted from the covari-
ance matrix of the estimated states, Ry = G~! (if rectangular coordinates for states are
used) and the covariances between the states and measurements can be obtained from the
covariance matrix Cov[z,X] = R, s = HRy. The variance of the current is given by (12).

Var {Iﬂ = Var{IZ.I’R} —i—Var{I}'I} + 2Cov [If'R,If'l} (12)

4.2. Load Model as an Ornstein—Uhlenbeck Stochastic Process

As time passes, the linearized SCADA and AMI measurements become obsolete
because of load dynamics and eventual changes in parameters. Although the goal of
LSE is to process the gross errors in parameters, the load-induced errors introduced in
outdated unsynchronized measurements must be considered. We can model this drift of
the system state as a stochastic process. In the literature, time-variations of loads have been
successfully represented as Ornstein—Uhlenbeck (OU) random processes [29,30], which is
a mean-reverting stochastic process. The rationale behind this modeling is based on the
assumption that the aggregated loads are expected to fluctuate in the short-term, but it is
very unlikely that they will largely deviate from their previous estimate. Given that the
variance of the measurements and change in the state can be modeled as an OU process, we
can use this information to update the uncertainty of LSE measurements according to the
model of the random process. To illustrate this idea, Figure 2 shows the comparison of an
unsynchronized current measurement taken at f = 0 s from the test system in Figure 4 with
its true value. With the loads modeled as an OU process, we can see that very frequently
these load variations might cause the true value to deviate from the unsynchronized
measurement by more than 3 standard deviations. Consequently, as time passes, the
standard deviation of the measurement error is no longer an adequate measure of the
uncertainty associated with the measurement. To improve the quantification of uncertainty,
we present a method for updating the standard deviation of measurements based on the
OU process models of the loads.

490 x10° Real Power Injection at Bus 675
il T I I I

124 ”}wﬁ’.ﬁ ‘_ - P675,true _P675,meas P675,meas-30_ B P675,mea.s+30‘

' P oA
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R P N VSR QR N - 1 IE - & T . L -
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Figure 2. Unsynchronized measurement taken at t = 0 s and the load-induced drift of its true value
over time.
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The | — th load current, [;(t) = IR(t) + jI}(t), IR, Il | € R, can be represented by the
stochastic differential Equation (13) [31].

dl(t) = =Bl (t)dt + o dWy(t) (13)

where Wy (t) = WR(t) + jW/(t), WR(t) L W/(t), is a complex Wiener process with nor-
mally distributed increments, 07 > 0 is the size of the noise and 8; = ,Bf —j ,BII is the decay
rate for R > 0. These parameters can be estimated by measuring the statistics of yPMU
readings [30]. Assuming that the mean variation in the load current is expected to be zero
and that /S{ ~ 0, then the solution (13) is (14) [31].

B0 = P00 () o [ e breami(s)| 9

where T < t is the time instant when the SCADA or AMI unsynchronized measurement
was relayed. If we now consider that the yPMUs will sample data every At seconds, we
can treat the load variations as a time-sampled process, where t = kAt and T = gAt, where
k and g are time step indexes.

L[k] = Ij(7)e Pitk=) 4 & (15)

s . . . . o? 2B (f—
where ¢; is a complex random variable with mean zero and variance 2—;31 (1 — e 2Pt T)) .

The expected value of the Gaussian time-discretized variable Ij[k] is zero and its variance
is given directly by (16) [32] or recursively by (17).

2
var[f[K]] = (1- e*zﬁzA“H))%l (16)
2
Var[I[k]] = Var[[ [k — 1)]a + 2L (1 — a) (17)

2B,

where a = ¢ 2PIAL,

The increment in consumption between time k — 1 and time k of the loads is rep-
resented by the vector of current injections I;,j. The variance of these currents will be
calculated according to (12) if the corresponding current is measured by AMI or SCADA. If
the current is measured directly by a uPMU, then its variance can be estimated as equal
to the variance of its measurement. If the load current connected to the v-th bus is not
measured, then its value, fisé [q], will be estimated based on the system parameters and
estimated states according to (18).

bus,v

Var {Tisé [q] ] = Y5, Var {\7 4] ] Y] (18)
where Yj,; , is the v-th row of the bus admittance matrix.

4.3. Load Dynamics-Induced Measurement Uncertainty

Now let us consider that the true value (with no noise) of any i-th measurement, y;[k|,
at a given time instant k is related with a previous value, y; [q], plus the random variation
over time Ay;[k], as represented by (19), while its unsynchronized and outdated noisy
reading, z;[q], is given by (20).

yilk] = yilq] + Ayilk] (19)

zi[q] = yi[q] +ei[q] (20)

where ¢;[g] models the noise of the measurement, assumed to be additive Gaussian. When
performing LSE at instant k, the value of interest is y;[k], but its exact value is unknown and
the closest information available is z; [q]. If we assume that Ay; [k] is exclusively induced by
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load variations and its model parameters can be estimated, then it is possible to approximate
the expected value of z;[k| by (21).

zi[k] = z;[q] + Ay;[k] (21)

This model is considered when estimating the value of unsynchronized measurements
and their variance. The initial value of y;[q] is obtained from the NLSE. Taking this simple
model to the concrete case of LSE, we can represent the vector of unknown measurements
zr [k] as (22) in the same way as (21) by considering that the closest we have to the true
values is the known outdated vector of measurements z [q] and their deviations are
functions of the load variations Azy k], given by the added measurement uncertainty.

zr[k] = z1[q] + Az [K] (22)
AL g YaZous|
Azp[k] = |ALLyj| = I | ALy k] (23)
AVL Zbus

where Y is the admittance matrix that is used to calculate the current flows and Zy,s = Y, uls
is the bus impedance matrix. Following (8) the variance of &[k] is given by (24).

Ry [k] = Var [z L [q}] + MVar [ALW- [k]} Mm' (24)

where M = [ZZHSY;EI,IJF,ZJr |t and Ry [k] = Var[e[k]].

bus

4.4. Derivation of LSE: Maximum Likelihood Estimation

For LSE, there are two types of zero-mean Gaussian random variables, ¢, ;[k] and &;[k].
Let the probability density function of the random vectors &,[k] and é[k] be defined as
f(&ulk], €[K]|R,, Ry [k]). Since &[k] and €[k] are independent, we can rewrite the expressions
as f(&,[k]|Ry) - f(€[k]|,Rr[k]). By replacing the errors by the terms in (8) we have the
likelihood functions of circular complex-valued Gaussian random variables [33]:

] ol Ry 1
f (ZH (K] \va[k]) = TR, (25)

e TLK"Re[k] " re[K]

f kIR, VIF) = —Srg

(26)

where 1y, [k] = 2, [k]| — H, V[k] is the vector of residuals of yPMU measurements.

rp[k] = zp[k] — HL V[k] is the vector of residuals of unsynchronized measurements.
The only unknown is the vector of states, V[k]. Using a maximum likelihood estimation
approach, we can set the problem as (27).

max f (2, KR, VK ) £ (21 [ Ru K], V1K) 7

By taking the logarithm of (27) and ignoring the constant terms, we obtain the mini-
mization problem (28).

I\;/l[ikT 1 [k R ey (K] + e [k TR [K] e [K] (28)

. t 1 t 1 ,
Taking z, = [zy k], zr [K] } and Hy = [Hy [k]", Hp [K] } , we can rewrite (28) as (29).

Ig[lkr]l [2[k] — HoV[K]] "Ry [k] " [2[k] — H/V[K] (29)
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where the variance matrix Ry [k] is given by (30).

_ R‘u 0
Rek = |, R, [K (30)
The solution for (27) can be obtained by calculating (31).
Y * -1 1 —15
VI = [HiR(K "H,| HGR,K (K] (31)

The LSE estimates V|[k] at every time step k. In the next time step, k + 1, the measure-
ments from yPMUs, z, [k 4 1] are read again and Ry[k + 1] is updated using (17) and (24)
before a new estate estimate, V[k], is obtained.

4.5. Analysis of Parameter Errors Due to Switching Events

Variations in parameters change H,, which will lead to an increase in the values of
the residuals of the LSE estimation. The chi-squared ( x?) test is used to detect errors in
the estimation. For the sake of simplicity, we approximate the value of x? as equal to the
objective function of (29) and the number of degrees of freedom as m — N.

When an error is detected, it is assumed that any gross errors in measurements were
already adequately processed by the NLSE. Therefore, we consider that no gross errors in
measurements exist and the causes of parameter errors will be assumed to be capacitor
banks and LTCs. Since a feeder might have more than one capacitor bank and possibly
more than one tap changer, the first step in the identification process is to narrow down
the possible parameter changes. To do that, the yPMU downstream of the LTC is used to
detect if the voltage has increased or decreased. For instance, if the voltage has increased,
then the possibility of an LTC operation that decreased the turns ratio or capacitor banks
switching off are discarded. To make a difference between a capacitor change and a LTC
operation, the reactive power flow out of the substation is used. If the reactive power flow
has changed in a value that is close to the value of the capacitor bank, then the capacitor
bank operation is likely to have caused the change in voltage. Otherwise, the LTC is the
probable suspect. This error processing is summarized in Figure 3.

A likelihood ratio test is then used to verify the correctness of the identification of
the parameter error. The likelihood function of the estimated states can be calculated by
multiplying (25) and (26) evaluated at the estimated state, V[k]. To obtain the likelihood of
the alternative hypothesis, i.e., that one parameter has changed, a new state estimation is
performed with the alternative parameters of the system and then, with the result of this
new SE, the likelihood function is calculated.

f(24[k]|60)
f(z[K]|61)

where 6y is the original and 6, is the alternative set of parameters. The latter contains
the candidate value for LTC turns ratio or state of capacitor bank. The null hypothesis is
accepted F; is larger than one. Otherwise, the alternative hypothesis is accepted and the
parameters are updated. In both cases, the SCADA and AMI measurements have to be
updated. Their outdated value is replaced by the evaluation of the measurement function
at the estimated state, H; V[k].

F(V[k]) = (32)
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Figure 3. Flowchart for parameter error processing.

4.6. Synthetic Measurements

Finally, when a new batch of SCADA and AMI measurements is available [34], SM
are created and added to the measurement set for the NLSE, which has been shown to be
effective in [35]. SM are calculated based on the previously set of state estimates and the
current system parameters. The location and type of SM created by the LSE are strategically
chosen based on the VI of a given bus i (33).

K ]
V= 1 Y (Seme (k) — :(k i) (33)
k=1j=1

where K is the set of measurements associated with bus i, | is the set of all measurements.

Scume and S, are the sensitivities of the composed measurement error (CME) [21,25,26]
and residual, respectively, with respect to gross errors in measurements. The VI identifies
buses that are most vulnerable to undetectable errors, as shown in [16]. Adding redundancy
via SM will cause the residuals (and CMEs) to have a more Gaussian behavior, thereby
improving the reliability of the gross error detection test. As opposed to the commonly
used pseudo-measurements, SM are calculated from the current state of the system, making
them more appropriate for real-time monitoring.

5. Numerical Tests
Parameter Error Processing

To evaluate the effectiveness of the parameter error detection approach, a test is
performed in a modified version of the IEEE 13-bus test distribution system shown in
Figure 4. Initially, a NLSE is performed at t = 0 s and after that LSE monitors the pa-
rameter variations. We consider that the error of the unsynchronized voltage magnitude



Electricity 2021, 2

433

measurements is within 0.5% of the reading and for the power measurements is 1%. For
#PMU measurements, the error is smaller than 0.05% of the value of the measurement [17].
The standard deviation of the noise of each measurement is considered as one third of its
error. The parameter § is equal to 0.0125 as obtained by [30] and o7 for all loads is equal to
0.34% of the magnitude of the load, also similar to the values obtained in the distribution of
#PMU data [30]. The turns-ratio of the LTC change at £5/8% of the rated voltage at each
tap operation [36] and the capacitor bank power outputs at rated voltage is 0.04 p.u. at bus
675 and 0.02 p.u. at bus 611. The simulation is performed in MATLAB with a time-step of
100 ms, a slower rate than the yPMU’s maximum capability, so there is time available for
the LSE to finish before new readings are available. The results shown are from a 15-min
window with multiple VVC events.

Figure 5 shows that during the simulation the standard deviation of voltage and
current measurements based on linearized unsynchronized measurements are updated
at every time step. As a consequence, with smaller weights, larger deviations from the
estimated state tend to be less penalized by the estimator. That avoids the false positives in
the error detection phase. A comparison of x? values of two instances of the LSE, one with
update of variance (blue curve) and the other one not (orange curve), is shown in Figure 6.
In this test, no VVC operations are performed and the LSE only suffers perturbations from
load variations and measurement noise. In the case where the variance of all measurements
is held constant there are multiple false detections of VVC operations. When the variance
of measurements is corrected, the value of x? is always lower than the detection threshold
with 73 degrees of freedom and a confidence level of 99%.

In order to test the framework’s effectiveness, a sequence of VVC operations occurs,
as shown in the bottom plot of Figure 7. At t = 90 s the tap position of phase a changes,
increasing the turns ratio of the LTC, then it returns to the previous position at t = 180 s.
The turns ratio at phase b is decreased at ¢t = 270 s and the turns ratio at phase c is increased
at t = 360 s. The capacitor bank at bus 675 is switched off at ¢t = 450 s and is switched back
on at t = 540 s. Finally, the capacitor bank at bus 611 is switched off at ¢t = 630 and back on
at t = 720. As we can see on Figure 7, in all cases when there is a change in the parameters
of the system, the value of x> becomes significantly larger than the x? threshold. That is
clearly shown by the orange line in the top plot, which show x? values obtained when no
parameter is corrected.

If we apply the method for parameter error detection and identification, we obtain
the blue curve in Figure 7. The purple crosses in the same figure indicate the value of x>
obtained when errors were detected for the case where parameter correction occurs. We can
notice that all parameter errors can be detected and identified correctly with the proposed
method. The mean time to perform the LSE algorithm and the bad data processing routine
in MATLAB was 7.4 ms and the maximum time was 33.2 ms. This result shows that, in this
case, the LSE could be run 3 times as often as it is in this test. During all of the 8 switching
events, the likelihood ratio gave very low results, in the order of 10~*° or lower. Such low
values indicate the very clear distinction between the likelihood of the two hypotheses,
obtained due to the use of two yPMUs.



Electricity 2021, 2

434

646

OPMU

OSM

634

611

634

N

D S671-632

V71

671

il¢' 16?1?84 Glé;]_ﬁ i
=

S684-652

o
652 680

Figure 4. Test system for parameter detection and identification test.

10*

103

— e11,c 1
© 102

675,a

10'E

675,a
T 6l1c

100‘
0

100

200

300

400

| |
600 700

800

Time[s] °%°

900

Figure 5. Variance of measurements when variance update is applied.

108 E I 1
L —With variance updating ]
— Without variance updating |
X2 - 99% confidence
O
o
S
©
3.2
o107 M
(2] [
'S L
1 01 | | | | | | | |
0 100 200 300 400 500 600 700 800 900
Time Isl

Figure 6. Comparison of Chi-Squared tests when the update of variance of measurements is applied
(blue) or kept constant (orange).



Electricity 2021, 2

435

Chi Squared Tests
T

I El
——With Parameter Correction
— Without Parameter Correction
X Detected errors

Xz - 99% confidence

o
>

Chi squared
6‘r\)

10°
100 200 300 400 500 600 700 800 900
. P?rameter Values 004S
o) ——Tap Phase a g
I e e —— Tap Phase b
ctoty “ 7777777777777777777777777777 Tap Phase ¢ 0.03 =
% ——Cap Bank 675 [}
£ N S r————————————— | R | | --CapBankel1 0027
= 1 ! 2
© 099 | | 001G
L 1 H ‘ Q
1
0.98 ‘ ‘ . : 0o &
0 100 200 300 400 500 600 700 800 900
Time [s]

Figure 7. Chi-square value (top) and turns-ratio of LTC and value of capacitor banks (bottom).

The power flows from the substation bus into the feeder, shown in Figure 8, illustrate
that changes in the position of the taps created a deviation in both real and reactive power
flows, while the effect of the capacitor bank connection can only be noticed clearly in
the reactive power plot. The large increases in reactive power reaction at t = 450 s and
t = 630 s and the subsequent decreases at t = 540 s and ¢t = 720 s are used to correctly
identify the operation of the capacitor banks. Distinguishing between the capacitor banks
atbus 675 vs. bus 611 is done by comparing the information based on yPMU measurements
at but 671. If a large change is seen on all three phases, the capacitor bank at bus 675 has
switched. If a smaller, but significant change is seen only on phase c, the capacitor bank at
bus 611 has switched. Figure 8 shows the phase c power flows such that all VVC operations

are shown.
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Figure 8. Real (top) and reactive (bottom) power input to the feeder.

The true value, measurements and estimates of four select bus voltages are shown in
Figure 9. It is clear that all of the selected bus voltages are deeply affected by the operation
of VVC equipment. By observing the voltages of buses 651 and 671, it becomes very
clear how that yPMU measurement is useful to detect the VVC operations. Additionally,
Figure 9 demonstrates that the correction applied to the measurement set after a parameter
error is detected successfully brings the corrected measurement value closer to the real
value of each electrical variable. In both Figures 8 and 9, the magenta curves show the
estimates without the correction of the parameters. These curves have major errors in the
states that couple lead to incorrect operation of the system.
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Figure 9. Comparison of true, measured, and estimated values of bus voltages.

6. Conclusions

The presented DSSE method decouples the bad data processing of errors in measure-
ments and parameters through the use of separate NLSE and LSE. These work together in
a symbiotic relationship where the LSE ensures that the correct parameters are available
and it also adds redundancy to the NLSE via SM. The scheme simplifies the job of NLSE so
that it can just perform measurement error detection while the NLSE adds redundancy to
the LSE via linearized measurements. NLSE is performed when a new batch of SCADA
and AMI unsynchronized measurements are available, while LSE uses linearized unsyn-
chronized measurements and yPMU data. Loads are modeled as an Ornstein-Uhlenbeck
stochastic process to account for the variations of the electrical variables being measured by
unsynchronized measurements. A scheme to update the variance of those measurements
uses the OU model to quantify the expected load dynamics into the uncertainty of SCADA
and AMI linearized measurements. The VI identifies the locations on the system where
SM will be most beneficial for measurement error detection in the NLSE. The results show
that SM directly improved the gross error analysis tests. With these innovations working
together, the proposed DSSE will use uPMUs to enhance both measurement and parameter
error detection on distribution grids. Considering future work, the framework extension to
consider simultaneous parameter of devices gross error processing is planned.
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