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ABSTRACT
Posterior Predictive Model Checking (PPMC) is frequently used for model fit evaluation in Bayesian 
Confirmatory Factor Analysis (BCFA). In standard PPMC procedures, model misfit is quantified by compar-
ing the location of an ML-based point estimate to the predictive distribution of a statistic. When the point 
estimate is far from the center posterior predictive distribution, model fit is poor. Not included in this 
approach, however, is the variability of the Maximum Likelihood (ML)-based point estimates. We propose 
a new method of PPMC based on comparing posterior predictive distributions of a hypothesized and 
saturated BCFA model. The method uses the predictive distribution of the saturated model as a reference 
and the Kolmogorov-Smirnov (KS) statistic to quantify the local misfit of hypothesized models. The results 
of the simulation study suggest that the saturated model PPMC approach was an accurate method of 
determining local model misfit and could be used for model comparison. A real data example is also 
provided in this study.
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Bayesian estimation for structural equation modeling (SEM) is 
a viable alternative to frequentist SEM approaches (e.g., max-
imum likelihood), particularly for complex model specifica-
tions or for analyses with small sample sizes (e.g., Muthén & 
Asparouhov, 2012). The popularity of Bayesian approaches in 
SEM carries with it the need for Bayesian-based model fit 
investigations to examine global or local model misfits in 
Bayesian SEM analyses. Common types of SEM model mis-
specification include the omission of needed latent variables 
(e.g., Kaplan, 1988), the misspecification of which observed 
indicator variables measure which latent variables, or viola-
tions of latent variable distributional assumptions (e.g., 
Boomsma, 1987). Posterior predictive model checks (PPMCs) 
are tools used in Bayesian analyses to help detect model mis-
specifications by comparing statistics calculated from observed 
data with model-generated data based on the posterior esti-
mates of parameters (e.g., Gelman et al., 1996; Levy, 2011; Levy 
et al., 2009). In this paper, we propose and investigate a novel 
method for investigating model fit in Bayesian CFA (and SEM) 
using PPMC with Kolmogorov-Smirnov statistic (KS-PPMC) 
for model comparison.

In PPMC, the value of an observed statistic is compared to 
the predictive distribution of the same statistic calculated from 
simulated data sets; these simulated data sets are generated by 
drawing from the posterior distribution of model parameters. 
To compare the observed and predictive statistics, the percen-
tile rank of the observed statistic on the posterior predictive 
distribution, often called the posterior predictive p value (PPP 
value) is computed. The PPP value represents the location of an 
observed statistic relative to the posterior predicted distribu-
tion and is different from a maximum likelihood (ML)-based 

p value. The ML-based p value is a quantity derived from the 
likelihood function or the limiting distribution of model para-
meters. PPP values close to zero or one (i.e., at the tails of the 
posterior predictive distribution) typically indicate bad model- 
data fit. This concept was originated by Rubin and was later 
extended to include general discrepancies by Gelman et al. 
(1996).

One concern is that the PPP value may be heavily influenced 
by the reference point of the observed data, which is often the 
maximum likelihood estimate (MLE). For instance, when 
examining the local misfit between a pair of observed indica-
tors in a Bayesian CFA model, the ML estimate of the Pearson 
correlation is commonly used as the observed statistic in a PPP 
analysis. In such analyses, the Pearson correlation between 
a pair of observed indicators is calculated using ML and then 
the percentile of that quantity is found using the predictive 
distribution of the correlation. Research on PPP values in 
latent variable modeling has yielded inconsistent results, in 
some cases finding Type I error rates to be less than nominal 
values and in other cases finding Type I error rates at or slightly 
below nominal values (Levy, 2011). The PPP value can also 
yield overly conservative results when the asymptotic mean of 
the test statistic T depends on parameter θ (Robins et al., 2000). 
Under small sample sizes, the empirical distribution of 
observed statistics used for calculating PPP values can be 
large, which may affect the accuracy of PPP value calculation. 
Additionally, as the observed test statistics are ML-based point 
estimates, their realized values may depend on asymptotic 
arguments to be consistent, while a posterior distribution 
(rather than a point estimate) does not have the same asymp-
totic dependency, at least in small samples (Levy, 2011).
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Our proposed PPMC with the Kolmogorov-Smirnov 
statistic (KS-PPMC) replaces the ML-based point estimate 
from the observed data with the predictive distribution of 
a Bayesian-estimated saturated model, resulting in model 
fit being judged by the comparison between the two dis-
tributions. Prior research has investigated the use of the 
Kolmogorov-Smirnov (KS) statistic and other similar dis-
tance statistics for the testing model fit of structural equa-
tion models. For example, Wu et al. (2014) used Kullback– 
Leibler divergence to quantify the discrepancy between 
two realized posterior predictive distributions. 
Grønneberg and Foldnes (2019) employed the KS distance 
between the bootstrap distribution and the theoretical uni-
form distribution as the selection criterion of model fit 
indices. Marcoulides et al. (2020) made use of the 
Anderson-Darling (AD) metric for selecting the best test 
statistic. However, to the researchers’ knowledge, this is 
the first time the KS-PPMC method has been used as 
a model comparison approach for Bayesian CFA. 
A detailed comparison among the performance of varied 
distance metrics is beyond the scope of the current study. 
Given the importance of such a comparison for future 
research, we will return to this issue later in this paper.

In our study, we chose the posterior predictive distri-
bution of test statistics under the saturated model as the 
reference distribution of KS distance. In many ML-based 
test statistics, the saturated model is the basis for model fit 
comparisons globally (e.g., likelihood ratio tests and Root 
Mean Squared Error of Approximation values) and locally 
(i.e., standardized, normalized, and unstandardized resi-
dual covariances). In our proposed method, we estimate 
a saturated model with uninformative priors to use as 
a reference distribution. Instead of using PPP values 
formed by comparing point estimates of statistics to their 
respective posterior predictive distributions, our method 
seeks to quantify a measure of overlap between the poster-
ior predictive distributions of the saturated and specified 
models. When these posterior predictive distributions have 
a high degree of overlap, the specified model can be 
considered to fit the data well. Alternatively, when these 
posterior predictive distributions show little overlap, 
model fit of the specified model can be considered poor.

The remainder of the paper defines KS-PPMC and 
examines its use in both simulation and empirical data 
analyses. First, we introduce various types of model fit 
indices implemented in either ML or Bayesian analyses. 
Next, we present KS-PPMC using the Kolmogorov– 
Smirnov (KS) statistic to quantify the degree of distribu-
tional overlap. To check the accuracy of the proposed 
measures, we describe the results of a simulation study, in 
which the performance of our proposed methods is com-
pared with ML-constructed PPP values. We then apply our 
methods to an empirical example in order to show the 
performance of the proposed method in a real-world sce-
nario. Finally, we discuss the advantages and the limitations 
of our new methods along with future extensions of these 
approaches.

Confirmatory factor models

Confirmatory factor analysis (CFA) models posit that a set of 
responses by a person p (p ¼ 1; . . . ;N) to a set of observed 
indicator variables i (i ¼ 1; . . . ; I), Yp ¼ Yp1; . . . ;YpI

� �T , is 
influenced by the value of a set of k ¼ 1; . . . ;K latent factors 
�p ¼ �p1; . . . ; �pK

� �
via a multivariate linear model: 

Yp ¼ μ þ Λ�p þ δp; (1) 

where Λ is an I � K matrix of factor loadings, μ is an I � 1 
vector of item intercepts, and δ is an I � 1 vector of item- 
specific residuals. For model identification, a set constraints are 
placed on the elements of Λ where λik ¼ 0 if item i does not 
measure factor k (e.g., McDonald, 1999). The residuals are 
assumed to follow a multivariate normal distribution with 
zero mean vector and error covariance matrix Ψ.

Factors are assumed to follow a multivariate normal distri-
bution, often with mean vector fixed to zero and factor covar-
iance matrix Φ. Additional constraints may be placed on the 
item intercepts and factor loadings to estimate the factor means 
and variances, respectively. Coupling the assumed distribution 
of the factors (with zero mean vector) and item residuals with 
the linear model in Equation 1 results in the assumption that 
the data follow a multivariate normal distribution with mean 
vector equal to item intercepts μ and covariance matrix 
given by: 

�0 ¼ ΛΦΛT þ Ψ: (2) 

The CFA model puts a specific hypothesized structure on the 
covariance matrix of the observed indicators. To test this 
hypothesized structure, the estimates of the hypothesized 
CFA model (which we label H0) with covariance matrix �0 
are compared to a general, saturated model (which we label 
H1) with no constraints on its covariance matrix �1. As all 
possible CFA models are nested within the saturated model 
H1, the comparison of these two models is conducted via 
mechanisms of nested model comparisons (such as likeli-
hood ratio tests for ML-based analyses), where the CFA 
model with covariance matrix �0 represents the null or 
hypothesized model (H0) and the saturated model with �1 
represents the alternative model (H1). In ML-based analyses, 
global fit statistics are derived from this comparison includ-
ing the model Chi-Squared test and the root mean square 
error of approximation (RMSEA). Moreover, local model 
misfit is often conducted by inspection of the residuals 
(i.e., difference between �0 and �1) with raw, standardized, 
and normalized versions being used, the latter two involving 
estimates of the elements of unconstrained saturated model 
covariance matrix �1.

Bayesian confirmatory factor models

In general, Bayesian estimation methods seek to find the pos-
terior distribution of a set of parameters θH for a hypothesized 
model H. This distribution is given by Bayes theorem in 
Equation 3: 

p θHjYð Þ / p YjθHð Þp θHð Þ; (3) 
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where p θHð Þ is the prior distribution of the parameters and 
p YjθHð Þ is the model likelihood function of the data given the 
parameters. In Bayesian CFA models, a conditional approach 
to estimation is frequently implemented where p YjθHð Þ is 
given by the multivariate normal density with mean vector 
equal to μ þ ΛΞ and covariance matrix Ψ. In such conditional 
models, an additional step is needed to specify the likelihood of 
the unobserved factors Ξ, which is specified as multivariate 
normal with zero mean vector and covariance matrix Φ.

To estimate the Bayesian CFA model, prior distributions are 
specified for each type of parameter, specifically, the item 
intercepts μ, the factor loadings Λ, the unique variances Ψ, 
and the factor variances and covariances in Φ. The latent 
variables Ξ are treated as parameters that have a prior distribu-
tion equal to their assumed factor distribution, which is multi-
variate normal with mean zero and covariance matrix Φ. 
Although prior distributions can vary for each type of para-
meter, often the item intercepts and factor loadings follow 
normal distributions (which are conjugate priors, enabling 
direct sampling from the posterior distribution) whereas the 
unique variances follow inverse gamma prior distributions 
(also conjugate priors). A conjugate prior for the factor covar-
iance matrix is the inverse Wishart distribution.

Bayesian saturated models

In Bayesian statistics, the posterior distribution is obtained for 
all parameters. The Bayesian version of the saturated model 
ðH1Þ includes a set of prior distributions for the elements of the 
mean vector and elements of the covariance matrix �1, which 
results in the construction of a posterior distribution for each 
unique parameter in the model. Herein lies a critical difference 
between ML-based and Bayesian methods of estimating the 
saturated model H1: ML-based methods use the ML-based 
point estimate for all parameters of the saturated model H1, 
whereas the Bayesian analog of the saturated model H1 neces-
sarily has a posterior distribution for all parameters. Although 
the posterior distribution will converge in distribution to the 
ML asymptotic distribution as the sample size goes to infinity, 
wide variability may exist for cases where sample sizes are small 
relative to the number of parameters.

The key feature of ML-based PPP values in this study seeks 
to investigate is how to incorporate the variability of the satu-
rated model’s posterior distributions into the model fit process. 
That is, when the saturated model H1 (sample) means, var-
iances, and covariances yield posterior distributions rather 
than point estimates, how do model fit indices change? 
Moreover, does variability in the posterior distribution need 
to be accounted for when evaluating the model fit of the 
specified model H0?

Evaluation of Bayesian CFA model fit

To illustrate Bayesian Structural Equation Modeling (BSEM) 
and Bayesian CFA fit indices, Levy (2011) distinguished two 
separate types of Bayesian model fit evaluations in terms of 
their target measures: test statistics and discrepancy measures. 
The first approach focuses on the extent to which the model 
recovers or predicts features of the data, whereas the second 

aims to explicitly build in the comparison between the 
observed data and model-implied data characteristics. Our 
proposed KS-PPMC method employs the item-pair Pearson 
correlation as the foundation of a KS-based discrepancy mea-
sure that indicates item pairs with a local model misfit.

An advantage of Bayesian SEM fit indices over most of their 
frequentist counterparts is that the posterior distribution 
allows uncertainty to be quantified for any index. Despite 
different processes, Bayesian and ML-based model fit methods 
have shown to have similar rejection rates when sample sizes 
are large. For example, Garnier-Villarreal and Jorgensen (2019) 
compared the chi-square-based approximate fit indices that are 
commonly used in SEM to their Bayesian analogs through 
a simulation study and concluded that Markov Chain Monte 
Carlo (MCMC) with noninformative priors yields similar 
results to ML across varied levels of misspecification, sample 
sizes, and model types.

Model comparison posterior predictive model 

checking

Common Bayesian PPMC methods work to find the posterior 
predictive distribution conditional of the parameters of the 
specified model p Yrep

H jθH
� �

: 

pðYrepjθHÞ ¼
ð

θH

pðYrepjθHÞpðθHjYobsÞdθH

/
ð

θH

pðYrepjθHÞpðYobsjθHÞpðθHÞdθH:
(4) 

Equation 4 shows the general form of the posterior predictive 
distribution, pðYrepjθHÞ, which is the integral of two compo-
nents: the sampling distribution of the replicated data given the 
sampled values from the posterior distribution of parameters 
under model H, pðYrepjθHÞ, and the posterior distribution of 
parameter under model H, pðθHjYobsÞ.

In practice, PPMC methods are implemented by generating 
predictive data based on the posterior distribution of estimates. 
To provide context, consider an example where a Bayesian CFA 
model of Equation 1 is estimated via MCMC. First, a standard 
MCMC estimation algorithm is run (with specifications of prior 
distributions, number of Markov chains, number of iterations, 
burn-in, etc.). Once the chains have been estimated and chain 
convergence is established, then a sample of parameters (θH) are 
drawn with replacement from the set of iterations of the Markov 
chains. For each sampled set of parameters, a set of data (Yrep) 
with sample size equal to that of the observed data are simulated 
by plugging the sampled parameters into the model H. Then, 
the test statistics T Yrepð Þ are calculated from the newly gener-
ated data. In our case, T �ð Þ will be the Pearson correlation 
coefficients calculated for each pair of observed indicators. 
Across all replication samples of the posterior distribution of 
parameters, T Yrepð Þ is calculated, yielding, for each pair of 
observed indicators, the predictive distribution of the statistic. 
The principle of PPMC is to locate the position of the observed 
data statistic TðYobsÞ in the posterior predictive distribution 
pðYrepjθHÞ. The key difference between KS-PPMC and PPMC 
with classical ML-based fit indices lies in the choice of the 
reference distribution (e.g., Lee et al., 2016). Under standard 
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PPMC methods, the reference distribution is the posterior pre-
dictive distribution, to which the often ML-based observed data 
statistic TðYobsÞ is compared.

As standard PPMC methods typically use ML-based 
observed data statistics TðYobsÞ, they do not incorporate the 
uncertainty of the observed data statistics into the process. 
Such uncertainty of observed data statistics may come from 
sampling error which may especially be prevalent in situations 
where there are numerous cases of missing data or small 
sample sizes are present. Asparouhov and Muthén (2020) 
recently proposed a new approach by using the parameters of 
the saturated model (H1) to generate the posterior predictive 
distribution, which could reduce the rejection error rate in 
such situations.

The principal motivation of this study is to replace the point 
estimate of realized data statistics, TðYobsÞ, with the posterior 
predictive distribution of realized data statistics, TðYrepjθHÞ. 
Then, we employ the KS statistic to quantify the distance 
between the posterior predictive distribution of realized data 
statistics and that of the saturated model. In our study, the KS- 
PPMC statistic for the cumulative distribution function under 
the saturated model is 

KSPPMC ¼ supTjFnðYrepjθHÞ � FðYrepjθH1Þj (5) 

where supT is the supremum of the set of distances. 
FnðYrepjθHÞ denotes the cumulative posterior predictive distri-
bution of TðYrepjθHÞ under model H and FnðYrepjθH1Þ denotes 
the cumulative posterior predictive distribution of TðYrepjθH1Þ
under the saturated model. The statistic computes the largest 
absolute difference between the two distribution functions 
across all realized data statistics. By the Glivenko–Cantelli 
theorem, if the sample comes from distribution under the 
saturated model, then KSPPMC converges to zero almost surely 
in the limit when N goes to infinity. This approach not only 
depicts the discrepancy between the observed data with refer-
ence distribution under the saturated model H1 but also the 
degree of uncertainty in the observed data statistics.

Proposed model comparison PPMC procedure

To get the posterior distribution of the covariance matrix �1 
from the saturated model H1, the first step is to use a Bayesian 
algorithm to estimate the saturated model using the observed 
data. Choices of prior distributions for the saturated model are 
critical as overly strict priors may result in saturated model 
posterior distributions far from what the data may suggest, 
which may cause bias in the model fit analysis. For our study, 
we model the observed data using a multivariate normal dis-
tribution, estimating each unique element of the mean vector 
and covariance matrix without constraints. For prior distribu-
tions, we specify a diffuse, uninformative prior of multivariate 
normal distribution for the mean vector with zero mean vector, 
zero-off diagonal elements of the prior covariance matrix and 
variances set to 100,000. For the saturated model covariance 
matrix �1, we also specify a diffuse, uninformative prior using 
an inverse Wishart prior distribution with parameters Ψ with 
zero-off diagonal elements of item variances and degree of 
freedom ν equals number of indicator variables.

Following estimation and successful convergence of the 
saturated model, the posterior predictive distributions of each 
of the means and covariances of the saturated model are 
formed using the typical PPMC process of sampling draws 
from the posterior distribution, using those parameters to 
generate simulated data Yrep, and calculating the Pearson cor-
relation to every item pair, forming T Yrepð Þ. We then quantify 
the distance between the alternative posterior predictive dis-
tribution with the reference posterior predictive distribution 
considered as a fully Bayesian analog of a traditional p value.

If the model is consistent with the population that generated 
the observed data, then the posterior predictive distributions 
should have considerable overlap. A nonparametric test of the 
equality of probability distributions, the Kolmogorov-Smirnov 
statistic (KS) is used to assess the distance between the current 
model with the saturated model. The PPMC with KS statistic is 
the maximum difference between the cumulative densities of 
the posterior predictive distribution of the specified model 
(H0) and the saturated model H1 across the space of the test 
statistic (Pearson correlation). A PPMC with KS value is 
obtained for each pair of observed indicator variables. Next, 
we test our new PPMC methods via a simulation study.

Monte Carlo simulation study

In this section, we report results from a simulation study 
designed to investigate the performance of KS-PPMC. Our 
study borrows simulation specifics from Hoofs et al. (2018). 
Data were generated using either one or two latent variables. 
For data generated with one latent variable, the correct model 
(the one-factor model) was then estimated and compared with 
an overspecified model (a two-factor model where equal num-
bers of items loaded onto both factors) as well as the saturated 
model using the KS-PPMC statistic. When data were generated 
based on a two-factor model, the correct model (a two-factor 
model) was then tested against one underspecified model (a 
one-factor model), two incorrectly specified models, and the 
saturated model (see Figure 1).

Data generation methods

The simulated data sets were generated based on three main 
experimental factors: (1) number of latent variables (i.e., one- 
factor structure—Model A0 and two-factor structure—Model 
B0; see Figure 1), (2) number of observed indicators (6 items or 
12 items), and (3) sample size (25, 500, and 2,000) for a total of 
12 conditions.

For the one-factor model, to mimic real data, the factor 
loadings were fixed to 0.4, 0.6, and 0.8. When 6-item tests 
were generated with a one-factor structure (Model A0), the 
factor loadings for all items were set as follows λ1 ¼ λ2 ¼ 0:4, 
λ3 ¼ λ4 ¼ 0:6, λ5 ¼ λ6 ¼ 0:8. The factor variance was set to 1. 
The residual variances of the indicators were set as follows 
ψ1 ¼ ψ2 ¼ 0:84, ψ3 ¼ ψ4 ¼ 0:64, ψ5 ¼ ψ6 ¼ 0:36. These 
values were picked to achieve observed indicator variables 
with varying levels of information about the latent trait. 
Similarly, when the population data matrix was generated 
based on 12 items and one factor (not shown in Figure 1), 
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the factor loadings were set so that the first four items had 
a loading of 0.4, the second four items had a loading of 0.6, and 
the last four items had a loading of 0.8. Both factor variances 
were set to 1 while the factor covariance was set to 12 ¼ 0:4. 
The residual variances of the indicators were set 
as ψ ¼ f0:84; 0:64; 0:36g.

For the two-factor model, when data were generated with 6 
items (see Figure 1 Model B0), the factor loadings were set as 
λ1 ¼ λ2 ¼ λ3 ¼ 0:4, λ4 ¼ λ5 ¼ λ6 ¼ 0:8. When data were gen-
erated with 12 items, the factor loadings were set as 
λ1 ¼ . . . ¼ λ3 ¼ 0:4, λ4 ¼ . . . ¼ λ6 ¼ 0:8, 
λ7 ¼ . . . ¼ λ9 ¼ 0:4, and λ10 ¼ . . . ¼ λ12 ¼ 0:8. There were 
no cross-loadings for any models used for simulating data. 
For all two-factor models, the factor covariance was set to 

12 ¼ 0:4. The residual variances of the indicators were set as 
ψ1 ¼ ψ2 ¼ ψ3 ¼ 0:84 for items 1 to 3, ψ4 ¼ ψ5 ¼ ψ6 ¼ 0:64 
for items 4 to 6, and ψ7 ¼ ψ8 ¼ ψ9 ¼ 0:35 for items 7 to 9.

The item intercepts μ ¼ ðμ1; . . . ; μiÞT for all generated data 
were fixed to zero. Item response data were generated using the 
CFA model given by Equation 1. The Bayesian estimation 
process used in each condition is explained in detail in the 
next section.

Simulation design

In this section, we show the factor structure of the misspecified 
model and the choices for prior distributions used in this study. 
In the first condition (data generated with a one-factor model), 
we analyzed the data with the saturated model and the mis-
specified two-factor model (Figure 1, Model B1: half of the 
items load onto the first factor and half of the items load onto 
the second factor). In the second condition, we estimated the 
model with three types of misspecification and the true model 
for comparison. As shown in Figure 1, the incorrect model B1 
has one latent factor. The incorrect model B2 has one incorrect 
loading λ1 for item 1. The incorrect model B3 has the correct 
number of dimensions but has one item with an additional, 
unnecessary factor loading, λc.

Each condition was replicated 100 times. All models were 
estimated using MCMC estimation via JAGS (Plummer, 2003) 
with uninformative priors. Specifically, we set the prior distri-
bution of factor loadings using a normal distribution N(μ ¼ 0, 
σ ¼ 1). The prior distribution of item means was set to be 
a normal distribution with mean zero and variance of 
100,000; the unique variances were sampled from a gamma 

Figure 1. Simulation design: different models.
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prior distribution with alpha of .5 and beta of .059; the factor 
variance matrix in a three-factor model was sampled from the 
inverse Wishart distribution with Ψ as an identity matrix and 
three degrees of freedom. Each MCMC analysis had four 
estimation chains with 5,000 iterations of which 2,000 itera-
tions were discarded as a burn-in phase. Following the analysis, 
1,000 sets of parameters were then randomly drawn from the 
posterior distribution of MCMC estimates to generate poster-
ior predictive data sets. To examine local misfit, for each pair of 
observed indicators, the KS-PPMC with KS statistic and tradi-
tional PPP values were calculated.

In order to compare with Bayesian estimation, we also fit the 
models using maximum likelihood estimation using the 
Lavaan package (Rosseel, 2012) in R version 4.0 (R Core 
Team, 2020).

Results

Global model fit
We first checked the global model fit to investigate the overall 
model-data misfit. Table 1 shows the average values and the 
rejection rates of four global model fit indices (SRMR, CFI, 
TLI, and RMSEA) across all 18 conditions (6 models by 3 
sample sizes). The results suggested that when the true model 
had a one-factor structure, model A1 had lower SRMR/ 
RMSEA, higher average CFI/TLI, and lower rejection rates 
than model A0, which means traditional global model fit 
indices were insensitive to over specification. Similar to that, 
when the true model had a two-factor structure, model B0 and 
model B3 had lower average SRMR/RMSEA and higher aver-
age CFI/TLI than models B1 and B2. It should be noted that 
model B3 had almost the same global model fit as Model B0, 
which is not surprising as model B3 had only one more cross- 
loading than model B0.

As for the influence of sample sizes, as sample size increases, 
all fit indices have more power to detect model misfit. Both 
models A0 and A1 had good model fit when sample sizes were 
larger than 25. Models B1 and B2 had poor model fit 

uniformly, even when the sample size was 2,000. Models B0 
and B3 had acceptable model fit when the sample size was 
larger than 50.

KS-PPMC and PPP values
Since KS-PPMC statistics and PPP values have distinct criteria 
for misfit (KS-PPMC with KS measures near zero or PPP 
values near 0.5 indicate good fit), we transformed the PPP 
values to an absolute PPP (PPP*; Equation 6) so that lower 
absolute PPP values suggest better local fit. 

PPP� ¼ 2 � PPP � 0:5j j (6) 

When the KS-PPMC statistic of an item pair correlation is 
close to zero, the posterior predictive distribution of the dis-
crepancy measure in the alternative model completely overlaps 
with that of the measure in the saturated model, meaning near 
perfect model-data fit. Similarly, if the KS-PPMC and PPP* 
values are close to one, local misfit is present. Figure 2 shows 
how KS-PPMC (red) and the PPP� values (blue) perform 
differently for the same six-item test. The left-hand side panel 
shows the bar plot of PPP� values and KS-PPMC statistics 
across all 100 replications for item pairs 1&2, 1&3, 1&5, and 
4&5 (Model A0). The right-hand side panel of Figure 2 shows 
the results in the two-factor solution (Model A1). The results 
suggest that the PPP� values and KS-PPMC have similar trends 
when the sample size increases but KS-PPMC values have 
lower variances than PPP� values. Both indices also suggest 
different local model-data fit between two solutions. To be 
more specific, for item pair correlations between indicators 
both loading onto the same factor (i.e., indicators 1 and 2, 
indicators 1 and 3), the KS-PPMC and the PPP� values are 
not affected by the small sample size in the one-factor solution 
(correct model, Model A0). In contrast, in the two-factor solu-
tion (Model A1), the KS-PPMC and the PPP� values increase 
for some correlations (i.e., indicators 1 and 2, indicators 1 
and 3) as the sample size gets larger. For instance, when sample 
size is 2,000, 6 out of 15 correlations in the overspecified model 
have higher PPP� values than in the correct model; 12 out of 15 

Table 1. Comparing global fit indices: average values and rejection rates for ML estimators.

Generated Model Model N SRMR CFI TLI RMSEA

One-factor structure A0 50 .033/.060 .989/.020 .991/.055 .046/.410
500 .010/.000 .999/.000 1.000/.000 .011/.000

2000 .005/.000 1.000/.000 1.000/.000 .006/.000
A1 50 .032/.045 .990/.020 .992/.060 .045/.390

500 .010/.000 .999/.000 1.000/.000 .010/.000
2000 .005/.000 1.000/.000 1.000/.000 .006/.000

Two-factor structure B0 50 .065/.885 .965/.250 .962/.335 .063/.640
500 .020/.000 .999/.000 1.000/.000 .007/.000

2000 .010/.000 1.000/.000 1.000/.000 .003/.000
B1 50 .197/1.000 .635/1.000 .578/1.000 .235/1.000

500 .188/1.000 .664/1.000 .612/1.000 .221/1.000
2000 .176/1.000 .675/1.000 .625/1.000 .215/1.000

B2 50 .115/.995 .922/.760 .909/.805 .107/.950
500 .095/.975 .955/.280 .946/.370 .080/.575

2000 .091/.932 .956/.304 .947/.372 .078/.595
B3 50 .063/.830 .965/.250 .962/.340 .063/.645

500 .020/.000 .999/.000 1.000/.000 .007/.000
2000 .010/.000 1.000/.000 1.000/.000 .003/.000

The values before the slash represent the average model fit; the values after the slash represent the proportion of models having unacceptable model fit among all 
repetitions.

344   ZHANG ET AL.



correlations in the overspecified model have higher KS-PPMC 
statistics than in the correct model. For N ¼ 25, only two 
correlations are flagged as higher PPP� values in the over-
specified model than in the correct model whereas five correla-
tions have higher KS-PPMC statistics.

The results are consistent for the two-factor condition 
(Model B0) and other factor structures. Figure 3 shows the KS- 
PPMC and PPP� for six-item pair correlations (indicators 1 
and 10, 1 and 4, 1 and 6, 10 and 11, 6 and 7, and 9 and 10) with 
Models B0, B1, B2, and B3 specifications. Here, PPP� values 
(blue) across all sample size conditions have similar patterns 
with the KS-PPMC statistics (red) but have higher variances 
than the other indices. Even for small sample sizes (N ¼ 25), 
the PPP� values and the KS-PPMC statistics for Model B0 
show good performance. For comparison, the underspecified 
model (Model B1) has relatively higher PPP� values and KS- 
PPMC statistics for item pairs with two observed indicators 
loading onto different factors. The incorrect model with one 
observed indicator loading onto the wrong factor (Model B2) 
also has large PPP� values and KS-PPMC statistics for all pairs 
that including observed indicator 1. Similarly, Model B3, the 
incorrect model with observed indicator 1 cross-loading on 
two factors, has relatively larger PPP� values and KS-PPMC 
statistics (see Rows 1 to 3, Column 4) than other models.

Even though the PPP� values and KS-PPMC statistics have 
similar patterns, there are some differences in their sensitivity. 
For example, in Model B2 (overspecified model), for N ¼ 2000, 
the PPP� values of observed indicator pairs 1 with 10, 11, and 
12 are close to their upper threshold which indicates overesti-
mation when sample sizes are larger than 500 (see Rows 1 to 3, 
Column 3). However, KS-PPMC values for the same indicator 
pairs did not reach the upper threshold, which allows research-
ers to compare item pairs with worse model fit. KS-PPMC 
statistics also have relatively lower variances across all 

repetitions. Additionally, comparing PPP� values to KS-PPMC 
statistics reveal that standard PPP values larger than .95 or lower 
than .05 corresponds to KS-PPMC statistics larger than .5. Thus, 
.5 may be a fair cut score for the KS-PPMC approach.

Empirical data analysis

Method

In this section, we illustrate how the proposed PPMC approach 
could be used to obtain better model fit and select better model 
when using Bayesian confirmatory factor analysis. This section 
does not provide, however, a comprehensive overview of an 
actual Bayesian CFA. The goal of the empirical illustration was 
to demonstrate how the researchers could detect the local 
misfit of BCFA models or compare the models when multiple 
alternative models exist.

Data from Holzinger and Swineford (1939) were used. Test 
scores on 26 different measures were obtained from a total of 
300 7th and 8th grade students in two schools. The Holzinger 
and Swineford (1939) data have been used as a model data set 
by many researchers. For example, Muthén and Asparouhov 
(2012) used the factor loading pattern of the four-factor model 
as shown in Table 2 . To be specific, 19 out of 26 items were 
intended to measure four correlated latent factors: (1) spatial 
(η1) measured by visual perception, cubes, paper form board, 
and flags (x1 � x4), (2) verbal (η2) measured by general infor-
mation, paragraph comprehension, sentence completion, word 
classification, and word meaning (x5 � x9), (3) speed (η3) 
measured by addition, code, counting groups of dots, and 
straight and curved capitals (x10 � x13), and (4) memory (η4) 
measured by word recognition, number recognition, figure 
word (x14 � x19). To illustrate the performance of the proposed 
method, two models are estimated: a one-factor model and 

Figure 2. Transformed PPP values and KS-PPMC statistics in condition of 6-item with one-factor structure.

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL   345 



a four-factor model (Asparouhov & Muthén, 2020). The 
detailed specification for the four-factor solution is shown in 
Table 2. All test scores were standardized before the analysis.

The data were estimated with one-factor structure and four- 
factor structure using BCFA via MCMC estimation. The process 
used four chains with 10,000 iterations each, of which 2,000 were 
discarded as burn-in. The prior settings were as follows: item 
intercepts were normally distributed with mean 0 and variance 
1; factor loadings were normally distributed with mean 0 and 
variance 1. For model identification, both the one-factor solution 
and four-factor solution employed the marker-item method, 
which means the factor loadings of the first item per factor were 
fixed to 1 while other factor loadings were freely estimated. After 
the posterior distributions for all parameters were estimated, 5,000 
parameters from the posterior were randomly sampled and used 
to create the posterior predictive distribution for the 271 item-pair 
correlations.

Results

Using the Gelman-Rubin convergence diagnostic, both the 
one-factor solution (R � 1:004) and four-factor solution 
(R � 1:033) achieved convergence. Figure 4 presents the dis-
tribution of KS-PPMC statistics and PPP� values across all 
item-pair correlations with the one-factor solution and the 
four-factor solution. As shown in the boxplot, the average KS- 
PPMC statistics were higher in the one-factor model 
(μKS�PPMC ¼ :446) than in the four-factor model 
(μKS�PPMC ¼ :310), which indicates worse local model fit in 
the one-factor solution than in the four-factor solution. In 
addition, the range and standard deviation of the KS-PPMC 
statistics in the one-factor model (sd ¼ :319) were wider than 
in the four-factor model (sd ¼ :198), which indicated the 
higher variation of KS-PPMC statistics in the one-factor 
model. From the one-factor model results, the highest KS- 
PPMC statistic was found in the correlation between indicator 
pair 10 and 12 (KS-PPMC = .999), while in the four-factor 
model, the highest KS statistics was found in the correlation 
between indicator pair 2 and 10 (KS-PPMC = .837). These 
results suggest that, according to the KS-PPMC results, the 
four-factor model fixed much of the local misfit in the one- 
factor model.

For comparison, Figure 5 shows the distribution of PPP 
values across the whole item-pair correlations with the one- 
factor and four-factor models. Here, similar to the KS-PPMC 
statistics, the average PPP value for the four-factor model was 
closer to .5 (P�PP ¼ :525) than the one-factor model 
(P�PP ¼ :699). However, the range and standard deviation for 
the one-factor (sd ¼ :297) and four-factor models (sd ¼ :302) 
were very similar. In addition, in the one-factor model, 25 
item-pair correlations yielded PPP values equal to one. One 
of the problematic item-pair correlations included the correla-
tion between items 10 and 12, which also had the highest KS- 
PPMC statistic. Indicator pair 2 and 10 had the lowest PPP 

Table 2. Factor structure of the Holzinger-Swineford example: four-factor 
solution.

Spatial Verbal Speed Memory

visual X 0 0 0
cubes X 0 0 0
paper X 0 0 0
flags X 0 0 0
general 0 X 0 0
paragrap 0 X 0 0
sentence 0 X 0 0
wordc 0 X 0 0
wordm 0 X 0 0
addition 0 0 X 0
code 0 0 X 0
counting 0 0 X 0
straight 0 0 X 0
wordr 0 0 0 X
numberr 0 0 0 X
figurer 0 0 0 X
object 0 0 0 X
numberf 0 0 0 X
figurew 0 0 0 X

Figure 3. Transformed PPP values and KS-PPMC statistics: models B0, B1, B2, B3.
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value (P�PP ¼ :021) in the one-factor model. For the four- 
factor model, indicator pair 2 and 10 had the lowest PPP 
value and indicator pair 8 and 10 had the highest PPP value.

Discussion

In this study, we proposed a model comparison approach to 
model checking in Bayesian CFA. In our investigation, we 
showed acceptable sensitivity of PPP values for three forms of 
misspecification (underspecified, overspecified, and wrongly 
specified) when the sample size was moderately large (i.e., 
N ¼ 500), in accordance with previous studies (e.g., Hoofs 

et al., 2018). However, similar to the findings of previous 
research, PPP values were insensitive to small samples com-
bined with an overspecified model. Our simulation study 
showed that the PPMC using KS statistics could be an alter-
native way of detecting local misfit in Bayesian CFA. For large 
sample sizes, KS-PPMC showed similar patterns with PPP�
values. When sample sizes are small, more indicator correla-
tions showed higher KS-PPMC statistics in the overspecified 
model than those in the correct model; for comparison, less 
than half item correlations show higher PPP� values.

In addition, we did not find that KS distance metrics are 
insensitive to the discrepancy between analyzed distributions, 
as shown in prior studies using re-sampling methods (e.g., 

Figure 4. KS statistics boxplot for one-factor and four-factor solutions.

Figure 5. PPP statistics boxplot for one-factor and four-factor solutions.
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Grønneberg & Foldnes, 2019; Marcoulides et al., 2020). Some 
methodological differences may explain the inconsistency. The 
posterior predictive distributions of the test statistic in our 
study are possibly more robust than the bootstrapping distri-
bution or the empirical posterior predictive under saturated 
model are more sensitive to misfit compared to the theoretical 
uniform distribution used in the previous study. Further 
research is necessary to understand the interaction effects 
between KS statistic with varied model checking approaches 
(e.g., PPMC vs. bootstrap resampling).

PPMC using saturated model vs. PPP value

In summary, there are several similarities between KS-PPMC 
statistics and PPP values in this data analysis. First, both KS- 
PPMC statistics and PPP methods suggest that more local misfit 
exists in one-factor models than in four-factor models, which is 
consistent with previous research (Asparouhov & Muthén, 
2020). Second, both KS-PPMC statistics and PPP values identi-
fied indicator pair 10 with 12 in the one-factor model and 
indicator pair 2 with 10 in the four-factor model as having the 
greatest amount of local misfit. However, there were also some 
differences between these two approaches. Using PPP values, 
some indicator pair correlations may reach the maximum of 
one (i.e., 25 item pair correlations have a PPP value 1 in the one- 
factor model). However, the KS-PPMC statistics were never as 
extreme, which makes model comparison possible.

The PPMC approach using a saturated model could be a very 
useful tool for detecting local misfit in a fully Bayesian frame-
work. The underlying idea of comparing a saturated model to an 
alternative model is consistent with the ML-based model fit (i.e., 
RMSEA and SRMR). The only difference is that the model-data 
fit is represented by the overlap between the posterior predictive 
distribution of test statistics rather than a chi-square difference.

Both the PPP approach and KS-PPMC statistics can be good 
ways for checking local misfit in Bayesian CFA. When thefit is 
poor, KS-PPMC statistics may be more informative than PPP 
as KS-PPMC statistics never reach extreme values. In sum-
mary, KS-PPMC statistics could be a supplementary approach 
for PPP methods for checking local misfit in Bayesian CFA.

Limitations

This study has a few limitations which can be considered as 
future research directions. One limitation of this study is the 
missing cutoff scores for the KS-PPMC statistic. The universal 
cutoff scores for KS-PPMC statistics may not exist but false 
discovery rate—a method to control the error rate could be 
further investigated to find the criterion for KS-PPMC statistics. 
The second limitation is the computation time. For some CFA 
structures with large number of indicators, estimating posterior 
information of saturated model may be time-consuming, if not 
impossible. For this situation, the variational approximations 
method could be an alternative option (e.g., Dang & Maestrini, 
2021). The last limitation is prior settings. Different choices of 
priors may affect the convergence of the model and even the 

detection error rates of PPMC. However, this problem has not 
been well researched. Future studies may focus on investigating 
the sensitivity of priors on the performance of PPMC methods.
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