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ABSTRACT

Posterior Predictive Model Checking (PPMC) is frequently used for model fit evaluation in Bayesian
Confirmatory Factor Analysis (BCFA). In standard PPMC procedures, model misfit is quantified by compar-
ing the location of an ML-based point estimate to the predictive distribution of a statistic. When the point
estimate is far from the center posterior predictive distribution, model fit is poor. Not included in this
approach, however, is the variability of the Maximum Likelihood (ML)-based point estimates. We propose
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a new method of PPMC based on comparing posterior predictive distributions of a hypothesized and
saturated BCFA model. The method uses the predictive distribution of the saturated model as a reference
and the Kolmogorov-Smirnov (KS) statistic to quantify the local misfit of hypothesized models. The results
of the simulation study suggest that the saturated model PPMC approach was an accurate method of
determining local model misfit and could be used for model comparison. A real data example is also

provided in this study.

Bayesian estimation for structural equation modeling (SEM) is
a viable alternative to frequentist SEM approaches (e.g., max-
imum likelihood), particularly for complex model specifica-
tions or for analyses with small sample sizes (e.g., Muthén &
Asparouhov, 2012). The popularity of Bayesian approaches in
SEM carries with it the need for Bayesian-based model fit
investigations to examine global or local model misfits in
Bayesian SEM analyses. Common types of SEM model mis-
specification include the omission of needed latent variables
(e.g., Kaplan, 1988), the misspecification of which observed
indicator variables measure which latent variables, or viola-
tions of latent variable distributional assumptions (e.g.,
Boomsma, 1987). Posterior predictive model checks (PPMCs)
are tools used in Bayesian analyses to help detect model mis-
specifications by comparing statistics calculated from observed
data with model-generated data based on the posterior esti-
mates of parameters (e.g., Gelman et al., 1996; Levy, 2011; Levy
et al., 2009). In this paper, we propose and investigate a novel
method for investigating model fit in Bayesian CFA (and SEM)
using PPMC with Kolmogorov-Smirnov statistic (KS-PPMC)
for model comparison.

In PPMC, the value of an observed statistic is compared to
the predictive distribution of the same statistic calculated from
simulated data sets; these simulated data sets are generated by
drawing from the posterior distribution of model parameters.
To compare the observed and predictive statistics, the percen-
tile rank of the observed statistic on the posterior predictive
distribution, often called the posterior predictive p value (PPP
value) is computed. The PPP value represents the location of an
observed statistic relative to the posterior predicted distribu-
tion and is different from a maximum likelihood (ML)-based

p value. The ML-based p value is a quantity derived from the
likelihood function or the limiting distribution of model para-
meters. PPP values close to zero or one (i.e., at the tails of the
posterior predictive distribution) typically indicate bad model-
data fit. This concept was originated by Rubin and was later
extended to include general discrepancies by Gelman et al.
(1996).

One concern is that the PPP value may be heavily influenced
by the reference point of the observed data, which is often the
maximum likelihood estimate (MLE). For instance, when
examining the local misfit between a pair of observed indica-
tors in a Bayesian CFA model, the ML estimate of the Pearson
correlation is commonly used as the observed statistic in a PPP
analysis. In such analyses, the Pearson correlation between
a pair of observed indicators is calculated using ML and then
the percentile of that quantity is found using the predictive
distribution of the correlation. Research on PPP values in
latent variable modeling has yielded inconsistent results, in
some cases finding Type I error rates to be less than nominal
values and in other cases finding Type I error rates at or slightly
below nominal values (Levy, 2011). The PPP value can also
yield overly conservative results when the asymptotic mean of
the test statistic T depends on parameter 6 (Robins et al., 2000).
Under small sample sizes, the empirical distribution of
observed statistics used for calculating PPP values can be
large, which may affect the accuracy of PPP value calculation.
Additionally, as the observed test statistics are ML-based point
estimates, their realized values may depend on asymptotic
arguments to be consistent, while a posterior distribution
(rather than a point estimate) does not have the same asymp-
totic dependency, at least in small samples (Levy, 2011).
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Our proposed PPMC with the Kolmogorov-Smirnov
statistic (KS-PPMC) replaces the ML-based point estimate
from the observed data with the predictive distribution of
a Bayesian-estimated saturated model, resulting in model
fit being judged by the comparison between the two dis-
tributions. Prior research has investigated the use of the
Kolmogorov-Smirnov (KS) statistic and other similar dis-
tance statistics for the testing model fit of structural equa-
tion models. For example, Wu et al. (2014) used Kullback-
Leibler divergence to quantify the discrepancy between
two  realized posterior predictive  distributions.
Gronneberg and Foldnes (2019) employed the KS distance
between the bootstrap distribution and the theoretical uni-
form distribution as the selection criterion of model fit
indices. Marcoulides et al. (2020) made use of the
Anderson-Darling (AD) metric for selecting the best test
statistic. However, to the researchers’ knowledge, this is
the first time the KS-PPMC method has been used as
a model comparison approach for Bayesian CFA.
A detailed comparison among the performance of varied
distance metrics is beyond the scope of the current study.
Given the importance of such a comparison for future
research, we will return to this issue later in this paper.

In our study, we chose the posterior predictive distri-
bution of test statistics under the saturated model as the
reference distribution of KS distance. In many ML-based
test statistics, the saturated model is the basis for model fit
comparisons globally (e.g., likelihood ratio tests and Root
Mean Squared Error of Approximation values) and locally
(i.e., standardized, normalized, and unstandardized resi-
dual covariances). In our proposed method, we estimate
a saturated model with uninformative priors to use as
a reference distribution. Instead of using PPP values
formed by comparing point estimates of statistics to their
respective posterior predictive distributions, our method
seeks to quantify a measure of overlap between the poster-
ior predictive distributions of the saturated and specified
models. When these posterior predictive distributions have
a high degree of overlap, the specified model can be
considered to fit the data well. Alternatively, when these
posterior predictive distributions show little overlap,
model fit of the specified model can be considered poor.

The remainder of the paper defines KS-PPMC and
examines its use in both simulation and empirical data
analyses. First, we introduce various types of model fit
indices implemented in either ML or Bayesian analyses.
Next, we present KS-PPMC using the Kolmogorov-
Smirnov (KS) statistic to quantify the degree of distribu-
tional overlap. To check the accuracy of the proposed
measures, we describe the results of a simulation study, in
which the performance of our proposed methods is com-
pared with ML-constructed PPP values. We then apply our
methods to an empirical example in order to show the
performance of the proposed method in a real-world sce-
nario. Finally, we discuss the advantages and the limitations
of our new methods along with future extensions of these
approaches.

Confirmatory factor models

Confirmatory factor analysis (CFA) models posit that a set of
responses by a person p (p =1,...,N) to a set of observed

indicator variables i (i=1,...,I), Y, = [Ypl, ey Ypl} T, is
influenced by the value of a set of k =1, ..., K latent factors
& = [§p1, e »ng] via a multivariate linear model:

where A is an I x K matrix of factor loadings, g is an I x 1
vector of item intercepts, and § is an I x 1 vector of item-
specific residuals. For model identification, a set constraints are
placed on the elements of A where A = 0 if item i does not
measure factor k (e.g., McDonald, 1999). The residuals are
assumed to follow a multivariate normal distribution with
zero mean vector and error covariance matrix W.

Factors are assumed to follow a multivariate normal distri-
bution, often with mean vector fixed to zero and factor covar-
iance matrix ®. Additional constraints may be placed on the
item intercepts and factor loadings to estimate the factor means
and variances, respectively. Coupling the assumed distribution
of the factors (with zero mean vector) and item residuals with
the linear model in Equation 1 results in the assumption that
the data follow a multivariate normal distribution with mean
vector equal to item intercepts g and covariance matrix

given by:
Yo = ADPAT + . (2)

The CFA model puts a specific hypothesized structure on the
covariance matrix of the observed indicators. To test this
hypothesized structure, the estimates of the hypothesized
CFA model (which we label Hy) with covariance matrix X,
are compared to a general, saturated model (which we label
H;) with no constraints on its covariance matrix ;. As all
possible CFA models are nested within the saturated model
H;, the comparison of these two models is conducted via
mechanisms of nested model comparisons (such as likeli-
hood ratio tests for ML-based analyses), where the CFA
model with covariance matrix ¥, represents the null or
hypothesized model (Hp) and the saturated model with %,
represents the alternative model (H,). In ML-based analyses,
global fit statistics are derived from this comparison includ-
ing the model Chi-Squared test and the root mean square
error of approximation (RMSEA). Moreover, local model
misfit is often conducted by inspection of the residuals
(i.e., difference between ¥ and ;) with raw, standardized,
and normalized versions being used, the latter two involving
estimates of the elements of unconstrained saturated model
covariance matrix ;.

Bayesian confirmatory factor models

In general, Bayesian estimation methods seek to find the pos-
terior distribution of a set of parameters Oy for a hypothesized
model H. This distribution is given by Bayes theorem in
Equation 3:

p(0ulY) o< p(Y|0u)p(On), 3)



where p(6y) is the prior distribution of the parameters and
p(Y|6g) is the model likelihood function of the data given the
parameters. In Bayesian CFA models, a conditional approach
to estimation is frequently implemented where p(Y|6g) is
given by the multivariate normal density with mean vector
equal to gy + AZ and covariance matrix W. In such conditional
models, an additional step is needed to specify the likelihood of
the unobserved factors =, which is specified as multivariate
normal with zero mean vector and covariance matrix ®.

To estimate the Bayesian CFA model, prior distributions are
specified for each type of parameter, specifically, the item
intercepts g, the factor loadings A, the unique variances ¥,
and the factor variances and covariances in ®. The latent
variables = are treated as parameters that have a prior distribu-
tion equal to their assumed factor distribution, which is multi-
variate normal with mean zero and covariance matrix ©.
Although prior distributions can vary for each type of para-
meter, often the item intercepts and factor loadings follow
normal distributions (which are conjugate priors, enabling
direct sampling from the posterior distribution) whereas the
unique variances follow inverse gamma prior distributions
(also conjugate priors). A conjugate prior for the factor covar-
iance matrix is the inverse Wishart distribution.

Bayesian saturated models

In Bayesian statistics, the posterior distribution is obtained for
all parameters. The Bayesian version of the saturated model
(H,) includes a set of prior distributions for the elements of the
mean vector and elements of the covariance matrix X;, which
results in the construction of a posterior distribution for each
unique parameter in the model. Herein lies a critical difference
between ML-based and Bayesian methods of estimating the
saturated model H;: ML-based methods use the ML-based
point estimate for all parameters of the saturated model Hj,
whereas the Bayesian analog of the saturated model H; neces-
sarily has a posterior distribution for all parameters. Although
the posterior distribution will converge in distribution to the
ML asymptotic distribution as the sample size goes to infinity,
wide variability may exist for cases where sample sizes are small
relative to the number of parameters.

The key feature of ML-based PPP values in this study seeks
to investigate is how to incorporate the variability of the satu-
rated model’s posterior distributions into the model fit process.
That is, when the saturated model H; (sample) means, var-
iances, and covariances yield posterior distributions rather
than point estimates, how do model fit indices change?
Moreover, does variability in the posterior distribution need
to be accounted for when evaluating the model fit of the
specified model Hy?

Evaluation of Bayesian CFA model fit

To illustrate Bayesian Structural Equation Modeling (BSEM)
and Bayesian CFA fit indices, Levy (2011) distinguished two
separate types of Bayesian model fit evaluations in terms of
their target measures: test statistics and discrepancy measures.
The first approach focuses on the extent to which the model
recovers or predicts features of the data, whereas the second
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aims to explicitly build in the comparison between the
observed data and model-implied data characteristics. Our
proposed KS-PPMC method employs the item-pair Pearson
correlation as the foundation of a KS-based discrepancy mea-
sure that indicates item pairs with a local model misfit.

An advantage of Bayesian SEM fit indices over most of their
frequentist counterparts is that the posterior distribution
allows uncertainty to be quantified for any index. Despite
different processes, Bayesian and ML-based model fit methods
have shown to have similar rejection rates when sample sizes
are large. For example, Garnier-Villarreal and Jorgensen (2019)
compared the chi-square-based approximate fit indices that are
commonly used in SEM to their Bayesian analogs through
a simulation study and concluded that Markov Chain Monte
Carlo (MCMC) with noninformative priors yields similar
results to ML across varied levels of misspecification, sample
sizes, and model types.

Model comparison posterior predictive model
checking

Common Bayesian PPMC methods work to find the posterior
predictive distribution conditional of the parameters of the
specified model p( Y7’ |0y):

POTI0u) = | p(7*160)p(0n ") 01
i (4)
o || P 10p (Y 16)p(6n) O

H
Equation 4 shows the general form of the posterior predictive
distribution, p(Y"|0y), which is the integral of two compo-
nents: the sampling distribution of the replicated data given the
sampled values from the posterior distribution of parameters
under model H, p(Y""|0), and the posterior distribution of
parameter under model H, p(8y|Y°).

In practice, PPMC methods are implemented by generating
predictive data based on the posterior distribution of estimates.
To provide context, consider an example where a Bayesian CFA
model of Equation 1 is estimated via MCMC. First, a standard
MCMC estimation algorithm is run (with specifications of prior
distributions, number of Markov chains, number of iterations,
burn-in, etc.). Once the chains have been estimated and chain
convergence is established, then a sample of parameters (6 ) are
drawn with replacement from the set of iterations of the Markov
chains. For each sampled set of parameters, a set of data (Y")
with sample size equal to that of the observed data are simulated
by plugging the sampled parameters into the model H. Then,
the test statistics T(Y'®) are calculated from the newly gener-
ated data. In our case, T(-) will be the Pearson correlation
coefficients calculated for each pair of observed indicators.
Across all replication samples of the posterior distribution of
parameters, T(Y'?) is calculated, yielding, for each pair of
observed indicators, the predictive distribution of the statistic.
The principle of PPMC is to locate the position of the observed
data statistic T(Y°™) in the posterior predictive distribution
p(Y™ |0 ). The key difference between KS-PPMC and PPMC
with classical ML-based fit indices lies in the choice of the
reference distribution (e.g., Lee et al, 2016). Under standard
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PPMC methods, the reference distribution is the posterior pre-
dictive distribution, to which the often ML-based observed data
statistic T(Y°") is compared.

As standard PPMC methods typically use ML-based
observed data statistics T(Y°), they do not incorporate the
uncertainty of the observed data statistics into the process.
Such uncertainty of observed data statistics may come from
sampling error which may especially be prevalent in situations
where there are numerous cases of missing data or small
sample sizes are present. Asparouhov and Muthén (2020)
recently proposed a new approach by using the parameters of
the saturated model (H;) to generate the posterior predictive
distribution, which could reduce the rejection error rate in
such situations.

The principal motivation of this study is to replace the point
estimate of realized data statistics, T(Y°), with the posterior
predictive distribution of realized data statistics, T(Y™P|6y).
Then, we employ the KS statistic to quantify the distance
between the posterior predictive distribution of realized data
statistics and that of the saturated model. In our study, the KS-
PPMC statistic for the cumulative distribution function under
the saturated model is

KSppyc = supy|F, (Y™|0y) — F(Y™P |6y, )| (5)

where sup; is the supremum of the set of distances.
F,(Y"™|0y) denotes the cumulative posterior predictive distri-
bution of T(Y™P|6y) under model H and F,(Y"?|6y, ) denotes
the cumulative posterior predictive distribution of T(Y™P|6,)
under the saturated model. The statistic computes the largest
absolute difference between the two distribution functions
across all realized data statistics. By the Glivenko-Cantelli
theorem, if the sample comes from distribution under the
saturated model, then KSppyc converges to zero almost surely
in the limit when N goes to infinity. This approach not only
depicts the discrepancy between the observed data with refer-
ence distribution under the saturated model H; but also the
degree of uncertainty in the observed data statistics.

Proposed model comparison PPMC procedure

To get the posterior distribution of the covariance matrix X,
from the saturated model Hj, the first step is to use a Bayesian
algorithm to estimate the saturated model using the observed
data. Choices of prior distributions for the saturated model are
critical as overly strict priors may result in saturated model
posterior distributions far from what the data may suggest,
which may cause bias in the model fit analysis. For our study,
we model the observed data using a multivariate normal dis-
tribution, estimating each unique element of the mean vector
and covariance matrix without constraints. For prior distribu-
tions, we specify a diffuse, uninformative prior of multivariate
normal distribution for the mean vector with zero mean vector,
zero-off diagonal elements of the prior covariance matrix and
variances set to 100,000. For the saturated model covariance
matrix K, we also specify a diffuse, uninformative prior using
an inverse Wishart prior distribution with parameters ¥ with
zero-off diagonal elements of item variances and degree of
freedom v equals number of indicator variables.

Following estimation and successful convergence of the
saturated model, the posterior predictive distributions of each
of the means and covariances of the saturated model are
formed using the typical PPMC process of sampling draws
from the posterior distribution, using those parameters to
generate simulated data Y"?, and calculating the Pearson cor-
relation to every item pair, forming T(Y"*). We then quantify
the distance between the alternative posterior predictive dis-
tribution with the reference posterior predictive distribution
considered as a fully Bayesian analog of a traditional p value.

If the model is consistent with the population that generated
the observed data, then the posterior predictive distributions
should have considerable overlap. A nonparametric test of the
equality of probability distributions, the Kolmogorov-Smirnov
statistic (KS) is used to assess the distance between the current
model with the saturated model. The PPMC with KS statistic is
the maximum difference between the cumulative densities of
the posterior predictive distribution of the specified model
(Hp) and the saturated model H; across the space of the test
statistic (Pearson correlation). A PPMC with KS value is
obtained for each pair of observed indicator variables. Next,
we test our new PPMC methods via a simulation study.

Monte Carlo simulation study

In this section, we report results from a simulation study
designed to investigate the performance of KS-PPMC. Our
study borrows simulation specifics from Hoofs et al. (2018).
Data were generated using either one or two latent variables.
For data generated with one latent variable, the correct model
(the one-factor model) was then estimated and compared with
an overspecified model (a two-factor model where equal num-
bers of items loaded onto both factors) as well as the saturated
model using the KS-PPMC statistic. When data were generated
based on a two-factor model, the correct model (a two-factor
model) was then tested against one underspecified model (a
one-factor model), two incorrectly specified models, and the
saturated model (see Figure 1).

Data generation methods

The simulated data sets were generated based on three main
experimental factors: (1) number of latent variables (i.e., one-
factor structure—Model A0 and two-factor structure—Model
BO; see Figure 1), (2) number of observed indicators (6 items or
12 items), and (3) sample size (25, 500, and 2,000) for a total of
12 conditions.

For the one-factor model, to mimic real data, the factor
loadings were fixed to 0.4, 0.6, and 0.8. When 6-item tests
were generated with a one-factor structure (Model A0), the
factor loadings for all items were set as follows A, = 1, = 0.4,
Az = Ay = 0.6, A5 = A¢ = 0.8. The factor variance was set to 1.
The residual variances of the indicators were set as follows
v, =y, =084, y,=1vy, =064, y;=1y,=0.36. These
values were picked to achieve observed indicator variables
with varying levels of information about the latent trait.
Similarly, when the population data matrix was generated
based on 12 items and one factor (not shown in Figure 1),
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Figure 1. Simulation design: different models.

the factor loadings were set so that the first four items had
a loading of 0.4, the second four items had a loading of 0.6, and
the last four items had a loading of 0.8. Both factor variances
were set to 1 while the factor covariance was set to ¢, = 0.4.
The residual variances of the indicators were set
as y = {0.84,0.64,0.36}.

For the two-factor model, when data were generated with 6
items (see Figure 1 Model B0), the factor loadings were set as
M =1, =13 =0.4, 14 = A5 = A¢ = 0.8. When data were gen-
erated with 12 items, the factor loadings were set as
M=...=13=04 A=...=21 =038,
A, =...=1g =04, and 1 = ... = A1, = 0.8. There were
no cross-loadings for any models used for simulating data.
For all two-factor models, the factor covariance was set to
¢,, = 0.4. The residual variances of the indicators were set as
Y, =y, = y; = 0.84 for items 1 to 3, y, = ¥ = ¥, = 0.64
for items 4 to 6, and v, = Yy = Y, = 0 35 for items 7 to 9.

The item intercepts 4 = (4;, ..., ;)" for all generated data
were fixed to zero. Item response data were generated using the
CFA model given by Equation 1. The Bayesian estimation
process used in each condition is explained in detail in the
next section.

Simulation design

In this section, we show the factor structure of the misspecified
model and the choices for prior distributions used in this study.
In the first condition (data generated with a one-factor model),
we analyzed the data with the saturated model and the mis-
specified two-factor model (Figure 1, Model BI: half of the
items load onto the first factor and half of the items load onto
the second factor). In the second condition, we estimated the
model with three types of misspecification and the true model
for comparison. As shown in Figure 1, the incorrect model Bl
has one latent factor. The incorrect model B2 has one incorrect
loading A, for item 1. The incorrect model B3 has the correct
number of dimensions but has one item with an additional,
unnecessary factor loading, A..

Each condition was replicated 100 times. All models were
estimated using MCMC estimation via JAGS (Plummer, 2003)
with uninformative priors. Specifically, we set the prior distri-
bution of factor loadings using a normal distribution N(y = 0,
o = 1). The prior distribution of item means was set to be
a normal distribution with mean zero and variance of
100,000; the unique variances were sampled from a gamma
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prior distribution with alpha of .5 and beta of .059; the factor
variance matrix in a three-factor model was sampled from the
inverse Wishart distribution with ¥ as an identity matrix and
three degrees of freedom. Each MCMC analysis had four
estimation chains with 5,000 iterations of which 2,000 itera-
tions were discarded as a burn-in phase. Following the analysis,
1,000 sets of parameters were then randomly drawn from the
posterior distribution of MCMC estimates to generate poster-
ior predictive data sets. To examine local misfit, for each pair of
observed indicators, the KS-PPMC with KS statistic and tradi-
tional PPP values were calculated.

In order to compare with Bayesian estimation, we also fit the
models using maximum likelihood estimation using the
Lavaan package (Rosseel, 2012) in R version 4.0 (R Core
Team, 2020).

Results

Global model fit

We first checked the global model fit to investigate the overall
model-data misfit. Table 1 shows the average values and the
rejection rates of four global model fit indices (SRMR, CFI,
TLI, and RMSEA) across all 18 conditions (6 models by 3
sample sizes). The results suggested that when the true model
had a one-factor structure, model Al had lower SRMR/
RMSEA, higher average CFI/TLI, and lower rejection rates
than model A0, which means traditional global model fit
indices were insensitive to over specification. Similar to that,
when the true model had a two-factor structure, model B0 and
model B3 had lower average SRMR/RMSEA and higher aver-
age CFI/TLI than models B1 and B2. It should be noted that
model B3 had almost the same global model fit as Model B0,
which is not surprising as model B3 had only one more cross-
loading than model BO.

As for the influence of sample sizes, as sample size increases,
all fit indices have more power to detect model misfit. Both
models A0 and A1 had good model fit when sample sizes were
larger than 25. Models Bl and B2 had poor model fit

uniformly, even when the sample size was 2,000. Models BO
and B3 had acceptable model fit when the sample size was
larger than 50.

KS-PPMC and PPP values

Since KS-PPMC statistics and PPP values have distinct criteria
for misfit (KS-PPMC with KS measures near zero or PPP
values near 0.5 indicate good fit), we transformed the PPP
values to an absolute PPP (PPP*; Equation 6) so that lower
absolute PPP values suggest better local fit.

PPP* = 2 % |[PPP — 0.5 (6)

When the KS-PPMC statistic of an item pair correlation is
close to zero, the posterior predictive distribution of the dis-
crepancy measure in the alternative model completely overlaps
with that of the measure in the saturated model, meaning near
perfect model-data fit. Similarly, if the KS-PPMC and PPP*
values are close to one, local misfit is present. Figure 2 shows
how KS-PPMC (red) and the PPPx values (blue) perform
differently for the same six-item test. The left-hand side panel
shows the bar plot of PPPx values and KS-PPMC statistics
across all 100 replications for item pairs 1&2, 1&3, 1&5, and
4&5 (Model A0). The right-hand side panel of Figure 2 shows
the results in the two-factor solution (Model Al). The results
suggest that the PPPx values and KS-PPMC have similar trends
when the sample size increases but KS-PPMC values have
lower variances than PPPx values. Both indices also suggest
different local model-data fit between two solutions. To be
more specific, for item pair correlations between indicators
both loading onto the same factor (i.e., indicators 1 and 2,
indicators 1 and 3), the KS-PPMC and the PPPx values are
not affected by the small sample size in the one-factor solution
(correct model, Model A0). In contrast, in the two-factor solu-
tion (Model A1), the KS-PPMC and the PPPx values increase
for some correlations (i.e., indicators 1 and 2, indicators 1
and 3) as the sample size gets larger. For instance, when sample
size is 2,000, 6 out of 15 correlations in the overspecified model
have higher PPPx values than in the correct model; 12 out of 15

Table 1. Comparing global fit indices: average values and rejection rates for ML estimators.

Generated Model Model N SRMR CFI TLI RMSEA
One-factor structure AO 50 .033/.060 .989/.020 .991/.055 .046/.410
500 .010/.000 .999/.000 1.000/.000 .011/.000
2000 .005/.000 1.000/.000 1.000/.000 .006/.000
Al 50 .032/.045 .990/.020 .992/.060 .045/.390
500 .010/.000 .999/.000 1.000/.000 .010/.000
2000 .005/.000 1.000/.000 1.000/.000 .006/.000
Two-factor structure BO 50 .065/.885 .965/.250 .962/.335 .063/.640
500 .020/.000 .999/.000 1.000/.000 .007/.000
2000 .010/.000 1.000/.000 1.000/.000 .003/.000
B1 50 .197/1.000 .635/1.000 .578/1.000 .235/1.000
500 .188/1.000 .664/1.000 .612/1.000 .221/1.000
2000 .176/1.000 .675/1.000 .625/1.000 .215/1.000
B2 50 .115/.995 .922/.760 .909/.805 .107/.950
500 .095/.975 .955/.280 .946/.370 .080/.575
2000 .091/.932 .956/.304 .947/.372 .078/.595
B3 50 .063/.830 .965/.250 .962/.340 .063/.645
500 .020/.000 .999/.000 1.000/.000 .007/.000
2000 .010/.000 1.000/.000 1.000/.000 .003/.000

The values before the slash represent the average model fit; the values after the slash represent the proportion of models having unacceptable model fit among all

repetitions.
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Figure 2. Transformed PPP values and KS-PPMC statistics in condition of 6-item wi

correlations in the overspecified model have higher KS-PPMC
statistics than in the correct model. For N = 25, only two
correlations are flagged as higher PPPx values in the over-
specified model than in the correct model whereas five correla-
tions have higher KS-PPMC statistics.

The results are consistent for the two-factor condition
(Model B0) and other factor structures. Figure 3 shows the KS-
PPMC and PPPx for six-item pair correlations (indicators 1
and 10, 1 and 4, 1 and 6, 10 and 11, 6 and 7, and 9 and 10) with
Models BO, B1, B2, and B3 specifications. Here, PPPx values
(blue) across all sample size conditions have similar patterns
with the KS-PPMC statistics (red) but have higher variances
than the other indices. Even for small sample sizes (N = 25),
the PPPx values and the KS-PPMC statistics for Model BO
show good performance. For comparison, the underspecified
model (Model B1) has relatively higher PPPx values and KS-
PPMC statistics for item pairs with two observed indicators
loading onto different factors. The incorrect model with one
observed indicator loading onto the wrong factor (Model B2)
also has large PPPx values and KS-PPMC statistics for all pairs
that including observed indicator 1. Similarly, Model B3, the
incorrect model with observed indicator 1 cross-loading on
two factors, has relatively larger PPPx values and KS-PPMC
statistics (see Rows 1 to 3, Column 4) than other models.

Even though the PPPx values and KS-PPMC statistics have
similar patterns, there are some differences in their sensitivity.
For example, in Model B2 (overspecified model), for N = 2000,
the PPPx values of observed indicator pairs 1 with 10, 11, and
12 are close to their upper threshold which indicates overesti-
mation when sample sizes are larger than 500 (see Rows 1 to 3,
Column 3). However, KS-PPMC values for the same indicator
pairs did not reach the upper threshold, which allows research-
ers to compare item pairs with worse model fit. KS-PPMC
statistics also have relatively lower variances across all

th one-factor structure.

repetitions. Additionally, comparing PPPx values to KS-PPMC
statistics reveal that standard PPP values larger than .95 or lower
than .05 corresponds to KS-PPMC statistics larger than .5. Thus,
.5 may be a fair cut score for the KS-PPMC approach.

Empirical data analysis
Method

In this section, we illustrate how the proposed PPMC approach
could be used to obtain better model fit and select better model
when using Bayesian confirmatory factor analysis. This section
does not provide, however, a comprehensive overview of an
actual Bayesian CFA. The goal of the empirical illustration was
to demonstrate how the researchers could detect the local
misfit of BCFA models or compare the models when multiple
alternative models exist.

Data from Holzinger and Swineford (1939) were used. Test
scores on 26 different measures were obtained from a total of
300 7th and 8th grade students in two schools. The Holzinger
and Swineford (1939) data have been used as a model data set
by many researchers. For example, Muthén and Asparouhov
(2012) used the factor loading pattern of the four-factor model
as shown in Table 2 . To be specific, 19 out of 26 items were
intended to measure four correlated latent factors: (1) spatial
(n,) measured by visual perception, cubes, paper form board,
and flags (x; — x4), (2) verbal (#,) measured by general infor-
mation, paragraph comprehension, sentence completion, word
classification, and word meaning (x5 — xo), (3) speed (#5)
measured by addition, code, counting groups of dots, and
straight and curved capitals (x;9 — x13), and (4) memory (7,)
measured by word recognition, number recognition, figure
word (x14 — x19). To illustrate the performance of the proposed
method, two models are estimated: a one-factor model and
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Figure 3. Transformed PPP values and KS-PPMC statistics: models BO, B1, B2, B3.

a four-factor model (Asparouhov & Muthén, 2020). The
detailed specification for the four-factor solution is shown in
Table 2. All test scores were standardized before the analysis.

The data were estimated with one-factor structure and four-
factor structure using BCFA via MCMC estimation. The process
used four chains with 10,000 iterations each, of which 2,000 were
discarded as burn-in. The prior settings were as follows: item
intercepts were normally distributed with mean 0 and variance
1; factor loadings were normally distributed with mean 0 and
variance 1. For model identification, both the one-factor solution
and four-factor solution employed the marker-item method,
which means the factor loadings of the first item per factor were
fixed to 1 while other factor loadings were freely estimated. After
the posterior distributions for all parameters were estimated, 5,000
parameters from the posterior were randomly sampled and used
to create the posterior predictive distribution for the 271 item-pair
correlations.

Table 2. Factor structure of the Holzinger-Swineford example: four-factor
solution.

Spatial Verbal Speed Memory

visual
cubes
paper
flags
general
paragrap
sentence
wordc
wordm
addition
code
counting
straight
wordr
numberr
figurer
object
numberf
figurew
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OO OO0 O0OO0OO0ODOOXXXXXOO0OO0OO
OO OO0 O0OOXXXXOOOOOOOOoOOoO
XXXXXXOOODODODODOOOOOOO

25 50 100 200 500 2000

25 50 100 200 500 2000

Results

Using the Gelman-Rubin convergence diagnostic, both the
one-factor solution (R < 1.004) and four-factor solution
(R <1.033) achieved convergence. Figure 4 presents the dis-
tribution of KS-PPMC statistics and PPPx values across all
item-pair correlations with the one-factor solution and the
four-factor solution. As shown in the boxplot, the average KS-
PPMC statistics were higher in the one-factor model
(Uks_ppmc = -446)  than in the four-factor model
(Uks_ppmc = -310), which indicates worse local model fit in
the one-factor solution than in the four-factor solution. In
addition, the range and standard deviation of the KS-PPMC
statistics in the one-factor model (sd = .319) were wider than
in the four-factor model (sd = .198), which indicated the
higher variation of KS-PPMC statistics in the one-factor
model. From the one-factor model results, the highest KS-
PPMC statistic was found in the correlation between indicator
pair 10 and 12 (KS-PPMC = .999), while in the four-factor
model, the highest KS statistics was found in the correlation
between indicator pair 2 and 10 (KS-PPMC = .837). These
results suggest that, according to the KS-PPMC results, the
four-factor model fixed much of the local misfit in the one-
factor model.

For comparison, Figure 5 shows the distribution of PPP
values across the whole item-pair correlations with the one-
factor and four-factor models. Here, similar to the KS-PPMC
statistics, the average PPP value for the four-factor model was
closer to .5 (PPP = .525) than the one-factor model
(PPP = .699). However, the range and standard deviation for
the one-factor (sd = .297) and four-factor models (sd = .302)
were very similar. In addition, in the one-factor model, 25
item-pair correlations yielded PPP values equal to one. One
of the problematic item-pair correlations included the correla-
tion between items 10 and 12, which also had the highest KS-
PPMC statistic. Indicator pair 2 and 10 had the lowest PPP
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Figure 5. PPP statistics boxplot for one-factor and four-factor solutions.

value (PPP = .021) in the one-factor model. For the four-
factor model, indicator pair 2 and 10 had the lowest PPP
value and indicator pair 8 and 10 had the highest PPP value.

Discussion

In this study, we proposed a model comparison approach to
model checking in Bayesian CFA. In our investigation, we
showed acceptable sensitivity of PPP values for three forms of
misspecification (underspecified, overspecified, and wrongly
specified) when the sample size was moderately large (i.e.,
N =500), in accordance with previous studies (e.g., Hoofs

et al., 2018). However, similar to the findings of previous
research, PPP values were insensitive to small samples com-
bined with an overspecified model. Our simulation study
showed that the PPMC using KS statistics could be an alter-
native way of detecting local misfit in Bayesian CFA. For large
sample sizes, KS-PPMC showed similar patterns with PPPx
values. When sample sizes are small, more indicator correla-
tions showed higher KS-PPMC statistics in the overspecified
model than those in the correct model; for comparison, less
than half item correlations show higher PPPx values.

In addition, we did not find that KS distance metrics are
insensitive to the discrepancy between analyzed distributions,
as shown in prior studies using re-sampling methods (e.g.,
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Grenneberg & Foldnes, 2019; Marcoulides et al., 2020). Some
methodological differences may explain the inconsistency. The
posterior predictive distributions of the test statistic in our
study are possibly more robust than the bootstrapping distri-
bution or the empirical posterior predictive under saturated
model are more sensitive to misfit compared to the theoretical
uniform distribution used in the previous study. Further
research is necessary to understand the interaction effects
between KS statistic with varied model checking approaches
(e.g., PPMC vs. bootstrap resampling).

PPMC using saturated model vs. PPP value

In summary, there are several similarities between KS-PPMC
statistics and PPP values in this data analysis. First, both KS-
PPMC statistics and PPP methods suggest that more local misfit
exists in one-factor models than in four-factor models, which is
consistent with previous research (Asparouhov & Muthén,
2020). Second, both KS-PPMC statistics and PPP values identi-
fied indicator pair 10 with 12 in the one-factor model and
indicator pair 2 with 10 in the four-factor model as having the
greatest amount of local misfit. However, there were also some
differences between these two approaches. Using PPP values,
some indicator pair correlations may reach the maximum of
one (i.e., 25 item pair correlations have a PPP value 1 in the one-
factor model). However, the KS-PPMC statistics were never as
extreme, which makes model comparison possible.

The PPMC approach using a saturated model could be a very
useful tool for detecting local misfit in a fully Bayesian frame-
work. The underlying idea of comparing a saturated model to an
alternative model is consistent with the ML-based model fit (i.e.,
RMSEA and SRMR). The only difference is that the model-data
fit is represented by the overlap between the posterior predictive
distribution of test statistics rather than a chi-square difference.

Both the PPP approach and KS-PPMC statistics can be good
ways for checking local misfit in Bayesian CFA. When thefit is
poor, KS-PPMC statistics may be more informative than PPP
as KS-PPMC statistics never reach extreme values. In sum-
mary, KS-PPMC statistics could be a supplementary approach
for PPP methods for checking local misfit in Bayesian CFA.

Limitations

This study has a few limitations which can be considered as
future research directions. One limitation of this study is the
missing cutoff scores for the KS-PPMC statistic. The universal
cutoft scores for KS-PPMC statistics may not exist but false
discovery rate—a method to control the error rate could be
further investigated to find the criterion for KS-PPMC statistics.
The second limitation is the computation time. For some CFA
structures with large number of indicators, estimating posterior
information of saturated model may be time-consuming, if not
impossible. For this situation, the variational approximations
method could be an alternative option (e.g., Dang & Maestrini,
2021). The last limitation is prior settings. Different choices of
priors may affect the convergence of the model and even the

detection error rates of PPMC. However, this problem has not
been well researched. Future studies may focus on investigating
the sensitivity of priors on the performance of PPMC methods.

Disclosure statement

No potential conflict of interest was reported by the author(s).

ORCID

Jihong Zhang
Jonathan Templin
Catherine E. Mintz

http://orcid.org/0000-0003-2820-3734
http://orcid.org/0000-0001-7616-0973
http://orcid.org/0000-0002-8959-0013

References

Asparouhov, T., & Muthén, B. (2020). Advances in Bayesian model fit
evaluation for structural equation models. Structural Equation
Modeling: A Multidisciplinary Journal, 28, 1-14. https://doi.org/10.
1080/10705511.2020.1764360

Boomsma, A. (1987). The robustness of maximum likelihood estimation in
structural equation models. In P. Cuttance and R. Ecob (Eds.), Structural
modeling by example: Applications in educational, sociological, and beha-
vioral research (pp. 160-188). Cambridge University Press.

Dang, K.-D., & Maestrini, L. (2021). Fitting structural equation models via
variational approximations. arXiv:2105.15036 [stat]. Retrieved August
7, 2021, from http://arxiv.org/abs/2105.15036

Garnier-Villarreal, M., & Jorgensen, T. D. (2019). Adapting fit indices
for bayesian structural equation modeling: comparison to maxi-
mum likelihood. Psychological Methods, 25, 46-70. https://doi.org/
10.1037/met0000224

Gelman, A., Meng, X.-L., & Stern, H. (1996). Posterior predictive assess-
ment of model fitness via realized discrepancies. Statistica Sinica, 6,
733-807 http://www.jstor.org/stable/24306036 .

Grenneberg, S., & Foldnes, N. (2019). Testing model fit by bootstrap
selection. Structural Equation Modeling: A Multidisciplinary Journal,
26, 182-190. https://doi.org/10.1080/10705511.2018.1503543

Holzinger, K. J., & Swineford, F. (1939). A study in factor analysis: The
stability of a bi-factor solution. Supplementary Educational
Monographs, no. 48. Chicago: University of Chicago, Department of
Education.

Hoofs, H., van de Schoot, R., Jansen, N. W. H., & Kant, I. (2018). Evaluating
model fit in bayesian confirmatory factor analysis with large samples:
simulation study introducing the BRMSEA. Educational and
Psychological Measurement, 78, 537-568. https://doi.org/10.1177/
0013164417709314

Kaplan, D. (1988). The impact of specification error on the estimation,
testing, and improvement of structural equation models. Multivariate
Behavioral Research, 23, 69-86. https://doi.org/10.1207/
$15327906mbr2301_4

Lee, T., Cai, L., & Kuhfeld, M. (2016). A poor person’s posterior predictive
checking of structural equation models. Structural Equation Modeling:
A Multidisciplinary Journal, 23, 206-220. https://doi.org/10.1080/
10705511.2015.1014041

Levy, R., Mislevy, R. J., & Sinharay, S. (2009). posterior predictive model
checking for multidimensionality in item response theory. Applied
Psychological Measurement, 33, 519-537. https://doi.org/10.1177/
0146621608329504

Levy, R. (2011). Bayesian data-model fit assessment for structural equa-
tion modeling. Structural Equation Modeling: A Multidisciplinary
Journal, 18, 663-685. https://doi.org/10.1080/10705511.2011.607723

Marcoulides, K. M., Foldnes, N., & Grenneberg, S. (2020). Assessing
model fit in structural equation modeling using appropriate test
statistics. Structural Equation Modeling: A Multidisciplinary Journal,
27, 369-379. https://doi.org/10.1080/10705511.2019.1647785



McDonald, R. P. (1999). Test theory: A unified approach. Erlbaum.

Muthén, B., & Asparouhov, T. (2012). Bayesian structural equation
modeling: A more flexible representation of substantive theory.
Psychological Methods, 17, 313-335. https://doi.org/10.1037/
20026802

Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical
models using Gibbs sampling. In Proceedings of the 3rd International
workshop on distributed statistical computing.

R Core Team. (2020). R: A language and environment for statistical
computing. R Foundation for Statistical Computing. https://www.
R-project.org/

STRUCTURAL EQUATION MODELING: A MULTIDISCIPLINARY JOURNAL e 349

Robins, J. M., van der Vaart, A., & Ventura, V. (2000). Asymptotic
distribution of P values in composite null models. Journal of the
American Statistical Association, 95, 1143-1156. https://doi.org/10.
1080/01621459.2000.10474310

Rosseel, Y. (2012). Lavaan: An R package for structural equation mod-
eling and more. Version 0.5-12 (BETA). Journal of Statistical
Software, 48, 1-36. https://doi.org/10.18637/jss.v048.i02

Wu, H,, Yuen, K.-V,, & Leung, S.-O. (2014). A novel relative entropy—poster-
ior predictive model checking approach with limited information statistics
for latent trait models in sparse 2k contingency tables. Computational
Statistics ¢ Data Analysis, 79, 261-276. https://doi.org/10.1016/j.csda.
2014.06.004



