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Abstract—Conventional False Data Injection (FDI) attacks
yield a distinct change of measurement values which can be easily
detected using the state-of-the-art anomaly detection methods.
However, if the attackers can learn the statistics of daily load
measurement data (e.g., through snooping attacks), then smart
FDI attacks can be designed to gradually alter the measurement
characteristics over time to avoid detection. In this work, we
provide a methodology to protect against smart FDI attacks.
First, we create a smart FDI attack that can go undetected when
using current state-of-the-art solutions. We then create a novel
smart grid cyber defense framework that encrypts measurement
data within the power grid and then decrypts data received at
the control center to reveal attacked data samples. The proposed
framework was validated using the IEEE 118-bus system. Per-
formance was compared between the proposed framework, the
Ensemble CorrDet with Adaptive Statistics (ECD-AS) bad data
detection methodology and the quasi static model weighted least
squares state estimator solution. Results show a mean F1-score
of 95% for the proposed technique, 15% for ECD-AS and 18%
for the quasi static least square method.

Index Terms—false data injection, machine learning, smart
grid, encryption

I. INTRODUCTION

Due to the rapid transition to smart grid (SG), the applica-
tion of machine learning technology in power systems research
has become a growing trend. These techniques help next-
generation power systems achieve greater stability, efficiency
and robustness of physical processes through integrated con-
trol, communication and calculation. However, along with the
transition towards the SG paradigm and advanced technology
implementation, the power system becomes vulnerable to
cyber threats, especially the serious threats on infrastructures.
Cyber-attacks, if not detected, can yield misinformation to
system operators and potentially cause a collapse of the power
system [1], [2]. While much research has been done to address
this concern [3]–[5], methods to employ encryption in SG
data security are still developing and can be more thoroughly
explored. In network security of the SG monitoring system,
the core process is State Estimation (SE), the cornerstone of
real-time monitoring used by utility companies. SE analyzes
the measurement results of the entire system to estimate the
voltage and phase of each bus. SE results can be used in
many applications, including bad data analysis, which can

This material is based upon work partially supported by the National
Science Foundation under Grant Number 1809739.

be used to detect and identify various potential cyber-attacks
on SG. Currently, Machine Learning (ML) technology is
used to obtain more accurate results through statistical data
analysis or to assist in the detection process by considering
previous measurement data information [6]. In the authors’
previous work [7], an adaptive data-driven anomaly detec-
tion framework, Ensemble CorrDet with Adaptive Statistics
(ECD-AS), is presented to detect FDI cyber-attacks under a
constantly changing system state. ECD-AS uses the mean and
covariance matrices of normal samples in the measurement
data to adapt its model parameters to changing state of the
power system. However, its heavy reliance on measurement
statistics might cause its downfall when attackers have either
full or partial system knowledge and use this knowledge to
gradually inject false data over time, thereby causing ill effects
on the functionality of the grid [8].

In this paper, we provide a methodology to protect against
smart FDI attacks. First, we design a smart FDI attack to
compromise the data integrity of power system measurements
based on an attacker gaining knowledge about measurement
data and devising attacks that can fool data driven ML-based
bad data detection techniques. Next, we present a new en-
cryption/decryption framework to enhance real-time analysis
and secure the transmission of power system measurement
data. The proposed framework intentionally manipulates data
to alter their statistics prior to sending it to the control center.
These intentional changes are reverted at the control center
to reveal which data samples are the original measurements
and which, if any, are attacked/invalid measurements before
using the data for various grid functionalities. Therefore, the
contributions of this work are twofold:

1) Design of smart FDI attacks that alter measurement
statistics gradually over time resulting in harder to detect
FDI attacks;

2) An encryption/decryption framework for measurement
data to tackle smart FDI attacks;

The remainder of the paper is organized as follows. Sec-
tion II provides background information on SE and ECD-
AS. Section III presents the adversary model and the en-
cryption/decryption framework. A case study is shown in
Section IV. Finally, Section V presents conclusions.



II. BACKGROUND INFORMATION

A. State Estimation

In modern Energy Management Systems (EMS), the detec-
tion of bad data is a typical application of the SE process. The
common approach to SE is using the classical Weighted Least
Squares (WLS) method described in [9]. In this approach, the
system is modeled as a set of non-linear equations based on
the physics of the system:

z = h(x) + e (1)

where z ∈ R1×d is the measurement vector, x ∈ R1×N

is the vector of state variables, h : R1×N → R1×d is a
continuously non-linear differentiable function, and e ∈ R1×d

is the measurement error vector. Each measurement error,
ei is assumed to have zero mean, standard deviation σi
and Gaussian probability distribution. d is the number of
measurements and N is the number of states. In the classical
WLS approach, the best estimate of the state vector in (1) is
found by minimizing the cost function J(x):

J(x) = ‖z− h(x)‖2R−1 = [z− h(x)]TR−1[z− h(x)] (2)

where R is the covariance matrix of the measurements. In
this paper, we consider the standard deviation of each mea-
surement to be equal to 1% of the measurement magnitude.
The solution to the aforementioned minimization problem is
obtained through the linearization of (1) at a certain point x∗.
The closed form solution of the linearized model is

∆x̂ = (HTR−1H)−1HTR−1∆z. (3)

where H = ∂h
∂x is the Jacobian matrix of h at the current

state estimate x∗, ∆z = z − h(x∗) is the correction of the
measurement vector. Hence, at each iteration, a new incumbent
solution x∗

new is found and updated following x∗
new = x∗+∆x̂

until ∆x̂ is sufficiently claimed to be small. Using the Inno-
vation Index (II) [10], [11], which quantifies the undetectable
error, the Composed Measurement Error (CME) for each
measurement i can be expressed as follow:

CMEi = ri

(√
1 +

1

IIi
2

)
. (4)

where ri is the residual and IIi is Innovation Index of
the ith measurement. The IIi is strictly positive given that
measurement is not critical [10]. The CME values for the set
of measurements can then be used in Bad Data Analysis [12].
In particular, the CME based objective function value in (5) is
compared to a chi-squared threshold test. If the value of JCME

is greater than the chi-squared threshold (with probability p
and the degrees of freedom d), then an error is detected in the
measurement set.

JCME(x̂) =
d∑
i=1

[
CMEi
σi

]2
> χ2

d,p (5)

B. Ensemble CorrDet with adaptive statistics

ECD-AS [7] is an extended work of CorrDet algorithm used
for anomaly detection. The CorrDet algorithm updates the
statistics of normal samples distribution including mean value
and covariance matrix using the Woodbury Matrix Identity
[13] in an online fashion when a new sample is detected
as normal (if its squared Mahalanobis distanceis less than
a threshold). The adaptive threshold introduced in ECD-AS
shown in (6) is updated according to statistics of squared
Mahalanobis distances of the most recent β normal samples
with respect to the distribution of normal samples.

τ = µthr,−β + η ∗ σthr,−β . (6)

where σthr,−β is the standard deviation , µthr,−β is the mean
of squared Mahalanobis distances of most recent β normal
samples and value of η decides how many standard deviations
the threshold should be from the mean. ECD-AS estimates
a set of local CorrDet detectors i.e., φm(µm,Σm,τm) for
each bus m where µm is mean, Σm is covariance matrix
and τm is adaptive threshold for normal samples associated
with measurements at bus m. By design, ECD-AS avoids to
learn on the very high dimensional data (measurement data
in the SG) but can still capture the information in the higher
dimensional data for better anomaly detection.

III. METHODOLOGY

A. Adversary Models

The three different FDI attack models (random, scaling and
ramp) [14] for the value of the injected FDI attack at time t,
can be represented by y∗[t], as shown in (7),

y∗[t] =


y[t], t /∈ τa
y[t] + rand(p, q), t ∈ τa −−−Random
y[t](1 + λs), t ∈ τa −−− Scaling
y[t](1 + λr), t ∈ τa −−−Ramp

(7)

where y[t] is the original value of measurement y at time t,
rand(p, q) is a random number generated using a uniform
random function in the interval [p, q], λs is a constant value
termed as scaling attack factor, λr derives values from a ramp
function that gradually increases or decreases with time, and
τa corresponds to the attack time period.

In this paper, we develop four different attack models based
on Ramp FDI (RFDI) attacks, as they are shown to have large
impact and are harder to detect among various FDI attacks
[14]. RFDI attacks change the measurement values gradually
with time, altering the measurement statistics such as mean
and standard deviation, slowly away from their true values.
Data driven and ML based FDI attack detection frameworks
in the literature [7] often use these measurement statistics
to train their detection models. Hence, a smart RFDI attack
would be particularly challenging for such data driven FDI
attack detection frameworks. The ramp function used in RFDI
attacks can either have linearly or smoothly changing values
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Fig. 1. Examples of smart RFDI attacks

as shown in Fig. 1 for Linear Ramp and Smooth Ramp
which impacts the rate at which inserted false data changes
measurement statistics. In Fig. 1, we illustrate the variation
in measurement values for normal (orange dots) and attacked
(blue dots) samples for various RFDI attack models. We show
examples of 4 RFDI attack models for 150 samples where 50
samples (blue dots) are under attack.

In our adversary model, we focus on attacks where the
attacker intercepts and alter measurement data in the com-
munication channel to compromise various grid functionality
[15] as shown in Fig. 2. We assume collected measurements
not to be compromised before being encrypted and sent to
the control center. In order to devise smart attacks that are
harder to detect, attackers first need to orchestrate snooping
attacks to learn about the measurement statistics. Passive
snooping attacks (only listening) are harder to detect than
spoofing (listening + altering packet content) [16]. We consider
Modbus RTU over TCP/IP networking technology, which is
commonly used in SG environments to facilitate communi-
cation between power grid and control center. The attacker
would advertise false information using Address Resolution
Protocol (ARP) messages or by directly hijacking the router
associated with a bus to read the content (measurement values)
of the packets or to manipulate it [17]. Attacks are orchestrated
in two phases: Attack Preparation (passive snooping) and
Attack Insertion (spoofing). In the attack preparation phase, the
attacker performs passive snooping for an attack preparation
time period (τap) sufficient to estimate target measurement
statistics. During the attack insertion (spoofing) phase, attacker
inserts malicious data for attack insertion time period τai
obtained from a ramp function considering following options:

• Option-1 : waits for the packet containing measurement

Fig. 2. System architecture of the proposed encryption/decryption framework

value at current time sample t to alter it and then reroute
the same packet to control center, OR

• Option-2 : sends a new packet with false measurement
value developed based on learned measurement statistics
for time sample t directly to the control center before
intercepting original packet, and either use it to update
measurement statistics or discard it when it is intercepted.

Option-2 results in less average time delay in the network
as the attacker does not have to wait until the original packet is
intercepted to send false data to control center, thereby making
it slightly harder to detect compared to Option-1. Based on a
linear or smooth ramp function variation, and the above two
options for the second phase of the attacks, we design four
RFDI attack models, where examples are shown in Fig 1 (the
orange dots are the true values and the blue represents RFDI
attacks). Note that, in all of the aforementioned RFDI attacks,
measurements statistics are taken into account.

1) RFDI-1: In this attack model, the attacker chooses
Option-1 during attack insertion phase and the ramp function
varies linearly with time. This attack model is given in (8).

y∗[t] =

{
y[t], t /∈ τai
y[t] + λlinear ∗ σ(y[t− τap : t]), t ∈ τai

(8)

2) RFDI-2: In this attack model, equation for RFDI-1 is
used, but the ramp function varies smoothly with time. Hence,
λsmooth is used instead of λlinear in (8).

3) RFDI-3: In this attack model, attacker chooses Option-
2 during attack insertion phase and the ramp function varies
linearly with time. The model of this attack is given in (9).

y∗[t] =


y[t], t /∈ τai
µ(y[t− τap − 1 : t− 1])+

λlinear ∗ σ(y[t− τap − 1 : t− 1]), t ∈ τai
(9)

4) RFDI-4: In this attack model, equation for RFDI-3 is
used, but the ramp function varies smoothly with time. Hence,
λsmooth is used instead of λlinear in (9).

In (8) and (9), τap is attack preparation time period, τai is
attack insertion time period, λlinear & λsmooth are linear and
smooth ramp functions, µ is mean, and σ standard deviation.

B. Encryption and Decryption

In Fig. 2, we show encryption and decryption layers added
to the SG along with a ML layer for further data anal-



Procedure 1 Encryption, Attack insertion, Decryption
1: Encryption

Input: Z,Ztrain, N,Nc,S,M
2: for zi where i = 1 : M do
3: for j = 1 : (N/Nc) do
4: Set random.seed = i× S[j] using S from Eq. 10
5: Tt = genRandInt((j − 1)×Nc + 1 , j ×Nc, Nt)
6: Tv = genRandVal(Tsd × σ(Zi,train), Nt)
7: z[t]∗i = z[t]i + Tv...∀t ∈ Tt

8: z[t]∗i = z[t]i...∀t /∈ Tt

9: end for
10: end for
Output: Z∗

11: Attack Insertion
Input: Z∗, τap, τai, λ
12: Select attack model among RFDI-1,.., RFDI-4
13: Insert attacks using corresponding Eq. of the chosen model
Output: Z∗∗

14: Decryption + Detection
Input: Z∗∗,Ztrain, N,Nc,S,M
15: for z∗∗i where i = 1 : M do
16: for j = 1 : (N/Nc) do
17: Set random.seed = i× S[j] using S from Eq. 10
18: Tt = genRandInt((j − 1)×Nc + 1 , j ×Nc, Nt)
19: Tv = genRandVal(Tsd × σ(Zi,train), Nt)
20: z[t]i = z∗∗[t]i −Tv...∀t ∈ Tt

21: z[t]i = z∗∗[t]i...∀t /∈ Tt

22: end for
23: end for
Output: Z
24: Use ECD-AS method [7] to detect attacks in Z using

Ztrain as training set.

ysis and attack detection in control center. The proposed
encryption process intentionally transmutes a subset of pseudo
randomly selected measurement samples by adding pseudo
random values. Any attacker intercepting measurement data
in the communication network will only have access to
these transmuted data. Since only a subset of measurement
samples are transmuted, it will be more challenging for the
attacker to understand the true measurement statistics needed
to successfully devise the smart FDI attacks discussed in
Sec III-A. The transmutation methodology is designed in a
way to allow decryption of added pseudo random elements
to obtain the true measurement values at control center.
These measurement values are further analyzed by the state
estimator/ML layer to support various grid functionalities. A
part of original measurement data that is kept aside for training
of attack detection framework is also used to generate pseudo
random values needed for measurement transmutation. Let
Ztrain ∈ RNtrain×M represent training measurement data,
where Ntrain is the number of training samples and M is the

total number of measurements. Let Zi,train ∈ RNtrain×1 be
the ith measurement of training data, where i = 1 : M . During
transmutation of measurement data, there are 2 important
factors to consider, one is which time samples to transmute
Tt and the second is what values Tv to add. We use the
concept of generating pseudo random numbers using fixed
random seed values as a starting point to our transmutation
process, as a pseudo random number generator with same
random seed and other input parameters always return same
set of numbers. In our experiments, for illustration purposes
we use values from Lazy Carter Sequence S defined in (10)
for setting random seed during measurement transmutation.
Any similar fixed integer sequence can be used to define S.

S[j] = (j2 + j + 2)/2 (10)

The proposed framework is implemented considering
chunks of measurement data. We present data encryption,
attack insertion, measurement data decryption and attack de-
tection processes in Procedure 1. Let the total number of
time samples in the measurement data be N , number of time
samples in each data chunk be Nc, set of time samples to
be used for measurement transmutation be Tt and have Nt
elements for a given a data chunk, Tsd be a multiplying
factor to vary scale of pseudo random values added during
transmutation, the true measurement data to be encrypted and
sent to the control center be Z ∈ RN×M , let the encrypted
data be Z∗ ∈ RN×M , genRandInt(a, b, c) be a function
that returns a set of c random integer values in the interval
[a, b], genRandVal(p, q) be a function that returns q values
from a zero-mean Gaussian distribution function with standard
deviation p, and the data which might have attacks be Z∗∗.

IV. CASE STUDY

The proposed framework for detection of smart FDI at-
tacks was validated using the IEEE 118-bus system. Using
the MATLAB package MATPOWER [18], 21,600 samples
(i.e. one day’s worth) of measurements were generated with
Gaussian noise based on a common daily load profile that
contains temporal information of a power system’s changing
state. The measurement set includes real and reactive power
flows, power injections, and all voltage magnitudes, resulting
in 691 measurements with Global Redundancy Level (GRL =
d/N ) of 2.69, which relates the number of measurements (d)
to the number of states (N ) to be estimated.

A. Numerical results and discussions

The proposed framework is evaluated for Smart FDI attacks
using Precision, Recall and F1-score metrics [19]. Precision
and Recall provides information about False Positives and
False Negatives respectively. Five different sets of training and
testing data are used to report mean values of performance
metrics. The number of attacked samples is maintained to be
around 5% of total number of samples. We use training data
(10% of original data) to design encryption parameters and
train ECD-AS detection models. The ECD-AS [7] algorithm
has several hyper-parameters that are optimized based on



TABLE I
PERFORMANCE COMPARISON OF THE PROPOSED FRAMEWORK (PREC:

MEAN PRECISION, REC: MEAN RECALL, F1: MEAN F1-SCORE)

Model SE [12] ECD-AS [7] Proposed

Prec Rec F1 Prec Rec F1 Prec Rec F1

RFDI-1 1.0 0.13 0.23 0.09 0.58 0.16 0.99 0.97 0.98
RFDI-2 1.0 0.05 0.09 0.08 0.52 0.14 0.97 0.93 0.95
RFDI-3 1.0 0.15 0.27 0.08 0.57 0.16 0.97 0.96 0.97
RFDI-4 1.0 0.06 0.11 0.08 0.53 0.14 0.97 0.86 0.91

cross validation experiments detailed in [7]. The optimized
parameters for ECD-AS method are α = 8e − 5, β = 450,
η = 4 while for the proposed method are α = 8e−5, β = 450
and η = 9. Other parameters defined in section III are chosen
as follows: Tsd = 2, Nt = 75, Nc = 100, τap = 50, τai = 50,
and the ramp function λ varies from 1 to 6 gradually. The λ
controls the level of deviation in measurement statistics during
smart RFDI attacks. Our experiments revealed that high value
of λ increase F1-score since the change in the data statistics
is drastic. In contrast, low λ reduces F1-score but the impact
on grid functionality is little to negligible.

Numerical results are shown in Table I for the physics
based state-of-the-art quasi static model (SE) [12], the ECD-
AS model without encryption/decryption (ECD-AS) [7] and
the proposed model. In [7], ECD-AS has been demonstrated
to perform better than many other random FDI detection
algorithms. However, ECD-AS fails to detect smart RFDI
attacks due to gradual shift in data statistics. This paper
addresses this drawback by enhancing the ECD-AS with
encryption/decryption scheme to be able to detect such smart
RFDI attacks with high F1-score. The data statistic plays a role
in differentiating normal and attacked samples in ML based
detection schemes such as ECD-AS. As shown in Table I,
proposed framework is able to detect most attacked samples
for the listed RFDI attack models. Smart RFDI attacks based
on the smooth ramp function (RFDI-2 and RFDI-4) result in
a lower F1-score, implying attacks that are harder to detect.
The physics based SE results in high mean precision only and
ECD-AS results in comparatively high mean recall only, but
the proposed framework results in much higher mean F1-score.

V. CONCLUSIONS

This paper presents a smart False Data Injection (FDI)
attack design and an easy to implement but effective en-
cryption/decryption mechanism for measurement data. The
smart RFDI (Ramp FDI) attack alters measurements gradually
over time considering measurement statistics. The proposed
encryption/decryption framework improves FDI detection by
changing the underlying statistics of the real measurements
that might be accessed by attackers in the communication
network, which makes the harder to detect smart RFDI attack
to be detected easily. The simulation results show that the
proposed framework results in much higher F1-scores for
attack detection in comparison with state-of-the-art quasi static
model weighted least squares state estimator solution and a

data driven FDI detection technique. The smart RFDI attacks
designed in this paper using a combination of snooping and
spoofing techniques can be used as baseline for future studies
related to data integrity attacks in smart grids.
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