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Ahmed Bin Zaman, Toki Tahmid Inan, Kenneth De Jong, and Amarda Shehu.

Abstract—We have long known that characterizing protein structures structure is key to understanding protein function. Computational
approaches have largely addressed a narrow formulation of the problem, seeking to compute one native structure from an amino-acid
sequence. Now AlphaFold2 promises to reveal a high-quality native structure for possibly many proteins. However, researchers over
the years have argued for broadening our view to account for the multiplicity of native structures. We now know that many protein
molecules switch between different structures to regulate interactions with molecular partners in the cell. Elucidating such structures de
novo is exceptionally difficult, as it requires exploration of possibly a very large structure space in search of competing, near-optimal
structures. Here we report on a novel stochastic optimization method capable of revealing very different structures for a given protein
from knowledge of its amino-acid sequence. The method leverages evolutionary search techniques and adapts its exploration of the
search space to balance between exploration and exploitation in the presence of a computational budget. In addition to demonstrating
the utility of this method for identifying multiple native structures, we additionally provide a benchmark dataset for researchers to
continue work on this problem.

Index Terms—protein structure; conformation sampling, stochastic optimization.
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1 INTRODUCTION

UNDERSTANDING the three-dimensional/tertiary struc-
ture of proteins is central to the recognition of molecu-

lar partners in the cell [1] and so holds the key to obtaining
a detailed understanding of protein function. A vast body
of work in molecular biology has been devoted to protein
structure determination. Early on, experimental techniques,
such as X-ray crystallography, revealed static snapshots
of protein molecules, capturing a protein in one tertiary
structure. Motivated in part by the inability of X-ray crys-
tallography to generalize over different protein molecules,
computational approaches stepped in. They leveraged a
narrow formulation of the protein structure determination
problem, where the goal was the determination of a single
structure, also referred to as the native structure, from a
given protein amino-acid sequence [2]. Impressive compu-
tational advances instigated via the ”Critical Assessment
of protein Structure Prediction” (CASP) competition were
made over the years [3]. In December 2020, they culmi-
nated in the AlphaFold2 method, which, contrary to what
the name suggests, presented a major advance in protein
structure determination (and not protein folding). Reports
from CASP14 suggest AlphaFold2 can now obtain a high-
quality native structure given an amino-acid sequence for
possibly a large number of proteins [4].

Yet, in a largely detached thread in computational molec-
ular biology, various researchers have advanced theory,
experiment, and methods to reveal significant additional
protein complexity; that is, proteins as inherently dynamic

• A. B. Zaman, T. T. Inan, K. De Jong, and A. Shehu are with the
Department of Computer Science, George Mason University, Fairfax, VA,
22030. A. Shehu is the corresponding author.
E-mail: azaman6@gmu.edu, tinan@gmu.edu, kdejong@gmu.edu,
amarda@gmu.edu

Manuscript received xxxxx xx, xxxx

systems using often large motions to switch between dif-
ferent structures with which to bind to different molecular
partners in the cell [5]. The dynamic view of proteins was
evident in the early experimental structures obtained via
Nuclear Magnetic Resonance (NMR); however, NMR is
limited to reveal small structural fluctuations. Then came
cryo-electron microscopy, which revealed the diversity of
native tertiary structures assumed by a protein molecule [6].

Many researchers over the years have argued for broad-
ening our computational treatment of proteins to account
for the multiplicity of native structures [7]. However, the
problem presents outstanding challenges, as it necessitates
exploring a vast, high-dimensional space in search of possi-
bly a very large number of functionally-relevant structures.
The majority of computational methods that can reveal
possibly multiple structures for a given protein leverage
deep insight about a specific protein of interest. For instance,
a line of work leverages experimentally-known structures of
a protein to reveal latent coordinates over which to generate
more structures [8], [9], [10], [11], [12], [13]. Other work
is strictly limited to generating structures that mediate the
transition between two given structures [14], [15], [16], [17],
[18], [19], [20]. Several methods leverage collective coordi-
nates to expedite numerical simulation (such as Molecular
Dynamics simulation) [21], [22]. While beyond the scope of
this work, adaptations to the classic Molecular Dynamics
continue to be pursued to reveal the motion between two
given structures or enhance the exploration of the structure
space even when starting from a known structure rather
than just the amino-acid sequence [23]. To the best of our
knowledge, there are no de-novo methods that, given an
amino-acid sequence alone, can reveal various functionally-
relevant tertiary structures available to a protein.

We present such a method here. To handle a vast and
high-dimensional search space, the method implements
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adaptive stochastic search/optimization under the umbrella
of evolutionary computation (EC) and leverages evolution-
ary search techniques to balance between exploration and
exploitation in the presence of a finite computational bud-
get. While EAs are naturally better suited to address the
exploration-exploitation balance for complex optimization
problems, existing EAs do not explicitly control this bal-
ance. We do so here by adaptively tuning the EA selection
pressure to attain a proper balance between exploration and
exploitation.

An earlier version of this method appeared recently
in [24], where we demonstrated on benchmark and CASP-
drawn datasets that the method managed to explore the
energy minimum containing the known native structure
of a given amino-acid sequence. In this paper, we extend
the methodology and evaluate it on it’s ability to identify
multiple structures using a benchmark dataset we have con-
structed and present here for researchers to further advance
work on this problem.

The rest of this paper proceeds as follows. A brief
summary of related work and preliminaries are provided
in Section 2. The methodology is presented in detail in
Section 3 and evaluated in Section 4. Findings are further
placed in context in Section 5, which concludes the paper.

2 RELATED WORK AND PRELIMINARIES

The method we propose in this paper builds on at least
two decades of work in computational biology and several
contributions by our laboratory. In this section, we summa-
rize the key developments that allow the reader to obtain a
complete picture of the method. Where relevant, we point to
other works that provide additional information not directly
related to the presentation of the method in Section 3.

At a high-level, the presented method makes use of three
components: (1) a way to represent a three-dimensional
structure that allows for generating more structures; (2) a
scoring/energy function that allows for comparing struc-
tures, determining which ones are more relevant for func-
tion/activity, and so connect between computation and the-
ory; (3) an algorithm that utilizes (1) and (2) and so explores
the structure space of a given amino-acid sequence by com-
puting/sampling new structures in search of near-optima
of the scoring function evaluated over computed/sampled
structures.

2.1 The Structure Representation

The choice of how to represent a tertiary protein structure is
key. In general, this choice has an oversized impact on the
performance of an optimization algorithm and is studied
in great detail in the EC community for various optimiza-
tion problems [25]. For computations of protein structures,
researchers have used a variety of representations, ranging
from the straightforward Cartesian Coordinates, to ideal-
ized coordinates, dihedral/torsion angles, contact maps,
distance matrices, etc. The representation employed in this
paper is the dihedral angle-based representation, which
is also popular with the popular Rosetta framework [26],
Quark [2], and others. One of the reasons is expediency;
given dihedral angles, forward kinematics can be used

to directly obtain the Cartesian coordinates of the atoms;
scoring functions operate over distances in Euclidean space.
In contrast, contact maps and distance matrices need to be
converted to tertiary structures. The process is not one-to-
one and requires an additional optimization method (utiliz-
ing the contacts or distances as restraints). The other reason
is related to the ability to utilize fragment to compute new
structures from existing ones.

2.1.1 Molecular Fragment Replacement
A leap was made more than two decades ago, with the
introduction of the molecular fragment replacement [27].
The realization by Baker and colleagues was that despite the
diversity of protein structures, there is only a finite number
of structural pieces/fragments utilized as legos to build
tertiary structures. So, a simple approach was suggested.
First, excise fixed-length pieces off known protein structures
in databases, such as the Protein Data Bank (PDB) [28] to
construct a fragment library indexed by fragment amino-
acid sequences. Each fragment in the library was repre-
sented as a vector of backbone dihedral angles defined
over a block [i, j] of consecutive amino acids. This notation
specifies that the fragment ranges from amino acid i and to
amino acid j in the sequence. A fragment configuration for
this fragment is comprised of a vector of 3·(j−i+1) dihedral
angles, with three dihedral angles specified for each amino
acid (φ, ψ, and ω) that can be defined over bonds connecting
consecutive backbone atoms in a fragment. The interested
reader is referred to Ref. [29] for a review of protein geom-
etry. Popular values for the chosen fragment length range
in {3, 6, 9}. A new structure can be easily obtained by first
choosing a random amino acid at position i in the chain and
then replacing the configuration for fragment [i, i + f − 1]
in the current structure with a new configuration chosen
from the fragment library. It is worth noting that, while the
exposition above suggests one can easily construct their own
fragment libraries, we elect instead to utilize those provided
by Baker for a given amino-acid sequence, as the concept
of fragments is extended to include sequence-similar ones
(beyond identical amino acids).

2.1.2 Structure versus Conformation
We draw a distinction between structure and conformation.
Specifically, a conformation is the result of instantiating
variables selected to represent a tertiary structure. Since
we utilize here the backbone dihedral angles to represent
a protein tertiary structure, the selected variables are the
backbone dihedral angles, and a conformation is a specific
point in the variable space (of backbone dihedral angles).
Through forward kinematics, we can go from conformation
to structure (thus recovering the Cartesian coordinates of
the atoms). The reverse is a straightforward calculation from
coordinates to angles. It is worth noting that we do not carry
these operations in house. The method we propose utilizes
the Rosetta framework [26].

2.2 The Scoring Function
The conformation (and resulting structure) space avail-
able to a given amino-acid sequence is vast and high-
dimensional. Some back-of-the-envelope calculations pro-
vide the context. Consider a short protein sequence of 60
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amino acids. This results in 178 backbone dihedral angles (3
– φ, ψ, and ω – angles for each amino acid, save for the first
two), thus giving rise to a 178-dimensional conformation
space. Not all conformations correspond to energetically-
favorable structures. Some conformations are clearly un-
favorable, containing steric clashes among portions of the
chain. Others are not energetically-favorable for a variety
of reasons, captured in a scoring function that operates
over Euclidean distances between atoms. The method we
propose here utilizes the Rosetta score4 scoring function
that can operate over backbone atoms. Given a scoring func-
tion, the goal becomes to explore the conformation space in
enough detail so as to reveal near-optimal structures. The
lower the score, the more energetically-feasible a structure
is; so, our method seeks to obtain a broad view of potentially
different local minima of a given scoring function.

2.3 The Optimization Algorithm

It is not immediately clear how to devise an algorithm that
can handle a vast, high-dimensional space and find many
different local minima. Our research over the years has
demonstrated that EAs have a higher exploration capability
than gradient descent, Metropolis Monte Carlo (MMC), or
even Simulated Annealing MMC (SA-MMC) [30], [31]. That
is, given a finite computational budget, EAs see more of
the structure space (or the associated scoring function).
However, the measure of success of these EAs has been
limited to getting to the local minimum housing a known
native structure over benchmark test datasets popular for
evaluating protein structure prediction methods that em-
ploy the single-structure view.

2.3.0.1 The EA framework: For the benefit of the
reader, we summarize the basic ingredients of a hybrid EA
(HEA) over which we build here. HEA is a population-
based EA that evolves a fixed-size population over gener-
ations. The population consists of p conformations, which
are generally referred to as individuals in EC literature. It
is the task of the initial population operator to instantiate the
first population of conformations. In each generation, the
individuals in the current population are considered parents
and offspring are produced from the parents via a variation
operator. Specifically, the molecular fragment replacement
technique described above is utilized in the variation op-
erator. The offspring are then subjected to an improvement
operator to further improve their (Rosetta) score, which is
more generally referred to as fitness in EC literature. The
employment of an improvement operator is what makes
this EA a hybrid EA. The improved offspring then compete
with the top parents, and a selection operator down-selects
to p individuals that initialize the population for the next
generation. Each of these operators are described in greater
detail in related work [24], [32].

We have recognized from the body of earlier work that
the enhanced exploration afforded by an EA has been key
so as not to miss near-native structures in the presence of
an inaccurate scoring function. The latter is an important
point. All scoring functions, including the Rosetta suite,
contain inherent biases and may not associate the lowest
energy/score with a given native structure. This issue is ex-
acerbated when the goal expands to providing a multiplicity

of native structures, as the scoring function may be biased
towards one or a portion of the structures, penalizing others
that indeed are captured by experimental techniques.

2.3.1 Balancing between Exploration and Exploitation on
the Fly
When the goal expands to obtaining diverse structures cor-
responding to different local minima in the scoring function,
a proper balance between exploration (sampling more of
the conformation space) and exploitation (drilling further
down to find local minima) is critical. The EC setting
exposes algorithmic knobs/parameters such as population
size, variation, and selection, which can be varied to control
the inherent trade-off between exploration and exploita-
tion. Many EC researchers working on other optimization
problems have focused on how to vary the values of these
parameters in an adaptive manner [33], [34], [35], [36], [37].

While many approaches beyond the scope of this paper
have been evaluated in EC literature, in this paper we pur-
sue adaptive control. As we detail further in Section 3, the
adaptation mechanism takes feedback from the optimiza-
tion process, monitoring progress along selected statistics,
and utilizes changes in these statistics to determine when
and how to change parameter values. We note that adaptive
parameter control is deemed to be the more effective way of
adapting parameters, and so most research activities in EC
literature are focused on it [38], [39].

Choosing what to adapt and when require careful con-
sideration. Parameters that are generally adapted in EC
literature are the variation operator, the population size, the
representation, and/or the selection mechanism. Consider-
ing the two decades of research in modeling protein tertiary
structures and our own body of work, we determine that
the selection mechanism represents the most promising one
for adaptation. In particular, in EAs, most of the exploitation
comes from the applied selection mechanism. The decision
when to adapt depends on detecting changes to statistics of
interest. Two popular statistics in EC literature are fitness
and diversity of the individuals (conformations in our case).
Approaches that track fitness periodically check for change
in best fitness of the individuals [40], the difference between
the best fitness and the average fitness of a population [41],
the fitness ranking of each individual [42], best-fitness fre-
quency [43], or the success/fitness gain of the parameter val-
ues [44], [45]. Approaches that track diversity periodically
check the Euclidean distances between individuals and the
best-so-far individual [43], the Euclidean distances among
individual solutions [46], the Hamming distance among
individuals [47], or the diversity over the best, worst, and
average fitness of individuals in the population [48]. The
interested reader is referred to [38], [49] for a more detailed
review of the feedback mechanisms used in EC literature. In
this paper, we elect to use periodic change in best fitness.

3 METHODS

3.1 Underlying Framework: A Hybrid EA
As described in Section 2, to investigate the effects of chang-
ing selection pressure to obtain different exploration and
exploitation capability in EAs, we build upon a baseline
hybrid EA, the HEA proposed in [30] and evaluated against
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Rosetta and others [30], [31]. HEA contains the basic evo-
lutionary ingredients and evolves a fixed-size population of
individuals/structures for a number of generations. For the
selection mechanism, HEA uses truncation selection which
is well-known to provide strong selection pressure that
results in more exploitation and less exploration. From now,
we refer to this baseline HEA algorithm as HEA-TR (TR for
truncation). So as not to distract from the presentation, we
provide more details on HEA-TR in the Appendix.

3.2 Main Ingredients of Adaptation Approach

As related in Section 2, we exert our control on the selec-
tion mechanism. So as to apply a wider range of selection
pressure, we propose to switch between different selection
schemes with different selection pressure to control the
exploration-exploitation balance during an EA. This con-
stitutes a novel approach and is the main methodological
contribution of this paper. We believe this approach is of
interest both more broadly for the EC and optimization
community, as well as for computing diverse functionally-
relevant structures of a protein.

The greediness (the propensity to select fitter individu-
als) of the selection mechanism is directly related to the ex-
ploration/exploitation pressure exerted by an EA. A greed-
ier selection operator applies stronger selection pressure
and results in more exploitation and less exploration of the
search space. How to adjust the selection pressure on the fly
during an EA is nontrivial and requires careful thinking.
Adapting the tournament size parameter in tournament
selection is appealing, but literature has shown that tuning
this parameter in standard tournament selection to con-
trol exploration might lead to premature convergence [50].
Moreover, adjusting the tournament size to control selection
pressure has its limits. At a lower bound (binary tourna-
ment), tournament selection applies much stronger selection
pressure than a weak selection scheme, such as a uniform
selection scheme [51]. On the other hand, weak selection
pressure exerted by schemes such as uniform selection could
be useful to prevent premature convergence and stagnation
of the population.

Therefore, the selection schemes that we propose to
use in this work are uniform stochastic, fitness proportional,
quaternary tournament, and truncation selection. The reason
for choosing these schemes is as follows. Uniform stochastic
selection applies the weakest selection pressure. Truncation
selection falls in the other end of the spectrum, exerting the
strongest selection pressure. Fitness proportional selection
applies stronger selection pressure than uniform selection.
Although it provides less selection pressure than binary
tournament selection, its exerted pressure is higher there is
more diversity in the population [51]. Finally, the selection
pressure exerted by quaternary tournament selection falls in
between fitness proportional and truncation selection.

We first describe three variants of the HEA-TR algo-
rithm, HEA-QT, HEA-FP, and HEA-US, depending on the
selection mechanism employed, as we detail below. Finally,
we describe HEA-AD, which implements the adaptive se-
lection mechanism.

3.3 HEA-QT
In HEA-QT, the initial population, variation, and improve-
ment operators described above are kept unchanged but
the selection operator uses the quaternary tournament se-
lection scheme instead of the truncation selection of HEA-
TR. The idea is to reduce the selection pressure to decrease
exploitation and promote exploration. In HEA-QT, all the
parents and the improved offspring are first combined to
form a selection pool S and each individual in S is evaluated
using score4. Next, a 4-way tournament is held for each
of the n spots in the population for the next generation,
where n is size of the population. A uniform probability
distribution is used to randomly pick 4 individuals from
S with replacement and these 4 individuals then compete
with each other to survive for the next generation. The fittest
individual according to score4 wins the competition and is
selected to fill the next open spot in the population for the
next generation.

3.4 HEA-FP
HEA-FP employs the fitness proportional selection scheme
instead of the truncation scheme of HEA-TR, while all other
operators remain the same. Fitness proportional selection
employs lesser selection pressure than quaternary tourna-
ment and truncation. In HEA-FP, all the parents and the
improved offspring are combined to form a selection pool
S. Then, each individual in S is assigned a selection proba-
bility proportional to their fitness. Specifically, an individual
x ∈ S is assigned a selection probability of f(x)/

∑
i∈S f(i),

where f() measures the fitness of the individual according
to score4. This distribution is then sampled n times to pick
n individuals for the next generation (n is population size).

3.5 HEA-US
HEA-US applies the weakest selection pressure through
uniform stochastic selection. As in HEA-QT and HEA-FP,
all the other operators remain unchanged. A selection pool
S of size 2n (n is the population size) is first formed
which contains all the parents and the improved offspring.
HEA-US assumes identical fitness for all the individuals; n
individuals are picked from S uniformly at random to form
the population for the next generation.

3.6 HEA-AD
In HEA-AD, we introduce an adaptive selection operator
with the goal of achieve a better balance between explo-
ration and exploitation. Instead of keeping the same selec-
tion pressure throughout the execution of the EA, HEA-AD
adapts the selection pressure based on the characteristics of
the evolving population. The algorithm periodically takes
feedback from the population for a possible change of
the selection pressure and raises or reduces the selection
pressure accordingly.

HEA-AD keeps track of the best-so-far fitness, measured
by the lowest score4 energy reached by any individual
belonging to any population over all the generations up to
the current generation c. We refer to this metric as BSFFc.
The reasons for choosing the BSFFc metric are as follows.
BSFFc is simple and computationally efficient to compute.
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In addition, a slowly improving BSFFc suggests the se-
lection pressure is too weak; a strong selection pressure
typically results in rapid improvements in BSFFc with a
high risk of premature convergence [51]. Moreover, a lack
of change in BSFFc for several generations can be an
indicator that the population is stuck exploiting some parts
of the space; in this case, a weaker selection pressure can be
useful to achieve more exploration of the search space. So,
in HEA-AD, every g generations, the adaptive mechanism
compares the current best-so-far fitness, BSFFc, to the best-
so-far fitness observed over the g generations before. We
refer to the latter as BSFFc–g .

HEA-AD selects a selection scheme from the scheme
pool SP = {uniform stochastic (US), fitness proportional
(FP), quaternary tournament (QT), truncation (TR)}, sorted
in increasing order of selection pressure, whenever a change
of selection pressure is needed. The adaptive operator starts
with a weaker selection scheme, FP, to encourage more
exploration in early generations. In every g generations, the
choice of selection scheme is revisited in the following way.

• If BSFFc increases by a small amount of < s% over
BSFFc–g , which suggests the selection pressure is too
weak, the selection pressure is increased by replacing the
current selection scheme with the next selection scheme in
the pool SP which applies more selection pressure as the
selection schemes are ordered from weakest to strongest
in SP . For example, if the algorithm is using FP selection
scheme at this point, it will go on to use QT from now.

• If BSFFc increases by a considerable amount of > t%
over BSFFc–g , which indicates too much exploitation is
happening and the algorithm could be at risk of prema-
ture convergence, the selection pressure is increased by
replacing the current selection scheme with the previous
selection scheme in SP which applies less selection pres-
sure. For example, if the current selection scheme in HEA-
AD is the TR selection scheme, HEA-AD will then set the
current selection scheme to be QT.

• If BSFFc is identical to BSFFc–g and the algorithm is
currently using TR selection, the population could be stag-
nated and more exploration can help. So, the algorithm
then keeps decreasing the selection pressure gradually by
choosing the previous scheme in SP until the BSFFc

improves.
• If BSFFc is identical to BSFFc–g and the algorithm is

currently using US selection, this is an indication that
the selection pressure kept decreasing from TR to end
up in US. This suggests some exploration has already
been performed by permitting weaker individuals to be
selected and allowing them to produce offspring. So, more
exploitation at this point could improve BSFFc. There-
fore, the algorithm then keeps increasing the selection
pressure gradually for more exploitation by choosing the
next scheme in SP until the BSFFc improves.

In HEA-AD, the above adaptive selection operator is
employed to select individuals for the next generation. As in
HEA-US, HEA-FP, and HEA-QT, the other operators (initial
population, variation, and improvement) do not change.
Rosetta score4 is used to measure the fitness of an indi-
vidual.

3.7 Implementation Details

In all the EAs described above, the population size is
n = 100 and the elitism rate for elitism-based truncation
selection is r = 25%, as in [30]. As is commonly done for
conformation sampling (and EAs more generally), the termi-
nation criterion is set to the exhaustion of a fixed budget of
fitness/energy evaluations. Specifically, the algorithms pre-
sented above are executed for a fixed budget of 10, 000, 000
energy evaluations. This results in typically 120 − 300K
conformations sampled over 700 − 1600 generations. For
HEA-AD, the checking parameter g is set to 15; the change
parameter s is set to 5, and t is set to 15. We note that no
specific effort has been made to fine-tune these parameters
to the problem at hand. All algorithms are implemented
in Python and interface with the PyRosetta library. Each
algorithm takes 1− 3 hours on one Intel Xeon E5-2670 CPU
with 2.6GHz base processing speed and 20GB of RAM. The
runtime range is mainly due to the different lengths of the
amino-acid sequences of the target proteins. As we describe
further in Section 4, the algorithms are run 5 times on each
target protein’s amino-acid sequence to account for possible
variance.

4 RESULTS

4.1 Experimental Setup

Our evaluation is organized along two major sets of ex-
periments. In the first, the focus is on the single-structure
prediction problem in order to carry out an ablation study
and pitch against one another HEA-US, HEA-FP, HEA-
QT, HEA-TR, and HEA-AD. We include Rosetta here, as it
provides a baseline. We will refer to this as the monomorphic
experimental setting. This evaluation shows HEA-AD to be
superior according to several metrics. In the second set of
experiments, we focus on the multiplicity of structures, to
which we will refer as the metamorphic experimental setting
from now on. We present a benchmark dataset collected
over many research articles. Using this dataset, we evaluate
HEA-AD over several metrics, comparing it to Rosetta as a
baseline method and a recently-published EA that has been
designed specifically with structure diversity in mind but
not demonstrated in the metamorphic setting.

Each algorithm is run 5 times on each target to account
for the stochasticity of the algorithms. We report the com-
bined best performance over the 5 runs. Each run exhausts
a fixed computational budget of 10, 000, 000 energy evalu-
ations for a total of 50, 000, 000 energy evaluations for the
5 runs. Rosetta is run for 54, 000, 000 energy evaluations
on each target to conduct a fair comparison; each run of
Rosetta exhausts 36, 000 energy evaluations and the total
budget results in 1, 500 structures over 1, 500 runs.

As is practice in EAs for structure sampling [52], perfor-
mance is measured on lowest reached energy and the lowest
reached distance to the known native structure of the target.
The former is important to analyze the effect of the selection
mechanism on the exploration-exploitation tradeoff, and the
latter is important as lower energies do not necessarily
correlate with proximity to the native structure. We employ
three popular proximity measure to calculate the distance
between the sampled structure and the native structure;
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root-mean-squared-deviation (RMSD) [53], Template Mod-
eling Score (TM-Score) [54], and Global Distance Test - Total
Score (GDT TS) [55]. While RMSD is a dissimilarity metric
(lower values correspond to better proximity), TM-score and
GDT TS are similarity metrics (higher values mean better
proximity); the latter two provide a score in [0, 1], whereas
RMSD can be more affected by the chain length (number of
amino acids). We report the GDT TS score in percentage as
is done in CASP competitions. Additionally, the comparison
focuses on the main carbon atoms or the CA atoms of each
amino acid as in CASP competitions. Finally, to provide a
complete picture and measure how much better or worse
performance is achieved on each target, we also employ
performance profiles [56]. Performance profiles show the
cumulative distribution functions for different performance
ratios for a evaluation metric that reveal major performance
characteristics.

To present a principled evaluation, we further strengthen
our comparison with statistical significance tests. We utilize
Fisher’s [57] and Barnard’s [58] exact tests for this purpose.
Although Fisher’s conditional test is widely adopted for
statistical significance, Barnard’s unconditional exact test is
generally considered more powerful than Fisher’s test for
2x2 contingency matrices.

4.2 Evaluation in the Monomorphic Setting

Recent work in [24] focused on the ablation study and
limited itself to the monomorphic setting. The evaluation
was carried over two datasets, a benchmark one introduced
in [59] and enriched later with more targets [30], [60], [61],
[62], consisting of 20 monomorphic proteins of different
lengths and folds, and another one consisting of 10 targets
drawn from hard, free-modeling targets from CASP12 and
CASP13 competitions.

In the interest of space, we refrain from describing these
datasets in detail, as such information has been presented
in [24]. In addition, we do not repeat all the experiments
related in [24] that establish the ability of HEA-AD to reach
lower energy regions and to approach the single native
structure closer than Rosetta and the other HEA variants
over most of the targets; we also do not report on the statis-
tical significance analysis that allows the evaluation in [24]
to conclude that HEA-AD is superior in the monomorphic
setting. Instead, we present an additional evaluation, effec-
tively enriching that analysis, via performance profiles, on
the benchmark dataset. We note that the analysis in [24]
evaluates all the HEA variants and Rosetta against the
submitted structure by the top ten groups over each of the
CASP targets.

Let us briefly summarize the concept of performance
profiles, as they have never been employed in protein mod-
eling research to the best of our knowledge. Performance
profiles provide us with a way of depicting how frequently
a particular algorithm is within some distance of the best
algorithm for a particular problem instance/target. So, for
each problem instance, we first compute the best method,
and then for every other method, we determine how far
they are from optimal. In our case, problem instances are
our targets in the dataset. We consider two separate metrics
here, energy and RMSD. We vary the performance ratio over

a range, limited ∈ {1.0, 3.0} in our analysis. Specifically, for
a given pr, measure reached means that an algorithm comes
within a factor of pr of the best measure over all algorithms
on a given target. The number of targets where an algorithm
does this is tallied up, and this becomes indicative of its
performance, also referred to as number of problems solved,
at a given performance ratio.

Specifically, Figure 1(a) shows the performance profiles
of each algorithm over the benchmark dataset of 20 targets
in terms of the lowest energy reached. Figure 1(a) shows
that the probability of HEA-AD to be the optimal algorithm
among these 6 algorithms is about 0.55, considerably more
than any of the other algorithms. At pr = 1.2, HEA-AD
succeeds for 85% targets. HEA-QT reaches a success of
100% at a pr = 1.38, while HEA-AD and HEA-TR do
so at pr = 1.45. Rosetta’s performance profile rises very
slowly and reaches 100% at pr = 3.0. Figure 1(b) relates a
similar analysis focusing on the lowest RMSD to the native
structure and shows that the probability of HEA-AD to be
the optimal algorithm among these 6 algorithms is about
0.6, considerably more than any of the other algorithms.
At pr = 1.3, HEA-AD succeeds for 85% targets. HEA-
QT reaches a success of 100% at a pr = 1.8, while HEA-
AD and HEA-FP do so at pr = 2.0. Rosetta saturates at
pr = 2.0 with a success for 95% targets. These results clearly
establish HEA-AD as the superior algorithm, enhancing the
preliminary analysis in [24].

4.3 Evaluation on Metamorphic Dataset

In this setting, we focus on HEA-AD, shown superior over
the other HEA variants by the above analysis. We include
Rosetta as a baseline algorithm to understand how well a
method exclusively designed for the monomorphic setting
can perform on in the metamorphic setting. We also include
another recent EA proposed by us in [63], SP-EA+. SP-EA+

aims to prevent premature convergence and retain diversity
during optimization by evolving and maintaining multiple
sub-populations, which is a popular construct in EC for
optimization over multi-modal fitness landscapes.

We construct a novel dataset of 13 proteins, which
we have compiled from various works [15], [64] and we
detail below. The dataset consists mostly of proteins with
two known native structures. Specifically, Table 1 relates
the dataset. The first 12 rows relate proteins where wet-
laboratories have elucidated two very distinct structures.
The pairwise RMSDs are related in Column 4. The last
row relates Calmodulin, for which 4 distinct structures are
obtained from the PDB. The range of pairwise RMSD is
shown in this case.

We first present a comparison of the three algorithms,
Rosetta, SP-EA+, and HEA-AD on the lowest-energy
reached on the amino-acid sequence of each of the 13
proteins. As Table 2 shows, HEA-AD achieves the lowest
energy on 9/13 of the proteins in the dataset; Rosetta does
so on 2/13 cases, and SP-EA+ on 2/13 cases. HEA-AD
comfortably outperforms Rosetta (10 vs. 3 cases) and SP-
EA+ (9 vs. 4 cases) in a head-to-head comparison. Panel (a)
of Table 6 presents the p-values for statistical significance
tests. These tests suggest that the performance improve-
ments of HEA-AD in terms of lowest energy are statistically
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(a) (b)
Fig. 1: Performance profiles for the algorithms on (a) lowest energy and (b) lowest RMSD metrics.

TABLE 1: Thirteen proteins with 2 or more known structures captured in the wet laboratory. Protein names are related in
Column 1. Column 2 lists the length (number of amino acids) of each protein. Column 3 lists the PDB ids of the known
structures, with the chain shown in parentheses.

Protein Name Length PDB Ids of Known Structures RMSD(Å)
SARA 127 1fzp(D), 2frh(A) 19
Calcium-bound EF-Hand protein 134 1jfk(A), 2nxq(B) 15.9
Yeast Matalpha2/MCM1 87 1mnm(C), 1mnm(D) 6.7
IscA 112 1x0g(A), 1x0g(B) 18
NF-kB RelB 110 1zk9(A), 3jv6(A) 16.5
Beta 2 Microglobulin 100 3low(A), 3m1b(F) 19.3
Protein Related to DAN and Cerberus (PRDC) 148 4jph(B), 5hk5(H) 6.9
Methanocaldococcus jannaschii monomeric selecase 110 4qhf(A), 4qhh(A) 12.2
CopK 74 2k0q(A), 2lel(A) 9.1
SLAS-micelle bound alpha-synuclein 140 2kkw(A), 2n0a(D) 36.1
Human prion protein mutant HuPrP 147 2lej(A), 2lv1(A) 18.6
Cyanovirin-N 101 2ezm(A), 1l5e(A) 16
Calmodulin 148 1cfd(A), 1cll(A), 2f3y(A), 1lin(A) 4.3-13.4

significant at the 95% confidence level (p-values < 0.05)
over both algorithms.

TABLE 2: Comparison of the lowest energy in Rosetta
Energy Units (REUs) obtained by each algorithm under
comparison on each of the 13 distinct proteins. The lowest
energy value reached is marked in bold.

Lowest Energy (REU)
Rosetta SP-EA+ HEA-AD
-111.8 -100.6 -126.1
-85.6 -87 -97.9
-71.3 -74.9 -98
-76 -73.8 -64.6
-52.7 -56.4 -53.1
-78 -84.5 -104.3
-44.2 -44.6 -50
-147.6 -138.1 -155.8
-136.2 -132.2 -125.3
-161.8 -164.1 -169.7
-124.4 -127.3 -130.6
-108.5 -108.7 -103
-200.7 -214.7 -222

Figure 2 shows the performance profiles of each of the
three algorithms in terms of lowest energy. Figure 2 shows
that the HEA-AD is the optimal algorithm on 0.7 of the
proteins. HEA-AD ”solves” all targets at a pr = 1.2, whereas
SP-EA+ and Rosetta do so at pr values of 1.32, and 1.37,
respectively.

Fig. 2: Performance profiles for the algorithms on lowest
energy on the metamorphic dataset.

The rest of the analysis now focuses on evaluating how
close each algorithm comes to each of the listed structures
for each target. We measure distance via RMSD, TM-Score,
and GDT TS. We expand the list of 13 proteins into 18
test cases, where we list the known structures as Target 1
and Target 2. This organization facilitates the exposition of
our analysis. For Calmodulin, where 4 structures have been
collected, this results in 6 Target 1 – Target 2 pairs: 1cfda –



IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XX, NO. X, XXXXX XXXX 8

1clla, 1cfda – 2f3ya, 1clla – f3ya, 1cfda – 1lina, 1clla – 1lina,
and 2f3ya – 1lina.

Table 3 lists for each algorithm the lowest RMSD (over
all conformations sampled by an algorithm over 5 runs) to
each of the targets. Table 3 shows that for Target 1, HEA-
AD achieves the lowest RMSD on 12/18 cases, Rosetta in
2/18 cases, and SP-EA+ in 4/18 cases. HEA-AD comfort-
ably outperforms Rosetta (15 vs. 3 cases) and SP-EA+ (13
vs. 6 cases) in a head-to-head comparison. Panel (b) in
Table 6 shows that these performance improvements are
statistically significant. For Target 2, HEA-AD achieves the
lowest RMSD on 15/18 cases, Rosetta in 1/18 cases, and
SP-EA+ in 4/18 cases. In a head-to-head comparison, HEA-
AD easily outperforms Rosetta (17 vs. 2 cases) and SP-EA+

(16 vs. 4 cases). Table 6(c) shows that these performance
improvements are statistically significant.

TABLE 3: Comparison of the lowest RMSD obtained by each
algorithm on each of the 18 target pairs. The lowest RMSD
value reached is marked in bold.

Lowest RMSD (Å)
Rosetta SP-EA+ HEA-AD

Target 1 Target 2 Target 1 Target 2 Target 1 Target 2
8.5 7 6.6 6.1 6.5 5.4
2.2 10.2 1.9 1.5 2 1.3
5.6 7.8 4 3.3 2.8 2.9
6.1 12.4 6.4 9.2 6.4 6.9
11.2 9.3 8.5 8.5 7.6 9.3
12.1 6.2 8.8 7 6.4 6.9
12.3 11.9 9.9 9.4 8.7 9.4
6.6 10 6.7 7.9 5.5 7.4
4 7.6 3.8 4.4 4.1 3.8
10.1 31.2 9.2 13.6 7.3 12.6
9.1 17.6 9.9 12.4 10.5 12.4
6.6 9.1 6.8 6.5 5.6 5.6
6.8 8.3 3.2 2.7 3 2.8
6.8 3.8 3.2 3.6 3 3.2
8.3 3.8 2.7 3.6 2.8 3.2
6.8 4.3 3.2 3.7 3 3.4
8.3 4.3 2.7 3.7 2.8 3.4
3.8 4.3 3.6 3.7 3.2 3.4

Figure 3(a) and 3(b) show the performance profiles of
each algorithm in comparison for the lowest RMSD metric
for Target 1 and Target 2 in the metamorphic dataset respec-
tively. Figure 3(a) shows that the probability of HEA-AD to
be the optimal algorithm among all (in terms of reaching
the lowest RMSD to Target 1) is about 0.66, considerably
more than the other algorithms. HEA-AD ”reaches” Target
1 on all cases at pr = 1.2, whereas SP-EA+ and Rosetta
do so at pr values of 1.4 and 3.1, respectively. Figure 3(b)
shows that the probability of HEA-AD to be the optimal
algorithm among all (in terms of reaching the lowest RMSD
to Target 2) is about 0.83, considerably more than the other
algorithms. HEA-AD ”reaches” Target 2 on all cases at
pr = 1.15, whereas SP-EA+ does so at pr = 1.3; in contrast,
Rosetta never reaches Target 2 on all cases in this pr range,
saturating at 0.9 of the cases at pr = 3.0.

Tables 4 and 5 present the comparison in terms of TM-
score and GDT TS score (higher is better). Table 4 shows
that for Target 1, HEA-AD achieves the highest TM-score
on 15/18 cases, Rosetta in 4/18 cases, and SP-EA+ in 1/18
cases. In a head-to-head comparison, HEA-AD comfortably
outperforms Rosetta (15 vs. 4 cases) and SP-EA+ (16 vs.
2 cases) in a head-to-head comparison. Panel (d) in Table 6

shows that these performance improvements are statistically
significant. For Target 2, HEA-AD achieves the highest TM-
score on 15/18 cases, Rosetta in 3/18 cases, and SP-EA+ in
2/18 cases. In a head-to-head comparison, HEA-AD easily
outperforms Rosetta (16 vs. 3 cases) and SP-EA+ (17 vs. 2
cases). Panel (e) in Table 6 shows that these performance
improvements are statistically significant.

Similarly, Table 5 shows that for Target 1, HEA-AD
achieves the highest GDT TS on 12/18 cases, Rosetta in
4/18 cases, and SP-EA+ in 3/18 cases. In a head-to-head
comparison, HEA-AD comfortably outperforms Rosetta (15
vs. 4 cases) and SP-EA+ (13 vs. 5 cases) in a head-to-
head comparison. Panel (f) in Table 6 shows that these
performance improvements are statistically significant. For
Target 2, HEA-AD achieves the highest TM-score on 15/18
cases, Rosetta in 2/18 cases, and SP-EA+ in 1/18 cases. In
a head-to-head comparison, HEA-AD easily outperforms
Rosetta (16 vs. 2 cases) and SP-EA+ (17 vs. 1 cases). Panel
(g) in Table 6 shows that these performance improvements
are statistically significant.

TABLE 4: Comparison of the highest TM-score obtained by
each algorithm on each of the 18 target pairs. The highest
TM-score value reached is marked in bold.

Highest TM-score
Rosetta SP-EA+ HEA-AD

Target 1 Target 2 Target 1 Target 2 Target 1 Target 2
0.33 0.46 0.41 0.48 0.42 0.55
0.77 0.46 0.73 0.84 0.72 0.87
0.58 0.62 0.67 0.66 0.7 0.69
0.5 0.44 0.41 0.39 0.45 0.44
0.36 0.38 0.34 0.32 0.36 0.34
0.32 0.5 0.41 0.46 0.44 0.47
0.29 0.28 0.31 0.33 0.33 0.32
0.45 0.34 0.44 0.42 0.55 0.45
0.66 0.51 0.66 0.55 0.64 0.59
0.29 0.15 0.38 0.21 0.48 0.23
0.36 0.29 0.37 0.4 0.4 0.4
0.47 0.35 0.44 0.49 0.48 0.58
0.48 0.48 0.73 0.76 0.74 0.81
0.48 0.69 0.73 0.69 0.74 0.77
0.48 0.69 0.76 0.69 0.81 0.77
0.48 0.62 0.73 0.71 0.74 0.72
0.48 0.62 0.76 0.71 0.81 0.72
0.69 0.62 0.69 0.71 0.77 0.72

Figure 4(a) and 4(b) show the performance profiles of
each algorithm in terms of the highest TM-score metric
for Target 1 and Target 2 on the metamorphic dataset,
respectively. Figure 4(a) shows that the probability of HEA-
AD to be the optimal algorithm among all (in terms of
reaching the highest TM-score to Target 1) is about 0.83,
which is considerably more than the other algorithms. HEA-
AD ”reaches” Target 1 on all cases at pr = 1.15, whereas
SP-EA+ and Rosetta do so at pr values of 1.3 and 1.7,
respectively. Figure 4(b) shows that the probability of HEA-
AD to be the optimal algorithm among all (in terms of
reaching the highest TM-score to Target 2) is about 0.83,
which is again considerably more than the other algorithms.
HEA-AD ”reaches” Target 2 on all cases at pr = 1.15,
whereas SP-EA+ and Rosetta do so at pr = 1.2 and pr = 1.9,
respectively.

Figure 5(a) and 5(b) show the performance profiles of
each algorithm in terms of the highest GDT TS metric for
Target 1 and Target 2 on the metamorphic dataset, respec-
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(a) (b)
Fig. 3: Performance profiles for the algorithms on lowest RMSD for (a) Target 1 and (b) Target 2 on the metamorphic
dataset.

(a) (b)
Fig. 4: Performance profiles for the algorithms on highest TM-score for (a) Target 1 and (b) Target 2 on the metamorphic
dataset.

TABLE 5: Comparison of the highest GDT TS score obtained
by each algorithm on each of the 18 target pairs. The highest
GDT TS value reached is marked in bold.

Highest GDT TS (%)
Rosetta SP-EA+ HEA-AD

Target 1 Target 2 Target 1 Target 2 Target 1 Target 2
34.5 43 39.75 47.25 41.5 53.25
81.25 50.78 80.86 88.28 77.34 89.84
59.96 62.99 69.08 70.13 75 71.1
47 40.5 43.75 38 45.25 41.5
33.66 35.4 34.16 31.19 34.65 33.17
31.67 48.74 39.68 43.45 42.68 44.19
26.63 27.53 28.05 30.18 28.83 28.81
42.82 33.35 44.77 41.9 50.93 44.91
67.91 52.39 66.55 59.8 67.91 62.5
26.79 12.68 32.36 15.61 40.89 16.43
29.42 21.25 31.12 32.14 34.52 33.33
52.48 39.36 46.29 46.53 46.04 52.72
43.06 40.8 61.02 67.19 60.24 70.83
43.06 60.42 61.02 58.51 60.24 65.1
40.8 60.42 67.19 58.51 70.83 65.1
43.06 54.34 61.02 60.94 60.24 62.33
40.8 54.34 67.19 60.94 70.83 62.33
60.42 54.34 58.51 60.94 65.1 62.33

tively. Figure 5(a) shows that the probability of HEA-AD to
be the optimal algorithm among all (in terms of reaching the
highest GDT TS to Target 1) is about 0.66, which is higher
than the other algorithms. HEA-AD ”reaches” Target 1 on
all cases at pr = 1.15, whereas SP-EA+ and Rosetta do so
at pr values of 1.3 and 1.75, respectively. Figure 5(b) shows
that the probability of HEA-AD to be the optimal algorithm
among all (in terms of reaching the highest GDT TS to Tar-
get 2) is about 0.61, again higher than the other algorithms.
At pr = 1.1, HEA-AD succeeds on 95% targets. HEA-AD
”reaches” Target 2 on all cases at pr = 2, whereas SP-EA+

and Rosetta do so at pr = 2.1 and pr = 2.6, respectively.

4.3.1 Visualization of Structures

The quality of the structures obtained by HEA-AD is shown
qualitatively in Fig. 6, which draws from the structures
obtained by HEA-AD that are closest to 4 distinct struc-
tures of Calmodulin (PDB ids 1cfda, 1clla, 2f3ya, and 1lina,
respectively). Fig. 6 shows that HEA-AD captures each of
these structures reasonably well (with RMSDs shown for
each).
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(a) (b)
Fig. 5: Performance profiles for the algorithms on highest GDT TS score for (a) Target 1 and (b) Target 2 on the metamorphic
dataset.

TABLE 6: Results for the 1-sided Fisher’s and Barnard’s tests
on the comparisons presented in Table 2, 3, 4, and 5 on the
metamorphic dataset. The tests evaluate the null hypothesis
that HEA-AD does not achieve (a) lower lowest energy, (b)
lower lowest RMSD on Target 1, (c) lower lowest RMSD on
Target 2, (d) higher highest TM-score on Target 1, (e) higher
highest TM-score on Target 2, (f) higher highest GDT TS
score on Target 1, (g) higher highest GDT TS score on Target
2 in comparison to a particular algorithm. p-values less than
0.05 are marked in bold.

Test Rosetta SP-EA+

(a) Fisher’s 0.008466 0.05762
Barnard’s 0.004729 0.03778

(b) Fisher’s 7.60E-05 0.02186
Barnard’s 3.48E-05 0.01443

(c) Fisher’s 3.22E-07 6.61E-05
Barnard’s 1.14E-07 2.51E-05

(d) Fisher’s 3.05E-04 2.62E-06
Barnard’s 1.58E-04 9.71E-07

(e) Fisher’s 1.48E-05 3.22E-07
Barnard’s 6.46E-06 1.14E-07

(f) Fisher’s 3.05E-04 0.009197
Barnard’s 1.58E-04 0.00569

(g) Fisher’s 2.62E-06 3.58E-08
Barnard’s 9.71E-07 9.71E-09

5 CONCLUSION

The results presented above show that the adaptive selection
mechanism in HEA-AD balances the exploitation and explo-
ration effectively and samples regions of the structure space
that contain better-scoring structures. Analysis over diverse
metrics establishes the superiority of HEA-AD not only over
other HEA variants, but also Rosetta and other EAs. In
particular, the evaluation in the metamorphic setting, for
which we construct a dataset that we hope will be adopted
and enriched to serve as a benchmark dataset, shows that
HEA-AD is superior and can capture diverse structures
several angstroms away when only utilizing the amino-
acid sequence of a given protein (and no other structural
information about the protein at hand). Further analysis

related in the Appendix relates that even in the presence
of strong bias in the Rosetta score4 function towards some
structures (and against others), HEA-AD still manages to
capture the various structures known for a protein. This is
another indication of the high exploration power of HEA-
AD, further suggesting its ability to take into account the
multiplicity of native structures. We believe that these re-
sults warrant further research on more powerful stochastic
optimization algorithms. In particular, we point to growing
work on generative deep learning. The majority of these
methods are not yet able to condition to a given amino-acid
sequence and mostly relate the ability to generate protein-
like tertiary structures in the sequence-agnostic setting.
Other deep learning frameworks still consider the narrow
setting of one single structure, leveraging high-inductive
bias. We believe that the integration of deep learning models
and EAs presents opportunities to further make inroads into
what still remains a challenging problem.
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APPENDIX

HEA-TR Algorithm

In HEA-TR, the initial population is obtained with great care
by applying an initial population operator. From an amino-
acid sequence of a target protein, the initial population oper-
ator first creates n identical extended chains, where n is the
size of the population, in Rosetta’s centroid representation.
For each amino-acid, the representation only models the
heavy-backbone atoms and a pseudo-atom representing the
centroid of the side chain atoms. To randomize each of these
n extended chains, a two-stage MMC search is utilized. The
stages mainly differs in the fitness functions they use and
the value of the acceptance probability scaling parameter
of the Metropolis criterion. The goal for the first stage is to
randomize the extended chains while avoiding steric clashes
(self collisions). To do so, it employs Rosetta score0 energy
function that encourages steric repulsion. The acceptance
probability is set to 0 which ensures that only a move that
decreases score0 is accepted. The second stage employs the
score1 energy function which encourages the formation of
secondary structures (α-helices and β-sheets). The scaling
parameter for this stage is set to a higher value of 2 to which
adds diversity of the individuals. Each move in this MMC
search is a fragment replacement of length 9.

Each individual in the population is considered a parent
and a variation operator is applied to a parent to produce an
offspring. The variation operator applies a single fragment
replacement of length 3 that introduces a small structural
change over a parent. Applying fragment replacement on
each of the n parents, we obtain n offspring, where n is
the size of the population. Any offspring generated by the
variation operator is subjected to an improvement operator
that employs a local search to map the offspring to a nearby
local minima in the energy surface. The local search is
greedy in nature and only the moves that lower energy
are accepted. Each move in the local search is a fragment
replacement of length 3 and the improvement operator
utilizes Rosetta score3 scoring function to evaluate the
moves which encourages the formation of compact tertiary
structures [66]. The search ends when l consecutive moves
fail to decrease the energy of a structure according to score3,
where l is the number of amino acids in the structure.

Offspring and parents compete for survival via the selec-
tion operator. HEA uses elitism-based truncation selection
where each parent and improved offspring is first evalu-
ated using Rosetta’s full centroid scoring function score4
that considers short- and long-range hydrogen bonding in
addition to the energetic terms in score3. Top r% individ-
uals from the parents then compete for survival with the
improved offspring, where r is the elitism rate. Since trun-
cation selection is used in HEA, the competing individuals
are sorted in increasing order of their fitness according to
score4, and the fittest n individuals are selected to survive
and form the next generation.

5.1 Evaluating Energy Function Bias

We evaluate here the bias that Rosetta has against specific
structures over the 13 proteins with 2 or more structure
captured in the wet laboratory. The following experiment is

carried out. First, the Rosetta score4 function is used to eval-
uate the energy of each structure. These values are reported
as pre-relax in Columns 3-4 in Table 7. Columns 5-6 then
show the energy of each structure for Target 1 and Target
2, respectively, after applying Rosetta’s FastRelax protocol
to fix any mispositions of atoms in the wet-laboratory struc-
tures. Columns 7-8 show the RMSD between the structures
before and after FastRelax for Target 1 and Target 2,
respectively.

Table 7 explains why Rosetta does not perform as well
as HEA-AD and SP-EA+ (see manuscript). For example,
for the pair {1jfk(A), 2nxq(B)}, Rosetta reaches within
2.2Å for 1jfk(A) but 10.2Å for 2nxq(B); similarly, for the pair
{1cll(A), 2f3y(A)}, Rosetta reaches within 3.8Å for 2f3y(A)
but 8.3Å for 1cll(A).

Table 7 provides a reason, as it shows that Rosetta has
a bias towards specific structures. For example, for the pair
{1jfk(A), 2nxq(B)}, the energy of 1jfk(A) (32.2 REU) before
relaxation is higher than that of 2nxq(B) (16.7 REU) before
relaxation; after relaxation, the energy for 1jfk(A) (−28.2
REU) is much lower than that of 2nxq(B) (−12 REU). This
helps understand why Rosetta reproduces 1jfk(A) much bet-
ter than 2nxq(B). Similarly, the energy for 2f3y(A) (−183.4
REU) before relaxation is much lower than that of 1cll(A)
(−129 REU); this holds even after relaxation (−163.8 REUs
for 2f3y(A) and −144.5 REUs for 1cll(A)). This helps un-
derstand why Rosetta reproduces 2f3y(A) much better than
1cll(A). Similar observations can be drawn on the other
cases. However, unlike Rosetta, even though using a Rosetta
scoring function, HEA-AD captures the different structures
much better than Rosetta. This is another indication of the
high exploration power of HEA-AD that allows it to take
into account the multiplicity of native structures.
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TABLE 7: Energy of native structure for each metamorphic target pre- and post- FastRelax is shown in Columns 3-6. RMSD
between the native structures before and after FastRelax is shown in Columns 7-8. The PDB IDs of the metamorphs are
shown in Columns 1-2.

Target 1 Target 2 Target 1
Energy
Pre-relax

Target 2
Energy
Pre-relax

Target 1
Energy
Post-relax

Target 2
Energy
Post-relax

RMSD between
Target 1 Pre-relax
& Post-relax

RMSD between
Target 2 Pre-relax
& Post-relax

1fzpd 2frha 112.5 35.2 7 -21.4 5.3 1.8
1jfka 2nxqb 32.2 16.7 -28.2 -12 1.4 3.7
1mnmc 1mnmd -22.1 -31.2 -46 -41.5 2.8 6.9
1x0ga 1x0gb -4 88.5 -43.5 41.9 1.3 4
1zk9a 3jv6a 67.2 -12.3 12.7 -75.6 12.2 0.8
3lowa 3m1bf 77 10.8 57.2 -47.5 11.6 1.2
4jphb 5hk5h 6.4 88.1 10.4 62.6 0.8 4
4qhfa 4qhha -125.1 -59.1 -118.5 -71.8 1.2 4.7
2k0qa 2lela 6.7 55.3 -39.3 -13.3 2.2 2.6
2kkwa 2n0ad -2.1 315.5 0.3 202.4 24.9 22
2leja 2lv1a 49.2 52.7 1.1 41.8 5.8 9.2
2ezma 1l5ea -55.3 15.4 -88.7 5.1 0.8 6.8
1cfda 1clla -89.9 -129 -154.6 -144.5 3.6 3.3
1cfda 2f3ya -89.9 -183.4 -154.6 -163.8 3.6 2.1
1clla 2f3ya -129 -183.4 -144.5 -163.8 3.3 2.1
1cfda 1lina -89.9 -164.4 -154.6 -150.9 3.6 3.3
1clla 1lina -129 -164.4 -144.5 -150.9 3.3 3.3
2f3ya 1lina -183.4 -164.4 -163.8 -150.9 2.1 3.3


