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ABSTRACT

In this work, we report a study of the temperature dependent pulsed current voltage and RF characterization of b-(AliGa;)203/Ga,03
hetero-structure FETs (HFETSs) before and after silicon nitride (Si3sN4) passivation. Under sub-microsecond pulsing, a moderate DC-RF dis-
persion (current collapse) is observed before passivation in gate lag measurements, while no current collapse is observed in the drain lag mea-
surements. The dispersion in the gate lag is possibly attributed to interface traps in the gate—drain access region. DC-RF dispersion did not
show any strong dependence on the pulse widths. Temperature dependent RF measurements up to 250 °C do not show degradation in the
cutoff frequencies. After SizN4 deposition at 350 °C, a shift of the threshold voltage is observed which changed the DC characteristics.
However, the current collapse is eliminated; at 200 ns pulse widths, a 50% higher current is observed compared to the DC at high drain vol-
tages. No current collapse is observed even at higher temperatures. RF performance of the passivated devices does not show degradation.

These results show that ex situ deposited SisNy is a potential candidate for passivation of b-(AlGa,),03/Ga,O3s HFETS.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0083657

b-Ga,Os is an extensively investigated ultra-widebandgap semi-
conductor for next generation power electronics and RF applications
because of its favorable material properties.’ Due to its larger calculated
Baliga figure of merit (BFoM),” it has been explored for high voltage
power devices. Several groups have reported transistors and diodes with
kV range breakdown voltages’ ' further validating its potential.
Additionally, due to its high calculated electron saturation velocities,”
b-GayO;3 (Gay03) has a higher Johnson’s figure of Merit (JFoM) making
it attractive for potential RF applications such as high power amplifiers
and GHz switches. Due to its large bandgap, Ga,Os devices can also
operate at higher temperatures. Both MOSFETs and MESFET devices
with high frequency have been reported.”'” Recently, a record current
gain cut off frequency (fr) of 30 GHz and a power gain cut off frequency
(fwax) of 37GHz have been reported for b-(Aly19Gags1)203/GaxOs3
(AlGaO/GaO) hetero-structure FETs (HFETs)'' with ultra-scaled gate
lengths and regrown Ohmic contacts.

Another important aspect of high frequency performance of a
device is DC-RF dispersion. This is typically characterized by a
decrease in the drain current and trans-conductance in unpassivated
devices at higher frequencies resulting in lower RF output power. The

DC-RF dispersion or current collapse is caused by the finite amount of
time taken by any traps, located either at an air/device interface in a
gate drain access region or in the bulk semiconductor under the gate
in response to either gate or drain voltage transients. Pulsed current
voltage (IV) measurements are popular method to analyze the DC-RF
dispersion and to identify the location of the traps.'”

There have been a number of studies on the pulsed IV characteriza-
tion for Ga,O3 devices. Wong ef al.'” reported no current collapse at 100
Is pulse width with SiO, passivation in high voltage devices. Moser
et al."” reported large signal power performance with continuous and
pulsed conditions'"'"® and found that the interface trap in the gate drain
region is the source of dispersion. Singh et al."” reported that Al,Oy/SiO,
passivated devices do not show any current collapse at 1 1s pulse width
at room temperature. McGlone et al.”” ** explored buffer traps in delta
doped MESFETs using the double pulsed IV condition. Joishi et al.””
used 5 1s double pulsed measurement to show that in situ passivation by
an UID GayOs layer can improve the current significantly even though
the channel was exposed to reactive ion etching (RIE). However, sub-
microsecond pulsed IV is necessary to understand the device perfor-
mance at GHz frequencies as is the case for AlGaN/GaN devices.**
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Recently, sub-microsecond pulsed-IV characterization of gate
recessed Ga,O3 MOSFETs was reported, which shows severe DC-RF
dispersion in unpassivated devices.”” Although dispersion was reduced
(50%) after silicon nitride (SisN4) passivation, it was not eliminated. It
is important to completely eliminate current collapse in Ga,O3 devices
to achieve the predicted RF performance. In this work, we report a
temperature dependent pulsed IV characterization of AlGaO/GaO
HFETs. We show that ex situ deposited SizN4 passivation can elimi-
nate current collapse up to 200ns pulse widths. We also report the
temperature dependent high frequency performance of AlGaO/GaO
HFETs.

A cross section schematic of the completed Al1GaO/GaO HFET is
shown in Fig. 1(a). Details of ozone MBE growth and device fabrica-
tion are discussed in Refs. 11 and 26. The salient features of the device
are the use of source/drain regrowth for contacts and the absence of
any RIE exposure to the device access regions. It has been reported
that RIE damage to the channel layer can cause surface traps resulting
in significant DC-RF dispersion.'*** The gate length (Lg) was scaled
to 160-200 nm, and the source access distance (Lsg) was scaled down
to 55nm using electron beam lithography. After pre-passivation elec-
trical characterization, a 300 nm thick low stress SisN4 was deposited
using plasma enhanced chemical vapor deposition (PECVD) at 350°C
temperature with 20 sccm SiHs and 30 sccm NH3 at 1900 mTorr pres-
sure. Standard solvent clean was carried out before the deposition.
Finally, Si3N4 was removed using CF4 based RIE on top of the contacts
for electrical characterization. The contacts have a co-planar wave-
guide (CPW) layout for high frequency measurements.

Figure 1(b) shows the output characteristics of a 160nm gate
length unpassivated device at room temperature and 250 °C, and the
device shows a normally off behavior (Vi ¥4 0.5 V) with lower drain
current at higher temperatures. The reduction in the drain current at
higher temperatures is due to the reduction in the channel mobility at
higher temperatures. For DC-RF dispersion studies, gate lag, drain lag,
and double pulsed measurements were carried out. In the drain lag,
the drain was pulsed from the off state (0 V) to the on state (5 or 7 V)
(referred to as drain turn-on) while the gate bias was constant. For
gate lag, the gate terminal was pulsed from the off state (below V) to
the on state (referred to as gate turn-on) while maintaining a constant
drain bias. Finally, for a double pulsed technique, both gate and drain
were pulsed from the off state to the on state (or vice versa) and a com-
bination of on and off biases. The pulsed IV measurement was carried

Si;N, L (@)

80 —'RT i
— — 250°C
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AlGa0 4.5 nm Si doped
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Vos (V)

FIG. 1. (a) Final cross section of a device after passivation. The gate metal stack is
Pt/Au %4 20/180 nm and (b) DC output curve for a device (Lg 4 160 nm) at room
temperature and 250°C.
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out using an Auriga AU-5 high voltage Pulsed IV setup with 20 nano-
second (ns) rise and fall time, and the pulse width was varied from
1 ms to 200 ns with low duty cycle (<1%). The system was calibrated
at each temperature before measuring the devices. The drain current
collapse is quantified by
lipc—ILapw
1 .

Dlec Va Tone ; 1)
where Igpc is the drain current value during DC measurement and
Iypw is the drain current measured at the corresponding pulse width.
The gate current was monitored during the pulsed measurements and
was always very low compared to the drain current.

Drain lag measurements are used to study buffer traps/bulk traps
in the device as they respond to a drain pulse.”” Figure 2(a) shows the
DC and drain turn-on measurements of the unpassivated device at
constant gate bias, and negligible dispersion is observed. A slight
increase in the current is observed at smaller pulse widths, which could
be due to the reduced self-heating effect. These measurements rule out
the presence of any buffer traps as was the case for ozone MBE grown
MOSFET devices.” Figure 2(b) shows the DC and gate pulsed output
curve of the same device; as seen in the figure, a moderate DC-RF dis-
persion or current collapse (22%) is observed. The recessed channel
MOSFETsby Vaidyaand Singisetti  had increasing DC-RF dispersion
with decreasing pulse width, and 60% current collapse was reported at
200 ns pulse width. Yet here, we observe that the amount of current
collapse does not depend strongly on the pulse widths. The dispersion
can be attributed to the interface traps either under the gate or in the
gate drain access region forming a virtual gate."” ° Figure 2(c) shows
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FIG. 2. (a) Drain lag/pulse measurement at Vs ¥4 2V showing no DC-RF disper-
sion, (b) gate lag measurement at Vs ¥4 2V showing DC-RF dispersion, (c) tem-
perature dependent I pulse shape for 10 1s gate turn on pulse measured at Ves
Ya 2V before passivation, and (d) double pulse measurement (Vesq 2 0V, Vosq
4 0V) showing reduced current collapse at room temperature.
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the measured drain current transient for the 10 Is pulse gate turn-on
signal, and the pulse shows fast drain current turn-on and turn-off.
This is in contrast to the recessed channel MOSFETs,” where slow
turn-on and turn-off was observed which was attributed to RIE
induced traps. The observed pulse shape explains why the DC-RF dis-
persion does not depend on pulse widths. The pulse shape remains
unchanged even at 250°C as seen in Fig. 2(c).

Double pulsed IV-measurements, where both the drain and gate
are pulsed from different gate and drain quiescent points (Vagsg, Vbsg),
can simulate the device conditions during its operation as an amplifier
or switch, thus provide more insight. Figure 2(d) compares the DC and
double pulsed output characteristics, and Vgsq ¥4 0 and Vpsq V4 0 were
used to minimize self-heating effects. At the highest pulsed or non-
quiescent gate bias (Vasng ¥4 2 V), a low dispersion of 13% is observed,
which is lower than the current collapse in the gate pulsed measure-
ments. This current collapse is attributed to the possible traps in the
gate—drain access region that were responsible to the current collapse
seen in Fig. 2(b). Here, the dispersion was observed without a finite
gate—drain bias in the quiescent condition. The traps could be charged
due to the built-in bias or charged after pulses have been applied.
Further analysis is needed in the future to fully understand the origin of
this. Double pulsed Ips—Vgs transfer curves (see the supplementary
material) using different quiescent bias conditions did not show any
change in the threshold voltage ruling out traps under the gate, "
leaving the gate—drain access region interface traps as the likely source
of the observed dispersion. It is noted that the presence of deep-level
traps is not probed in these pulsed [V measurements.

Figure 3(a) shows the measured current collapse as a function
pulse width for different quiescent gate and drain biases. All Ip values
were measured at Vgs ¥4 2V and Vps ¥4 5V for this calculation. The

50 — a
? 40 -8y - * - ~ - ( )
o ~.
e 30 'S — - _VGS,q=o= VDS,q=5 Y]
8_20 \\ B e Y I 0.V 0V
@ o LEp--1 " 650> Vosq™
2 o ] VesgT05, Vs R0V
3% 10 PR - - VGS,q=2’ VDS,q=5 A"
::lu‘ig "‘v'—’"—“v——-v _v_VGS,q=2!VDS‘q=DV
01 1 10 100 1000
Pulse Width (us)
60-——pc  Dispersion 13 ¥ 40;~ > Vgsq=0V, Vns,_q= ov
-~ 7 200ns 3 - — = Vggq= 0V, Drain DC
= = 200 ns “IE 30, "ot
E40{ v 0to2V g b S
- g 2007 7 N S
7/
€2 =] PR () BN
£ < 101 , °
PW =1 s
0 . L
0
0 100 200 300
1 2 4
0 3 > Temperature(°C)

Vos (V)

FIG. 3. (a) Comparison of current collapse for output curves at different quiescent
bias conditions before passivation (Lg ¥4 160 nm), (b) DC and pulsed IV curve
(Vasq 72 0V, Vosq ¥4 0V) at 250 °C showing similar dispersion at room tempera-
ture, and (c) temperature dependent dispersion for 1 1s PW showing lower current
collapse for the double pulsed technique.
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maximum current collapse (40%) is observed for Vgsq ¥4 0V and
Vpsq ¥4 5 V; the larger gate—drain voltage and pinch off condition lead
to longer virtual gate formation, hence the increased current collapse.
In contrast, for Vgsq ¥4 2V and Vpsq ¥4 0V, no current collapse is
observed, instead a small increase in the current is seen. In this condi-
tion, the device is in the on state, and the traps are filled, which
climinated the current collapse,'” while the reduced self-heating in
pulsed conditions likely leads to a slight increase in the current. Vgsq
Ya -0.5V gave a higher dispersion compared to the Vgsq ¥4 0 quies-
cent condition, because more negative voltage causes more trapping
and higher current collapse. The response of other quiescent condi-
tions is an interplay of trapping and self-heating effects.”’

Temperature dependent pulsed IV measurements were also car-
ried out up to 250°C. As seen in Fig. 3(b), a low current collapse of
13% is observed at 250 °C for 200 ns pulse width similar to the case at
room temperature. Drain lag, gate lag, and double pulsed measure-
ments at higher temperatures show a similar trend as room tempera-
ture for the DC-RF dispersion (similar to Fig. 2). Figure 3(c) shows the
double pulsed current collapse at 1 Is pulse width as a function of
temperature. It shows a non-monotonic behavior with temperature
with highest dispersion at 150 °C. This trend is the result of complex
interplay of several effects including trapping self-heating effects and
the stage temperature. With an increase in temperature, traps can
respond faster, while the self-heating effects could be reduced because
of overall decrease in the current at higher temperatures [see Fig.
1(b)]. A more careful analysis, including thermal simulations, is
needed to fully understand the temperature dependent pulsed IV data.

In order to eliminate the observed current collapse in the AlGaO/

GaO HFETs, a Si3Ny passivation was investigated. It has been used to
reduce or eliminate DC-RF dispersion/current collapse in AlGaN/
GaN devices.”” * Interestingly, after passivation, a significant change
in the threshold voltage to -1V is observed (see the supplementary
material). It is attributed to possible intermixing of Au and Pt in the
gate stack, resulting in a lower Schottky barrier, although introduction
of traps under gate is not completely ruled out. Intermixing of Pt and
Au at 200 °C is reported in Ref. 34. The DC output characteristics of a
HFET after passivation are shown in Fig. 4(a). The decreased DC drain
current and transconductance can be attributed to increased sheet
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FIG. 4. (a) Output curve (Lg ¥4 200 nm) after passivation (Vesq ¥4 -1.5V, Vpsq
Y4 0V) using the double pulse method and (b) comparison of current collapse at
the double pulse method using different quiescent bias conditions after passivation.
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resistance in the access regions due to plasma damage during SizNy4
deposition at 350°C, which is higher than previous reports.” " In
addition, as seen in the DC curves, the contact linearity has changed.
All these changes in the DC characteristics need to be eliminated in an
ideal passivation scheme. Further optimization of the Si3N4 process is
required. In the subsequent analysis, the pulsed measurements are
from Vgs -1.5 to 1V (pinch off to the on state) to keep comparable
gate overdrive (Voverdrive 74 Vas — Vin ¥4 2 V) as before passivation
and comparable on-state DC drain currents.

Figure 4(a) shows the measured output curves for the passivated
device by the DC and double pulse (200 ns pulse width) technique
using Vsg 4 -1.5V and Vpgq ¥4 0 V. We do not observe any current
collapse due to DC-RF dispersion for all pulse widths (not shown
here). At 200 ns pulse widths, the drain current is increased by 50%
compared to DC at higher drain biases. This demonstrates that Si3Ny
passivation can mitigate current collapse in AlGaO/GaO HFETs.
Similar result was observed for gate lag measurements too. Even at
200°C, no current collapse was observed (see the supplementary
material). Surprisingly, pulsed measurements show higher currents
than DC even at lower drain biases. This is observed for all pulse
widths (see the supplementary material). This effect could be due to
the effect of traps in the drain access region, which were likely intro-
duced in the Si3N4 deposition process.

Figure 4(b) compares the DC-RF dispersion of the passivated
HFET at different quiescent bias conditions as a function of the pulsed
width. Current dispersion was compared at Vgs ¥4 1V and Vps ¥4 7V
bias points, which has the highest Ip. Most bias conditions, including
the high Vgp pinch off condition (Vgsq ¥4 -1V and Vpsq 4 7 V),
Ippuise are higher than the DC value, and the reduced pulse width
increases the current, indicating effective passivation of the traps in the
gate—drain access region that caused current collapse before passiv-
ation. The pulsed drain current increases continuously compared to
DC at lower pulse widths due to the reduced self-heating effect in
addition to the traps that cause current increase seen at lower drain
biases. Only when both drain and gate quiescent bias conditions are
set to high (Vasgq 4 1V and Vpsg ¥4 7V), a small current collapse is
seen. This is attributed to the heating effect rather than any trapping
effect as the traps are likely filled in the on-state. This is verified by
using lower Vpsq ¥4 5V, which resulted in smaller dispersion than
Vpsq ¥4 7 V. Double pulsed Ips—Vgs transfer curves (see the supple-
mentary material) after passivation do not show any change in the
threshold voltage ruling out traps under the gate,"'"** although fur-
ther studies are necessary to completely rule this out.

Temperature dependent RF measurements were carried out on
un-passivated and passivated HFETs using an ENA 5071C vector net-
work analyzer (VNA) from 100 MHz to 19 GHz with CPW probes.
The VNA was calibrated using an alumina standard substrate at each
temperature. An on-wafer open structure was measured at each tem-
perature and used to de-embed the parasitic capacitance from contact
pads.’ﬂ’(’ Figures 5(a) and 5(b) show fr and fuax at two different tem-
peratures before passivation. The lower gate length (Lg ¥4 160 nm)
device has a higher fr [Fig. 5(a)], while the longer gate length (Lg
4 200 nm) device gave higher fuax [Fig. 5(b)] due to lower gate resis-
tance. The pre-passivation RF measurements were limited to Vps
Ya 5V to protect the devices. Figure 5(c) shows the temperature depen-
dent fr, and it does not degrade significantly with increasing tempera-
tures. A peak fr of 13 GHz is measured at 250°C. Figure 5(d) shows
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FIG. 5. (a) Measured small signal gain (hy) at room temperature and 250°C
before passivation, (b) unilateral gain plot showing fuax at two different temperature
before passivation, (c) comparison of fr before and after passivation for two devices
at different bias points, and (d) measured fyax for two devices before and after
passivation.

the temperature dependent fuiax, and a peak value of 22 GHz is mea-
sured at 200°C. Figures 5(c) and 5(d) also show the fr and fuax of a
200nm gate length device (160 nm Lg device was destroyed in the pas-
sivation and RIE process) after passivation (see the supplementary
material for detailed plots), and the values and trend are similar to
before passivation, thus showing the suitability of the SisN4 passivation.

In conclusion, a study of the temperature dependent pulsed IV
characterization of b-(AlkGaj«)>03/Ga,03 HFETs was carried out.
The DC-RF dispersion or current collapse in the gate lag measure-
ments were lower than recessed channel MOSFETs due to the absence
of any RIE damage to the channel. A moderate current collapse was
observed before passivation. PECVD deposited Si3Ny4 passivation elim-
inated current collapse in the AlGaO/GaO HFETs. Pulsed measure-
ments of the passivated devices show a 50% enhancement in the drain
current at high drain biases due to reduced self-heating. Dispersion
free operation was maintained even at higher temperatures. However,
the 350 °C Si3Ny4 deposition changed the DC characteristics including
the threshold voltage on currents and contact linearity. Additionally,
different types of traps are introduced, which increase pulsed currents.
Further optimization of the SisNa deposition process is needed for
reliable passivation that does not impact the DC parameters. High
frequency characterization up to 250°C has been demonstrated for
b-Ga,O3 HFETs. Negligible degradation of fr and fuax at high
temperatures is seen for both unpassivated and passivated devices.
These results show viability of Ga,O3 devices for high temperature RF
applications.

See the supplementary material for details on the Ip—V transfer
curve before and after passivation, high temperature pulsed IV and RF
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measurement after passivation plots, and peak gn as a function of
pulse width analysis.
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