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a b s t r a c t

This paper considers the mode discernibility and controlled mode discernibility for nonlinear hybrid
systems with unknown switchings and unknown exogenous input, motivated by its potential appli-
cations to fault detection and isolation, cyber-security, and robust control. We formally define the
mode discernibility and controlled mode discernibility, and then characterize these properties from a
geometric perspective. Specifically, we review and complement the concept of controlled invariance for
nonlinear systems, based on which a new concept called strongly controlled invariance is proposed
as a tool to characterize the controlled mode discernibility. Besides the general characterization of
controlled mode discernibility, we discuss some commonly considered special nonlinearities, and
demonstrate that the discerning control design problem can be formulated as a quadratic game for
some cases.
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1. Introduction

A hybrid system is a dynamical system with interacting con-
inuous and discrete state dynamics (Goebel, Sanfelice, & Teel,
009; Van Der Schaft & Schumacher, 2000), which has been
idely considered for modeling complex industrial plants and
yber–physical systems to investigate system resilience (Sayed-
ouchaweh, 2018). For fault detection and isolation (FDI) of
lants, the discrete states of the hybrid system can represent
ault modes, and the continuous dynamics associated with each
iscrete state can describe the system behavior under the cor-
esponding fault mode (Tanwani, Domínguez-García, & Liberzon,
010; Zhao, Koutsoukos, Haussecker, Reich, & Cheung, 2005).
eanwhile, the logical behavior and physical behavior of a cyber–
hysical system can be mapped to the discrete state dynamics
nd continuous state dynamics, respectively, and then the ab-
ormal logical behavior due to cyber-attacks can be modeled as
nexpected discrete state switchings (Sun & Hwang, 2019; Zhu
Basar, 2015). Besides, the discrete states of the hybrid system

an also describe different external/internal operational environ-
ents of a plant, so robust and adaptive control techniques can

✩ The authors would like to acknowledge that this work is supported by NSF
CNS-1836952. The material in this paper was not presented at any conference.
This paper was recommended for publication in revised form by Associate Editor
Aneel Tanwani under the direction of Editor Daniel Liberzon.
∗ Corresponding author.

E-mail addresses: sun289@purdue.edu (D. Sun), ihwang@purdue.edu
I. Hwang).
https://doi.org/10.1016/j.automatica.2022.110339
0005-1098/© 2022 Elsevier Ltd. All rights reserved.
be used to assure the system performance (e.g., L2-gain) un-
der the nonpredetermined time-varying environment (Anderson
et al., 2000; Hespanha et al., 2001; Hu, Shen, & Putta, 2016;
Xiang & Xiao, 2012; Zhang & Shi, 2009). In the context of ei-
her FDI, cyber-security, or robust control, not only the discrete
tate is, in general, assumed to be unavailable directly, but also
he continuous dynamics often involves unknown input, which
an represent actuator faults (Yang, Cocquempot, & Jiang, 2009),
eceptive cyber-attacks (Yong, Zhu, & Frazzoli, 2018), or dis-
urbance (Yang, Li, Jiang, & Cocquempot, 2018). Although many
esilient control schemes (e.g., fault-tolerant control (Allerhand &
haked, 2014), attack-mitigation methods (Feng & Tesi, 2017; Hu,
hen, & Lee, 2017; Lu & Yang, 2017), robust control (Xiang, Tran, &

Johnson, 2017, 2018)) are designed to be effective without using
discrete state information or exogenous input information, iden-
tifying the unknown discrete state of the hybrid system is still
crucial for situational awareness (Diene, Moreira, Silva, Alvarez, &
Nascimento, 2017; Vento, Travé-Massuyès, Puig, & Sarrate, 2014).

Mode discernibility (or mode distinguishability or mode observ-
ability) of a hybrid system, in general, stands for the property
of whether or not the discrete state of the hybrid system can
be recovered from available information (Küsters & Trenn, 2018).
We classify the existing works on mode discernibility into three
categories based on available information: recovering discrete
state information from (i) the output of the discrete state dynam-
ics (Lafortune, Lin, & Hadjicostis, 2018; Ramadge, 1986; Sampath,
Sengupta, Lafortune, Sinnamohideen, & Teneketzis, 1995), (ii) the
output of the continuous state dynamics (Alessandri, Baglietto,
& Battistelli, 2005; Battistelli, 2013; De Santis, 2011; De San-
tis, Di Benedetto, & Pola, 2009; Halimi, Millérioux, & Daafouz,
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014; Motchon, Pekpe, & Cassar, 2017; Motchon, Pekpe, Cas-
sar, & De Bièvre, 2015; Ramdani, Travé-Massuyès, & Jauberthie,
2018; Rosa & Silvestre, 2011), and (iii) the output of the con-
tinuous state dynamics without knowing exogenous inputs. Note
that the third class is of interest from the perspectives of FDI,
cyber-security, and robust control, but currently, not many works
have been done: the mode distinguishability for continuous-time
switched linear systems with partially unknown input has been
discussed by Gómez-Gutiérrez, Ramírez-Treviño, Ruiz-León, and
Di Gennaro (2011); mode distinguishability for cyber-security
issues that address sparse attack inputs is considered by Fiore,
De Santis, and Di Benedetto (2017); the mode discernibility for a
switched structured linear system with unknown input has been
studied by Boukhobza and Hamelin (2011) via a graph-theoretic
approach; the invertibility of continuous-time switched systems
with unknown input, which describes whether the discrete state
and the unknown input can be simultaneously estimated using
the output and initial state information, has been studied by Kaba
and Camlibel (2010), Tanwani and Liberzon (2010), Vu and Liber-
zon (2008). It should be remarked that the requirement of mode
discernibility could be restrictive, which induces the concept of
controlled mode discernibility (Baglietto, Battistelli, & Scardovi,
2007; Lou & Yang, 2011; Motchon & Pekpe, 2018; Motchon,
Pekpe, & Cassar, 2018; Ramdani et al., 2018): whether some
special control inputs can be designed and applied to the system
such that the behaviors of different modes are distinguishable.

From the literature, we find that nonlinearity has rarely been
considered for the mode discernibility (Motchon & Pekpe, 2018;
Motchon et al., 2017; Ramdani et al., 2018), and the controlled
mode discernibility has not been extensively studied (Baglietto
et al., 2007; Lou & Yang, 2011; Motchon & Pekpe, 2018; Motchon
et al., 2018), especially for systems with unknown exogenous
input. Therefore, we consider the mode discernibility and con-
trolled mode discernibility for nonlinear hybrid systems with
unknown switchings and unknown exogenous input, motivated
by its potential applications to FDI, cyber-security, and robust
control for systems with unnegligible nonlinearities. It is worth
mentioning that by constructing an augmented system (De Santis,
2011; Gómez-Gutiérrez et al., 2011), the mode discernibility for
linear switched systems can be related to the triviality of the zero
dynamics (or zero-output-constrained dynamics, the subsystem
of the original system that can result in identically zero out-
put (Isidori, 2013b)) of the augmented system. Note that the zero
dynamics of nonlinear system has been extensively studied and
related to system inversions (Hirschorn, 1979; Nijmeijer, 1982,
1986; Silverman, 1969; Singh, 1981), decoupling control (De-
scusse & Moog, 1985; Isidori, Krener, Gori-Giorgi, & Monaco,
1981; Nijmeijer & Schumacher, 1985), output tracking (Albrecht,
Grasse, & Wax, 1981; Devasia, Chen, & Paden, 1996; Isidori &
Byrnes, 1990; Li & Feng, 1987; Singh, 1982), etc. It is well-
known that for a linear system, the set of all initial states that
can generate identically zero output is equivalent to the largest
controlled invariance subspace (Basile & Marro, 1969) contained
in the kernel of output matrix, and this characterization can be
extended to nonlinear systems by generalizing the concept of
controlled invariant subspace to controlled invariant submani-
fold (Berger, 2016; Isidori & Moog, 1988) and controlled invariant
distribution (Hirschorn, 1981; Isidori et al., 1981). In this paper,
we use the concept of controlled invariant submanifold to tackle
the challenges introduced by nonlinearities in the characteriza-
tion of mode discernibility. However, for the characterization of
controlled mode discernibility, the existing concept of controlled
invariant submanifold is insufficient in the sense that the problem
considered in this paper is more complicated due to the presence
of both control input and unknown exogenous input, which mo-

tivates us to propose a new concept called strongly controlled

2

invariant submanifold from a geometric perspective, which is
similar to but different from the concept of robust controlled
invariant subspace considered by Fiacchini, Alamo, and Camacho
(2010).

To the best of our knowledge, the only works considering con-
trolled mode discernibility for nonlinear systems are (Motchon &
Pekpe, 2018; Ramdani et al., 2018) which, however, do not con-
sider both control input and unknown input simultaneously. To
provide insights and tools for investigating the mode identifica-
tion problem of hybrid systems in the context of FDI,
cyber-security, and robust control, this paper is focused on the
characterization of (controlled) mode discernibility and discus-
sions on the idea of discerning control design for nonlinear
hybrid systems with unknown exogenous input. Specifically, the
contribution of this paper is threefold. First, we formally define
the mode discernibility and the controlled mode discernibility for
nonlinear hybrid systems subject to unknown exogenous input.
Second, we review and complement the concept of controlled
invariant submanifold from a geometric perspective, and fur-
ther propose a new concept called strongly controlled invariant
submanifold. Then, we characterize the mode discernibility and
controlled mode discernibility based on the study of controlled
invariant submanifold and strongly controlled invariant subman-
ifold, respectively. A class of systems with a special structure
is discussed as an example. Furthermore, the formulation of
discerning control design is proposed for a special case.

The paper is organized as follows. The system description and
problem statement are presented in Section 2. In Section 3, the
concept of controlled invariant submanifold is reviewed, and the
concept of strongly controlled invariant is proposed. The charac-
terizations of mode discernibility and controlled mode discerni-
bility are provided in Section 4. In addition, the hybrid systems
whose subsystems have special structures are discussed, and
a formulation of discerning control design is proposed. Finally,
Section 5 concludes this paper.

2. Problem statement

Consider the hybrid system with unknown switchings and
unknown exogenous input given as:

ΣS :

{
ẋ = fσt (x)+ ga

σt
(x)ua

+ gc
σt
(x)uc

y = hσt (x)
, (1)

where the continuous state x takes values in Rn; the output
y takes values in Rl; the control input uc and the unknown
exogenous input ua take values in Rmc

and Rma
, respectively;

σt ∈ Q =
{
1, 2, . . . , nQ

}
is the discrete state (or mode) of

the system at time t , which is assumed to be unavailable, and
nQ is the number of modes; for each σ ∈ Q , fσ : Rn

↦→ Rn,
ga
σ : Rn

↦→ Rn×ma
, gc

σ : Rn
↦→ Rn×mc

, consisting of vector fields
associated with mode σ , are assumed to be C∞; and hσ : Rn

↦→ Rl

consists of l output functions which are C∞. Since the discrete
state dynamics is not explicitly considered, the hybrid system
(1) is also referred as a hidden mode nonlinear switched system
with unknown inputs (Yong et al., 2018). We denote the following
system as the subsystem of mode q ∈ Q (or simply mode q):

Σq :

{
ẋ = fq(x)+ ga

q (x)u
a
+ gc

q (x)u
c

y = hq(x)
. (2)

For the subsystem of mode q, we denote the input-to-state map
and the input-to-output map by X q

t (x
q
0, u

c, ua) and Yq
t (x

q
0, u

c, ua),
respectively. To facilitate the analysis, we assume the control
input and the unknown exogenous input are admissible to ensure
the existence and uniqueness of the state trajectory (at least on
an open time interval containing t = 0) for each pair of inputs.
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ote that all the above requirements of C∞ are just mathematical
echniques to avoid counting the exact order of differentiability.

We propose the following definitions for studying mode dis-
ernibility and controlled mode discernibility:

efinition 1 (Mode Discernibility with Unknown Input). Modes
and q are called discernible at (xp0, x

q
0) if for any ϵ > 0 and

for any admissible up and uq, there is a t ∈ (−ϵ, ϵ) such that
Yp
t (x

p
0, 0, u

p) ̸= Yq
t (x

q
0, 0, u

q). Otherwise, modes p and q are called
ndiscernible at (xp0, x

q
0), and (xp0, x

q
0) is called an indiscernible pair

or modes p and q.

efinition 2 (Controlled Mode Discernibility with Unknown Input).
odes p and q are called controlled discernible at (xp0, x

q
0) if for

ny ϵ > 0 and ūc > 0, there is a discerning control for uc with
agnitude smaller than ūc such that for any admissible up and uq,
p
t (x

p
0, u

c, up) ̸= Yq
t (x

q
0, u

c, uq) for some t ∈ (−ϵ, ϵ). Otherwise, we
ay modes p and q are not controlled discernible at (xp0, x

q
0), and

xp0, x
q
0) is called a strongly indiscernible pair for modes p and q.

Roughly speaking, modes p and q are discernible if all tra-
ectories generated by mode p cannot be reproduced by mode
, even in a very short time period. Equivalently, there is no
ntersection between the set of all possible output trajectories
enerated by mode p and the set of trajectories generated by
ode q, no matter how short the time horizon is. It is clear that

f modes are indiscernible, whenever we observe a trajectory that
an be generated by both modes p and q, we cannot immediately
ell which one the current mode is. For the controlled mode
iscernibility, we emphasize the role of control in distinguishing
he behaviors of different modes. It should be remarked that it is
equired the discerning control to be arbitrarily small in order to
estrict the discussion in local regions.

In this paper, we are interested in the following problems:

roblem 1. How to characterize generic indiscernible pairs and
trongly indiscernible pairs?

roblem 2. What type of structure for the nonlinearity could
acilitate the characterization?

roblem 3. How to formulate the problem of discerning control
esign?

. Geometric tools

In the literature, by introducing an augmented system, the
ode discernibility is shown to be associated with the output-
ulling problem, i.e., whether there are initial states and inputs
hat can result in identically zero output for a while. Hence,
o characterize the indiscernible pairs and strongly indiscernible
airs, we need the concept of controlled invariant submanifold,
hich is an important geometric tool for discussing the output-
ulling problem. For reviewing the concept of controlled invariant
ubmanifold and inducing the concept of strongly controlled in-
ariant submanifold, we consider the following nonlinear system
hose dynamics is affine in controls:

:

{
ẋ = f (x)+ ga(x)ua

+ gc(x)uc

y = h(x)
, (3)

here x, taking values in Rn, is the state; y, taking values in
l, is the output; the inputs ua and uc take values in Rma

and
mc

, respectively; and f , gc , ga, and h are C∞. We restrict the
nputs to be admissible. Additional assumptions for the regularity
f f , gc , and ga will be discussed later. For this nonlinear system,
e denote the input-to-output map by Yt (x0, uc, ua), and the

c a
nput-to-state map by Xt (x0, u , u ).

3

For conciseness, we shall not strictly consider the geometric
bjects in coordinate-free settings (Boothby, 1986), but it does
ot really matter since we mainly consider the local properties
f nonlinear systems (note that the global properties are typically
educed to local properties by excluding singular points). For con-
enience, we consider the following definition for a submanifold:

efinition 3 (Regular Submanifold (Lee, 2013)). N is a n′-dimension
egular submanifold of Rn if for any x ∈ N , there is a neighbor-
hood O of x such that

N ∩ O = {x ∈ O|H(x) = 0} ,

for a smooth map H : O ↦→ Rn−n′ with constant rank n− n′. H is
called a local defining map of N in O.

In this paper, a neighborhood of x means an open set contain-
ing x. Note that a singleton can be considered as a 0-dimensional
submanifold. With Definition 3, the tangent space at a point x of
N ∩ O can be characterized using the local defining map:

TxN =

{
v ∈ Rn

|
∂H
∂x

(x)v = 0
}

. (4)

3.1. Review of controlled invariant submanifold

In general, a controlled invariant submanifold is a submani-
fold that can be rendered invariant by applying some feedback
control. Although most of the materials provided in this sub-
section are adapted from Isidori (2013a), Nijmeijer and Van der
Schaft (1990) and other resources, to be self-contained, we care-
fully summarize materials and complement the proofs of some
important statements.

Definition 4 (Controlled Invariant Submanifold). A regular sub-
manifold N is ⟨f , ga⟩-controlled invariant in an open connected
subset U if for any x ∈ N ∩ U , there is a va

∈ Rma
satisfying

f (x)+ ga(x)va
∈ TxN. (5)

Note that the required property above for a submanifold N to
be controlled invariant in U is equivalent to:

f (x) ∈ TxN + Im{ga(x)}, ∀x ∈ N ∩ U, (6)

where Im{·} represents the column space of the matrix in this pa-
per. In addition, recalling that the tangent space can be expressed
as (4), (5) is also equivalent to
∂H
∂x

(x)
(
f (x)+ ga(x)va)

= 0, (7)

if H is the local defining map.

Definition 5 (Controlled Invariant Output-Nulling Submanifold). If
a regular submanifold N is ⟨f , ga⟩-controlled invariant in U and

∀x ∈ N ∩ U, h(x) = 0, (8)

then N is called a ⟨f , ga⟩-controlled invariant output-nulling sub-
manifold in U for the nonlinear system (3).

In general, given a submanifold M (e.g., M = {x|h(x) = 0}
could be locally a submanifold), it is not clear whether or not
there exists a controlled invariant submanifold contained in M
and whether or not there exists the maximal one (for ‘‘maximal
one", we mean all other controlled invariant submanifolds are
contained in it). However, if some regularity conditions (or called
constant-rank conditions in some context) hold in an open con-
nected subset U , the existence of the maximal one contained in
M ∩ U is guaranteed by considering the following algorithm for

nonlinear systems described by (3):
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|M⟩-algorithm).

Step 0: N0 = M ∩ U;

tep k+ 1: Assume Nk is a regular submanifold; let

k+1 =
{
x ∈ Nk|f (x) ∈ TxNk + Im

{
ga(x)

}}
; (9)

Terminate if Nk+1 = Nk or Nk+1 = ∅.

⟨f , ga
|M⟩-algorithm is called regular on an open connected subset

U if i) at each step k ≥ 0, Nk is a regular submanifold or empty
and ii) for k satisfying Nk = Nk+1 ̸= ∅, both Im{ga(x)} and
TxNk ∩ Im {ga(x)} have constant dimension for all x ∈ Nk. If
⟨f , ga

|M⟩-algorithm is regular on U , then U is called a regular set
of the algorithm, and a point x is called a regular point if it is
contained in a regular set. By the assumption of smoothness, we
know the collection of all regular points is open and dense in Rn

because in general the collection of regular points can be written
as a set where some matrices hold constant rank (Nijmeijer &
Van der Schaft, 1990).

The convergence property of ⟨f , ga
|M⟩-algorithm is summa-

rized in the following lemma:

Lemma 1 ((Isidori, 2013a; Nijmeijer & Van der Schaft, 1990)).
Suppose ⟨f , ga

|M⟩-algorithm is regular on an open connected subset
U, then the algorithm terminates in a finite number of steps on
U, i.e., there is an integer k∗ such that Nk∗ = Nk∗+1. If Nk∗ is
nonempty, Nk∗ is the maximal ⟨f , ga⟩-controlled invariant subman-
ifold in M ∩ U. Otherwise, any nonempty submanifold in M ∩ U is
not ⟨f , ga⟩-controlled invariant.

Since ⟨f , ga
|M⟩-algorithmwill converge to the maximal ⟨f , ga⟩-

controlled invariant submanifold in M∩U if it is regular on U , we
shall denote

N∗
=

⟨
f , ga

|M ∩ U
⟩

(10)

to indicate that ⟨f , ga
|M⟩-algorithm converges to N∗ in U . Clearly,

if we take M = {x|h(x) = 0} and assume the algorithm is regular
on an open connected subset U , then N∗

= ⟨f , ga
|M ∩ U⟩ is the

maximal ⟨f , ga⟩-controlled invariant output-nulling submanifold
in U .

Remark 1. The existence of feedback rendering a submani-
fold locally invariant is equivalent to the existence of smooth
feedback rendering the submanifold locally invariant under the
regularity condition. Formally speaking, for any x in N∗, there
is a neighborhood O of x such that N∗

∩ O can be rendered
invariant by some smooth feedback defined on O. To see this,
suppose for any x ∈ N∗, there is a neighborhood O of x such that
N∗

∩ O = {x ∈ O|H(x) = 0} (H is the local defining map) without
loss of generality. The regularity condition that both Im{ga(x)}
and TxN∗

∩ Im{ga(x)} have constant dimension on Nk implies the
atrix ∂H

∂x (x)g
a(x) has constant rank on Nk∩O. To find a feedback

: N∗
∩ O ↦→ Rma

that solves f (x) + ga(x)α(x) ∈ TxN∗ for each
x ∈ N∗

∩ O, i.e.,
∂H
∂x

(x)(f (x)+ ga(x)α(x)) = 0, ∀x ∈ N∗
∩ O, (11)

we may consider

α(x) = −

[
∂H
∂x

(x)ga(x)
]† [

∂H
∂x

(x)f (x)
]

, (12)

here ‘‘†" denotes the pseudo-inverse. Then, α(x) satisfies f (x)+
a(x)α(x) ∈ TxN∗ for each x ∈ N∗

∩ O by the fact that f (x) ∈

xN∗
+ Im{ga(x)} for each x ∈ N∗

∩ U . In addition, α : Nk ∩ O ↦→
ma

is smooth because
[

∂H
∂x (x)g

a(x)
]†

is smooth when ∂H
∂x (x)g

a(x)
as constant rank on N∗

∩ O. Furthermore, α can be smoothly
xtended to O since N∗ is a regular submanifold.
4

The maximal ⟨f , ga⟩-controlled invariant submanifold con-
ained in {x ∈ U |h(x) = 0}, as a geometric object, is related to
the control problem by the following definition and lemmas:

Definition 6 (Output-Nulling State). A state x0 in Rn is a ⟨f , ga⟩-
output-nulling state of system (3) if there is an ϵ > 0 and an
admissible ua such that

Yt (x0, 0, ua) = 0,∀t ∈ (−ϵ, ϵ) . (13)

Lemma 2. Suppose ⟨f , ga
|ker {h}⟩-algorithm (ker {h} = {x|h(x) =

0}) is regular on an open connected subset U and N∗
= ⟨f , ga

|ker {h}
∩U⟩. An x0 ∈ U is a ⟨f , ga⟩-output-nulling state of system (3) if and
only if x0 ∈ N∗.

Proof. The proof is given in Appendix A. □

According to this statement, we know that near regular points,
if there are output-nulling states, they form a submanifold which
is the maximal controlled invariant output-nulling submanifold.

Note that the above result can be extended by considering
M that is a more general regular submanifold. If M is a regular
submanifold, thenM can be locally expressed as {x ∈ U |H(x) = 0}
with a local defining map H . By replacing the output function h
with H for system (3), all discussions for the locally controlled
invariant output-nulling submanifold can be applied here. Similar
to Lemma 2, now we have:

Corollary 1. Suppose ⟨f , ga
|M⟩-algorithm is regular on U and

N∗
= ⟨f , ga

|M ∩ U⟩. For any x0 ∈ U, the following two statements
are equivalent:

(1) there is an ϵ > 0 and an admissible ua such that

Xt (x0, 0, ua) ∈ M,∀t ∈ (−ϵ, ϵ) ; (14)

(2) x0 ∈ N∗.

Remark 2. According to Corollary 1, x0 ∈ U \ N∗ is equivalent
to: for any ϵ > 0 and for any admissible input ua, there is
t ∈ (−ϵ, ϵ) such that Xt (x0, 0, ua) /∈ M . In other words, if an
initial state of system (3) is contained in M but not contained in
the maximal ⟨f , ga⟩-controlled invariant submanifold in M , then
no matter what ua is applied, the system state will leave from M
immediately.

3.2. Strongly controlled invariant submanifold

With the concept of controlled invariant submanifold, the in-
discernible pairs could be characterized. However, for controlled
mode discernibility, we will need a new concept that is defined
as follows:

Definition 7 (Strongly Controlled Invariant Submanifold). A regular
submanifold N̂ is ⟨f , ga

; gc⟩-strongly controlled invariant in an
open connected subset U if for any x ∈ N̂ ∩ U and any vc

∈ Rmc
,

there is a va
∈ Rma

satisfying

f (x)+ gc(x)vc
+ ga(x)va

∈ TxN̂. (15)

Recall (4), (15) is also equivalent to
∂H
∂x

(x)
(
f (x)+ gc(x)vc

+ ga(x)va)
= 0, (16)

if H is the local defining map of N̂ . Note that the above require-
ment for a submanifold N̂ to be strongly controlled invariant is
equivalent to

f (x)+ Im{gc(x)} ⊆ T N̂ + Im{ga(x)},∀x ∈ N̂ ∩ U . (17)
x
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r equivalently, both

(x) ∈ TxN̂ + Im{ga(x)},∀x ∈ N̂ ∩ U (18)

nd

m{gc(x)} ⊆ TxN̂ + Im{ga(x)},∀x ∈ N̂ ∩ U (19)

hold.

Definition 8 (Strongly Controlled Invariant Output-Nulling Sub-
manifold). If a regular submanifold N̂ is ⟨f , ga

; gc⟩-strongly con-
trolled invariant in U and

∀x ∈ N̂ ∩ U, h(x) = 0, (20)

hen N̂ is called a ⟨f , ga
; gc⟩-strongly controlled invariant output-

ulling submanifold in U for system (3).

Intuitively speaking, if a submanifold is ⟨f , ga
; gc⟩-strongly

ontrolled invariant for system (3), then no matter what admis-
sible input is injected through the channel gc , there is a choice
of input for the channel ga such that the submanifold can be
rendered invariant.

Again, we are interested in whether there exists a ⟨f , ga
; gc⟩-

strongly controlled invariant submanifold in a given submanifold
M and whether there is a maximal one. We consider the following
algorithm that can generate the maximal strongly controlled in-
variant output-nulling submanifold in an open connected subset
U if some regularity conditions hold:

Algorithm 2 (⟨f , ga
; gc

|M⟩-algorithm).

Step 0: N̂0 = M ∩ U;

Step k+ 1: Assume N̂k is a regular submanifold; let

N̂k+1 =

{
x ∈ N̂k|f (x)+ Im{gc(x)}

⊆ TxN̂k + Im{ga(x)}
}
;

(21)

erminate if N̂k+1 = N̂k, or N̂k+1 = ∅.

Similarly, ⟨f , ga
; gc

|M⟩-algorithm is called regular on an open
onnected subset U , if i) at each step k ≥ 0, the assumptions
equired in the algorithm are satisfied, and ii) for k satisfying
ˆ k = N̂k+1, both Im{ga(x)} and TxN̂k ∩ Im {ga(x)} have constant
imension for x ∈ N̂k ∩ U . If ⟨f , ga

; gc
|M⟩-algorithm is regular on

, then U is called a regular set of the algorithm, and x is called
regular point if x is contained in a regular set. The convergence
f the algorithm is claimed in the following proposition:

roposition 1. Suppose ⟨f , ga
; gc

|M⟩-algorithm is regular on
n open connected subset U for system (3), then the algorithm
erminates in a finite number of steps, i.e., there is an integer k∗
uch that N̂k∗ = N̂k∗+1. If N̂k∗ is nonempty, N̂k∗ is the maximal
f , ga

; gc
|M⟩-strongly controlled invariant output-nulling subman-

fold in U. Otherwise, there is no ⟨f , ga
; gc

|M⟩-strongly controlled
nvariant output-nulling submanifold in U.

roof. The proof is given in Appendix B. □

Since ⟨f , ga
; gc

|M⟩-algorithm will converge to the maximal
f , ga

; gc⟩-strongly controlled invariant submanifold in M ∩ U if
t is regular on U , we shall denote

ˆ ∗ =
⟨
f , ga

; gc
|M ∩ U

⟩
(22)

o indicate that ⟨f , ga
; gc

|M⟩-algorithm converges to N̂∗ in U . If
e take M = {x|h(x) = 0} and assume the algorithm is regular on
n open connected subset U , then N̂∗

= ⟨f , ga
; gc

|M ∩ U⟩ is the
aximal ⟨f , ga

; gc⟩-strongly controlled invariant output-nulling
ubmanifold in U .
5

The ⟨f , ga
; gc⟩-strongly controlled invariant output-nulling sub

anifold for system (3), as a geometric object, can be related to
he control problem by the following definition and theorem.

efinition 9 (Strongly Output-Nulling State). A state x0 in Rn is
a ⟨f , ga

; gc⟩-strongly output-nulling state of system (3) if there
is an ϵ > 0 and ūc > 0 such that for any admissible control
of uc with magnitude smaller than ūc , there is an admissible ua

satisfying

Yt (x0, uc, ua) = 0,∀t ∈ (−ϵ, ϵ) . (23)

heorem 1. Suppose ⟨f , ga
; gc

|ker {h}⟩-algorithm (ker {h} =

x|h(x) = 0}) is regular on an open connected subset U, and the
lgorithm converges to N̂∗ on U. Then, a state x0 ∈ U is ⟨f , ga

; gc⟩-
strongly output-nulling for system (3) if and only if x0 ∈ N̂∗.

Proof. The proof is given in Appendix C. □

Remark 3. In general, for a nonlinear system in the form
of (3), the collection of output-nulling states contains, but not
necessarily equivalent to, the set of strongly output-nulling states.
To see this, consider the following illustrative nonlinear system:⎧⎪⎨⎪⎩
ẋ1 = x22uc

ẋ2 = x1 + ex1
2
ua

y = x1

. (24)

he collection of output-nulling states is given by:
∗
= {x|x1 = 0}. (25)

The set of strongly output-nulling states is given by:

N̂∗
= {x|x1 = x2 = 0}, (26)

which is neither empty nor equal to N∗.

Remark 4. In Remark 3, an example has been given to show
that for a general nonlinear system in form of (3), the set of
strongly output-nulling states is contained in, but not necessarily
equivalent to, the set of output-nulling states. However, if the
system is linear, the set of strongly output-nulling states is either
empty or equivalent to the set of output-nulling states. To see
this, consider the linear system given as:{
ẋ = Ax+ Baua

+ Bcuc

y = Cx
. (27)

where A ∈ Rn×n, Ba
∈ Rn×ma

, Bc
∈ Rn×mc

, C ∈ Rl×n are sys-
tem matrices. According to the literature (e.g., Basile and Marro
(1969)), N∗ for the linear system (27) is the largest ⟨A, Ba⟩-
controlled invariant subspace contained in ker C , and we already
know N̂∗ is a subset of N∗. Consider two cases: (1) Im{Bc

} is
contained in N∗

+ Im{Ba
}; and (2) Im{Bc

} is not contained in
N∗

+ Im{Ba
}. If (1) is the case, for any x ∈ N∗ and any uc , there

are ûa and ũa such that
Ax+ Baûa

∈ N∗,

Bcuc
+ Baũa

∈ N∗.
(28)

Then, if we take ua
= ûa

+ ũa, then

Ax+ Bcuc
+ Baua

∈ N∗, (29)

which reveals N∗ is contained in N̂∗, and thus N∗
= N̂∗. For case

(2), we claim N̂∗
= ∅. Otherwise, for any x ∈ N̂∗, by the definition

of N̂∗,

Im{Bc
} ⊆ TxN̂∗

+ Im{Ba
}

⊆ TxN∗
+ Im{Ba

} = N∗
+ Im{Ba

},
(30)

which is contradictory to the condition.
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. Main results

.1. Characterization of indiscernible pairs

To investigate the indiscernible pairs and strongly indiscernible
airs for modes p and q, we may consider the augmented sys-

tem (De Santis, 2011; Gómez-Gutiérrez et al., 2011) for conve-
nience:

Σpq :

{
ẋpq = Fpq(xpq)+ Ga

pq(x
pq)upq

+ Gc
pq(x

pq)uc

δypq = Hpq(xpq)
, (31)

here

xpq =
[
xp
xq

]
, upq

=

[
up

uq

]
,

Fpq(xpq) =
[
fp(xp)
fq(xq)

]
, Ga

pq(x
pq) =

[
ga
p (x

p) 0
0 ga

q (x
q)

]
,

c
pq(x

pq) =
[
gc
p (x

p)
gc
q (x

q)

]
, Hpq(xpq) = hp(xp)− hq(xq).

y constructing the augmented system, the indiscernible pair for
odes p and q is related to the initial state of the augmented

system Σpq that can generate identically zero output (at least for a
while) by some upq, and the strongly indiscernible pair for modes
and q is equivalent to the initial state of the augmented system
pq such that no matter what admissible uc is injected, there is
n admissible upq making the output identically zero at least for
while. Formally, we have:

heorem 2. Suppose
⟨
Fpq,Ga

pq|ker
{
Hpq

}⟩
-algorithm (ker

{
Hpq

}
=

xpq|Hpq(xpq) = 0
}
) is regular on U, an open connected subset of

he state space of (31), and the algorithm converges to N∗ on U.
xp0

T xq0
T
]
T is a point in U. The following statements are equivalent:

(1) (xp0, x
q
0) is an indiscernible pair for modes p and q;

(2) [xp0
T xq0

T
]
T is a

⟨
Fpq,Ga

pq

⟩
-output-nulling state of system (31);

(3) [xp0
T xq0

T
]
T
∈ N∗.

heorem 3. Suppose
⟨
Fpq,Ga

pq;G
c
pq|ker

{
Hpq

}⟩
-algorithm (ker

{
Hpq

}{
xpq|Hpq(xpq) = 0

}
) is regular on U, an open connected subset of

he state space of (31), and the algorithm converges to N̂∗ on U.
xp0

T xq0
T
]
T is a point in U. The following statements are equivalent:

(1) (xp0, x
q
0) is a strongly indiscernible pair for modes p and q;

(2) [xp0
T xq0

T
]
T is a

⟨
Fpq,Ga

pq;G
c
pq

⟩
-strongly output-nulling state of

system (31);
(3) [xp0

T xq0
T
]
T
∈ N̂∗.

Note that the proofs of Theorems 2 and 3 are straightfor-
ward using the tools introduced in Section 3, and thus they are
omitted for brevity. Let us introduce the following examples to
demonstrate Theorems 2 and 3 as well as Algorithms 1 and 2.

Example 1. Consider a hybrid system with the following two
nonlinear subsystems:

Σ1 :

⎧⎨⎩
ẋ1 = cos x2 + (sin x1)uc

ẋ2 = sin x1 − (cos x2)ua

y = x1

,

Σ2 :

⎧⎨⎩
ẋ1 = cos x2 − (sin x1)uc

ẋ2 = sin x1 + (cos x2)ua

y = x1

.

(32)

We can use Theorems 2 and 3 to find indiscernible and strongly
indiscernible pairs in

U = (−
π

,
π
)× (−

π
,
π
)× (−

π
,
π
)× (−

π
,
π
).
4 4 4 4 4 4 4 4 e

6

We can first construct an augmented system Σ12 in the form of
(31) with: x12 = [x1 x2 x3 x4]T , u12

= [u1 u2]
T ,

F12 =

⎡⎢⎣cos x2
sin x1
cos x4
sin x3

⎤⎥⎦ ,Ga
12 =

⎡⎢⎣ 0 0
− cos x2 0

0 0
0 cos x4

⎤⎥⎦ ,Gc
12 =

⎡⎢⎣ sin x1
0

− sin x3
0

⎤⎥⎦ ,

and H12 = x1−x3. To find indiscernible pairs,
⟨
F12,Ga

12|ker {H12}

algorithm can be applied. Although we do not know whether the
algorithm is regular on U or not in advance, we could attempt
to apply it on U and check the regularity conditions during the
iterations. According to the algorithm, we start with

N0 =
{
x12 ∈ U |H12(x12) = x1 − x3 = 0

}
(33)

which is a well-defined submanifold in U with defining map H12.
By (4) and (9), we know an x12 ∈ N0 is contained in N1 if and only
if there is a u12 such that
∂H12

∂x12
(x12)

(
F12(x12)+ Ga

12(x
12)u12)

= 0. (34)

Since the left-hand-side of the above equation is cos x2 − cos x4,
we have

N1 =
{
x12 ∈ N0|x2 = x4 or x2 = −x4

}
. (35)

Note that N1 is not a regular submanifold by Definition 3 un-
less we exclude the shy set

{
x12|x2 = x4 = 0

}
. In other words,⟨

F12,Ga
12|ker {H12}

⟩
-algorithm is not regular on U , but it might be

regular on Ũ = U \
{
x12|x2 = x4 = 0

}
.

By applying
⟨
F12,Ga

12|ker {H12}
⟩
-algorithm on Ũ , we have

N0 =

{
x12 ∈ Ũ |x1 − x3 = 0

}
,

N1 =

{
x12 ∈ Ũ |x1 − x3 = x2 − x4 = 0

}
∪

{
x12 ∈ Ũ |x1 − x3 = x2 + x4 = 0

}
,

N2 = N1,

(36)

and the regularity conditions hold. By Theorem 2, the set of
indiscernible pairs in Ũ is equivalent to N∗

= N1, which is
coincident with our observation that if the initial states of Σ1 and
Σ2 form a element in N1, then the outputs and derivatives of the
outputs from Σ1 and Σ2 can be made identical.

To find strongly indiscernible pairs, we attempt to apply ⟨F12,
Ga
12;G

c
12|ker {H12}

⟩
-algorithm on Ũ , and we can obtain:

N̂0 =

{
x12 ∈ Ũ |x1 − x3 = 0

}
,

N̂1 =

{
x12 ∈ Ũ |x1 = x3 = x2 − x4 = 0

}
∪

{
x12 ∈ Ũ |x1 = x3 = x2 + x4 = 0

}
,

N̂2 = ∅.

(37)

Therefore, by Theorem 3, there is no strongly indiscernible pairs
in Ũ . By observation, we can see that whenever the outputs
from Σ1 and Σ2 are identical and nonzero, the derivatives of the
outputs can be made different by applying nonzero control input.
In addition, whenever the outputs from Σ1 and Σ2 are zero, the
derivatives of the outputs are nonzero.

We would like to note that the local characterization consid-
ered in this paper has its limitations. Indeed, all elements in N1
given in (35) are indiscernible pairs by observation, but since the
egularity condition fails, we cannot apply Theorem 2. On the
ther hand, although we may not know whether the given set
s regular or not in advance, we can still attempt to apply the
lgorithms and make the regularity conditions hold typically by

xcluding some shy sets or partitioning the given set.
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xample 2. Consider a hybrid system with the following two
inear subsystems:

1 :

⎧⎪⎪⎨⎪⎪⎩
ẋ1 = x2 + uc

ẋ2 = x3 + uc

ẋ3 = x1 + x2 + ua

y = x1

Σ2 :

⎧⎪⎪⎨⎪⎪⎩
ẋ1 = x2 + uc

ẋ2 = x3 − uc

ẋ3 = x1 − x2 + ua

y = x1

(38)

The augmented system takes the following form:

Σ12 :

{
ẋ12 = Ax12 + Bau12

+ Bcuc

y = Cx12
, (39)

where C = [1 0 0 − 1 0 0],

A =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 0 0 0
0 0 1 0 0 0
1 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 1 −1 0

⎤⎥⎥⎥⎥⎥⎦ , Ba
=

⎡⎢⎢⎢⎢⎢⎣
0 0
0 0
1 0
0 0
0 0
0 1

⎤⎥⎥⎥⎥⎥⎦ , Bc
=

⎡⎢⎢⎢⎢⎢⎣
1
1
0
1
−1
0

⎤⎥⎥⎥⎥⎥⎦ ,

For finding all strongly indiscernible pairs, we can apply Al-
gorithm 2 to the augmented system, and then we can obtain:

N̂0 =
{
x12|x1 − x4 = 0

}
,

N̂1 =
{
x12|x1 − x4 = x2 − x5 = 0

}
,

N̂2 = ∅,

(40)

which implies that there is no indiscernible pairs by Theorem 3.
In stead of applying Algorithm 2, we can also apply Algorithm 1
to obtain:

N0 =
{
x12|x1 − x4 = 0

}
,

N1 =
{
x12|x1 − x4 = x2 − x5 = 0

}
,

N2 =
{
x12|x1 − x4 = x2 − x5 = x3 − x6 = 0

}
,

N3 = N2 = N∗,

(41)

and check with the criterion in Remark 4. Since we have

Im{Bc
} ⊈ N∗

+ Im{Ba
}, (42)

it follows that N̂∗ is empty. The result is coincident with the
observation that the first and the second order derivatives of the
outputs from the two subsystems directly depend on uc rather
than ua, and the relationship between ÿ and uc for mode 1 is
different from that of mode 2, and thus the two modes are
controlled discernible.

We would like to note that the main result of Gómez-Gutiérrez
et al. (2011) is coincident with our characterization of (controlled)
mode discernibility for linear cases. The mode discernibility in
our Definition 1 and the controlled mode discernibility in our
Definition 2 are partially related to Problems 3 and 4 in Gómez-
Gutiérrez et al. (2011), respectively. Furthermore, our Theorem 2
ssociates the indiscernible pairs with the maximal controlled
nvariant submanifold in the kernel of output function for the
ugmented system, which becomes the maximal controlled in-
ariant subspace in the null space of output matrix for linear
ases, and thus our Theorem 2 can imply Lemma 8 in Gómez-
utiérrez et al. (2011). The strongly indiscernible pairs defined
n our work is associated with the maximal strongly controlled
nvariant submanifold in the kernel of output function for the
ugmented system by Theorem 3. It is justified in Remark 4
hat this submanifold is either identical to the largest controlled
nvariant subspace in the null space of the output matrix or empty
or linear cases. Note that the condition for it to be nonempty
s equivalent to the condition from Proposition 14 in Gómez-
utiérrez et al. (2011). Our result is more general in the sense that
7

e have shown that the strongly controlled invariant submani-
old is not equivalent to the controlled invariant submanifold for
onlinear cases.

.2. Augmented systems with relative orders

Although we know that near regular points, the set of (strongly)
ndiscernible pairs is equivalent to the (strongly) controlled in-
ariant output-nulling submanifold, it is, in general, still difficult
o implement Algorithms 1 and 2. However, for nonlinear systems
ith well-defined relative orders, which have been commonly
onsidered for study of nonlinear systems, Algorithms 1 and 2 can
rovide some clean results. Let us consider the following systems
elated to (31):

a
pq :

{
ẋpq = Fpq(xpq)+ Ga

pq(x
pq)upq

δypq = Hpq(xpq)
,

c
pq :

{
ẋpq = Fpq(xpq)+ Gc

pq(x
pq)uc

δypq = Hpq(xpq)
.

(43)

ecall that Σa
pq in (43) is said to have globally defined relative

rders (Nijmeijer & Van der Schaft, 1990) if there is a set of
ntegers {ra1 , . . . , r

a
l } such that for each j ∈ {1, 2, . . . , l},

GapqL
k
FpqHpq,j(xpq) = 0,∀xpq,∀k ∈ {0, . . . , raj − 1}, (44)

nd

xpq, LGapqL
raj
FpqHpq,j(xpq) ̸= 0, (45)

here Hpq,j is the jth component of Hpq and L denotes the com-
only used Lie derivative. The following result is well-known:

roposition 2 (Nijmeijer & Van der Schaft, 1990). Suppose Σa
pq has

inite relative orders {ra1 , . . . , r
a
l }, and A = [Aij] : R2n

↦→ Rl×2ma
,

efined by

ij(xpq) ≜ LGapq,iL
raj
FpqHpq,j(xpq), (46)

Ga
pq,i and Hpq,j are the ith column of Ga

pq and the jth compo-
nent of Hpq, respectively), has full row rank for any xpq ∈ N =

{xpq|HN (xpq) = 0}, where HN : R2n
↦→ RΣ l

j=1(r
a
j +1) is given by[

Hpq,1 · · · L
ra1
FpqHpq,1 · · · Hpq,l · · · L

ral
FpqHpq,l

]T
. (47)

If N is nonempty, N is a {2n−Σ l
j=1(r

a
j +1)}-dimensional submanifold

and also the maximal
⟨
Fpq,Ga

pq

⟩
-controlled invariant output-nulling

submanifold for Σpq.

The above proposition is useful to find the indiscernible pairs
for a class of systems. To extend the result, let us assume Σ c

pq
also has well-defined relative orders: there is a set of integers
{rc1, . . . , r

c
l } such that for each j ∈ {1, 2, . . . , l},

LGcpqL
k
FpqHpq,j(xpq) = 0,∀xpq,∀k ∈ {0, . . . , rcj − 1}, (48)

and

∃xpq, LGcpqL
rcj
FpqHpq,j(xpq) ̸= 0. (49)

According to this structure, we have:

Corollary 2. Suppose Σ c
pq and Σa

pq have finite relative orders
{rc1, . . . , r

c
l } and {ra1 , . . . , r

a
l }, respectively. The following statements

are true:

(1) if raj ≤ rcj for all j ∈ {1, . . . , l} and A defined by (46)
has full row rank on N defined in Proposition 2, then N is
also the maximal

⟨
Fpq,Ga

pq;G
c
pq

⟩
-strongly controlled invariant
output-nulling submanifold for Σpq;
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(2) if there is a j ∈ {1, . . . , l} such that raj > rcj and LGcpqL
rcj
FpqHpq,j

(xpq) is non-vanishing for all xpq ∈ N, where N is defined
in Proposition 2, then there is no nonempty

⟨
Fpq,Ga

pq;G
c
pq

⟩
-

strongly controlled invariant output-nulling submanifold for
Σpq.

Proof. For the first statement, we already know that N is the
maximal

⟨
Fpq,Ga

pq

⟩
-controlled invariant output-nulling submani-

fold with dimension 2n−Σ l
j=1(r

a
j +1), and thus for each xpq ∈ N ,

there is a upq such that Fpq(xpq)+Ga
pq(x

pq)upq
∈ TxpqN . Since raj ≤ rcj

for each j ∈ {1, . . . , l}, for each j ∈ {1, . . . , l},

LGcpqL
k
FpqHpq,j(xpq) = 0,∀xpq,∀k ∈ {0, . . . , raj − 1}, (50)

which implies that Im{Gc
pq(x

pq)} ⊆ TxpqN for each xpq ∈ N .
Therefore, N is also a

⟨
Fpq,Ga

pq;G
c
pq

⟩
-strongly controlled invari-

ant output-nulling submanifold. N is also the maximal one be-
cause it is already the maximal

⟨
Fpq,Ga

pq

⟩
-controlled invariant

output-nulling submanifold. So, we conclude the first statement.
For the second statement, we prove it by contradiction. Sup-

pose there is a nonempty
⟨
Fpq,Ga

pq;G
c
pq

⟩
-strongly controlled in-

variant output-nulling submanifold for Σpq, denoted by N ′. Nec-
ssarily, N ′

⊆ N . For each xpq ∈ N ′ and for each vc
∈ Rmc

,
there is a vpq

∈ R2ma
such that Gc

pq(x
pq)vc

+ Ga
pqv

pq
∈ TxpqN ′

⊆

TxpqN . However, there is j ∈ {1, . . . , l} such that raj > rcj and

GcpqL
rcj
FpqHpq,j(xpq) is non-vanishing for all xpq ∈ N , which implies

∂

∂xpq
L
rcj
FpqHpq,j(xpq)

]
Ga
pq(x

pq) = 0,∀xpq ∈ N (51)

nd
∂

∂xpq
L
rcj
FpqHpq,j(xpq)

]
Gc
pq(x

pq) ̸= 0,∀xpq ∈ N. (52)

t means, for each xpq ∈ N , there is a vc
∈ Rmc

such that for any
pq

∈ R2ma
, Gc

pq(x
pq)vc

+Ga
pqv

pq /∈ TxpqN , which is contradictory to
what we have derived. □

Example 2 in Section 4.1 can be considered as a linear exam-
ple for demonstrating Corollary 2. By observing the augmented
system (39) in Example 2, we have rc1 = 2 and ra1 = 3. Since
rc1 < ra1 and the conditions required by the second statement
of Corollary 2, we can conclude that there is no strongly indis-
cernible pair for these two modes, which is coincident with the
conclusion that we get in Example 2 using Theorem 3. Let us also
consider the following nonlinear example.

Example 3. Consider a hybrid system with the following two
bilinear subsystems:

Σ1 :

⎧⎪⎪⎨⎪⎪⎩
ẋ1 = x2 + uc

ẋ2 = x3 + ua

ẋ3 = x1 + x3uc

y = x1

Σ2 :

⎧⎪⎪⎨⎪⎪⎩
ẋ1 = x2 − uc

ẋ2 = x3 + x2ua

ẋ3 = x1 + x3uc
+ ua

y = x1

(53)

To find strongly indiscernible pairs of these two subsystems, we
first construct the augmented system, and then apply Algorithm 2
or check the relative orders. If we apply Algorithm 2, we obtain
that N̂∗

= N̂1 = ∅, and thus mode 1 and mode 2 are controlled
discernible. Alternatively, since we have rc1 = 1 and ra1 = 2
and the conditions required by the second statement of Corol-
lary 2 are satisfied, we can conclude that there is no strongly
indiscernible pairs for modes 1 and 2.

Note that the controlled mode distinguishability for bilinear
systems and mode distinguishability for single-output control-

affine systems are considered in Motchon and Pekpe (2018),

8

Motchon et al. (2017) (but without addressing unknown in-
put), respectively. The relative degrees (relative orders) are used
to check the discernibility, which is similar to our result but
derived from an algebraic perspective. Applying Theorem 21
from (Motchon & Pekpe, 2018), we can obtain that the two
subsystems in this example are controlled discernible if ua is set
to identically zero, which is consistent with the result from our
approach.

4.3. Full-state feedback discerning control

In the previous subsections, we discuss the cases where only
the output information is available. However, it should be re-
marked that the controlled mode discernibility introduced in
Definition 2 only implies the existence of discerning control, but
to see whether or not there is a discerning output feedback
control requires more discussions. In fact, the proof of Theorem 1
shows that the discerning controls form an open and dense subset
in the collection of all admissible controls (if, locally, all pairs of
initial states are controlled discernible), which means even if we
do not know the initial states, we are likely to obtain a discern-
ing control input by random selection. In this subsection, let us
consider cases where full state information is directly observed,
i.e., y = x for both mode p and mode q, such that we can consider
how to use the state information to effectively avoid a control
input that is not discerning. Note that the discussion here can be
applied to cases where the state can be recovered directly from
the output without knowing inputs for each subsystem (e.g., each
mode is strongly observable).

Before we move to the discussion of discerning control design,
let us investigate the collection of (strongly) indiscernible pairs in
this special case. Suppose for both mode p and mode q, y = x.
Then, for the augmented system (31), Hpq(xpq) = [I − I]xpq,
where I is the identity matrix with a proper dimension. It is clear
that (xp0, x

q
0) is a (strongly) indiscernible pair only if xp0 = xq0. For

this reason, we say x0 is a (strongly) indiscernible initial state for
mode p and mode q if (x0, x0) is a (strongly) indiscernible pair for
modes p and q. To characterize the (strongly) indiscernible initial
states, instead of using Theorems 2 and 3, we have the following
alternative approach. Suppose

E ≜
{
x|fp(x)− fq(x) ∈ Im{[ga

p (x) ga
q (x)]}

}
(54)

is a regular submanifold in an open connected subset U and
Im{ga

p } + Im{ga
q } has constant rank on U . Then, there are smooth

αp : U ↦→ Rma
and αq : U ↦→ Rma

such that for any x ∈ E ∩ U ,

fpq(x) ≜ fp(x)+ ga
p (x)αp(x) = fq(x)+ ga

q (x)αq(x). (55)

Suppose Im{ga
p } ∩ Im{ga

q } also has constant dimension on U , then
there is a smooth map ga

pq : U ↦→ Rn×dim(Im{gap }∩Im{gaq }) such that

Im{ga
pq(x)} = Im{ga

p (x)} ∩ Im{ga
q (x)} (56)

for all x ∈ U . Based on such fpq and ga
pq, we can characterize the

indiscernible initial states according to the following corollary:

Corollary 3. Suppose both Im{ga
p } + Im{ga

q } and Im{ga
p } ∩ Im{ga

q }

have constant dimension on U such that fpq and ga
pq are defined on

E ∩ U, where E is given by (54). Assume
⟨
Fpq,Ga

pq|ker {[I − I]}
⟩
-

algorithm is regular on U × U and
⟨
fpq, ga

pq|E
⟩
-algorithm is regular

on U. Then,
[
xT xT

]T
∈ N∗ if and only if x ∈ Npq, where

N∗
=

⟨
Fpq,Ga

pq|ker {[I − I]} ∩ U × U
⟩
,

pq ⟨ a ⟩ (57)

N = fpq, gpq|E ∩ U .
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Similarly, we can characterize the strongly indiscernible initial
states by introducing Ê and ga

pq. Ê is defined as:

Ê ≜
{
x ∈ E|Im{gc

p (x)− gc
q (x)} ∈ Im{[ga

p (x) ga
q (x)]}

}
, (58)

where E is defined in (54). Again, if both Im{ga
p } + Im{ga

q } and
Im{ga

p } ∩ Im{ga
q } have constant dimension on U , then fpq and ga

pq
in Corollary 3 can be obtained. In addition, there are smooth maps
βp : U ↦→ Rma

×mc
and βq : U ↦→ Rma

×mc
such that for any

x ∈ Ê ∩ U ,

gc
pq(x) ≜ gc

p (x)+ ga
p (x)βp(x) = gc

q (x)+ ga
q (x)βq(x). (59)

Based on Ê, fpq, ga
pq, and gc

pq, we can characterize the strongly
indiscernible initial states according to the following corollary:

Corollary 4. Suppose both Im{ga
p } + Im{ga

q } and Im{ga
p } ∩ Im{ga

q }

have constant dimension on U such that fpq, ga
pq, and gc

pq are well-
defined on Ê∩U, where Ê is given by (58). Assume

⟨
Fpq,Ga

pq;G
c
pq|ker

{[I − I]}⟩-algorithm is regular on U × U and
⟨
fpq, ga

pq; g
c
pq|Ê

⟩
-

algorithm is regular on U. Then,
[
xT xT

]T
∈ N̂∗ if and only if x ∈ N̂pq,

where

N̂∗
=

⟨
Fpq,Ga

pq;G
c
pq|ker {[I − I]} ∩ U × U

⟩
,

N̂pq
=

⟨
fpq, ga

pq; g
c
pq|Ê ∩ U

⟩
.

(60)

We prove only Corollary 4 since the proof of Corollary 3 can
be considered as a special case of that of Corollary 4.

Proof. The proof is given in Appendix D □

Corollaries 3 and 4 indeed match the intuition. For the case
where uc is identically zero, if a state trajectory x(t) generated
by mode p using admissible up can also be generated by mode q
using admissible uq, then there is an ϵ such that x(t) should be
contained in E for any t ∈ (−ϵ, ϵ), and up and uq must satisfy

up(t) = αp(x(t))+ ũp(t), uq(t) = αq(x(t))+ ũq(t), (61)

for some ũp and ũq that satisfy ga
p (x(t))ũ

p(t) = ga
q (x(t))ũ

q(t) for all
t ∈ (−ϵ, ϵ). For this reason,

ẋ = fpq(x)+ ga
pq(x)u

a (62)

can be considered as the constrained dynamics for indiscernible
x(t), which means any x(t) that can be generated by both mode
p and mode q must be a trajectory of (62) and contained in E (at
least on a small time interval containing 0). Similarly, for any uc ,
if there are up and uq such that

x(t) = X p
t (x0, u

c, up) = X q
t (x0, u

c, uq),∀t ∈ (−ϵ, ϵ), (63)

then there is an ϵ′ such that x(t), t ∈ (−ϵ′, ϵ′), is contained in Ê
and is a trajectory of the following constrained dynamics:

ẋ = fpq(x)+ gc
pq(x)u

c
+ ga

pq(x)u
a. (64)

Therefore, it is natural to conclude Corollaries 3 and 4. For conve-
nience, we shall denote the input-to-state map of the constrained
dynamics (64) by X pq

t (x0, uc, ua).
With the knowledge that the strongly indiscernible initial

states in a regular set form a
⟨
fpq, ga

pq; g
c
pq

⟩
-strongly controlled

invariant submanifold, we can conceptually construct a piece-
wise constant discerning control input under some regularity
conditions, assuming all states in U are controlled discernible.

Assume
⟨
fpq, ga

pq; g
c
pq|Ê

⟩
-algorithm is regular on U and gener-

ates a sequence of submanifolds:

ˆ pq ˆ pq ˆ pq
N0 ⊇ N1 ⊇ ... ⊇ NK = ∅. (65) m

9

Let us partition N̂pq
0 into the following sets:

C0 ≜ N̂pq
0 \ N̂pq

1 , . . . , CK−1 ≜ N̂pq
K−1 \ N̂pq

K = N̂pq
K−1. (66)

Note that ∪
K−1
k=0 Ck = N̂pq

0 and Ci ∩ Cj = ∅ for any i ̸= j ∈

{0, 1, . . . , K − 1}, and thus for each given x0 ∈ N̂pq
0 , there is a

unique k ∈ {0, 1, . . . , K − 1} such that x0 ∈ Ck.
Suppose x0 is in Ck, and Hk is the local defining map of N̂pq

k in
a neighborhood O of x0. Define Pk : N̂

pq
0 × Rmc

× Rma
↦→ R as:

Pk(x, vc, va)

≜

∂Hk

∂x
(x)

(
fpq(x)+ gc

pq(x)v
c
+ ga

pq(x)v
a) ,

(67)

here ∥ · ∥ is the standard Euclidean norm. Since x0 ∈ Ck implies
x0 /∈ N̂pq

k+1, then by the definition of N̂pq
k+1, we have

max
vc∈V c

min
va

Pk(x0, vc, va) > 0, (68)

here vc
∈ V c is used to indicate that ∥vc

∥ ≤ ūc . Define vc∗(x0)
as

vc∗(x0) ≜ arg max
vc∈V c

min
va

Pk(x0, vc, va). (69)

he following proposition is to state that if a constant input
c∗(x0) is applied, then modes p and q cannot generate the same

trajectory, or the system state is driven away from N̂pq
k and stays

in the complement of N̂pq
k for a while:

Proposition 3. Suppose
⟨
fpq, ga

pq; g
c
pq|Ê

⟩
-algorithm converges to an

mpty set in a neighborhood O of x0 and x0 ∈ Ck. Assume Hk is the
ocal defining map of N̂pq

k in O and ∂Hk
∂x ga

pq has constant rank on O.
Let vc∗(x0) be computed via the quadratic game (69). Then, for any
a that satisfiesfpq(x)+ ga

pq(x)u
a(t)+ gc

pq(x)v
c∗(x0)

 ≤ F̄ ,∀t, (70)

nd for any x in O, where F̄ is a positive constant, there is a positive
onstant T such that x(t) /∈ N̂pq

k for all t ∈ (−T , 0) ∪ (0, T ), where
x(t) = X pq

t (x0, vc∗(x0), ua).

Proof. Since x0 is in Ck, (68) holds. Consider P∗

k defined as

P∗

k (x) = min
va

Pk(x, vc∗(x0), va). (71)

By the given constant rank condition, there is a neighborhood
O′

⊆ O of x0 where P∗

k is smooth and strictly positive. Let R be
a positive constant that satisfies 0 < R < infx∈Rn\O′ ∥x0 − x∥.
Then, for any ua satisfying (70), x(t) = X pq

t (x0, vc∗(x0), ua) ∈ O′

for all t ∈ (−R/F̃ , R/F̃ ). Since P∗

k is strictly positive for all x ∈ O′,
d
dtH(x(t)) ̸= 0 for any ua, which implies x(t) /∈ N̂pq

k for all t ∈

−R/F̃ , 0) ∪ (0, R/F̃ ). □

emark 5. In the proof of Proposition 3, we note that (69) could
e conservative. In fact, to drive the state of the constrained
ynamics away from N̂pq

k , any constant input with value vc that
atisfies minva Pk(x0, vc, va) > 0 can be applied, but (69) consid-
rs a specific solution to the min–max problem, which reveals
hat we have certain degree of freedom to modify the formulation
uch that additional design criteria can be addressed.

By Proposition 3, we know it is possible to concatenate a finite
umber of constant functions of time to obtain the control input
hat can drive the trajectory of the constrained dynamics away
rom Ê within an arbitrarily small time interval. In other words,
o matter what unknown exogenous input is injected into the
ystem, even if the induced trajectory can be generated by both

ode p and mode q within some small time interval, the system
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tate will leave Ê due to the discerning control input. Once the
system state x is not in Ê, by definition of Ê in (58), there is a vc

uch that for any vp and vq,

p(x)+ gc
p (x)v

c
+ ga

pv
p
̸= fq(x)+ gc

q (x)v
c
+ ga

qv
q,

nd thus the overall trajectory cannot be generated by both mode
and mode q. We conclude this subsection with the following
xample to demonstrate Corollaries 3 and 4 as well as the idea of
iscerning control design.

xample 4. Consider a hybrid system including the following two
ubsystems with full-state observation:

1 :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ1 = x2 + x3uc
1

ẋ2 = sin x1 + ua
1

ẋ3 = x4 + x5uc
2

ẋ4 = tanh x3 + ua
2

ẋ5 = uc
3

Σ2 :

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋ1 = x2 − x3uc
1

ẋ2 = cos x1 + ua
1

ẋ3 = x4 + x5uc
2

ẋ4 = sinh x3 + ua
2

ẋ5 = uc
3

(72)

Let us first investigate the indiscernible and strongly indiscernible
pairs (states) of these two modes. If we directly construct the
augmented system and apply Algorithm 1, we can obtain:

N1 = N0 =
{
x12 ∈ R10

|
[
I −I

]
x12 = 0

}
, (73)

which means all states are indiscernible states. Alternatively, we
may construct E, f12, and ga

12 using (54), (55), (56): E = R5,

f12 =
[
x2 0 x4 0 0

]T
, ga

12 =

[
0 1 0 0 0
0 0 0 1 0

]T

. (74)

Using
⟨
f12, ga

12|E
⟩
-algorithm, we can immediately obtain that N12

=

E = R5, which is coincident with the result obtained from the
augmented system approach.

For finding strongly indiscernible pairs, we can obtain the
following by applying Algorithm 2 to the augmented system:
N̂0 = N0,

N̂1 =

{
x12 ∈ N̂0|x3 = 0

}
,

N̂2 =

{
x12 ∈ N̂1|x5 = 0

}
,

N̂3 = ∅,

(75)

which implies that there is no strongly indiscernible state. Alter-
natively, we can use f12 and ga

12 in (74), and construct Ê and gc
12

using (58) and (59):

Ê =
{
x ∈ R5

|x3 = 0
}
, gc

12 =

[0 0 0 0 0
0 0 x5 0 0
0 0 0 0 1

]T

. (76)

Applying
⟨
f12, ga

12; g
c
12|Ê

⟩
-algorithm, we have:

N̂12
0 = Ê =

{
x ∈ R5

|x3 = 0
}
,

N̂12
1 =

{
x ∈ R5

|x3 = x4 = x5 = 0
}
,

N̂12
2 = ∅,

(77)

which also shows that there is no strongly indiscernible state. It is
worth noting that these two modes are controlled discernible, but
the linearized subsystems around the origin are not controlled
discernible.

Now, suppose that we observe x(0) = 0, but we do not know
which mode is triggered. Our objective is to find a discerning
control input uc

: [0, T ] ↦→ R3 (subject to ∥uc(t)∥ ≤ 1 for
any t ∈ [0, T ]) to distinguish the behaviors of these two modes.
Since x(0) ∈ C1 = N̂12

1 \ N̂12
2 , and according to Proposition 3, we
can solve (69) to get a constant input that can at least drive the

10
system state away from N̂12
1 . Specifically, the objective function

(67) in the quadratic gaming (69) is given by

P1(x = 0, vc, va) =
[0 va

2 vc
3

]T , (78)

and thus

vc∗(0) = arg max
∥vc∥≤1

min
va

P1(0, vc, va) =
[
0 0 1

]T
. (79)

Let uc(t) = [0 0 1]T for t ∈ [0, t1), where t1 can be any real
number in (0, T ). Suppose such a uc is applied to the system. Note
that it is still possible that there are u1 and u2 such that

X 1
t (0, u

c, u1) = X 2
t (0, u

c, u2),∀t ∈ [0, t1), (80)

for example, u1
= 0 and u2

= 0. However, no matter which mode
is triggered and what unknown input is injected into the system,
we know x5(t1) = t1 > 0, which means x(t1) /∈ N̂12

1 . Suppose
we observe that x(t1) = [0 0 0 0 t1]T (it can be resulted by
ua

= 0 for either mode p or mode q). Again, by Proposition 3,
since x(t1) ∈ C0 = N̂12

0 \ N̂12
1 , we can solve (69) to get a constant

control input that can drive the system state away from N̂12
0 if the

induced trajectory can be generated by both modes p and q. The
objective function (67) in the quadratic gaming (69) is now given
by

P0(x(t1), vc, va)

=

[0 0 1 0 0
] [

0 va
1 t1vc

2 va
2 vc

3

]T =
t1vc

2

 ,

(81)

and thus

vc∗(t1) = arg max
∥vc∥≤1

min
va

P0(x(t1), vc, va) =
[
0 1 0

]T
. (82)

Let uc(t) = [0 1 0]T , t ∈ [t1, t2) for some t2 < T . If such a
uc is applied to the system, no matter which mode is triggered
and no matter what unknown input is injected into the system,
there is a time t2 such that x3(t2) is non-zero, and thus the system
state is no longer contained in Ê. Then, by finding an admissible
uc(t), t ∈ [t2, T ) such that for any v1, v2,

fp(x(t2))+ gc
p (x(t2))u

c(t2)+ ga
pv

1

̸= fq(x(t2))+ gc
q (x(t2))u

c(x(t2))+ ga
qv

2,
(83)

the resulting trajectory from the system cannot be generated by
both mode 1 and mode 2. Note that a detailed systematic design
approach for discerning control, especially for the general cases
where the system states are not fully observable, is challenging.
In addition, the design of a mode identification scheme integrated
with the discerning control generation for hybrid systems with
unknown exogenous input is worth further discussions.

5. Conclusions

In this paper, we considered the characterization of controlled
mode discernibility of the hybrid system whose modes have
the nonlinear continuous dynamics with unknown exogenous
inputs. A concept of strongly controlled invariance was proposed
for the characterization of controlled mode discernibility from a
geometric perspective. Besides the general input-affine nonlinear
cases, the systems with relative orders was discussed. In addition,
for full-state observable cases, it was shown that the discerning
control design can be conceptually formulated as a quadratic
game in the tangent space.
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ppendix A. Proof of Lemma 2

If x0 ∈ N∗, then there is a neighborhood O of x0 and a smooth
feedback α : O ↦→ Rma

such that

f (x)+ ga(x)α(x) ∈ TxN∗,∀x ∈ N ∩ O. (A.1)

moothness of the left-hand-side implies the existence of ϵ > 0
and x : (−ϵ, ϵ) ↦→ O with x(0) = x0 that satisfies ẋ(t) =

(x(t))+ga(x(t))α(x(t)) for any t ∈ (−ϵ, ϵ). Let ua
: (−ϵ, ϵ) ↦→ Rma

e given as ua(t) = α(x(t)), then Yt (x0, 0, ua) = 0,∀t ∈ (−ϵ, ϵ).
If x0 is an output-nulling state, then there is a positive con-

stant ϵ and a smooth input ua
: (−ϵ, ϵ) ↦→ Rma

such that
t (x0, 0, ua) = 0,∀t ∈ (−ϵ, ϵ). Note that x0 is necessarily in
x|h(x) = 0}. If x0 can be made an equilibrium, i.e., there is a
a
0 ∈ Rma

such that f (x0) + ga(x0)va
0 = 0, then x0 as a singleton

s a submanifold that is both controlled invariant and output-
ulling. Otherwise, F : (−ϵ, ϵ) ↦→ Rn defined as F (t) = f (x(t)) +

ga(x(t))ua(t) is nonzero on some open interval
(
−ϵ′, ϵ′

)
, where

x(t) = Xt (x0, 0, ua). Thus the image of Xt (x0, 0, ua), t ∈
(
−ϵ′, ϵ′

)
is a local one-dimensional submanifold. Clearly, this submanifold
is both controlled invariant and output-nulling, and it should be
contained in N∗.

Appendix B. Proof of Proposition 1

Under regularity conditions, the algorithm generates a se-
quence of inclusions:

N̂0 ⊇ N̂1 ⊇ N̂2 ⊇ ... ⊇ N̂k ⊇ N̂k+1 ⊇ ... (B.1)

Since they are submanifolds, according to their dimensions, the
sequence converges in a finite number of steps. For a k∗ > 0, if
N̂k∗+1 = N̂k∗ ̸= ∅, then for any x ∈ N̂k∗ ,

f (x)+ Im{gc(x)} ⊆ TxN̂∗
+ Im{ga(x)}, (B.2)

which implies N̂k∗ is ⟨f , ga
; gc

|M⟩-strongly controlled invariant
under the regularity conditions.

To show N̂k∗ is also the maximal one in N̂0, consider an
arbitrary strongly controlled invariant submanifold N̂ ′ contained
in N̂0. Since N̂ ′ is strongly controlled invariant, f (x)+ Im{gc(x)} ⊆
TxN̂ ′

+ Im{ga(x)} ⊆ TxN̂0 + Im{ga(x)} for any x ∈ N̂ ′
⊆ N̂0.

Therefore, N ′
⊆ N̂1. Next, N̂ ′

⊆ N̂1 implies TxN̂ ′
⊆ TxN̂1 for

any x ∈ N̂ ′, and thus f (x) + Im{gc(x)} ⊆ TxN̂ ′
+ Im{ga(x)} ⊆

TxN̂1 + Im{ga(x)} for any x ∈ N̂ ′
⊆ N̂1. Hence, N̂ ′ is contained in

N̂2. By repeating the argument, we have N̂ ′
⊆ N̂k for any k, and

thus N̂ ′
⊆ N̂k∗ .

Appendix C. Proof of Theorem 1

Suppose x0 ∈ N̂∗. Since N̂∗ is a submanifold by the regularity
condition, there is a neighborhood O ⊆ U of x0 such that N̂∗ can
be locally expressed as

N̂∗
∩ O = {x ∈ O|H(x) = 0} , (C.1)

where H is the local defining map. Since N̂∗ is ⟨f , ga⟩-strongly
controlled invariant, we know for each x in N̂∗

∩ O and for each
vc , there is a va such that,
∂H
∂x

(x)
(
f (x)+ gc(x)vc

+ ga(x)va)
= 0. (C.2)

onsider a smooth mapping β : N̂∗
∩O×Rmc

↦→ Rma
defined as

β(x, vc) = −

[
∂H

(x)ga(x)
]†

∂H
(x)

[
f (x)+ gc(x)vc] . (C.3)
∂x ∂x
11
Then, va
= β solves (C.2) for all x ∈ N̂∗

∩O and all vc . In addition,
is smooth by the regularity condition (see Remark 1). Note that
can be smoothly extended to O× Rmc

.
By the smoothness, for any x0 ∈ N̂∗

∩ O, there are ϵ > 0 and
¯ c > 0 such that the initial value problem

˙ = f (x)+ gc(x)uc
+ ga(x)β(x, uc) (C.4)

ith the initial condition x(0) = x0 has a unique solution x :

−ϵ, ϵ) ↦→ O for any admissible uc with magnitude smaller than
¯ c . Take ua(t) = β(x(t), uc(t)) (such a ua is clearly admissible if
c is admissible), then Xt (x0, uc, ua) = x(t) for all t ∈ (−ϵ, ϵ).
(t) ∈ N̂∗

∩ O for any t ∈ (−ϵ, ϵ) since x0 ∈ N̂∗ and the right-
and-side of (C.4) is contained in TxN̂∗ for each x ∈ N̂∗. Hence,
e conclude the ‘‘if" part.
For ‘‘only if" part, let us consider a sequence of statements Sk.

or each k ≥ 0, Sk is given as: for any strongly output-nulling
tate x0 in U for system (3), there is an ϵ > 0 and ūc such that for
ny admissible control uc with magnitude smaller than ūc , there
s an admissible ua such that

t (x0, uc, ua) ∈ N̂k, ∀t ∈ (−ϵ, ϵ), (C.5)

here N̂k’s are defined in ⟨f , ga
; gc

|ker {h}⟩-algorithm.
According to the definition of strongly output-nulling states,

k is clearly true for k = 0.
We claim Sk is true for all k ≥ 0. If it is not the case, there

s an integer k′ ≥ 0 such that Sk′ is true, but Sk′+1 is not true.
f Sk′+1 is not true, there are a strongly output-nulling state and
n admissible uc with arbitrarily small magnitude such that for
ny admissible ua, Xt (x0, uc, ua) cannot be contained in N̂k′+1 over
ny small interval including t = 0. On the other hand, if Sk′

s true, for such x0 and uc , there is an admissible ua such that
(t) = Xt (x0, uc, ua) could be contained in N̂k′ over some intervals
−ϵ, ϵ). Thus, there is a t̃ ∈ (−ϵ, ϵ) such that x̃0 = x(t̃) /∈ N̂k′+1.
ow we claim that for x̃0 ∈ N̂k′ \ N̂k′+1, there is an admissible ũc

uch that for any admissible ua, x̃(t) = Xt (x̃0, ũc, ua) cannot be
ontained in N̂k′ over any small interval containing t = 0. To see
his, by the definition of N̂k′+1, x̃0 ∈ N̂k′ \ N̂k′+1 reveals that

(x̃0)+ Im{gc(x̃0)} ̸⊆ Tx̃0 N̂k′ + Im{ga(x̃0)}. (C.6)

et O be a neighborhood of x̃0 such that there is a local defining
ap H for N̂k′ ∩ O. Condition (C.6) together with (4) can imply

hat there is a vc with arbitrarily small magnitude such that for
ny va,
∂H
∂x

(x̃0)
(
f (x̃0)+ gc(x̃0)vc

+ ga(x̃0)va)
̸= 0. (C.7)

Hence, if ũc(0) = vc , then d
dtH(x̃(0)) ̸= 0, which means H(x̃(·))

annot be identically zero in any interval containing 0. Now if
e construct ûc by concatenating uc and ũc at t = t̃ , there is
o admissible ua to make Xt (x0, ûc, ua) contained in N̂k′ over any
mall interval containing t = 0, which is contradictory to that Sk′

s true. It is clear that the statement Sk’s are true implies x0 ∈ N̂k’s
Hence we conclude the ‘‘only if" part.

ppendix D. Proof of Corollary 4

Since N̂∗ is contained in ker {[I − I]}, then there exists a
ubmanifold M̂ in U such that

[
xT xT

]T
∈ N̂∗ if and only if x ∈ M̂ .

hus, what we need to show is M̂ = N̂pq.
If
[
xT xT

]T
∈ N̂∗,

fp(x)
fq(x)

]
∈ T[ xx ]N̂

∗
+ Im

{[
ga
p (x) 0
0 ga

q (x)

]}
, (D.1)

nd

m
{[

gc
p (x)
c

]}
⊆ T[ x ]N̂

∗
+ Im

{[
ga
p (x) 0

a

]}
. (D.2)
gq (x) x 0 gq (x)
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ence, for
[
xT xT

]T
∈ N̂∗, there are vp, vq

∈ Rma
such that

p(x)+ ga
p (x)v

p
= fq(x)+ ga

q (x)v
q
∈ TxM̂, (D.3)

nd for any vc
∈ Rmc

, there are ṽp, ṽq
∈ Rma

such that
c
p (x)v

c
+ ga

p (x)ṽ
p
= gc

q (x)v
c
+ ga

q (x)ṽ
q
∈ TxM̂. (D.4)

herefore, x is necessarily contained in Ê. In addition, recalling
he definitions of fpq, ga

pq and gc
pq, it can be inferred that M̂ ⊆

ˆ is
⟨
fpq, ga

pq; g
c
pq

⟩
-strongly controlled invariant. Since N̂pq is the

aximal
⟨
fpq, ga

pq; g
c
pq

⟩
-strongly controlled invariant submanifold

ontained in Ê, we know x ∈ M̂ ⊆ N̂pq.
If x ∈ N̂pq, then there is a va such that

pq(x)+ ga
pq(x)v

a
∈ TxN̂pq, (D.5)

nd for any vc , there is a ṽa such that
c
pq(x)v

c
+ ga

pq(x)ṽ
a
∈ TxN̂pq. (D.6)

ccording to the definitions of fpq, ga
pq and gc

pq, the above expres-
ions imply that for any x ∈ N̂pq, there are vp and vq such that

p(x)+ ga
p (x)v

p
= fq(x)+ ga

q (x)v
q
∈ TxN̂pq, (D.7)

nd for any vc , there are ṽp and ṽq such that
c
p (x)v

c
+ ga

p (x)ṽ
p
= gc

q (x)v
c
+ ga

q (x)ṽ
q
∈ TxN̂pq, (D.8)

hich implies N̂pq
× N̂pq

∩ ker{[I − I]} is
⟨
Fpq,Ga

pq;G
c
pq

⟩
-strongly

ontrolled invariant. Since N̂∗ is the largest
⟨
Fpq,Ga

pq;G
c
pq

⟩
-strongly

ontrolled invariant submanifold contained in the kernel of
I − I], then x ∈ N̂pq implies

[
xT xT

]T
∈ N̂∗.
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