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This paper considers the mode discernibility and controlled mode discernibility for nonlinear hybrid
systems with unknown switchings and unknown exogenous input, motivated by its potential appli-
cations to fault detection and isolation, cyber-security, and robust control. We formally define the
mode discernibility and controlled mode discernibility, and then characterize these properties from a
geometric perspective. Specifically, we review and complement the concept of controlled invariance for
nonlinear systems, based on which a new concept called strongly controlled invariance is proposed
as a tool to characterize the controlled mode discernibility. Besides the general characterization of
controlled mode discernibility, we discuss some commonly considered special nonlinearities, and
demonstrate that the discerning control design problem can be formulated as a quadratic game for
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1. Introduction

A hybrid system is a dynamical system with interacting con-
tinuous and discrete state dynamics (Goebel, Sanfelice, & Teel,
2009; Van Der Schaft & Schumacher, 2000), which has been
widely considered for modeling complex industrial plants and
cyber-physical systems to investigate system resilience (Sayed-
Mouchaweh, 2018). For fault detection and isolation (FDI) of
plants, the discrete states of the hybrid system can represent
fault modes, and the continuous dynamics associated with each
discrete state can describe the system behavior under the cor-
responding fault mode (Tanwani, Dominguez-Garcia, & Liberzon,
2010; Zhao, Koutsoukos, Haussecker, Reich, & Cheung, 2005).
Meanwhile, the logical behavior and physical behavior of a cyber—
physical system can be mapped to the discrete state dynamics
and continuous state dynamics, respectively, and then the ab-
normal logical behavior due to cyber-attacks can be modeled as
unexpected discrete state switchings (Sun & Hwang, 2019; Zhu
& Basar, 2015). Besides, the discrete states of the hybrid system
can also describe different external/internal operational environ-
ments of a plant, so robust and adaptive control techniques can
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be used to assure the system performance (e.g., L,-gain) un-
der the nonpredetermined time-varying environment (Anderson
et al, 2000; Hespanha et al., 2001; Hu, Shen, & Putta, 2016;
Xiang & Xiao, 2012; Zhang & Shi, 2009). In the context of ei-
ther FDI, cyber-security, or robust control, not only the discrete
state is, in general, assumed to be unavailable directly, but also
the continuous dynamics often involves unknown input, which
can represent actuator faults (Yang, Cocquempot, & Jiang, 2009),
deceptive cyber-attacks (Yong, Zhu, & Frazzoli, 2018), or dis-
turbance (Yang, Li, Jiang, & Cocquempot, 2018). Although many
resilient control schemes (e.g., fault-tolerant control (Allerhand &
Shaked, 2014), attack-mitigation methods (Feng & Tesi, 2017; Hu,
Shen, & Lee, 2017; Lu & Yang, 2017), robust control (Xiang, Tran, &
Johnson, 2017, 2018)) are designed to be effective without using
discrete state information or exogenous input information, iden-
tifying the unknown discrete state of the hybrid system is still
crucial for situational awareness (Diene, Moreira, Silva, Alvarez, &
Nascimento, 2017; Vento, Travé-Massuyes, Puig, & Sarrate, 2014).

Mode discernibility (or mode distinguishability or mode observ-
ability) of a hybrid system, in general, stands for the property
of whether or not the discrete state of the hybrid system can
be recovered from available information (Kiisters & Trenn, 2018).
We classify the existing works on mode discernibility into three
categories based on available information: recovering discrete
state information from (i) the output of the discrete state dynam-
ics (Lafortune, Lin, & Hadjicostis, 2018; Ramadge, 1986; Sampath,
Sengupta, Lafortune, Sinnamohideen, & Teneketzis, 1995), (ii) the
output of the continuous state dynamics (Alessandri, Baglietto,
& Battistelli, 2005; Battistelli, 2013; De Santis, 2011; De San-
tis, Di Benedetto, & Pola, 2009; Halimi, Millérioux, & Daafouz,
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2014; Motchon, Pekpe, & Cassar, 2017; Motchon, Pekpe, Cas-
sar, & De Biévre, 2015; Ramdani, Travé-Massuyes, & Jauberthie,
2018; Rosa & Silvestre, 2011), and (iii) the output of the con-
tinuous state dynamics without knowing exogenous inputs. Note
that the third class is of interest from the perspectives of FDI,
cyber-security, and robust control, but currently, not many works
have been done: the mode distinguishability for continuous-time
switched linear systems with partially unknown input has been
discussed by Gomez-Gutiérrez, Ramirez-Trevifio, Ruiz-Le6n, and
Di Gennaro (2011); mode distinguishability for cyber-security
issues that address sparse attack inputs is considered by Fiore,
De Santis, and Di Benedetto (2017); the mode discernibility for a
switched structured linear system with unknown input has been
studied by Boukhobza and Hamelin (2011) via a graph-theoretic
approach; the invertibility of continuous-time switched systems
with unknown input, which describes whether the discrete state
and the unknown input can be simultaneously estimated using
the output and initial state information, has been studied by Kaba
and Camlibel (2010), Tanwani and Liberzon (2010), Vu and Liber-
zon (2008). It should be remarked that the requirement of mode
discernibility could be restrictive, which induces the concept of
controlled mode discernibility (Baglietto, Battistelli, & Scardovi,
2007; Lou & Yang, 2011; Motchon & Pekpe, 2018; Motchon,
Pekpe, & Cassar, 2018; Ramdani et al, 2018): whether some
special control inputs can be designed and applied to the system
such that the behaviors of different modes are distinguishable.
From the literature, we find that nonlinearity has rarely been
considered for the mode discernibility (Motchon & Pekpe, 2018;
Motchon et al.,, 2017; Ramdani et al., 2018), and the controlled
mode discernibility has not been extensively studied (Baglietto
et al,, 2007; Lou & Yang, 2011; Motchon & Pekpe, 2018; Motchon
et al.,, 2018), especially for systems with unknown exogenous
input. Therefore, we consider the mode discernibility and con-
trolled mode discernibility for nonlinear hybrid systems with
unknown switchings and unknown exogenous input, motivated
by its potential applications to FDI, cyber-security, and robust
control for systems with unnegligible nonlinearities. It is worth
mentioning that by constructing an augmented system (De Santis,
2011; Gomez-Gutiérrez et al., 2011), the mode discernibility for
linear switched systems can be related to the triviality of the zero
dynamics (or zero-output-constrained dynamics, the subsystem
of the original system that can result in identically zero out-
put (Isidori, 2013b)) of the augmented system. Note that the zero
dynamics of nonlinear system has been extensively studied and
related to system inversions (Hirschorn, 1979; Nijmeijer, 1982,
1986; Silverman, 1969; Singh, 1981), decoupling control (De-
scusse & Moog, 1985; Isidori, Krener, Gori-Giorgi, & Monaco,
1981; Nijmeijer & Schumacher, 1985), output tracking (Albrecht,
Grasse, & Wax, 1981; Devasia, Chen, & Paden, 1996; Isidori &
Byrnes, 1990; Li & Feng, 1987; Singh, 1982), etc. It is well-
known that for a linear system, the set of all initial states that
can generate identically zero output is equivalent to the largest
controlled invariance subspace (Basile & Marro, 1969) contained
in the kernel of output matrix, and this characterization can be
extended to nonlinear systems by generalizing the concept of
controlled invariant subspace to controlled invariant submani-
fold (Berger, 2016; Isidori & Moog, 1988) and controlled invariant
distribution (Hirschorn, 1981; Isidori et al., 1981). In this paper,
we use the concept of controlled invariant submanifold to tackle
the challenges introduced by nonlinearities in the characteriza-
tion of mode discernibility. However, for the characterization of
controlled mode discernibility, the existing concept of controlled
invariant submanifold is insufficient in the sense that the problem
considered in this paper is more complicated due to the presence
of both control input and unknown exogenous input, which mo-
tivates us to propose a new concept called strongly controlled
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invariant submanifold from a geometric perspective, which is
similar to but different from the concept of robust controlled
invariant subspace considered by Fiacchini, Alamo, and Camacho
(2010).

To the best of our knowledge, the only works considering con-
trolled mode discernibility for nonlinear systems are (Motchon &
Pekpe, 2018; Ramdani et al., 2018) which, however, do not con-
sider both control input and unknown input simultaneously. To
provide insights and tools for investigating the mode identifica-
tion problem of hybrid systems in the context of FDI,
cyber-security, and robust control, this paper is focused on the
characterization of (controlled) mode discernibility and discus-
sions on the idea of discerning control design for nonlinear
hybrid systems with unknown exogenous input. Specifically, the
contribution of this paper is threefold. First, we formally define
the mode discernibility and the controlled mode discernibility for
nonlinear hybrid systems subject to unknown exogenous input.
Second, we review and complement the concept of controlled
invariant submanifold from a geometric perspective, and fur-
ther propose a new concept called strongly controlled invariant
submanifold. Then, we characterize the mode discernibility and
controlled mode discernibility based on the study of controlled
invariant submanifold and strongly controlled invariant subman-
ifold, respectively. A class of systems with a special structure
is discussed as an example. Furthermore, the formulation of
discerning control design is proposed for a special case.

The paper is organized as follows. The system description and
problem statement are presented in Section 2. In Section 3, the
concept of controlled invariant submanifold is reviewed, and the
concept of strongly controlled invariant is proposed. The charac-
terizations of mode discernibility and controlled mode discerni-
bility are provided in Section 4. In addition, the hybrid systems
whose subsystems have special structures are discussed, and
a formulation of discerning control design is proposed. Finally,
Section 5 concludes this paper.

2. Problem statement

Consider the hybrid system with unknown switchings and
unknown exogenous input given as:

.r=am+gyw+gyw
Sy = ho®)

where the continuous state x takes values in R"; the output
y takes values in R; the control input u¢ and the unknown
exogenous input u® take values in R™ and R™, respectively;
or € Q = {1,2,....nq} is the discrete state (or mode) of
the system at time t, which is assumed to be unavailable, and
ng is the number of modes; for each 0 € Q, f; : R" > R",
gl R" > Rxm? g R~ R"™ ™M consisting of vector fields
associated with mode o, are assumed to be C*°; and h,, : R" > R!
consists of I output functions which are C*. Since the discrete
state dynamics is not explicitly considered, the hybrid system
(1) is also referred as a hidden mode nonlinear switched system
with unknown inputs (Yong et al., 2018). We denote the following
system as the subsystem of mode q € Q (or simply mode q):

,r=mm+£mw+4uw
q: .
y = hy(x)

For the subsystem of mode g, we denote the input-to-state map
and the input-to-output map by x/(xJ, u°, u®) and Y{(xg, u¢, u®),
respectively. To facilitate the analysis, we assume the control
input and the unknown exogenous input are admissible to ensure

the existence and uniqueness of the state trajectory (at least on
an open time interval containing t = 0) for each pair of inputs.

; (1)

(2)
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Note that all the above requirements of C*° are just mathematical
techniques to avoid counting the exact order of differentiability.

We propose the following definitions for studying mode dis-
cernibility and controlled mode discernibility:

Definition 1 (Mode Discernibility with Unknown Input). Modes
p and q are called discernible at (xg,xg) if for any ¢ > 0 and
for any admissible u? and u, there is a t € (—e, €) such that
V(xf, 0, uP) # YV{(x3, 0, uf). Otherwise, modes p and q are called
indiscernible at (xf, x), and (xf, xJ) is called an indiscernible pair
for modes p and q.

Definition 2 (Controlled Mode Discernibility with Unknown Input).
Modes p and q are called controlled discernible at (xg, xg) if for
any € > 0 and u° > 0, there is a discerning control for u¢ with
magnitude smaller than u¢ such that for any admissible u” and u9,
V(XD uc, uP) # Vi (xg, u, u?) for some t € (—e, €). Otherwise, we
say modes p and q are not controlled discernible at (xg, xg), and

(xg, xg) is called a strongly indiscernible pair for modes p and q.

Roughly speaking, modes p and q are discernible if all tra-
jectories generated by mode p cannot be reproduced by mode
g, even in a very short time period. Equivalently, there is no
intersection between the set of all possible output trajectories
generated by mode p and the set of trajectories generated by
mode g, no matter how short the time horizon is. It is clear that
if modes are indiscernible, whenever we observe a trajectory that
can be generated by both modes p and g, we cannot immediately
tell which one the current mode is. For the controlled mode
discernibility, we emphasize the role of control in distinguishing
the behaviors of different modes. It should be remarked that it is
required the discerning control to be arbitrarily small in order to
restrict the discussion in local regions.

In this paper, we are interested in the following problems:

Problem 1. How to characterize generic indiscernible pairs and
strongly indiscernible pairs?

Problem 2. What type of structure for the nonlinearity could
facilitate the characterization?

Problem 3. How to formulate the problem of discerning control
design?

3. Geometric tools

In the literature, by introducing an augmented system, the
mode discernibility is shown to be associated with the output-
nulling problem, i.e., whether there are initial states and inputs
that can result in identically zero output for a while. Hence,
to characterize the indiscernible pairs and strongly indiscernible
pairs, we need the concept of controlled invariant submanifold,
which is an important geometric tool for discussing the output-
nulling problem. For reviewing the concept of controlled invariant
submanifold and inducing the concept of strongly controlled in-
variant submanifold, we consider the following nonlinear system
whose dynamics is affine in controls:

: {X = f(x) + g"(x)u" + g“(x)u’
ly=hx) ’

where x, taking values in R", is the state; y, taking values in
R, is the output; the inputs u® and u¢ take values in R™ and
R™, respectively; and f, g€, g% and h are C*. We restrict the
inputs to be admissible. Additional assumptions for the regularity
of f, g¢, and g® will be discussed later. For this nonlinear system,
we denote the input-to-output map by Y:(xq, u¢, u®), and the
input-to-state map by A;(xo, u¢, u?).

(3)
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For conciseness, we shall not strictly consider the geometric
objects in coordinate-free settings (Boothby, 1986), but it does
not really matter since we mainly consider the local properties
of nonlinear systems (note that the global properties are typically
reduced to local properties by excluding singular points). For con-
venience, we consider the following definition for a submanifold:

Definition 3 (Regular Submanifold (Lee, 2013)). N is a n’-dimensional
regular submanifold of R" if for any x € N, there is a neighbor-
hood O of x such that

NNO={x € O|H(x) =0},

for a smooth map H : O — R™" with constant rank n — n’. H is
called a local defining map of N in O.

In this paper, a neighborhood of x means an open set contain-
ing x. Note that a singleton can be considered as a 0-dimensional
submanifold. With Definition 3, the tangent space at a point x of
N N O can be characterized using the local defining map:

ﬁN:{veR"l%—Z(X)v:O}. (4)

3.1. Review of controlled invariant submanifold

In general, a controlled invariant submanifold is a submani-
fold that can be rendered invariant by applying some feedback
control. Although most of the materials provided in this sub-
section are adapted from Isidori (2013a), Nijmeijer and Van der
Schaft (1990) and other resources, to be self-contained, we care-
fully summarize materials and complement the proofs of some
important statements.

Definition 4 (Controlled Invariant Submanifold). A regular sub-
manifold N is (f, g)-controlled invariant in an open connected
subset U if for any x € N N U, there is a v € R™ satisfying

fx)+g%(x® € TxN. (5)

Note that the required property above for a submanifold N to
be controlled invariant in U is equivalent to:

f(x) € TN + Im{g%(x)}, Vxe NN U, (6)

where Im{-} represents the column space of the matrix in this pa-
per. In addition, recalling that the tangent space can be expressed
as (4), (5) is also equivalent to

20 (100 + g0 =0, )

if H is the local defining map.

Definition 5 (Controlled Invariant Output-Nulling Submanifold). If
a regular submanifold N is (f, g%)-controlled invariant in U and

Vxe NNU, h(x)=0, (8)

then N is called a (f, g%)-controlled invariant output-nulling sub-
manifold in U for the nonlinear system (3).

In general, given a submanifold M (e.g., M = {x|h(x) = 0}
could be locally a submanifold), it is not clear whether or not
there exists a controlled invariant submanifold contained in M
and whether or not there exists the maximal one (for “maximal
one", we mean all other controlled invariant submanifolds are
contained in it). However, if some regularity conditions (or called
constant-rank conditions in some context) hold in an open con-
nected subset U, the existence of the maximal one contained in
M N U is guaranteed by considering the following algorithm for
nonlinear systems described by (3):
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Algorithm 1 ((f, g%|M)-algorithm).

Step 0: No =M N U,;

Step k + 1: Assume Ny is a regular submanifold; let

Nip1 = {x € Nilf(x) € TN + Im {g“(x)} } : 9)
Terminate if N, ; = Ny or Ni.1 = 0.

(f, g%|M)-algorithm is called regular on an open connected subset
U if i) at each step k > 0, N is a regular submanifold or empty
and ii) for k satisfying N, = Nyy1 # @, both Im{g%(x)} and
TxNr N Im{g%x)} have constant dimension for all x € N;. If
(f, g%|M)-algorithm is regular on U, then U is called a regular set
of the algorithm, and a point x is called a regular point if it is
contained in a regular set. By the assumption of smoothness, we
know the collection of all regular points is open and dense in R"
because in general the collection of regular points can be written
as a set where some matrices hold constant rank (Nijmeijer &
Van der Schaft, 1990).

The convergence property of (f, g%|M)-algorithm is summa-
rized in the following lemma:

Lemma 1 ((Isidori, 2013a; Nijmeijer & Van der Schaft, 1990)).
Suppose (f, g%|M)-algorithm is regular on an open connected subset
U, then the algorithm terminates in a finite number of steps on
U, ie., there is an integer k* such that Ny = Nyxp1. If Nis i
nonempty, Ny« is the maximal (f, g%)-controlled invariant subman-
ifold in M N U. Otherwise, any nonempty submanifold in M N U is
not (f, g%)-controlled invariant.

Since (f, g|M)-algorithm will converge to the maximal (f, g%)-
controlled invariant submanifold in M NU if it is regular on U, we
shall denote

N*={f, g M NU) (10)

to indicate that (f, g|M)-algorithm converges to N* in U. Clearly,
if we take M = {x|h(x) = 0} and assume the algorithm is regular
on an open connected subset U, then N* = (f, g?|M N U) is the
maximal (f, g)-controlled invariant output-nulling submanifold
in U.

Remark 1. The existence of feedback rendering a submani-
fold locally invariant is equivalent to the existence of smooth
feedback rendering the submanifold locally invariant under the
regularity condition. Formally speaking, for any x in N*, there
is a neighborhood O of x such that N* N O can be rendered
invariant by some smooth feedback defined on O. To see this,
suppose for any x € N*, there is a neighborhood O of x such that
N*N O = {x € O|H(x) = 0} (H is the local defining map) without
loss of generality. The regularity condition that both Im{g®(x)}
and 7xN* NIm{g%(x)} have constant dimension on N implies the
matrix %(x)ga(x) has constant rank on Ny N 0. To find a feedback
o : N*N 0 R™ that solves f(x) + g%=x)a(x) € TyN* for each
xeN*"NO, ie,

oH

a(x)(f(X) +g°(X)a(x)) =0, Vxe N*NO, (11)
we may consider
oH "ToH
a(x) = — [B(X)g”(X)} [(X)f(X)] , (12)
X 0x

where “t" denotes the pseudo-inverse. Then, a(x) satisfies f(x) +
g%x)a(x) € TxN* for each x € N* N O by the fact that f(x) €
TxN* + Im{g?(x)} for each x € N* N U. In addition, & : Ny N O —~
R™ is smooth because [%(X)ga(x)]Jr is smooth when (x)g%(x)
has constant rank on N* N O. Furthermore, @ can be smoothly
extended to O since N* is a regular submanifold.
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The maximal (f, g% -controlled invariant submanifold con-
tained in {x € U|h(x) = 0}, as a geometric object, is related to
the control problem by the following definition and lemmas:

Definition 6 (Output-Nulling State). A state xo in R" is a (f, g%)-
output-nulling state of system (3) if there is an ¢ > 0 and an
admissible u® such that

Vi(x0,0,u?) =0, Vt € (—¢,€). (13)

Lemma 2. Suppose (f, g% ker {h})-algorithm (ker {h} = {x|h(x) =
0}) is regular on an open connected subset U and N* = (f, g°|ker {h}
NU). An xg € U is a (f, g%)-output-nulling state of system (3) if and
only if xo € N*.

Proof. The proof is given in Appendix A. O

According to this statement, we know that near regular points,
if there are output-nulling states, they form a submanifold which
is the maximal controlled invariant output-nulling submanifold.

Note that the above result can be extended by considering
M that is a more general regular submanifold. If M is a regular
submanifold, then M can be locally expressed as {x € U|H(x) = 0}
with a local defining map H. By replacing the output function h
with H for system (3), all discussions for the locally controlled
invariant output-nulling submanifold can be applied here. Similar
to Lemma 2, now we have:

Corollary 1. Suppose (f, g%|M)-algorithm is regular on U and
N* = (f, g°IM N U). For any xo € U, the following two statements
are equivalent:

(1) there is an € > 0 and an admissible u® such that
X(x0,0,u%) € M,Vt € (—¢,€); (14)
(2) xo € N*.

Remark 2. According to Corollary 1, xo € U \ N* is equivalent
to: for any ¢ > 0 and for any admissible input u? there is
t € (—e,€) such that x;(xg,0,u) ¢ M. In other words, if an
initial state of system (3) is contained in M but not contained in
the maximal (f, g%)-controlled invariant submanifold in M, then
no matter what u® is applied, the system state will leave from M
immediately.

3.2. Strongly controlled invariant submanifold

With the concept of controlled invariant submanifold, the in-
discernible pairs could be characterized. However, for controlled
mode discernibility, we will need a new concept that is defined
as follows:

Definition 7 (Strongly Controlled Invariant Submanifold). A regular
submanifold N is {f, g“; g°)-strongly controlled invariant in an
open connected subset U if for any x € N N U and any v¢ € R™,
there is a v® € R™ satisfying

fx)+ g (x)v° +g%(xp” € TkN. (15)

Recall (4), (15) is also equivalent to
oH
™ (Fx) + g°(xn° +g(xp") =0, (16)

if H is the local defining map of N. Note that the above require-
ment for a submanifold N to be strongly controlled invariant is
equivalent to

f(x) + Im{g°(x)} € TN + Im{g(x)}, Vx e NN U. (17)
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Or equivalently, both

f(x) € N + Im{g?(x)}, ¥x e NN U (18)
and

Im{g(x)} € T=N + Im{g°(x)}, Vx e NN U (19)
hold.

Definition 8 (Strongly Controlled Invariant Output-Nulling Sub-
manifold). If a regular submanifold N is (f, g¢; g°)-strongly con-
trolled invariant in U and

vx e NNU, h(x) =0, (20)

then N is called a (f, g“; g°)-strongly controlled invariant output-
nulling submanifold in U for system (3).

Intuitively speaking, if a submanifold is (f, g% g¢)-strongly
controlled invariant for system (3), then no matter what admis-
sible input is injected through the channel g€, there is a choice
of input for the channel g¢ such that the submanifold can be
rendered invariant.

Again, we are interested in whether there exists a (f, g%; g¢)-
strongly controlled invariant submanifold in a given submanifold
M and whether there is a maximal one. We consider the following
algorithm that can generate the maximal strongly controlled in-
variant output-nulling submanifold in an open connected subset
U if some regularity conditions hold:

Algorithm 2 ((f, g%; g°|M)-algorithm).
Step 0: No = M N U;

Step k + 1: Assume Iclk is a regular submanifold; let
Rt ={ x € Rulf 0 + Imig“ ()
< T+ Im{g*(0) J;

Terminate if Nj,; = Ny, or Ny 1 = 0.

Similarly, (f, g%; g¢|M)-algorithm is called regular on an open
connected subset U, if i) at each step k > 0, the assumptions
required in the algorithm are satisfied, and ii) for k satisfying
N = Ni41, both Irp{ga(x)} and TxN, N Im {g“(x)} have constant
dimension for x € N, N U. If {f, g“; g°|M)-algorithm is regular on
U, then U is called a regular set of the algorithm, and x is called
a regular point if x is contained in a regular set. The convergence
of the algorithm is claimed in the following proposition:

Proposition 1.  Suppose (f, g% g|M)-algorithm is regular on
an open connected subset U for system (3), then the algorithm
terminates in a finite number of steps, ie., there is an integer k*
such that Nk* = Nk*+1 Ika* is nonempty, Nk* is the maximal
(f, g" g°|M)-strongly controlled invariant output-nulling subman-
ifold in U. Otherwise, there is no (f, g% g“|M)-strongly controlled
invariant output-nulling submanifold in U.

Proof. The proof is given in Appendix B. O

Since (f, g% g¢|M)-algorithm will converge to the maximal
(f, g% g°)-strongly controlled invariant submanifold in M N U if
it is regular on U, we shall denote

:(f,g”;gﬂMﬂU) (22)

to indicate that (f, g¢; g|M)-algorithm converges to N* in U. If
we take M = {x|h(x) = 0} and assume the algorithm is regular on
an open connected subset U, then N* = (f, g% g“|M N U) is the
maximal (f, g% g¢)-strongly controlled invariant output-nulling
submanifold in U.
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The (f, g%; g°)-strongly controlled invariant output-nulling sub-
manifold for system (3), as a geometric object, can be related to
the control problem by the following definition and theorem.

Definition 9 (Strongly Output-Nulling State). A state xo in R" is
a (f, g% g)-strongly output-nulling state of system (3) if there
isan € > 0 and u° > 0 such that for any admissible control
of u® with magnitude smaller than u€, there is an admissible u®
satisfying

Vilxo, u, u") = 0,Vt € (—¢€,€). (23)

Theorem 1.  Suppose (f, g% g€|ker {h})-algorithm (ker {h} =
{x|h(x) = 0}) is regular on an open connected subset U, and the
algorithm converges to N* on U. Then, a state xo € U is (f, g%; g°)-
strongly output-nulling for system (3) if and only if xo € N*.

Proof. The proof is given in Appendix C. O

Remark 3. In general, for a nonlinear system in the form
of (3), the collection of output-nulling states contains, but not
necessarily equivalent to, the set of strongly output-nulling states.
To see this, consider the following illustrative nonlinear system:

X1 = x%u¢
% =Xy + &l (24)
y=x
The collection of output-nulling states is given by:
= {xlx; = 0}. (25)
The set of strongly output-nulling states is given by:
N* = {x]x; = x, = 0}, (26)

which is neither empty nor equal to N*.

Remark 4. In Remark 3, an example has been given to show
that for a general nonlinear system in form of (3), the set of
strongly output-nulling states is contained in, but not necessarily
equivalent to, the set of output-nulling states. However, if the
system is linear, the set of strongly output-nulling states is either
empty or equivalent to the set of output-nulling states. To see
this, consider the linear system given as:

{k = Ax + Bu® + Bu*

) ox (27)

where A € R™" Bt ¢ R™m Be ¢ R ¢ ¢ RIXM gpe Sys-
tem matrices. According to the literature (e.g., Basile and Marro
(1969)), N* for the linear system (27) is the largest (A, B%)-
controlled invariant subspace contained in ker C, and we already
know N* is a subset of N*. Consider two cases: (1) Im{B} is
contained in N* 4+ Im{B%}; and (2) Im{B‘} is not contained in
N* 4+ Im{B®}. If (1) is the case, for any x € N* and any u¢, there
are 01° and 41* such that

Ax + B*1I” € N*,

- 28
Bu® + B*1i" € N*. (28)
Then, if we take u® = 1% 4 1%, then

Ax + Bu¢ + B*u® € N*, (29)

which reveals N* is contained in N*, and thus N* = N*. For case
(2), we claim N* = §. Otherwise, for any x € N*, by the definition
of N*,
Im{B‘} € T:N* + Im{B%}

C 7:N* + Im{B} = N* + Im{B"},

which is contradictory to the condition.

(30)
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4. Main results
4.1. Characterization of indiscernible pairs

To investigate the indiscernible pairs and strongly indiscernible
pairs for modes p and g, we may consider the augmented sys-
tem (De Santis, 2011; Gomez-Gutiérrez et al., 2011) for conve-
nience:

xP4 = qu(xPQ) + Ggq(qu )uP!I + G;q(qu)uc

Zpq {(gypq = Hpy(xP) ) (31)
where
XPI — iZ] , uPl — [ZZ ’
P a a(p 0

R N

S
Gpg(¥™) = ?Eiq;] o Hpg(¥*1) = hp(xP) — he(x7)

&g

By constructing the augmented system, the indiscernible pair for
modes p and q is related to the initial state of the augmented
system X, that can generate identically zero output (at least for a
while) by some uP4, and the strongly indiscernible pair for modes
p and q is equivalent to the initial state of the augmented system
%pq such that no matter what admissible u¢ is injected, there is
an admissible uP? making the output identically zero at least for
a while. Formally, we have:

Theorem 2. Suppose (Fyq. G5 |ker {Hy, })-algorithm (ker {Hyq} =
{x”qupq(qu) = 0}) is regular on U, an open connected subset of
the state space of (31), and the algorithm converges to N* on U.
[xoT x3T1" is a point in U. The following statements are equivalent:

(1) (xg, xg) is an indiscernible pair for modes p and q;

(2) [xg" xq"1" is a (Fyq. G4 )-output-nulling state of system (31);

(3) X7 xgT1" € N*.
Theorem 3. Suppose (Fpq, Gay: G5, |ker {Hyq })-algorithm (ker {Hyq}
= {qu|Hpq(qu) = 0}) is regular on U, an open connected subset of

the state space of (31), and the algorithm converges to N* on U.
[x5T x3T1" is a point in U. The following statements are equivalent:

(1) (xﬁ, xg) is a strongly indiscernible pair for modes p and q;

(2) [xg" xg"1" is a (Fpq. G%: G, )-strongly output-nulling state of
system (31);

(3) X7 xgT1" e N*.

Note that the proofs of Theorems 2 and 3 are straightfor-
ward using the tools introduced in Section 3, and thus they are
omitted for brevity. Let us introduce the following examples to
demonstrate Theorems 2 and 3 as well as Algorithms 1 and 2.

Example 1. Consider a hybrid system with the following two
nonlinear subsystems:

X1 = cos Xy + (sinxq)u€
X1 4 X% =sinx; — (cosxy)u® ,
.y =X1 . (32)
X1 = coSs Xy — (sinxq)uc
X, { %y = sinx; + (cosxp)u® .
y=x

We can use Theorems 2 and 3 to find indiscernible and strongly
indiscernible pairs in

U:( T N)X( T T

Uy -

NG|

) X (—%,

NI

) X (—%,
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We can first construct an augmented system X;, in the form of
(31) with: x1? = [x1 %y x3 x4]7, u'® = [uy w1,

COS X 0 0 sinx;
sinx — COSX: 0 0

Fip = ! quzz > 7G§2= : s
COS X4 0 0 — sinxs
sin X3 0 COS X4 0

and Hy = x;—x3. To find indiscernible pairs, (Fi2, G, |ker {H12})
algorithm can be applied. Although we do not know whether the
algorithm is regular on U or not in advance, we could attempt
to apply it on U and check the regularity conditions during the
iterations. According to the algorithm, we start with

Ny = {Xlz < U|H12(X12) =X1 —X3 = 0} (33)

which is a well-defined submanifold in U with defining map Hy,.
By (4) and (9), we know an x1, € Ny is contained in Nj if and only
if there is a u'? such that

8X12

Since the left-hand-side of the above equation is cosx; — cos Xy,
we have

(x"2) (Fia(x'?) + G3,(x)u™?) = 0. (34)

Ny = {x"? € Nolxy = X4 or X = —x4}. (35)

Note that N; is not a regular submanifold by Definition 3 un-
less we exclude the shy set {xlzlxz =X4 = O}. In other words,
(F12, G4, |ker {Hy,})-algorithm is not regular on U, but it might be
regular on U = U \ {x"|x, = x, = 0}.

By applying (Fi, GY, |ker {H;>}}-algorithm on U, we have

NO = {X]Z S 0|X1 — X3 =O]’

N =[xlzel]x —X3=Xp — X =O]
1 X1 — X3 =X — X4 (36)

LJ{x12 ef]|x1—x3:x2+x4:0},
Nz = Ny,

and the regularity conditions hold. By Theorem 2, the set of
indiscernible pairs in U is equivalent to N* = N;, which is
coincident with our observation that if the initial states of X; and
X, form a element in Ny, then the outputs and derivatives of the
outputs from ¥; and X, can be made identical.

To find strongly indiscernible pairs, we attempt to apply (Fia,
GY,: GS, |ker {H1,})-algorithm on U, and we can obtain:

No = {xlz eUlx; —x3 = O},

Nl = {Xlz € l~]|X1 =X3 =X — X = 0} (37)

U[xlz clxi=x=2x +x4=0},
N, = 0.

Therefore, by Theorem 3, there is no strongly indiscernible pairs
in U. By observation, we can see that whenever the outputs
from X, and X, are identical and nonzero, the derivatives of the
outputs can be made different by applying nonzero control input.
In addition, whenever the outputs from X'; and X, are zero, the
derivatives of the outputs are nonzero.

We would like to note that the local characterization consid-
ered in this paper has its limitations. Indeed, all elements in N,
given in (35) are indiscernible pairs by observation, but since the
regularity condition fails, we cannot apply Theorem 2. On the
other hand, although we may not know whether the given set
is regular or not in advance, we can still attempt to apply the
algorithms and make the regularity conditions hold typically by
excluding some shy sets or partitioning the given set.
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Example 2. Consider a hybrid system with the following two
linear subsystems:
X1 =Xy +u X1 =Xy +u
Xy =x3 +u X =x3 —u°
21 . . a 22 . . a (38)
X3 =X1+Xx2+ U X3 =X1—X2+ U
y=x y=x
The augmented system takes the following form:
12 _ a2 | pay12 4 peyc
DRI 12 ; (39)
y=K
whereC=[100 —1 0 0],
01 00 0 O 0 0 1
0 01 0 0 O 0 0 1
|1 1.0 0 0 O «_ |1 0 c_| O
A_00001O’B_00’B_1’
0 000 0 1 0 0 -1
0 001 -1 0 0 1 0

For finding all strongly indiscernible pairs, we can apply Al-
gorithm 2 to the augmented system, and then we can obtain:

NO = {X12|X] — X4 = 0} y
Ny = {x"|x; — x4 = x, — x5 = 0}, (40)
Ny =0,

which implies that there is no indiscernible pairs by Theorem 3.
In stead of applying Algorithm 2, we can also apply Algorithm 1
to obtain:

Ny = {x12|x1 —x4 =0},

Ny = {x®|x; — x4 =x, — x5 = 0}, (1)
Ny = {xP|x; —x4 =X, — X5 = x3 — X6 = 0},

N; = N, = N*,

and check with the criterion in Remark 4. Since we have

Im{B‘} ¢ N* + Im{B“}, (42)

it follows that N* is empty. The result is coincident with the
observation that the first and the second order derivatives of the
outputs from the two subsystems directly depend on u‘ rather
than u‘, and the relationship between § and u® for mode 1 is
different from that of mode 2, and thus the two modes are
controlled discernible.

We would like to note that the main result of Gomez-Gutiérrez
et al. (2011) is coincident with our characterization of (controlled)
mode discernibility for linear cases. The mode discernibility in
our Definition 1 and the controlled mode discernibility in our
Definition 2 are partially related to Problems 3 and 4 in Gomez-
Gutiérrez et al. (2011), respectively. Furthermore, our Theorem 2
associates the indiscernible pairs with the maximal controlled
invariant submanifold in the kernel of output function for the
augmented system, which becomes the maximal controlled in-
variant subspace in the null space of output matrix for linear
cases, and thus our Theorem 2 can imply Lemma 8 in Gomez-
Gutiérrez et al. (2011). The strongly indiscernible pairs defined
in our work is associated with the maximal strongly controlled
invariant submanifold in the kernel of output function for the
augmented system by Theorem 3. It is justified in Remark 4
that this submanifold is either identical to the largest controlled
invariant subspace in the null space of the output matrix or empty
for linear cases. Note that the condition for it to be nonempty
is equivalent to the condition from Proposition 14 in Gomez-
Gutiérrez et al. (2011). Our result is more general in the sense that
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we have shown that the strongly controlled invariant submani-
fold is not equivalent to the controlled invariant submanifold for
nonlinear cases.

4.2. Augmented systems with relative orders

Although we know that near regular points, the set of (strongly)
indiscernible pairs is equivalent to the (strongly) controlled in-
variant output-nulling submanifold, it is, in general, still difficult
to implement Algorithms 1 and 2. However, for nonlinear systems
with well-defined relative orders, which have been commonly
considered for study of nonlinear systems, Algorithms 1 and 2 can
provide some clean results. Let us consider the following systems
related to (31):

. P9 = Fpo(xP) + G;q(x"q)u”q
PA | 85yPT = Hpg(x"9)

. xPd — qu(XPQ) + G;q(XPQ)uc
pq (gypq (qu) :
Recall that qu in (43) is said to have globally defined relative

orders (Nijmeijer & Van der Schaft, 1990) if there is a set of
integers {r{, ..., rf'} such that for eachj € {1,2, ..., 1},

’

(43)

LGqu’;qupq,j(qu) =0,V Vk e {0,....1f — 1}, (44)
and

rad
I, Leg Ly, Hpq (%) # 0, (45)

where H,q; is the jth component of H,q and L denotes the com-
monly used Lie derivative. The following result is well-known:

Proposition 2 (Nijmeijer & Van der Schaft, 1990). Suppose 2” has

finite relative orders {r¢, ..., 1}, and A = [Aj] : R*" R’Xz'"
defined by

Aj(xP1) £ Lee, LquHpq,j(qu), (46)
(Gpqi and Hyq; are the ith column of Gy, and the jth compo-

nent of Hpq, respectively), has full row rank for any X1 € N =
{xP|Hy(xP1) = 0}, where Hy : R*" — RZ=107+D s given by

T
[Hpq,l LFMH -+ Hpg LquHpq,,]. (47)

IfN is nonempty, N is a {2n— X 1(rj"—l—l)}—dlmensional submanifold

and also the maximal (Fyq, G, $ controlled invariant output-nulling
submanifold for X,q.

The above proposition is useful to find the indiscernible pairs
for a class of systems. To extend the result, let us assume X¢
also has well-defined relative orders: there is a set of integers
{r{,...,rf} such that for each j € {1,2,...,1},

Lgs, L, Hpq (™) = 0, VX", ¥k € {0, ..., 17 — 1}, (48)
and
xP0) £ 0. (49)

According to this structure, we have:

re
Pq J ;
P, Lg L7 Hy i

Corollary 2. Suppose X¢ and X% have finite relative orders
{r{,....,rf}yand {r{,..., r,“i, respectively. The following statements
are true:

(1) lfr < r forallj € {1,...,1} and A defined by (46)
has full row rank on N defned in Proposition 2, then N is
also the maximal (Fyq, G& strongly controlled invariant
output-nulling submanifo d or Zpgs
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(2) if thereisaj € {1, ..., 1} such that rj" > rjC and Leg, L Hqu
(xP1) is non-vanishing for all x*1 € N, where N is dpefned
in Proposition 2, then there is no nonempty qu, Ga G;
strongly controlled invariant output-nulling submam old fqor
g

Proof. For the first statement, we already know that N is the
maximal (Fyq, G, ) controlled invariant output-nulling submani-
fold with dlmensmn 2n— X (r#+1), and thus for each ™ € N,
there is a uP? such that Fyq(x ll’q +G;q(qu)upq € TwaN. Since rj < rj
foreachje {1,...,1},foreachj e {1,...,1},

Lee LK Hqu(x”") =0,Vx¥",Vke{0,...,r' — 1}, (50)

paFpg J
which implies that Im{G;,(x"")} < TwN for each x" € N.

Therefore, N is also a <qu, qu, G ) strongly controlled invari-
ant output-nulling submanifold. N is also the maximal one be-
cause it is already the maximal <qu,Ga )—controlled invariant
output-nulling submanifold. So, we conclude the first statement.

For the second statement, we prove it by contradiction. Sup-
pose there is a nonempty (qu, Gops Gy ) strongly controlled in-
variant output-nulling submanifold for Z‘pq, denoted by N’. Nec-
essarily, NN C N. For each x"* € N’ and for each v¢ € R™,
there is a v”? € R?™ such that G (qu)v + G}, v e TN C

bq
TquN However, there is j € {1,...,1} such tflat r > r.C and

LG LFP Hpq j(xP1) is non-vanishing for all X’ € N, which implies

0
[a = LquHpq,j(xm)] G0 = 0, ¥ € N (51)
and
[8qu quHqu(qu)] G" (qu) #0,Vx" € N. (52)

It means, ufor each x* € N, there is a v° € R™ such that for any
VPl e R2M Gpg(xP1)v° + G vP1 ¢ TwaN, which is contradictory to
what we have derived. 0O

Example 2 in Section 4.1 can be considered as a linear exam-
ple for demonstrating Corollary 2. By observing the augmented
system (39) in Example 2, we have r{ = 2 and r{ = 3. Since
r; < r{ and the conditions required by the second statement
of Corollary 2, we can conclude that there is no strongly indis-
cernible pair for these two modes, which is coincident with the
conclusion that we get in Example 2 using Theorem 3. Let us also
consider the following nonlinear example.

Example 3. Consider a hybrid system with the following two
bilinear subsystems:

X1:X2+UC )Z]:X2—UC
5(2 :X3+u“ )'(2 :x3+x2u“
Xy . c 2y . c a (53)
X3 = X1 + X3U X3 =X1 +X3u +Uu
y=x1 y=x1

To find strongly indiscernible pairs of these two subsystems, we
first construct the augmented system, and then apply Algorithm 2
or check the relative orders. If we apply Algorithm 2, we obtain
that N* = N; = ¢, and thus mode 1 and mode 2 are controlled
discernible. Alternatively, since we have r{ = 1 and r{ = 2
and the conditions required by the second statement of Corol-
lary 2 are satisfied, we can conclude that there is no strongly
indiscernible pairs for modes 1 and 2.

Note that the controlled mode distinguishability for bilinear
systems and mode distinguishability for single-output control-
affine systems are considered in Motchon and Pekpe (2018),
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Motchon et al. (2017) (but without addressing unknown in-
put), respectively. The relative degrees (relative orders) are used
to check the discernibility, which is similar to our result but
derived from an algebraic perspective. Applying Theorem 21
from (Motchon & Pekpe, 2018), we can obtain that the two
subsystems in this example are controlled discernible if u? is set
to identically zero, which is consistent with the result from our
approach.

4.3. Full-state feedback discerning control

In the previous subsections, we discuss the cases where only
the output information is available. However, it should be re-
marked that the controlled mode discernibility introduced in
Definition 2 only implies the existence of discerning control, but
to see whether or not there is a discerning output feedback
control requires more discussions. In fact, the proof of Theorem 1
shows that the discerning controls form an open and dense subset
in the collection of all admissible controls (if, locally, all pairs of
initial states are controlled discernible), which means even if we
do not know the initial states, we are likely to obtain a discern-
ing control input by random selection. In this subsection, let us
consider cases where full state information is directly observed,
i.e., y = x for both mode p and mode g, such that we can consider
how to use the state information to effectively avoid a control
input that is not discerning. Note that the discussion here can be
applied to cases where the state can be recovered directly from
the output without knowing inputs for each subsystem (e.g., each
mode is strongly observable).

Before we move to the discussion of discerning control design,
let us investigate the collection of (strongly) indiscernible pairs in
this special case. Suppose for both mode p and mode q, y = x.
Then, for the augmented system (31), Hp(x*) = [I — I]xP9,
where [ is the identity matrix with a proper dimension. It is clear
that (x5, x) is a (strongly) indiscernible pair only if xj = x{. For
this reason, we say xq is a (strongly) indiscernible initial state for
mode p and mode q if (xg, X) is a (strongly) indiscernible pair for
modes p and q. To characterize the (strongly) indiscernible initial
states, instead of using Theorems 2 and 3, we have the following
alternative approach. Suppose

E 2 {xf,(x) — fy(x) € Im{[g2(x) ga(x)]}} (54)

is a regular submanifold in an open connected subset U and
lm{gl‘}} + Im{gg} has constant rank on U. Then, there are smooth

@y : U R™ and a, : U — R™ such that for any x e ENU,

foa(%) £ fo(¥) + 8y (X)atp(x) = fo(X) + g (X)org(x). (55)

Suppose Im{g;} NIm{gy} also has constant dimension on U, then
there is a smooth map g% : U > R dim(iImiggloimigd)) guch that

Im{gy, (x)} = Im{g, (x)} N Im{g;(x)} (56)

for all x € U. Based on such f,; and gj, we can characterize the
indiscernible initial states according to the following corollary:

Corollary 3. Suppose both Im{g;’} + Im{gg} and Im{gg} N Im{gg}
have constant dimension on U such that fyq and g,, are defined on
E N U, where E is given by (54). Assume (Fyq, G5, [ker {[I —I1})-
algorithm is regular on U x U and (qu, ggqlE)-algorithm is regular
on U. Then, [x" xT]T e N* if and only if x € NP9, where

N* = (Fpq. Gyglker {[I —1]}NU x U},

(57)
P9 = (foq. 8 |[E N U).
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Similarly, we can characterize the strongly indiscernible initial
states by introducing E and gpq E is defined as:

E 2] x e Ellm{g(x) — g(x)} € Im{[g5(x) g(x)1} }. (58)

where E is defined in (54). Again, if both [m{gg} + Im{gg} and
[m{gg} N lm{gg} have constant dimension on U, then f,; and ggq
in Corollary 3 can be obtained. In addition, there are smooth maps
By : U > R™ ™ and B, : U > R™*™ such that for any
X € EN U,

£ g,(%) + g, (x)Bp(x) = g4(x) + g (x)Bq(X). (59)

Based on E, fra» 8pq» and gy, we can characterize the strongly
indiscernible initial states according to the following corollary:

8pg(X)

Corollary 4. Suppose both Im{g;} + Im{gg} and Im{gy} N Im{gg}
have constant dimension on U such that f,, ggq, and ggq are well-

defined on ENU, where E is given by (58). Assume <qu, Gpgs Gpglker

{lI —1]})-algorithm is regular on U x U and qu,gpq,g;qug")-

algorithm is regular on U. Then, [xT XT]T e N* ifand only ifx € Npa,
where

N = (Fog: Gpgi G

= (. 8 85l E NU).

We prove only Corollary 4 since the proof of Corollary 3 can
be considered as a special case of that of Corollary 4.

G |ker {[I —I]}NU x U),
g | -

Proof. The proof is given in Appendix D O

Corollaries 3 and 4 indeed match the intuition. For the case
where u€ is identically zero, if a state trajectory x(t) generated
by mode p using admissible u” can also be generated by mode q
using admissible u9, then there is an € such that x(t) should be
contained in E for any t € (—e, €), and u” and u? must satisfy

uP(t) = ap(x(t)) + UP(t), ul(t) = aq(x(t)) + u(t), (61)

for some uP and 4 that satisfy g(x(t))uP(t) = gg(x(t))u’(¢) for all

t € (—e, €). For this reason,
X = foa(x) + g, (00 (62)

can be considered as the constrained dynamics for indiscernible
x(t), which means any x(t) that can be generated by both mode
p and mode g must be a trajectory of (62) and contained in E (at
least on a small time interval containing 0). Similarly, for any u¢,
if there are uP and u9 such that

xX(t) = xP(xo, u, uP) = X (x0, u, u?), Vt € (—¢, €), (6

3)
then there is an €’ such that x(t), t € (—¢’, €’), is contained in E
and is a trajectory of the following constramed dynamics:

X = fpg(X) + Zpq(x)u” + gpg(x)u. (64)

Therefore, it is natural to conclude Corollaries 3 and 4. For conve-
nience, we shall denote the input-to-state map of the constrained
dynamics (64) by x(xg, u¢, u).

With the knowledge that the strongly indiscernible initial
states in a regular set form a (qu,ggq;g;q)-strongly controlled
invariant submanifold, we can conceptually construct a piece-
wise constant discerning control input under some regularity
conditions, assuming all states in U are controlled discernible.

Assume (qu, o glfq|l§'>-algorithm is regular on U and gener-
ates a sequence of submanifolds:

NET D NPT D L D NK =0 (65)
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Let us partition N2? into the following sets:

Co2 NET\ NP, ..., ooy 2 NPT\ NPT = NPY,. (66)

Note that US= /G, = Nl and GNG = G foranyi # j €
{0,1,...,K — 1}, and thus for each given x, € Ngq, there is a
unique k € {0, 1, ..., K — 1} such that xo € C;.

Suppose Xg is in Cy, and Hy is the local defining map of IQI,‘?" in
a neighborhood O of x,. Define P : Ngq x R™ x R™ - R as:

Py(x, v, v?)
&) 200 (00 + 5,000 + g5000°) (7)
where || || is the standard Euclidean norm. Since xy € C; implies
Xo ¢ NP, then by the definition of N}, we have

max mmPk(xo, ve, v > 0, (68)

veeve vt

where v¢ € V¢ is used to indicate that ||[v°|| < u. Define v*(xo)
as

v (%) £ arg max min Py(xq, v¢, v%). (69)
eV vl

The following proposition is to state that if a constant input
v“*(xp) is applied, then modes p and q cannot generate the same
trajectory, or the system state is driven away from N,fq and stays

in the complement of N* for a while:

Proposition 3. Suppose {fpq, ggq; ggq|§>-algorl’thm converges to an
empty set in a neighboArhood 0 of xg and xg € Ci. Assume Hy is the
local defining map of Nk in O and af" "q has constant rank on O.
Let v“*(xq) be computed via the quadratic game (69). Then, for any
u? that satisfies

[foa (%) + (X (1) + g (x0)|| < F, Ve, (70)

and for any x in O, where F is a positive constant, there is a positive
constant T such that x(t) ¢ N{* for all t € (—T, 0) U (0, T), where
x(t) = & (x0, v*(x0), u°).

Proof. Since X is in Cy, (68) holds. Consider P;; defined as
Pi(x) =

By the given constant rank condition, there is a neighborhood
0" C 0 of xo where P} is smooth and strictly positive. Let R be
a positive constant that satisfies 0 < R < infyermo X0 — X
Then, for any u¢ satisfying (70), x(t) = X (xo, v°*(x0), u®) € O’
for all t € (—R/F, R/F). Since P; is strictly positive for all x € 0,
LH(x(t)) # 0 for any u“, which implies x(t) ¢ NP for all t €
(—R/F,0)U(0,R/F). O

min P(x, v“*(xg), v°). (71)
vCl

Remark 5. In the proof of Proposition 3, we note that (69) could
be conservative. In fact, to drive the state of the constrained
dynamics away from N2?, any constant input with value v¢ that
satisfies minya Py(Xo, v°, v*) > 0 can be applied, but (69) consid-
ers a specific solution to the min-max problem, which reveals
that we have certain degree of freedom to modify the formulation
such that additional design criteria can be addressed.

By Proposition 3, we know it is possible to concatenate a finite
number of constant functions of time to obtain the control input
that can drive the trajectory of the constrained dynamics away
from E within an arbitrarily small time interval. In other words,
no matter what unknown exogenous input is injected into the
system, even if the induced trajectory can be generated by both
mode p and mode g within some small time interval, the system
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state will leave E due to the discerning control input. Once the
system state x is not in E, by definition of E in (58), there is a v¢
such that for any vP and v9,

fo) + g5 () + gyv” # fo(x) + g (v + ggv,

and thus the overall trajectory cannot be generated by both mode
p and mode g. We conclude this subsection with the following
example to demonstrate Corollaries 3 and 4 as well as the idea of
discerning control design.

Example 4. Consider a hybrid system including the following two
subsystems with full-state observation:

: c : c
X1 = X2 + X3l X1 = X2 — X3l

X, = sinxq + uf Xy = cosxy + u§

21 : 5(3 = X4 + Xsug DI ).(3 = X4+ Xsug (72)

X4 = tanhx; + u§ X4 = sinhx; + u§
).(5 = u§ 5{5 = Ug

Let us first investigate the indiscernible and strongly indiscernible
pairs (states) of these two modes. If we directly construct the
augmented system and apply Algorithm 1, we can obtain:

Ni=No={x2 eR"|[I —I]x"? =0}, (73)

which means all states are indiscernible states. Alternatively, we
may construct E, fi2, and g{, using (54), (55), (56): E = Rr>,

T
T 0 1 0 0 O

Using (fi2, g1, |E)-algorithm, we can immediately obtain that N'? =
E = R®, which is coincident with the result obtained from the
augmented system approach.

For finding strongly indiscernible pairs, we can obtain the
following by applying Algorithm 2 to the augmented system:
No = No,

1(11 = {X]Z € N0|X3 = 0} s
Nz = [Xlz € N] |X5 = 0} s (75)
N3 =0,

which implies that there is no strongly indiscernible state. Alter-
natively, we can use f1; and g{, in (74), and construct E and gf,
using (58) and (59):

R 00 0 0 07

E={xeR’x3=0}, g,={0 0 x 0 0 (76)
0 0 0 0 1

Applying (fu, gl g§2|1§>-algorithm, we have:

N2 =E= {xeR’|x3 =0},

N2 = {x € R%x3 = x4 = x5 = 0}, (77)

NP2 =g,

which also shows that there is no strongly indiscernible state. It is
worth noting that these two modes are controlled discernible, but
the linearized subsystems around the origin are not controlled
discernible.

Now, suppose that we observe x(0) = 0, but we do not know
which mode is triggered. Our objective is to find a discerning
control input u¢ : [0,T] — R3 (subject to |[u(t)]] < 1 for
any ¢ € [0, T]) to distinguish the behaviors of these two modes.
Since x(0) € C; = NJ? \ NJ?, and according to Proposition 3, we
can solve (69) to get a constant input that can at least drive the
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system state away from N}z. Specifically, the objective function
(67) in the quadratic gaming (69) is given by

Py(x = 0,v°,v%) = H [0 v vg]TH , (78)

and thus

v7*(0) = arg max minPy(0,v,v") =[0 0 1]T. (79)
<1 vl

Let u(t) = [0 0 1]7 for t e [0, t;), where t; can be any real
number in (0, T). Suppose such a u€ is applied to the system. Note
that it is still possible that there are u' and u? such that

xM0,ut, ul) = A2(0, ut, u?), Ve € [0, ty), (80)

for example, u' = 0 and u? = 0. However, no matter which mode
is triggered and what unknown input is injected into the system,
we know xs(t;) = t; > 0, which means x(t;) ¢ NJ2. Suppose
we observe that x(t;) = [0 0 0 0 t;]7 (it can be resulted by
u? = 0 for either mode p or mode q). Again, by Proposition 3,
since x(t;) € Co = Ny2 \ N{?, we can solve (69) to get a constant
control input that can drive the system state away from ﬁgz if the
induced trajectory can be generated by both modes p and q. The
objective function (67) in the quadratic gaming (69) is now given
by

PO(X(tl)v Uca va)

= H[O 010 0] [0 vl v v vg]TH = ||t1v§ |,
(81)

and thus

v () = arg max min Po(x(t7), v, v*) = [0 1 O]T. (82)

vel<1 v

Let u’(t) = [0 1 0]",t € [t1,t;) for some t, < T.If such a
u‘ is applied to the system, no matter which mode is triggered
and no matter what unknown input is injected into the system,
there is a time t, such that xg(tzlis non-zero, and thus the system
state is no longer contained in E. Then, by finding an admissible
u(t), t € [t, T) such that for any v', v?,

Fx(2)) + g5 (x(E2 ) (65) + gy’
# fo(x(12)) + g5 (X(62))u (X(£2)) + g4 v°,

the resulting trajectory from the system cannot be generated by
both mode 1 and mode 2. Note that a detailed systematic design
approach for discerning control, especially for the general cases
where the system states are not fully observable, is challenging.
In addition, the design of a mode identification scheme integrated
with the discerning control generation for hybrid systems with
unknown exogenous input is worth further discussions.

(83)

5. Conclusions

In this paper, we considered the characterization of controlled
mode discernibility of the hybrid system whose modes have
the nonlinear continuous dynamics with unknown exogenous
inputs. A concept of strongly controlled invariance was proposed
for the characterization of controlled mode discernibility from a
geometric perspective. Besides the general input-affine nonlinear
cases, the systems with relative orders was discussed. In addition,
for full-state observable cases, it was shown that the discerning
control design can be conceptually formulated as a quadratic
game in the tangent space.
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Appendix A. Proof of Lemma 2

If xo € N*, then there is a neighborhood O of xo and a smooth
feedback « : O — R™ such that

f(x) + gx)a(x) € TN*,Vx € NNO. (A1)

Smoothness of the left-hand-side implies the existence of ¢ > 0
and x : (—e€,€) — O with x(0) = xg that satisfies x(t) =
Fx(t)+gx(t)a(x(t)) forany t € (—e, €). Letu® : (—e, €) > R™
be given as u(t) = a(x(t)), then V;(xg, 0, u?) = 0, Vt € (—¢, €).

If X is an output-nulling state, then there is a positive con-
stant € and a smooth input u® : (—e,€) — R™ such that
Vi(xg, 0, u®) 0,Vt € (—e,¢€). Note that xo is necessarily in
{x|h(x) = 0}. If xo can be made an equilibrium, i.e., there is a
V) € R™ such that f(xo) + g%xo0)vg = 0, then xq as a singleton
is a submanifold that is both controlled invariant and output-
nulling. Otherwise, F : (—¢, €) — R" defined as F(t) = f(x(t)) +
g%x(t))u’(t) is nonzero on some open interval (—e/, e/), where
xX(t) = Xi(xo, 0, u®). Thus the image of X;(xo, 0, u%), t € (—€’, €')
is a local one-dimensional submanifold. Clearly, this submanifold
is both controlled invariant and output-nulling, and it should be
contained in N*.

Appendix B. Proof of Proposition 1

Under regularity conditions, the algorithm generates a se-
quence of inclusions:

NoDNi DN D ... DNy D Ny 2 ... (B.1)

Since they are submanifolds, according to their dimensions, the
sequence converges in a finite number of steps. For a k* > 0, if
Ni+1 = Ni= £ @, then for any x € Ni+,

f(x) 4+ Im{g(x)} € T-N* + Im{g“(x)},

which implies Nie is (f, g" g°|M)-strongly controlled invariant
under the regularity conditions. A

To show N is also the maximal one in Np, consider an
arbitrary strongly controlled invariant submanifold N’ contained
in No. Since N’ is strongly controlled invariant, f(x) +Im{g(x)} €
TN + Im{g?(x)} € TxNo + Im{g?x)} for any x € N’ C No.
Therefore,AN’ - N1. Next, N’ - I§l1 implies j}IQJ/ - 7;1(11 for
any x € N’, and thus f(x) + Im{g°(x)} C T:N' + Im{g*(x)} <
TxN1 + Im{g“(x)} for any x € N’ C N;. Hence, N’ is contained in
N,. By repeating the argument, we have N* C Ny for any k, and
thus N’ C Ny-.

(B.2)

Appendix C. Proof of Theorem 1

Suppose xo € N*. Since N* is a submanifold by the regularity
condition, there is a neighborhood O C U of X such that N* can
be locally expressed as

N*N0 = {x € O|H(x) = 0}, (C.1)

where H is the local defining map. Since Nf is (f, g%)-strongly
controlled invariant, we know for each x in N* N O and for each
v°, there is a v such that,

oH
ox
Consider a smooth mapping 8 : N*NO x R™ > R™ defined as
dH " 9H
- —(x
X X

(X) (f(x) + g°()v° + g(x)v?) = 0. (C2)

Blx, v) = — [ (X)g“(X)] ) [f(x) + g ()] - (C3)
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Then, v = B solves (C.2) for all x € N*N0 and all v¢. In addition,
B is smooth by the regularity condition Ssee Remark 1). Note that
B can be smoothly extended to O x R™ .

By the smoothness, for any xo € N* N O, there are ¢ > 0 and
u¢ > 0 such that the initial value problem

X =f(x)+ g (u + g (x)B(x, u) (C4)

with the initial condition x(0) Xo has a unique solution x :
(—e, €) — O for any admissible u¢ with magnitude smaller than
uc. Take u®(t) = B(x(t), u(t)) (such a u® is clearly admissible if
u¢ is admissible), then X;(xo, u, u?) = x(t) for all t € (—¢,¢).
x(t) € N*NO for any t € (—¢, €) since xo € N* and the right-
hand-side of (C.4) is contained in 7;N* for each x € N*. Hence,
we conclude the “if" part.

For “only if" part, let us consider a sequence of statements Sy.
For each k > 0, S is given as: for any strongly output-nulling
state xp in U for system (3), there is an € > 0 and u¢ such that for
any admissible control u¢ with magnitude smaller than u€, there
is an admissible u® such that

XX, u, u%) € Ny, Vt € (—¢,¢), (C5)

where Nk's are defined in (f, g¢; g°|ker {h})-algorithm.

According to the definition of strongly output-nulling states,
Sk is clearly true for k = 0.

We claim S is true for all k > 0. If it is not the case, there
is an integer k' > 0 such that Sy is true, but Sy is not true.
If Sy41 is not true, there are a strongly output-nulling state and
an admissible u¢ with arbitrarily small magnitude such that for
any admissible u?, x;(xo, u¢, u®) cannot be contained in Ny, 1 over
any small interval including t = 0. On the other hand, if Sy
is true, for such xo and u¢, there is an admissible u® such that
x(t) = X(xo, u‘, u®) could be contained in Ny over some intervals
(—€, €). Thus, there is a f € (—e¢, €) such that X = x(f) ¢ Ni1.
Now we claim that for Xo € Ny \ Ny,1, there is an admissible #i¢
such that for any admissible u’, X(t) = X(Xo, u°, u) cannot be
contained in Ny over any small interval containing ¢ = 0. To see
this, by the definition of Ny, 1, Xo € Ny \ Ny'51 reveals that

(%) +Im{g"(Xo)}  Ts,Nie + Im{g*(Xo)}. (C6)

Let O be a neighborhood of Xy such that there is a local defining
map H for Ny N 0. Condition (C.6) together with (4) can imply
that there is a v with arbitrarily small magnitude such that for
any v,

aH > > s c ars, a

a(xo)(f(xo)-i‘g (X0 + g (Xo)v”) # 0. (C7)
Hence, if °(0) = v°, then 4H(X(0)) # 0, which means H(X(-))
cannot be identically zero in any interval containing 0. Now if
we construct {° by concatenating u¢ and @€ at t = t, there is
no admissible u® to make X;(xq, I°, u®) contained in Ny over any
small interval containing t = 0, which is contradictory to that Sy
is true. It is clear that the statement S;’s are true implies xo € Ni's
. Hence we conclude the “only if" part.

Appendix D. Proof of Corollary 4

Since N* is contained in ker {[I —1I]}, then there exists a
submanifold M in U such that [x" xT]T e N* if and only if x € M.
Thus, what we need to show is M = NP4,

If [T xT]T e N*,

(%) - gx) 0
[Z(X)] S 7’[§]N +lm{|: pO gg(x):” , (D.1)
and
gy(x ~ ;x) 0
Im {[gg(x)” S T[yN* +Im {[ %0 gg(x):” (D.2)
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T ~
Hence, for [x x']" € N*, there are v, v? € R™ such that

Fo®) + genP = fy(x) + go(x) € T:M, (D.3)
and for any v¢ € R™, there are o7, #9 € R™ such that
(0" +gp(0)T = g (X +gf(07! € TiM (D-4)

Therefore, x is necessarily contained in E. In addition, recalling
the definitions of fyq, g5, and gg,, it can be inferred that M <
Eis (qu,ggq; gﬁq)—strongly controlled invariant. Since N is the
maximal (qu, gpq, gpq) strongly controlled invariant submanifold

contained in E we know x € M C NP,
Ifx e Npq. then there is a v* such that

Foa®) + y(x)0" € TNPI, (D.5)
and for any v¢, there is a v® such that
85,0 + go ()" € ToNPI. (D.6)

According to the definitions of fyq, g;q and glfq, the above expres-
sions imply that for any x € NP9, there are v and v? such that

Fo®¥) + g0WP = fy(x) + go(x)v? € NP, (D.7)
and for any v¢, there are vP and v9 such that
Zo(° + go(x)TP = gl (x° + gi(x)iT € TP, (D.8)

which implies NP x NP9 N ker{[I — ]} is (Fyq, Ga,: G, )-strongly
controlled invariant. Since N* is the largest (qu, Ggq, GC ) strongly

controlled invariant submanifold cgntamed in the kernel of
[I —1], then x € NP implies [x" x'] e N*,
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