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Abstract—TIn this paper, we propose a human-automation inter-
action scheme to improve the task performance of novice human
users with different skill levels. The proposed scheme includes
two interaction modes: learn from experts mode and assist novices
mode. In the learn from experts mode, the automation learns from
a human expert user such that the awareness of task objective
is obtained. Based on the learned task objective, in the assist
novices mode, the automation customizes its control parameter
to assist a novice human user towards emulating the performance
of the expert human user. We experimentally test the proposed
human-automation scheme in a designed quadrotor simulation
environment, and the results show that the proposed approach
is capable of adapting to and assisting the novice human user to
achieve the performance that emulates the expert human user.

Index Terms—Human-automation interaction, SKill transfer,
Remotely piloted quadrotor, Inferring task objective function,
Inverse optimal control

I. INTRODUCTION

Many aerospace applications such as air traffic management
[1], unmanned aircraft systems (UAS) [2], remotely piloted
systems (RPS) [3], and urban air mobility (UAM) rely on close
human-automation collaboration to improve performance and
safety of their operations since these human-automation sys-
tems seek to achieve a complementary competence of humans
and automation. In this paper, we propose a human-automation
interaction scheme to improve the task performance of novice
human users with different skill levels, which helps enhance
the performance of the entire system. In addition, the pro-
posed human-automation interaction scheme could expedite
human training or skill transfer. We consider remotely piloted
aircraft or drone/quadrotor control as a driving example in
this paper, but the proposed methodology is general enough
to be applicable to other human-automation systems such as
semi-autonomous cars [4], robotic rehabilitation systems [5],
assistive exoskeletons [6], and teleoperation [7].

A key component in a human-automation system is the
interaction scheme between humans and automation, which
determines the performance of the whole system. Developing
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an efficient and human-friendly interactive control scheme is
challenging, since it is usually mission-specific, and yet in
general requires the integration of human motion prediction
[8], [9], mission objective awareness [10], and shared control
decision making [11]. Existing interactive control techniques
developed in the field of human-automation interaction have
achieved significant progress [12]-[14], but most of them typ-
ically assume a fixed human role in the interaction paradigm;
in other words, the interaction models the human to be either
a leader that provides situational guidance to the automation
[8], [12]-[16], or a follower who yields to the automation
that is pre-trained/programmed [6], [17]-[20]. Consequently,
a limitation of these interactive control schemes is the lack
of adaptivity and customization to different human users with
possibly different knowledge or skill levels. To overcome this
limitation, this paper develops a new human-automation in-
teraction scheme, which can provide a personalized assistance
based on the different skill levels of human users.

The proposed scheme assumes two types of human users:
experts and novices. The expert knows how to operate the
system optimally based on his/her own knowledge or experi-
ences by minimizing an implicit task objective function. On
the other hand, the novice’s control inputs are optimal with
respect to his/her own understanding of the task objective
function, which is usually different from that of the expert.
The automation interacts with both groups of human users
via two interaction modes: in the learn from expert mode,
the automation learns the task objective function of the expert
human user using his/her demonstrations. The task objective
function underlying the expert’s demonstration is inferred
using the inverse optimal control technique. In the assist novice
mode, the automation adjusts the control parameters of the
system such that the novice’s demonstration minimizes the
learned expert’s task objective function as we consider it as a
task performance measure. To that end, we iteratively integrate
the inverse optimal control and the gradient decent approach
to provide personalized assistance. We experimentally test and
demonstrate the proposed human-automation scheme using a
quadrotor landing simulation testbed. The test results show that
the proposed approach is capable of adapting to different skill
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levels of novice human users and assisting them to achieve
the performance that emulates the expert human user.

A. Related Work

1) Human Motion Characterization: A smooth or proactive
interaction always requires a model of human motion such that
efficient prediction and estimation can be performed by the
automation. Existing models to characterize human motion can
be classified into probabilistic graphical methods, including
Gaussian mixture models [21]-[23], hidden Markov models
[24], [25], and optimal control methods [8], [11], [15], [26].
Compared to probabilistic models, optimal control models
fully account for the kinematics and/or dynamics constraints in
human motion and the human motor control principle has well
justified with the evidences in neuroscience and biomechanics
[27], [28], thus has more generality and superiority [26].

2) Learning Task Objective Functions: A requirement in
human-automation interaction is to enable the automation to
be aware of the task objective. In general, the objective of
complex tasks is difficult to be manually specified a priori.
Inverse optimal control [29]-[31] or inverse reinforcement
learning techniques [10], [32]-[34] can be applied to learn
the task objective function from data. By assuming the task
objective function to be a weighted sum of specified features,
the inverse optimal control seeks to infer feature weights from
the observational demonstrations.

3) Human-Automation Control Coordination: Another line
of human-automation interaction research focuses on how to
coordinate the control authority between automation and a
human user. For example, in [13], the authors propose to
generate the automation’s decisions by accounting for a human
user’s corresponding response. In [8], automation planning is
made by predicting a human user’s motion based on the inverse
optimal control. In [11], the adaption rules between automation
and human users are developed based on game theory, which
achieves continuous adaption. In our development, we choose
to adapt the automation’s control parameter using the gradient
method.

The remaining paper is organized as follows: in Section
II, we formulate the problem and propose an overall human-
automation interaction scheme. Detailed techniques used for
each mode of the interaction scheme are provided in Section
III. In Section IV, an illustrative experiment is introduced to
demonstrate the proposed scheme, and the experimental results
are discussed. Finally, conclusions are drawn in Section V.

II. PROPOSED HUMAN-AUTOMATION INTERACTION
A. Problem Definition

Our goal is to develop an interaction scheme where for
the expert human user, the automation can learn his/her task
objective and for the novice human user, the automation will
automatically adjust its control parameter to assist him/her to
emulate the expert. To deal with this problem, we define the
following elements.

We model the dynamics of a human-automation system as
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Fig. 1. Proposed Scheme for Human-Automation Interaction

where x; € R" is the system state; u; € R™ is the human
control input; § € © C RP is the tunable control parameter in
the automation, and © is a convex compact set including all
feasible choices of parameters; ¢ = 0,1, --- denotes the time
instance; and the vector function f is assumed to be smooth.
For the automation control parameter, the default value is
denoted by 6, and we call the human-automation system with 6
as the nominal configuration. The task objective of the human-
automation system is to minimize an accumulative task objec-
tive function, which is represented as a linear combination of
features (or basis functions):

T
J(w) =" B(xp,u) - w )
t=0

where ®(x,u;) € R” is the vector (function) whose elements
are predefined relevant features; w € R" is the vector of
feature weights; and 7' is the time horizon. Note that this
type of weight-feature objective is a typical formulation in
human-automation research [8], [10], [12], [14], [29]. For
convenience, we denote the above human-automation system
as X (0, w) if the system follows (1) and (2). We use 5(9"”)
to denote the resulting (optimal) trajectory of ¥ (6, w):

€0 = (xil uil™) )

(0,w)
0:T

0 %) and u

where x 7
with time from O to 7', respectively. Here, we define u
to be zero without loss of generality.

For the human-automation system (57 w) of nominal
configuration, we consider two types of human users: expert
human users and novice human users.

o The expert knows how to operate the system optimally
based on his/her specific knowledge or experiences; that
is, the expert’s inputs are assumed to minimize an implicit
task objective function of weights wg, whose specific
value, however, is not explicitly known.

o The novice provides optimal inputs to the human-
automation system, but such inputs are optimal with
respect to his/her own understanding of the task objective
function, characterized by w, which is usually different
from that of the expert with wg.

are the sequences of state and input
(0,w)
T

B. Proposed Human-Automation Interaction

As shown in Fig. 1, we propose a human-automation
interaction scheme, which consists of two modes. The learn
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from experts mode is used for expert human users. We assume
that an expert human user is capable of operating the system
efficiently based on specific knowledge or experiences, but
typically the corresponding criterion underlying the expert’s
operation, i.e., the task objective function, is not explic-
itly given in a quantitative way [26], [35]. In this regard,
the learn from experts mode is to learn the task objective
function of the expert human user, which will be used as
a performance measure of the whole system. Specifically,
in the learn from experts mode, the automation records the
trajectory/demonstration of the expert human user, & (G’WE),
and provides no intervention. Then, the task objective function
weights wg underlying the expert’s trajectory are inferred
using the inverse optimal control technique, which will be
described in the next section.

The assist novices mode is designed for novice human
users. Due to the lack of knowledge of the system, objec-
tive awareness, or operational experience, the task objective
function weights w of the novice’s operation are typically
different from the weights wg of the expert, and thus the

9w~ ) of the novice human user, is different from

trajectory & A
the expert’s trajectory/demonstration & (O’WE). The goal of the
assist novices mode, thus, is to adjust the control parameter
0 of the automation such that the novice’s trajectory resulting

from ¥ (0, wy ) minimizes

L =
t

T
S (xs, 1) - Wg “4)
=0
as we consider the learned expert’s task objective function as a
task performance measure. To that end, we iteratively integrate
the inverse optimal control and the gradient descent approach.
Suppose that the current control parameter is 8, and the current
trajectory of the novice human user results from X (6, wy ).
First, the inverse optimal control is applied to infer wy for
the novice human user. Then, the gradient descent approach
is applied to update the control parameter:

L
6 «+ Projg (9 - 77629) 4)

where Projg denotes the projection onto ©; 7 is the step size;
and % is the gradient of L in (4) with respect to 6. By the
chain rule, it is clear that

dL 9L o) ©)

Fr ag(&WN) o0

. (0,w)
The computation of the term 8589

in the next section.

The flow chart given in Fig. 1 summarizes the integration
of the learn from experts mode and the assist novices mode
in order to gradually update the control parameter such that
the novice human user emulates the performance of the expert
human user.

will be briefly reviewed

III. TECHNICAL TOOLS
A. Inverse Optimal Control

In both the learn from experts mode and assist novices mode,
the inverse optimal control is used to infer the task objective
function behind the human input, which is characterized by
the weights w of pre-defined features in (2). To infer w using
5(9""), we apply the inverse optimal control techniques as
follows. Suppose (X(.G’W) u%w) ) is a piece of demon-

133 titpl—10 Reappi—1 p
stration, where [ denotes the observation length. According
to [31], [36], the Karush-Kuhn-Tucker (KKT) condition of
optimal control for the discrete-time nonlinear system implies:

Fggt’l))\tzwlﬂ - <I>§f’”w = V(t’l))\wl

(7N
Fq(f’l)At:t—&-l—l + *I>5f’”w =0

where A\ € R" denotes the dual variable; Fgf’l) e Rmuxnl
Fgal) c Rmixnl ‘I>§Ct’l) c Ruxr (I)Sf’” c R™X" and
VD ¢ R™X™ are given as:
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T
respectively, where % denotes the transpose of the Jacobian
matrix. Alternatively, Equation (7) can be written in a compact
form:

HOD | Y =0 )
At

where H*D = LHY’I) H"Y| € Rm*0+n) (named as

recovery matrix in [31]) is defined as:

H(D — i) (F;t,z))’l B0 | L)

- (10)

() &0\ v
H{ = (F0) v

Note that the definition of the recovery matrix involves an
inversion of a large matrix, but it is not a problem because of
the following iterative property:

H(tvl) H(tvl) I 0

HEAHD — l aéT ach 06T ofT (11)
Ouyqg Ouyqg Ox¢qp1  OXpyq
with
HED — [HY’” Hém)}

(12)

= [ﬁ 09T | 997" ﬁaﬂ}
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By observation, the unknown weight w in the task objective
function can be uniquely determined as long as the piece of
demonstration is informative and the features are chosen in
an distinguishable manner. In practice, however, it is possible
that there is no w satisfying (9) due to the noise. In this case,
w can be estimated by solving
tl) | W
w3

>

where the variable is restricted to be normalized such that
r

Yiogwi =1

B. Gradient Method

In the assist novices mode, applying (5) to update the
control parameter requires the evaluation of gradient (6), which
is challenging. To address this, we resort to the Pontryagin
differentiable programming (PDP) method [37], where an
auxiliary control system is constructed in order to compute
aggém . Specifically, given a fixed w, we consider & O w) is an
optimal trajectory of the human-automation system 3 (6, w).
Then an auxiliary control system of (6, w) at £€%%) is a
matrix linear system:

=arg min (13)

[w? AT]T

Xip1 = AeXy + Bty + By (14)

with a quadratic task objective function:

-yl (8 8 ]8T 2]
22w e e lo] Tl Lu
+Tr (;X%?XT +(QF)" xT>

(15)
where X; € R™"*P and u; € R™*P are the auxiliary state and
input, respectively; A; € R"*" B; € R"*™ E, € R"*P,
Q%’Z G Rnxn’ Q;l)u G Rn)(m’ Q%u:n — ( ;EU)T E Rm)(n’
Qe R™*mQF¢ € R™ P, and Q¢ € R™*P are defined
as:

of of

At == O,w)’ Bt = 0,w)’

ox; ou,
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where h denotes the discrete-time Hamiltonian function:
0, 0,
h(X:E W)v u§ w), At+1;0)

=& (xﬁ"’ ),uge’ )) W+ f(xge’ ),uge’ ),G)T)\H_l

As the auxiliary control system has a linear quadratic structure,

the state and input trajectories of the auxiliary system can be

solved efficiently via Riccati-type recursion [37] and the final
. oe®w) _ _ . .

result is ‘9580 = {X{.p» Uy.r_1 }» which can be directly used

to compute the gradient with (6).

IV. HUMAN SUBJECT EXPERIMENTS

We design a quadrotor simulation environment and human
subject experiments to demonstrate how the proposed scheme
works interactively with human users.

A. Experiment Design

The quadrotor simulation environment employs a typical
scenario; control a quadrotor to safely land it on a touch-
pad with the appropriate final position, speed, and attitude. In
this work, we develop a two-dimensional quadrotor landing
simulator (Fig. 2). The human users are requested to control
the quadrotor with a joystick. The human control inputs are
related to the roll angle and the total thrust of the quadrotor.

The system dynamics is given as follows with the states con-
sisting of the position, velocity, and attitude of the quadrotor
x¢ = (¢, Yt, Tt, Ut, Ot gﬁt)T € RS, the human control inputs
in 2-axis w; = (uf,u})T € R?, and the control parameter in
the k-th update 0y, = (0x 1,0k 2)" € R%:

Tiotal = au? +b+ ek,lyt
Taitr = Buy + P + Dy + O 24
T = T‘total sin ((;st)
§ = Tow cos (¢r) — my
& = Tuiee/I
where «a, 3, P, D,b, I and m are design parameters and g is a
gravitational acceleration. The control parameters (6 1, Ok,g)T
are kinds of D-gain, which help the vertical and horizontal
speed be stabilized, respectively. By observations, adding D-
gains can effectively assist novices to handle the quadrotor
more easily. The proposed scheme can find out how much D-
gain values should be given to individual novice human users
to assist them to control the quadrotor like an expert. The
total 8 quadratic basis features are employed for this testbed,
ie, ®(x;,uy) = (:L'%, thv it27 yt27 (b%? (ZS?, (uf)zv (ufy)Q)T For
the quadrotor landing simulator, the parameters in Table I are
used.

The experiment is conducted by an expert, who is requested
to control the quadrotor as stable as possible. This is because
in a realistic scenario, landing a quadrotor safely is more
critical than landing it quickly. 10 novices are divided into

Starting
point ®
-'-, Vttitude

Trajector.\;" )

(18)

Quadrotor

Origin

Fig. 2. Experimental testbed: Quadrotor landing simulator
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TABLE I
QUADROTOR LANDING SIMULATOR PARAMETERS (SI UNITS)

Parameter Value Parameter Value
0o 0,0)T X0 (—0.28,0.74)T
© [-0.2,0],[-0.5,0] X 0,007
(o, B) (60, 60) At 0.034 sec
(P,D,b) (60, 30, 60) (I, m,g) (10, 8,9.8)

Ratio of safe landing

1
-Human contral

T
0.8 I:lHuman-autDmaliDn control
1
4
0.z
N | L L
1 2

Ratio
[=] o

o

Phase

Fig. 3. Ratio of safe landing in three phases with total 10 novice human
users. 10 trials for each phase and each novice. Error bars represent the +1
standard deviation of the mean.

two groups: human control and human-automation control,
with 5 members each. The novices are requested to control the
quadrotor 10 times for each phase over total 3 phases. Thus,
they conduct the experiment 30 times in total. The experiments
is conducted under the following conditions, depending on the
phase of each group.

e Phase I: no assistance for both groups.

e Phase 2: no assistance for the human control group
and the automation assists the human-automation control
group by iteratively updating control parameters.

e Phase 3: no assistance for the human control group
and the human-automation control group assisted by the
automation with the lastly updated control parameters in
phase 2.

Final conditions for a safe landing are given as follows: final
position within 0.2m radius from the origin (touch-pad), less
than 0.065m /s final speed, and less than 5 degree roll angle
at landing.

B. Results and Discussion

The results show that (Fig. 3) the novices can land the
quadrotor safely with the assistance from the automation. This
is clear from the fact that the ratio of safe landing for the
human-automation control group significantly improves over
the phases, while the human control group’s performance
remains more or less similar.

For investigating individual cases in more detail, Figure.
4 presents the final position, speed, and attitude errors of a
novice from the human-automation control group. In the case
of this novice, there is no problem in controlling the final
position and attitude from the beginning of the experiment,
but the final speed control is not satisfactory in Phase 1.
However, with the assistance of the automation, the final speed
control is remarkably improved from Phase 2, and this trend
is maintained in Phase 3.

Final Position Error |IBllNovice-automation cortrol
: - === Allowed range

o
(S

Distance {m)
o

o

1 2 3
Phase

Final Speed Error |l Novice1-automation contral
T [ === Allowed range

Speed (m/s)
T

1 2 3

Phase
. N [INovice 1-automation control
. Final Attitude I:Trror - Aliowed range

Phase

Fig. 4. Final position, speed, and attitude errors for a novice human user (in
the human-automation control group) with step size n = 1.0. In particular,
the final speed error is improved with the assistance of the automation. Error
bars represent the £1 standard deviation of the mean.

V. CONCLUSIONS

A skill level based human-automation interaction scheme
was proposed and tested by human subject experiments. The
results of the experiments demonstrated that the proposed
scheme can help novices perform like experts by inferring
the experts’ task objective function and personalizing the
automation’s control parameters according to the skill levels
of novices. The inverse optimal control and gradient method
are employed to infer the task objective function and adjust
the control parameters, respectively. The future work will
consider uncertainties and variability of human behaviors and
develop a theoretical framework which guarantees the system’s
optimality and stability under uncertainties and variability.

REFERENCES

[1] S. Lee, I. Hwang, and K. Leiden, “Intent inference-based flight-deck
human-automation mode-confusion detection,” Journal of Aerospace
Information Systems, vol. 12, no. 8, pp. 503-518, 2015. [Online].
Available: https://doi.org/10.2514/1.1010331

[2] G. D’Intino, M. Olivari, H. H. Biilthoff, and L. Pollini, “Haptic
assistance for helicopter control based on pilot intent estimation,”
Journal of Aerospace Information Systems, vol. 17, no. 4, pp. 193-203,
2020. [Online]. Available: https://doi.org/10.2514/1.1010773

[3] S. Islam, R. Ashour, and A. Sunda-Meya, “Haptic and virtual reality
based shared control for mav,” IEEE Transactions on Aerospace and
Electronic Systems, vol. 55, no. 5, pp. 2337-2346, 2019.

[4] M. Flad, J. Otten, S. Schwab, and S. Hohmann, “Steering driver
assistance system: A systematic cooperative shared control design ap-
proach,” in 2014 IEEE International Conference on Systems, Man, and
Cybernetics (SMC). 1EEE, 2014, pp. 3585-3592.

[5] P. R. Culmer, A. E. Jackson, S. Makower, R. Richardson, J. A. Cozens,
M. C. Levesley, and B. B. Bhakta, “A control strategy for upper
limb robotic rehabilitation with a dual robot system,” IEEE/ASME
Transactions on Mechatronics, vol. 15, no. 4, pp. 575-585, 2009.

[6] G. Aguirre-Ollinger, J. E. Colgate, M. A. Peshkin, and A. Goswami,
“Active-impedance control of a lower-limb assistive exoskeleton,” in
2007 IEEE 10th international conference on rehabilitation robotics.
IEEE, 2007, pp. 188-195.

Authorized licensed use limited to: Purdue University. Downloaded on July 08,2022 at 17:43:58 UTC from |IEEE Xplore. Restrictions apply.



[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

(19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

B. Khademian and K. Hashtrudi-Zaad, “Dual-user teleoperation systems:
New multilateral shared control architecture and kinesthetic performance
measures,” IEEE/ASME Transactions on Mechatronics, vol. 17, no. 5,
pp. 895-906, 2011.

J. Mainprice, R. Hayne, and D. Berenson, “Goal set inverse optimal
control and iterative replanning for predicting human reaching motions
in shared workspaces,” IEEE Transactions on Robotics, vol. 32, no. 4,
pp. 897-908, 2016.

Y. Li and S. S. Ge, “Human-robot collaboration based on motion in-
tention estimation,” IEEE/ASME Transactions on Mechatronics, vol. 19,
no. 3, pp. 1007-1014, 2013.

D. Hadfield-Menell, S. J. Russell, P. Abbeel, and A. Dragan, “Coopera-
tive inverse reinforcement learning,” in Advances in neural information
processing systems, 2016, pp. 3909-3917.

Y. Li, K. P. Tee, W. L. Chan, R. Yan, Y. Chua, and D. K. Limbu,
“Continuous role adaptation for human-robot shared control,” /EEE
Transactions on Robotics, vol. 31, no. 3, pp. 672-681, 2015.

A. Bajcsy, D. P. Losey, M. K. O’Malley, and A. D. Dragan, “Learning
robot objectives from physical human interaction,” Proceedings of
Machine Learning Research, vol. 78, pp. 217-226, 2017.

D. Sadigh, S. Sastry, S. A. Seshia, and A. D. Dragan, “Planning for
autonomous cars that leverage effects on human actions.” in Robotics:
Science and Systems, vol. 2. Ann Arbor, MI, USA, 2016.

A. Bajcsy, D. P. Losey, M. K. O’Malley, and A. D. Dragan, “Learning
from physical human corrections, one feature at a time,” in Proceedings
of the 2018 ACM/IEEE International Conference on Human-Robot
Interaction, 2018, pp. 141-149.

A.D. Dragan, K. C. Lee, and S. S. Srinivasa, “Legibility and predictabil-
ity of robot motion,” in 2013 8th ACM/IEEE International Conference
on Human-Robot Interaction (HRI). 1EEE, 2013, pp. 301-308.

J. Mainprice, R. Hayne, and D. Berenson, “Predicting human reaching
motion in collaborative tasks using inverse optimal control and iterative
re-planning,” in 2015 IEEE International Conference on Robotics and
Automation (ICRA). 1EEE, 2015, pp. 885-892.

M. S. Erden and B. Mari¢, “Assisting manual welding with robot,”
Robotics and Computer-Integrated Manufacturing, vol. 27, no. 4, pp.
818-828, 2011.

K. P. Tee, R. Yan, and H. Li, “Adaptive admittance control of a robot
manipulator under task space constraint,” in 2010 IEEE International
Conference on Robotics and Automation. 1EEE, 2010, pp. 5181-5186.
M. Kimmel, M. Lawitzky, and S. Hirche, “6d workspace constraints
for physical human-robot interaction using invariance control with
chattering reduction,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. 1EEE, 2012, pp. 3377-3383.

J. Jiang and A. Astolfi, “Shared-control for fully actuated linear me-
chanical systems,” in 52nd IEEE Conference on Decision and Control.
IEEE, 2013, pp. 4699-4704.

S. Calinon, F. Guenter, and A. Billard, “On learning, representing, and
generalizing a task in a humanoid robot,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B (Cybernetics), vol. 37, no. 2, pp. 286298,
2007.

R. Luo and D. Berenson, “A framework for unsupervised online human
reaching motion recognition and early prediction,” in 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2015, pp. 2426-2433.

J. Mainprice and D. Berenson, “‘Human-robot collaborative manipulation
planning using early prediction of human motion,” in 2013 IEEE/RSJ
International Conference on Intelligent Robots and Systems. 1EEE,
2013, pp. 299-306.

L. Bretzner, 1. Laptev, and T. Lindeberg, “Hand gesture recognition using
multi-scale colour features, hierarchical models and particle filtering,”
in Proceedings of fifth IEEE international conference on automatic face
gesture recognition. 1EEE, 2002, pp. 423-428.

D. Kuli¢, C. Ott, D. Lee, J. Ishikawa, and Y. Nakamura, “Incremental
learning of full body motion primitives and their sequencing through
human motion observation,” The International Journal of Robotics
Research, vol. 31, no. 3, pp. 330-345, 2012.

E. Todorov, “Optimality principles in sensorimotor control,” Nature
neuroscience, vol. 7, no. 9, pp. 907-915, 2004.

C. Chow and D. Jacobson, “Studies of human locomotion via optimal
programming,” Mathematical Biosciences, vol. 10, no. 3-4, pp. 239-306,
1971.

(28]

[29]

[30]

[31]

[32]

(33]

[34]

R. M. Alexander, “The gaits of bipedal and quadrupedal animals,” The
International Journal of Robotics Research, vol. 3, no. 2, pp. 49-59,
1984.

K. Mombaur, A. Truong, and J.-P. Laumond, “From human to humanoid
locomotion—an inverse optimal control approach,” Autonomous robots,
vol. 28, no. 3, pp. 369-383, 2010.

A. Keshavarz, Y. Wang, and S. Boyd, “Imputing a convex objective
function,” in 2011 IEEE International Symposium on Intelligent Control.
IEEE, 2011, pp. 613-619.

W. Jin, D. Kuli¢, J. E-S. Lin, S. Mou, and S. Hirche, “Inverse optimal
control for multiphase cost functions,” IEEE Transactions on Robotics,
vol. 35, no. 6, pp. 1387-1398, 2019.

A. Y. Ng and S. Russell, “Algorithms for inverse reinforcement learn-
ing,” in Ieml, vol. 1, 2000, pp. 663-670.

B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning.” in Aaai, vol. 8. Chicago, IL,
USA, 2008, pp. 1433-1438.

P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proceedings of the twenty-first international
conference on Machine learning, 2004, p. 1.

B. Berret, E. Chiovetto, F. Nori, and T. Pozzo, “Evidence for composite
cost functions in arm movement planning: an inverse optimal control
approach,” PLoS computational biology, vol. 7, no. 10, 2011.

W. Jin, D. Kuli¢, S. Mou, and S. Hirche, “Inverse optimal control with
incomplete observations,” arXiv preprint arXiv:1803.07696, 2018.

W. Jin, Z. Wang, Z. Yang, and S. Mou, “Pontryagin differentiable
programming: An end-to-end learning and control framework,” arXiv
preprint arXiv:1912.12970, 2019.

Authorized licensed use limited to: Purdue University. Downloaded on July 08,2022 at 17:43:58 UTC from |IEEE Xplore. Restrictions apply.



