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Abstract

We present a novel two-layer hierarchical reinforcement
learning approach equipped with a Goals Relational Graph
(GRG) for tackling the partially observable goal-driven task,
such as goal-driven visual navigation. Our GRG captures
the underlying relations of all goals in the goal space through
a Dirichlet-categorical process that facilitates: 1) the high-
level network raising a sub-goal towards achieving a desig-
nated final goal; 2) the low-level network towards an opti-
mal policy; and 3) the overall system generalizing unseen
environments and goals. We evaluate our approach with
two settings of partially observable goal-driven tasks — a
grid-world domain and a robotic object search task. Our ex-
perimental results show that our approach exhibits superior
generalization performance on both unseen environments
and new goals .

1. Introduction

Goal-driven visual navigation defines a task where an
intelligent agent (with an on-board camera) is expected to
take reasonable steps to navigate to a user-specified goal in
an unknown environment (see Figure 1 left). It is a funda-
mental yet essential capability for an agent and could serve
as an enabling step for other tasks, such as Embodied Ques-
tion Answering [8] and Vision-and-Language Navigation [3].
Goal-driven visual navigation could be formulated as a par-
tially observable goal-driven task. In this paper, we present
a novel Hierarchical Reinforcement Learning approach with
a Goals Relational Graph formulation (HRL-GRG) tackling
it. Formally, a partially observable goal-driven task yields a
10-tuple < S, A, T, G, R,Q,0,Gq,®,~ >, in which S is a
set of states, A is a set of actions, 7' : S x A x S — [0, 1]
is a state transition probability function, G C S is a set of
goal states, R: S X A xS x G — Ris areward function,

ICodes and models are available at https: //github.com/Xin—
Ye-1/HRL-GRG.

) is a set of observations that are determined by conditional
observation probability O : S x Q@ — [0,1]. Similarly,
G is a set of goal descriptions that describe observations
with goal recognition probability ® : Q x G4 — [0,1].
In particular, g is the goal state of the corresponding goal
description g4 iff ®(argmax, O(g,w), gq) is larger than
a pre-defined threshold. v € (0,1] is a discount factor.
The objective of a partially observable goal-driven task is
to maximize the expected discounted cumulative rewards
E[> ¢ v'res1(st, at, se41, 9)|st, g] by learning an optimal
action policy to select an action a; at the state s; given the
observation o; and the goal description g4.

Classic RL methodology optimizes an agent’s decision-
making action policy in a given environment [30]. To make
RL towards real-world applicable, equipped with deep neural
networks, Deep Reinforcement Learning (DRL) [22] algo-
rithms are able to directly take the high dimensional sensory
inputs as states .S and learn the optimal action policy that
generalizes across various states. However, the applicability
of most advanced RL algorithms is still limited to domains
with fully observed state space .S and/or fixed goal states G,
which is not the case in reality [22, 21, 20, 29, 11].

For real-world applications like visual navigation, an
agent’s sensory inputs capture the local information of its sur-
rounding environments (a partially observable state space).
Additionally, the real-world applications could be subject to
goal changes, requiring a system to be goal-adaptive. There-
fore, a real-world application can be formulated as a par-
tially observable goal-driven task, that is different from a
fully observable goal-driven task [22, 21, 11, 25] or a par-
tially observable task [13, 18, 12]. It requires the agent to
be capable of inferring its state in the augmented state space
S x G. Namely, the agent should take actions based on its
current relative states with respect to the goal states, which
can only be estimated from its sensory observations {2 and
the goal descriptions G4. This is challenging due to 1) the
large augmented state space, 2) the different modalities that
the observations 2 and the goal descriptions G4 could have.
For example, while RGB images are usually taken as the
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observations, semantic labels are more efficient in describing
task goals [5].

To address the challenges, our HRL-GRG incorporates a
novel Goals Relational Graph (GRG), which is designed to
learn goal relations from the training data through a Dirichlet-
categorical process [31] dynamically. In such a way, our
model estimates the agent’s states in terms of the learned
relations between sub-goals that are visible in the agent’s cur-
rent observations and the designated final goal. Furthermore,
our HRL-GRG decomposes the partially observable goal-
driven task into two sub-tasks: 1) a high-level sub-goal se-
lection task, and 2) a low-level fully observable goal-driven
task. Specifically, the high-level layer selects a sub-goal
sg € (G4 that is observable in the current sensory input o,
i.e. ®(0,s9) > 0, and could also contribute to achieving
the designated final goal g € G/4. The objective of the low-
level layer is to achieve the observable sub-goal, yielding a
well-studied fully observable task [22, 21, 11].

Many prior DRL methods tackling partially observ-
able tasks [13, 18, 12] are not designed for goal-driven
tasks. Therefore, their learned policies are not goal-adaptive.
Adapting to new goals is critical for real-world tasks, such
as goal-driven visual navigation [40], robotic object search
[38, 36, 5] and room navigation [38]. Current goal-driven vi-
sual navigation methods generally neglect the essential role
of estimating the agent’s state under the partially observable
goal-driven settings effectively, thus their performance still
leaves much to be desired especially in terms of general-
ization ability (in-depth discussion in Section 2). Here, we
argue and show our novel GRG modeling fills the gap.

Formally, we define GRG as a complete weighted di-
rected graph < V, E,W > in which V' = Gy is a set of
nodes representing the goals G4, and F is the directed edges
connecting two nodes with the weights WW. We incorporate
GRG into HRL via two aspects: 1) weighing each candi-
date sub-goal in the high-level layer by C(7*), the cost of
the optimal plan 7* from the sub-goal to the goal over the
GRG; 2) terminating the low-level layer referring to the op-
timal plan 7* from the proposed sub-goal to the goal over
the GRG. To empirically validate the presented system, we
start with demonstrating the effectiveness of our method in
a grid-world domain where the environments are partially
observable and a set of goals following a pre-defined rela-
tion are specified as the task goals. The design follows the
intuition in real-world applications that certain relations hold
in the goal space. For example, in the robotic object search
task, users arrange the household objects in accordance with
their functionalities. Another example is the indoor naviga-
tion task where room layouts are not random. Furthermore,
in addition to the grid-world experiment, we also apply our
method to tackle the robotic object search task in both the
AI2-THOR [15] and the House3D [34] benchmark environ-
ments. We show HRL-GRG model exhibits superior perfor-

mance in both experiments over other baseline approaches,
with extensive ablation analysis.

2. Related Work

Research works on partially observable goal-driven tasks
are explored typically under the visual navigation scenarios:
an agent learns to navigate to user-specified goals with its
first-person view visual inputs. Previous works’ contribu-
tions lie in representation learning of the agent’s underlying
state and knowledge embedding for goal state inference.

In [40], the authors present a target-driven DRL model
to learn a desired action policy conditioned on both visual
inputs and target goals. With a target goal being specified as
an image taken at the goal position, their model captures the
spatial configuration between the agent’s current position
and the goal position as the agent’s underlying state. How-
ever, when the goal position is far away, the inputs of the
model lack the information to infer the spatial configurations,
and so the model instead memorizes such spatial configura-
tions. As a result, their model relies on a scene-specific layer
for every single environment. Similar issues also exist in
[33]. [28] represents the agent’s current state with respect to
the goal state through a semi-parametric topological memory
while it requires a pre-exploration stage to build a landmark
graph. The authors of [10] locate the goal position in their
predicted top-down egocentric free space map. However, the
method struggles when the goal is not visible. With more de-
tailed information about the goals, the Vision-and-Language
Navigation task has drawn research attention in which a
fine-grained language-based visuomotor instruction serves
as the goal description for the agent to follow and achieve
[2, 9, 32]. Yet, specifying a goal with an image or a visuo-
motor instruction is inefficient and impractical for real-world
applications. Instead, taking a concise semantic concept as a
goal description is more desirable [23, 36, 26, 27, 5, 6, 39].
Semantic goals as model inputs, typically come in the form
of one-hot encoded vectors or word embeddings. Therefore,
goal inputs provide limited information for estimating the
agent’s states relative to the goal states.

Since it is non-trivial to incorporate complete information
with a goal description as input, others embed task-specific
prior knowledge to infer the goal states. In [36, 26, 27], the
authors extract object relations from the Visual Genome [16]
corpus and incorporate this prior into their models through
Graph Convolutional Networks [14]. The extracted object re-
lations encode the co-occurrence of objects based on human
annotations from the Visual Genome dataset, which may
not be consistent with the target application environments
and the agent’s understanding of the world. More recently,
the authors of [35] come up with the Bayesian Relational
Memory (BRM) architecture to capture the room layouts of
the training environments from the agent’s own experience
for room navigation. The BRM further serves as a planner to
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Figure 1: Ilustrations of the grid-world domain and the robotic object search task (left), and an overview of our method (right).

propose a sub-goal to the locomotion policy network. Since
the proposed sub-goal is still not observable, the authors
of BRM train individual locomotion polices for each sub-
goal to respectively tackle one partially observable task. In
such manner, the BRM model’s low-level network is not
goal-adaptive and still brings about inefficiency and scaling
concerns.

Apart from prior research efforts, we present a novel hi-
erarchical reinforcement learning approach equipped with a
GRG formulation for the general partially observable goal-
driven task. Our GRG captures the underlying relations
among all goals in the goal space and enables our hierarchi-
cal model to achieve superior generalization performance by
decomposing the task into a high-level sub-goal selection
task and low-level fully observable goal-driven task.

3. Hierarchical RL with GRG
3.1. Overview

Our focus is the partially observable goal-driven task
where the agent needs to make a decision of which action
to take to achieve a user-specified goal relying on its partial
observations. Without loss of generality, we represent the
observations ¢ as images, such as the local egocentric top-
down maps in the grid-world domain and the first-person
view RGB images in the robotic object search task (see
Figure 1 left). We specify the goal descriptions G4 as cat-
egorical labels (goal indices in the grid-world domain and
object categories in the robotic object search task). To bet-
ter illustrate our method, we take the grid-world domain as
an example. The agent is asked to move to a goal position
indicated by the goal index between obstacles. The agent
can only observe a local map of obstacles and goals. The
objective is to learn an optimal policy for several goals and
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instances of the grid-world domain which can generalize to
new/unseen ones.

Figure 1 (right) depicts an overview of our method that
is composed of a Goals Relational Graph (GRG), a high-
level network and a low-level network. At time step ¢, the
agent receives an observation o; € €2 that is a local map of
its surrounding obstacles and a set of visible goals VG =
{vg | vg € G4 and ®(04,vg) > 0}. We take these visible
goals as the candidate sub-goals at the time step ¢, and our
high-level network learns a policy to select one from them
to achieve the designated final goal g € G4. In order to be
goal-adaptive, the system weighs each candidate sub-goal in
V G by its relation to the designated final goal g, estimated
from GRG. As a result, our high-level network proposes a
sub-goal sg; € VG conditioning on both the observation
o, and the designated final goal g. After the sub-goal sg;
is proposed, our low-level network decides an action a;
conditioning on both the observation o; and the sub-goal
sg; for the agent to perform. Afterwards, the agent receives
a new observation 0,1, and our low-level network repeats
Ny times to achieve the sub-goal sg; until 1) the sub-goal
sg; 1s achieved; 2) the low-level network terminates itself
if a better sub-goal appears in its current observation; 3)
the low-level network runs out of a pre-defined maximum
number of steps N, .. . Either way, the low-level network
collects an N,-step long trajectory and terminates at the
observation 0.y n,. The trajectory updates the GRG. Then,
the high-level network takes the control back to propose the
next sub-goal. Overall, the process repeats until it either
achieves the designated final goal g or reaches a predefined
maximum number of actions N,,4z-

3.2. Goals Relational Graph (GRG)

GRG representation. We formulate GRG as a complete
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weighted directed graph < V, E, W > on all goals in the
goal space G4 (i.e. V = Gg). For any goal g; and goal g;,
we define the weight w;; on the directed edge (g;, g;) as a
measure of how likely and quickly the goal g; would appear
according to ® if our low-level network tries to achieve the
goal g;. We set the weight w;; = 1 and adopt a Dirichlet-
categorical model to learn w;; for any 7 # j.

To be specific, we first assign a random variable X;; to
denote what would happen to the goal g; if our low-level
network achieves the goal g;. Every time when the goal g; is
proposed by our high-level network, our low-level network
generates a trajectory that has at most N steps to achieve
the goal g;. It introduces the following N/, . + 1 events that
X;; may take:

* Bventk (1 <k < N!,..): the goal g; appears when k
steps are taken by our low-level network. We quantify
the event k as z;;x = v*~! where v € (0,1] is the
discount factor to denote how close the goal g; to the
goal g;.

* Event N} . + 1: the goal g; doesn’t appear. We quan-

tify this eventas x5 i 1 = 0.

It is fair to assume that X;; ~ Cat(6;;) in which

the parameter 6;; = (655,1,6ij,2, .-, ‘gij,N,lmerl) ~

Dir(ay;) is a learnable Dirichlet prior.  ay; =

(ij1, @2y .n O‘ijﬂf,m-%l) is a concentration hyperparam-

eter representing the pseudo-counts of all event occurrences.

Thus, it can be empirically chosen. Lastly, the weight w;; is

set as E[X;].

GRG update. Each time when the low-level network is
invoked to achieve the goal g;, we get a trajectory as a sample
D to update the GRG. For any goal g; in our goal space, we
count the number of the occurrences of all events and denote
itas ¢ = (Cij1,Cij2, s ci]—,memH). Since the Dirichlet
distribution is the conjugate prior distribution of the cate-
gorical distribution, the posterior distribution of the param-
eter 0;;, namely 0;;|D ~ Dir(ou; + ¢;5) = Dir(a;j1 +
Cij 1y Qij 2 Cij 2y ey Qi Nt L1 +Ci5 N 41). Asaresult,
the posterior prediction distribution of a new observation
P(X;; = 2;j,x|D) can be estimated by Equation 1, and the
weight wi; = E(Xi;|D) = 3 wijx P(Xij = 2ij k[ D).

Qijk + Cijk
D0k + cijr)

GRG planning. With the GRG being learned and up-
dated, we quantify the relation of a goal g; to a goal
g; by the cost (C(T;:j) of the optimal plan 7", searched
from g; to g; over the GRG. In particular, suppose 7; ; =
{71, 72, ...,Tar} is a plan searched from g, to g; over the
GRG in which g, = (1<m<nr) is a goal from our goal space
G, m = i and 1)y = j, we define the optimal plan

M-1
7, = argmax,, [, wr,r,,,. We adopt the cost of
-1

0]
the optimal plan 7;°;, C(7}";) = max,, ; H%Zl Wr, roey 8S
the measure of the relation from the goal g; to the goal g;.

P(Xij = xij,x|D) = E[0i5,x|D] = 1

3.3. Goal-driven High-level Network

Model formulation. The high-level network selects a
sub-goal sg aiming to achieve the designated final goal
g. We first introduce an extrinsic reward r°. Here, we
adopt a binary reward as the extrinsic reward to encour-
age the agent to achieve the final goal. Specifically, the
agent receives a reward of 1 if it achieves the final goal
g, i.e. ri(si—1,at—1,5t,9) = 1 iff the state s; is the
goal g’s state, and O otherwise. Thus, the high-level task
is formulated as maximizing the Q-value Q% (s, g,sg) =
E> 7" v'riy|se = s,9 = g,sg¢ = sg), which is the dis-
counted cumulative extrinsic rewards expected over all trajec-
tories starting at the state s; and the sub-goal sg;. To approxi-
mate Q. (s, g, sg), we adopt the Q-learning technique [22] to
update the parameters of the high-level network 65, by Equa-
tion 2, where R = r°(s, a, s, g) + v max,y Q% (s, g,59")
is the 1-step extrinsic return. The sub-goal sg is given by
argmax,, Q5.(s, g, sg) towards achieving the final goal g.

oh — 9},, — VG;L (RT - QG;L (8797 Sg))2‘ (2)

Network architecture. To approximate Q5, (s, g, sg), we
condition the high-level network on the state s, goal g and
the sub-goal sg. A widely adopted way is by taking the state
s and the goal g as the inputs, and output Q-values that each
of them corresponds to a candidate sub-goal sg. Here, since
the state s is unknown, we instead take the observation o as
the input to our high-level network attempting to estimate
the state s simultaneously. To ensure the sub-goal that can be
achieved by the low-level network, the sub-goal space at the
time ¢ is set as the observable goals within the observation
o;. > As a consequence, the sub-goal space varies at each
time stamp and is typically much smaller than the goal space.
Thus, it is not efficient for the high-level network to calculate
as many Q-values as the size of the goal space. Instead,
as the sub-goal space is self-contained in the observation
o, we hereby extract the information of each candidate
sub-goal sg from the observation o; and feed it into the
high-level network to output one single Q-value Q5 (s, g, sg)
specifically for the sub-goal sg.

Last but not the least, although most prior methods di-
rectly take the goal description g4 as an additional input
to their networks, we notice that the goal description gg4,
typically in the form of a one-hot vector or word embed-
ding, does not directly provide any information for either
inferring the goal state or determining a quality sub-goal.
Therefore, we opt to correlate the goal g with each candi-
date sub-goal sg by their relations. Here, our system plans
over the GRG and gets the cost C(7;; /) of the optimal plan

*

Tag,9 from the sub-goal sg to the goal g as described in

2In practice, we supplement a back-up “random’ sub-goal driving the
low-level network to randomly pick an action to perform in case no observ-
able goals available.
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Section 3.2. We multiply the cost C(73, ,) to the sub-goal
input sg elementwise before feeding it into the high-level
network to predict its Q-value Q% (s, g, sg). In such a way,
Q5 (s,9,59) = Q5 (s,s9 © C(75, ,)) where the goal g is
embedded with beneficial information for the Q-value pre-
diction and the sub-goal selection. As the inputs and the
outputs are specified, the remaining architecture of our high-
level network is flexible per application.

3.4. Termination-aware Low-level Network

Model formulation. The objective of the low-level
network is to learn an optimal action policy to achieve
the proposed sub-goal sg. Similar to the high-level net-
work, we adopt a binary intrinsic reward r* accordingly
that ri(s;_1,a¢—1,8:,89) = 1 iff our low-level network
achieves the sub-goal sg, and is otherwise 0. The op-
timal action policy can then be learned by maximiz-
ing the expected discounted cumulative intrinsic rewards
E[>5° 7'} 1 s¢, sg¢, ai]. Since the proposed sub-goal sg;
is guaranteed to be observable in the observation o;, we have
a fully observable goal-driven task that can be efficiently
solved by the state-of-the-art reinforcement learning algo-
rithms [22, 21, 11].

Adopting a hierarchical model to decompose a complex
task into a set of sub-goal-driven simple tasks has been
proven to be efficient and effective [19, 24]. Still, it is under
the assumption that the goal/sub-goal space is identical to the
state space so that any optimal trajectory can be expressed by
a sequence of optimal sub-goal-oriented trajectories. In our
work, we consider a practical setting in which the goal/sub-
goal space is much smaller than the state space, as lots of
intermediate states are not of interest in terms of solving the
task. Consequently, an optimal trajectory may not be ex-
pressed by the limited presented sub-goals on the trajectory
as Figure 2 (a) shows. Instead, following the set of available
sub-goals proposed could yield a less optimal trajectory as
Figure 2 (b) depicts.

To overcome this issue, we further allow the low-level
network to terminate at a valuable state before it achieves
the proposed sub-goal. The intuition is that along its way to
the sub-goal, the agent may reach a state that is better poised
for achieving the final goal. Namely, a state where a better
sub-goal appears (see Figure 2 (c)). Some prior methods
explore modeling a termination function in their formula-
tions [4] or adding a special “stop” action in the action space
for an optimal stop policy [36]. However, they unavoidably
increase the exploration difficulty and hurt the sample effi-
ciency. Instead, we terminate our low-level network under
the supervision of GRG. Whenever a sub-goal sg is received,
an optimal plan 77,  starting from the sub-goal sg to the
goal g over the GRG is generated following Section 3.2. In
fact, any goal on the 77, _ other than sg is a better sub-goal

9.9
for achieving the final goal g, and once it appears, our low-

level network terminates and returns the control back to the
high-level network.

Network architecture. We implement the termination
mechanism in the low-level policy using the GRG which is
decoupled from low-level policy learning. Therefore, the
low-level network still addresses the standard fully observ-
able goal-driven task, i.e. predicting the optimal action pol-
icy from the current observation o, that includes the infor-
mation of the sub-goal sg;. This can be solved by methods
like DQN [22] and A3C [21], without special requirements
on the network architecture.

4. Experiments

Our experiments aim to seek the answers to the following
research questions, 1) Is GRG able to capture the underlying
relations of all goals? 2) Is GRG able to help solve the
new, unseen partially observable goal-driven tasks, and if
yes, how? 3) How well does the proposed method work
for the goal-driven visual navigation task? To answer the
first two questions, we conduct evaluation in an unbiased
synthetic grid-world domain. To answer the third question,
we apply our system on both AI2-THOR [15] and House3D
[34] environments for the robotic object search task . 3

4.1. Grid-world Domain

Grid-world generation. We generate a total of 120 grid-
world maps of size 16 x 16 with randomly placed obstacles
taking up around 35% of the space. We arrange 16 goals in
the free spaces of each map following a pre-defined pattern
to test if our proposed GRG can capture it. Specifically,
we randomly place goal gy and goal gg first. Then, for
0 <1 < 16 and 7 # 8, we place goal g; at a random place
in the window of size 7 X 7 centered at goal g;_;. Figure 1
shows an instance of a grid-world map. We take 100 grid-
world maps and 12 goals for training, with the remaining 20
grid-world maps and the corresponding 16 goals are kept for
testing.

Baseline methods. We assume the agent can only ob-
serve the window of size 7 X 7 centered at its position, which
is represented by an image including the map of obstacles
and any goal positions. The agent can take one action as
moving up/down/left/right, and would stay at the current
position if the action leads to collision. Success is defined
as the agent reaches the position of the designated goal. For
this task, we adopt the DQN [22] algorithm for our low-level
network to learn the optimal action policy to achieve the sub-
goal proposed by our high-level network, and we compare
our method with the following baseline methods.

* ORACLE and RANDOM. The agent always takes the
optimal action or a random action respectively. The two

3For technical implementation details, please refer to the supplementary
material.
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Figure 2: An illustration of how termination helps. The green triangle denotes the starting position. The stars and the arrows
with different colors represent different sub-goals and the corresponding sub-goal-oriented trajectories. Termination helps to
express an optimal trajectory with the limited sub-goal space.

Table 1: The performance of all methods on the unseen gird-world maps.

Seen Goals Unseen Goals Overall
Method SR1T AS /MS| SPL1T SR AS /MS| SPL?T SRt AS /MS| SPLtT
ORACLE 1.00 11.81/11.81 1.00 1.00 11.28/11.28 1.00 1.00 10.38/10.38 1.00
RANDOM 0.16  42.15/5.47 0.03 0.15 42.38/4.81 0.04 0.18 36.62/4.69 0.05
DQN 0.20 20.28/5.47 0.13 0.20 11.90/4.10 0.15 032  16.23/5.71 0.23
H-DQN 043  20.25/7.95 0.28 0.19 26.09/6.38 0.08 045 20.84/7.16 0.26
Ours 0.57 28.71/9.03 0.33 0.70 24.19/8.73 0.45 0.74  24.02/8.65 0.46

it goal-adaptive, the input observation image contains
a channel of the obstacle map and a channel of the
designated goal position if it presents. It is empirically
shown to be better than embedding the goal with a
one-hot vector (see supplementary material).

* H-DQN. It is a widely adopted hierarchical method
[17] modified for our partially observable goal-driven
task where both the high-level network and the low-
level network adopt a vanilla DQN implementation.

- : The high-level network takes the whole observation as
E _ 2 the input to propose a sub-goal that is visible. To be
- goal-adaptive, the goal is embedded into the high-level
u network in the form of a one-hot encoded vector. The
8 01o| 7034 low-level network is the same as the method DQN (also
1 o2 i R - with ours).

O % 1 % & 5 6 1 B O A0 A% Al 4> Ak A5 A0

Baseline comparisons. We specify the maximum num-

Figure 3: A visualization of a GRG learned on the grid-world ber of actions that all methods can take as 100, and for
domain (g1 is the back-up “random” goal). hierarchical methods, i.e. H-DQN and our method, the max-
imum number of actions that the low-level network can take

methods are taken as performance upper/lower bounds. at each time is 10. We evaluate all methods in terms of the

e DQN. The vanilla DQN implementation that directly Success Rate (SR), the Average Steps over all successful
maps the observation to the optimal action. To make cases compared to the Minimal Steps over these cases (AS
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Table 2: The ablation studies of our method on the unseen gird-world maps.

Seen Goals Unseen Goals Overall
Method SRT  AS/MS| SPL1t SRT AS /MS| SPLt SRt AS/MS| SPLt
Ours 0.57 28.71/9.03 0.33 0.70 24.19/8.73 045 0.74 24.02/8.65 0.46
-relation 0.26 33.20/6.16 0.10 035 3193/6.84 0.14 0.40 29.39/6.14 0.18
-termination  0.55 31.36/8.81 0.27 0.58 2791/8.11 0.32 0.64 2556/7.88 0.37
-high-level 0.56 29.97/9.03 0.31 0.65 23.63/8.65 0.42 0.66 2286/7.86 0.41

/ MS), and the Success weighted by inverse Path Length
(SPL) following [1] and calculated as 3; Zfil S’m
Here S; is a binary indicator of success in experiment i, ;
and p; are the minimal steps and the steps actually taken by
the agent. We randomly sample seen goals, unseen goals
and all goals over the unseen grid-world maps, each having
100 samples that yield 100 tasks respectively. We run each

method using 5 random seeds. Table 1 reports the results.

As is shown in Table 1, we can observe that our method
outperforms all baseline methods in terms of generalization
ability on the unseen grid-world maps as expected. On one
hand, the performance of DQN leaves much to be desired
for both seen goals and unseen goals. Whereas H-DQN
achieves comparable performance to our method for seen
goals, but it struggles to generalize towards unseen goals.
On the other hand, our proposed method generalizes well to
both seen goals and unseen goals, since our GRG captures
the underlying relations of all goals, even if some of the
goals are not set as the designated goals in the training stage.
Figure 3 shows a visualization of the learned GRG, which
captures the goal relations well.

Ablation studies. To investigate hlow GRG helps to solve
the partially observable goal-driven task, we conduct abla-
tion studies for each component. The GRG has two roles:
In the high-level network, it weighs each candidate sub-goal
by its relation to the final goal before calculating its Q-value.
In the low-level network, it is used for early termination.
We disable each role and denote them as “-relation” and
“-termination” respectively. The results reported in Table 2
clearly show that both of them contribute to the performance
of our proposed method, whereas weighing the candidate
sub-goals by relations contributes more. Moreover, to show
the necessity of the high-level network, we present “-high-
level” that removes the high-level network, leaving only the
GRG and the low-level network in place. In such a way,
a sub-goal is proposed purely based on the graph planning
over GRG without taking the current observation into consid-
eration. The results in Table 2 show that it is slightly worse
than our proposed method; from which we can infer that
1) the high-level network captures as much information as
the GRG; 2) observations still matter since the graph only

captures the expected relations; and 3) the performance gap
could be wider in complex real-world environments.

4.2. Robotic Object Search

Robotic object search is a challenging goal-driven visual
navigation task [36, 38, 23, 26, 37, 27, 5]. It requires an
agent to search for and navigate to an instance of a user-
specified object category in indoor environments with only
its first-person view RGB image.

A previous method SCENE PRIORS [36] also incorporates
object relations as scene priors to improve the robotic object
search performance in the AI2-THOR [15] environments.
Unlike ours, it extracts the object relations from the Visual
Genome [16] corpus and incorporates the relations through
Graph Convolutional Networks [ |4]. Therefore, we compare
our method with it in the AI2-THOR environments. AI2-
THOR consists of 120 single functional rooms, including
kitchens, living rooms, bedrooms and bathrooms, in which
we take the first-person view semantic segmentation and
depth map as the agent’s pre-processed observation. As such,
the goal position can be represented by the corresponding
channel of the semantic segmentation (a.k.a. ®). In addition,
we adopt the A3C [21] algorithm for our low-level network
and define the maximum steps it can take at each time as
10. We follow the experimental setting in [36] to implement
both SCENE PRIORS [36] and our HRL-GRG. We report
the results in Table 4 where we compare the two methods in
terms of their performance improvement over the RANDOM
method. Table 4 indicates an overfitting issue of the SCENE
PRIORS method as reported in [36] as well. At the same
time, we observe a superior generalization ability of our
method especially to the unseen goals.

To further demonstrate the efficacy of our method in more
complex environments, we conduct robotic object search on
the House3D [34] platform. Different from AI2-THOR, each
house environment in the House3D has multiple functional
rooms that are more likely to occlude the user-specified
target object, thus stressing upon the ability of inferring the
target object’s location on the fly to perform the task well.

We consider a total of 78 object categories in the House3D
environment to form our goal space. The agent moves for-
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Table 3: The performance of all methods in the House3D [

Single Environment

] environment for the robotic object search task.

Multiple Environments

Seen Goals Unseen Goals Seen Env. Unseen Env.
Method SRt SPLt SRT  SPL{ SRT SPLt SRT SPLt
RanDOM 0.20 0.05 0.23  0.04 0.39 0.03 0.60 0.05
DQN 0.58 0.27 0.18  0.05 042 0.06 0.39 0.04
A3C 0.53 0.18 0.27  0.09 048 0.03 0.47 0.03
HRL 0.77 0.15 0.05 0.00 043 0.05 0.28 0.02
Ours 0.88 0.33 079 0.21 0.76  0.20 0.62 0.10

Table 4: The performance improvement of SCENE PRIORS
[36] (top) and our HRL-GRG (bottom) over the RANDOM
method in the AI2-THOR [15] environment for the robotic
object search task (without stop action).

Seen Goals Unseen Goals

SRt SPL1T SR SPL1T

Seen Env. [36] +0.25 +0.16 +0.08 +0.07
Ours +0.37 +0.24 +0.33  +0.23

Unseen Env. [36] +0.18 +0.11 +0.12  +0.06
Ours +0.33 +0.21 +0.38 +0.23

ward / backward / left / right 0.2 meters, or rotates 90 degrees
for each action step. We adopt the encoder-decoder model
from [7] to predict both the semantic segmentation and the
depth map from the first-person view RGB image and we
take both predictions as the agent’s partial observation. Fur-
thermore, we adopt the A3C [21] algorithm for the low-level
network. We compare our method with the baseline meth-
ods introduced in Section 4.1 while we also adopt the A3C
algorithm for the low-level network in H-DQN and hereby
denoted as HRL. In addition, we include the vanilla A3C
approach.

ottoman shower

e
Ny
0.80 0.73 0.78
2] d 1
>

Figure 4: The object relations captured by our GRG in the
House3D [34] environment for the robotic object search task.
Only a small number of objects as nodes and the edges with
the weight > 0.5 are shown.

television

We set the maximum steps for all the aforementioned
methods to solve the object search task in the House3D envi-
ronment as 1000, and the maximum steps that the low-level
networks of the hierarchical methods (HRL and ours) can
take as 50. To better investigate each method’s properties,

we first train and evaluate in a single environment, and show
the results in Table 3 (left part). Similar to the grid-world
domain, the baseline methods lack generalization ability to-
wards achieving the unseen goals, even though they perform
fairly well for the seen ones. The placement of many ob-
jects is subject to the users’ preference that may require the
environment-specific training process. Still, it is desirable
for a method to generalize towards the objects in the un-
seen environments where the placement of the objects is
consistent with that in the seen ones (e.g., the objects that
are always placed in accordance with their functionalities).
We train all the methods in four different environments and
test the methods in four other unseen environments. The
results presented in Table 3 (right part) show that all the
baselines struggle with the object search task under multiple
environments even during the training stage. In comparison,
our method achieves far superior performance with the help
of the object relations captured by our GRG (samples shown
in Figure 4).

5. Conclusion

In this paper, we present a novel hierarchical reinforce-
ment learning approach equipped with a GRG formulation
for the partially observable goal-driven task. Our GRG cap-
tures the underlying relations among all goals in the goal
space through a Dirichlet-categorical model and thus enables
graph-based planning. The planning outputs are further in-
corporated into our two-layer hierarchical RL for proposing
sub-goals and early low-level layer termination. We vali-
date our approach on both the grid-world domain and the
challenging robotic object search task. The results show
our approach is effective and is exceptional in generalizing
to unseen environments and new goals. We argue that the
joint learning of GRG and HRL boosts the overall perfor-
mance on the tasks we perform in our experiments, and it
may push forward future research ventures in combining
symbolic reasoning with DRL.
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