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Abstract

Vision-and-language (V&L) reasoning necessitates per-
ception of visual concepts such as objects and actions, un-
derstanding semantics and language grounding, and rea-
soning about the interplay between the two modalities. One
crucial aspect of visual reasoning is spatial understanding,
which involves understanding relative locations of objects,
i.e. implicitly learning the geometry of the scene. In this
work, we evaluate the faithfulness of V&L models to such

geometric understanding, by formulating the prediction of

pair-wise relative locations of objects as a classification as
well as a regression task. Our findings suggest that state-of-
the-art transformer-based V&L models lack sufficient abil-
ities to excel at this task. Motivated by this, we design two
objectives as proxies for 3D spatial reasoning (SR) — object
centroid estimation, and relative position estimation, and
train V&L with weak supervision from off-the-shelf depth
estimators. This leads to considerable improvements in ac-
curacy for the “GQA” visual question answering challenge
(in fully supervised, few-shot, and O.0.D settings) as well
as improvements in relative spatial reasoning. Code and
data will be released here.

1. Introduction

“Visual reasoning” is an umbrella term that is used for
visual abilities beyond the perception of appearances (ob-
jects and their sizes, shapes, colors, and textures). In the
V&L domain, tasks such as image-text matching [19, 50,
547, visual grounding [24, 61], visual question answering
(VQA) [17, 21], and commonsense reasoning [0] fall un-
der this category. One such ability is spatial reasoning — un-
derstanding the geometry of the scene and spatial locations
of objects in an image. Visual question answering (such as
the GQA challenge shown in Figure 1) is a task that can
evaluate this ability via questions that either refer to spatial
locations of objects in the image, or questions that require
a compositional understanding of spatial relations between
objects.

Transformer-based models [51, 33, 10, 13] have led to
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Figure 1. GQA [ ] requires a compositional understanding of ob-
jects, their properties, and spatial locations (underlined).
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Figure 2. When a camera captures an image, points in the 3D
scene are projected onto a 2D image plane. In VQA, although this
projected image is given as input, the questions that require spatial
reasoning are inherently about the 3D scene.

significant improvements in multiple V&L tasks. How-
ever, the underlying training protocol for these models relies
on learning correspondences between visual and textual in-
puts, via pre-training tasks such as image-text matching and
cross-modal masked object prediction or feature regression,
and then finetuned on specific datasets such as GQA. As
such, these models are not trained to reason about the 3D
geometry of the scene, even though the downstream task
evaluates spatial understanding. As a result, V&L models
remain oblivious to the mechanisms of image formation.
Real-world scenes are 3-dimensional, as illustrated by
Figure 2, which shows blocks in a scene. When a cam-
era captures an image of this scene, points on the objects
are projected onto the same image plane, i.e., all points
get mapped to a single depth value, and the z dimension
(depth) is lost. This mapping depends on lens equations
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Figure 3. Common optical illusions occur because objects closer to
the camera are magnified. This illustrates the need to understand
3D scene geometry to perform spatial reasoning on 2D images.

and camera parameters and leads to optical illusions such
as Figure 3, due to the fact that the magnification of objects
is inversely proportional to the depth and depends on focal
lengths [5%, 57]. Since the 3D scene is projected to a 2D im-
age, the faraway person appears smaller, and on top of the
woman’s palm in the left image, and below the woman'’s
shoe in the right image. Such relationships between ob-
ject sizes, depths, camera calibration, and scene geometries
make spatial reasoning from images challenging.

If the 3D coordinates of objects (X}, Y;, Z;) are known,
it would be trivial to reason about their relative locations,
such as the questions in Figure 1. However, images in V&L
datasets [21, |7] are crowd-sourced and taken from differ-
ent monocular cameras with unknown and varying camera
parameters such as focal length and aperture size, making it
difficult to resolve the 3D coordinates (especially the depth)
from the image coordinates. This leads to ambiguities in re-
solving scene geometry and makes answering questions that
require spatial reasoning, a severely ill-posed problem.

In this paper, we consider the task of visual question an-
swering with emphasis on spatial reasoning (SR). We inves-
tigate if VQA models can resolve spatial relationships be-
tween objects in images from the GQA challenge. Our find-
ings suggest that although models answer some (~60%) of
these questions correctly, they cannot faithfully resolve spa-
tial relationships such as relative locations (left, right, front,
behind, above, below), or distances between objects. This
opens up a question:

Do VQA models actually understand scene geom-
etry, or do they answer spatial questions based on
spurious correlations learned from data?

Towards this end, we design two additional tasks that
take 3D geometry into consideration, object centroid es-
timation and relative position estimation. These tasks are
weakly supervised by inferred depth-maps estimated by an
off-the-shelf monocular depth-estimation technique [0] and
bounding box annotations for objects. For object centroid
estimation, the model is trained to predict the centroids of

the detected input objects in a unit-normalized 3D vector
space. On the other hand, for relative position estimation,
the model is required to predict the distance vectors between
the detected input objects in the same vector space.

Our work can be summarized as follows:

1. Our approach combined existing training protocosl
for transformer-based language models with novel
weakly-supervised SR tasks based on the 3D geom-
etry of the scene — namely, object centroid estimation
(OCE) and relative position estimation (RPE).

2. This approach, significantly improves the correlation
between GQA performance and SR tasks.

3. We show that our approach leads to an improvement
of 2.21% on open-ended questions and 1.77% overall,
over existing baselines on the GQA challenge.

4, Our approach also improves the generalization ability
to out-of-distribution samples (GQA-OOD [26]) and is
significantly better than baselines in the few-shot set-
ting achieving state-of-the-art performance with just
10% of labeled GQA samples.

2. Related Work

Visual Question Answering is a task at the intersec-
tion of vision and language in which systems are expected
to answer questions about an image as shown in Fig-
ure I. VQA is an active area of research with multiple
datasets [/, 3, 17, 21] that encompass a wide variety of
questions, such as questions about the existence of objects
and their properties, object counting, questions that require
commonsense knowledge [63], external facts or knowl-
edge [55, 15] and spatial reasoning (described below).

Spatial Reasoning in VQA has been specifically ad-
dressed for synthetic blocks-world images and questions
in CLEVR [27] and real-world scenes and human-authored
questions in GQA [ |]. Both datasets feature questions that
require a compositional understanding of spatial relations of
objects and their properties. However, the synthetic nature
and limited complexity of questions and images in CLEVR
make it an easier task; models for CLEVR have reached
very high (99.80%) test accuracies [60]. On the other hand,
GQA poses significant challenges owing to the diversity of
objects and contexts in real-world scenes and visual ambi-
guities. GQA also brings about linguistic difficulties since
questions are crowd-sourced via human annotators. For the
GQA task, neuro-symbolic methods have been proposed,
such as NSM [20), 22] and TRRNet [59] which try to model
question-answering as instruction-following by converting
questions into symbolic programs.

3D scene reconstruction is a fundamental to computer
vision and has a long history. Depth estimation from multi-
ple observations such as stereo images [], multiple frames
or video [0, 39]. coded apertures [67], variable lighting [5],
and defocus [56, 52] has seen significant progress. However
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monocular (single-image) depth estimation remains a chal-
lenging problem, with learning-based methods pushing the
envelope [43, 11, 31]. In this work, we utilize AdaBins [0]
which uses a transformer-based architecture that adaptively
divides depth ranges into variable-sized bins and estimates
depth as a linear combination of these depth bins. AdaBins
is a state-of-the-art monocular depth estimation model for
both outdoor and indoor scenes, and we use it as weak su-
pervision to guide VQA models for spatial reasoning tasks.

Weak Supervision in V&L. Weak supervision is an ac-
tive area of research in vision tasks such as action/object
localization [48, 66] and semantic segmentation [27, 64].
While weak supervision from V&L datasets has been used
to aid image classification [14, 42], the use of weak super-
vision for V&L and especially for VQA, remains under-
explored. While existing methodologies have focused on
learning cross-modal features from large-scale data, anno-
tations other than objects, questions, and answers have not
been extensively used in VQA. Kervadec et al. [25] use
weak supervision in the form of object-word alignment as a
pre-training task, Trott ef al. [53] use the counts of objects in
an image as weak supervision to guide VQA for counting-
based questions, Gokhale et al. [16] use rules about logical
connectives to augment training datasets for yes-no ques-
tions, and Zhao et al. [65] use word-embeddings [36] to de-
sign an additional weak-supervision objective. Weak super-
vision from captions has also been recently used for visual
grounding tasks [19, 37, 12, 4].

3. Relative Spatial Reasoning

In V&L understanding tasks such as image-based VQA,
captioning, and visual dialog, systems need to reason about
objects present in an image. Current V&L systems, such
as [2, 51, 9, 33] extract FasterRCNN [40] object features
to represent the image. These systems incorporate posi-
tional information by projecting 2D object bounding-box
co-ordinates and adding them to the extracted object fea-
tures. While V&L models are pre-trained with tasks such
as image-caption matching, masked object prediction, and
masked-language modeling, to capture object—word contex-
tual knowledge, none of these tasks explicitly train the sys-
tem to learn spatial relationships between objects.

In the VQA domain, spatial understanding is evaluated
indirectly, by posing questions as shown in Figure 1. How-
ever, this does not objectively capture if the model can infer
locations of objects, spatial relations, and distances. Pre-
vious work [1] has shown that VQA models learn to an-
swer questions by defaulting to spurious linguistic priors
between question-answer pairs from the training dataset,
which doesn’t generalize when the test set undergoes a
change in these linguistic priors. In a similar vein, our
work seeks to disentangle spatial reasoning (SR) from the
linguistic priors of the dataset, by introducing two new

geometry-based training objectives — object centroid esti-
mation (OCE) and relative position estimation (RPE). In
this section, we describe these SR tasks.

3.1. Pre-Processing

Pixel Coordinate Normalization. We normalize pixel
coordinates to the range [0, 1] for both dimensions. For ex-
ample, for an image of size H x W, coordinates of a pixel
(z,y) are normalized to (77, {f7)-

Depth Extraction. Although object bounding boxes are
available with images in VQA datasets, they lack depth an-
notations. To extract depth-maps from images, we utilize
an open-source monocular depth estimation method, Ad-
aBins [0], which is the state-of-the-art on both outdoor [15]
and indoor scene datasets [47]. AdaBins utilizes a trans-
former that divides an image’s depth range into bins whose
center value is estimated adaptively per image. The final
depth values are linear combinations of the bin centers. As
depth values for images lie on vastly different scales for in-
door and outdoor images, we normalize depth to the [0, 1]
range, using the maximum depth value across all indoor
and outdoor images. We thus obtain depth-values d(i, j)
for each pixel (4,7),i € {1, H},j € {1, W} in the image.

Representing  Objects using Centroids. Given
the bounding boxes for each object in the image,
[(z1,11), (z2,y2)] we can compute (z¢,Ye,2z.) COOI-
dinates of the object’s centroid. x. and y. are calculated as
the mean of the top-left corner (x1,y;) and bottom-right
corner (2, y2) of the bounding box, and z.. is calculated as
the mean depth of all points in the bounding box:

T1 + T2 Y1+ Y2
c = 5 c = 1
x 5 Y 5 (L

2o = > d(i, j)- ©)

i€lz1,w2],5€y1,y2].

Thus every object V}, in object features can be represented
with 3D coordinates of its centroid. These coordinates act
as weak supervision for our spatial reasoning tasks below.

3.2. Object Centroid Estimation (OCE)

Our first spatial reasoning task trains models to predict
centroids of each object in the image.

In 2D OCE, we model the task as prediction of the 2D
centroid co-ordinates (z.,y.) of the input objects. Let V'
denote the features of the input image and let () be the tex-
tual input. Then the 2D estimation task requires the system
to predict the centroid co-ordinates, (x.,, Y, ), for all ob-
jects k € {1... N} present in object-features V.

In 3D OCE, we also predict the depth co-ordinate of the
object. Hence the task requires the system to predict the
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3D centroid co-ordinates, (¢, , Y, , zc, ), for all objects k €
{1... N} present in object-features V.

3.3. Relative Position Estimation (RPE)

The model is trained to predict the distance vector be-
tween each pair of distinct objects in the projected unit-
normalized vector space. These distance vectors real-

valued vectors € R[{l 1 Therefore, for a pair of cen-

troids (x1,y1, 21) and (a2, ya, 22) for two distinct objects,
given V' and @, the model is trained to predict the vector
[x1—22, y1 — Y2, 21 — 22]. RPE is not symmetric and for any
two distinct points A, B, dist(A4, B) = —dist(B, A).

Regression vs. Bin Classification. In both tasks above,
predictions are real-valued vectors. Hence, we evaluate two
variants of these tasks: (1) a regression task, where models
predict real-valued vectors in R3_171} , and (2) bin classifica-
tion, for which we divide the range of real values across all
three dimensions into C' log-scale bins. Bin-width for the

" bin is given by (with hyper-parameter A = 1.5):

1
T \C-le=§ 141

Ve e {0..C-1}. (3)

¢  \C-le=$S+2

Log-scale bins lead to a higher resolution (more bins) for
closer distances and lower resolution (fewer bins) for farther
distances, giving us fine-grained classes for close objects.
Models are trained to predict the bin classes as outputs for
all 3 dimensions, given a pair of objects. We evaluate dif-
ferent values for the number of bins: C' € {3,7, 15,30}, to
study the extent of V&L model’s ability to differentiate at a
higher resolution of spatial distances. For example, the sim-
plest form of bin classification is a three-class classification
task with bin-intervals [—1, 0), [0] , (0, 1].

4. Method

We adopt LXMERT [51], a state-of-the-art vision and
language model, as the backbone for our experiments.
LXMERT and other popular transformer-based V&L mod-
els methods [33, 9], are pre-trained on a combination
of multiple VQA and image captioning datasets such as
Conceptual Captions [45], SBU Captions [38], Visual
Genome [30], and MSCOCO [32]. These models use object
features of the top 36 objects extracted by the FasterRCNN
object detector [40] as visual representations for input im-
ages. A transformer encoder takes these object features
along with textual features as inputs, and outputs cross-
modal [CLS] tokens. The model is pre-trained by optimiz-
ing for masked language modeling, image-text matching,
masked-object prediction and image-question answering.

4.1. Weak Supervision for SR

Let v € R36*H pe the visual features, x € R*H be
the cross-modal features, and t € RE*H be the text fea-

tures, produced by the cross-modality attention layer of the
LXMERT encoder. Here H is the hidden dimension, and
L is the number of tokens. These outputs are used for fine-
tuning the model for two tasks: VQA using x as input, and
the spatial reasoning tasks using v as input. Let D be the
number of coordinate dimensions (2 or 3) that we use in
spatial reasoning. For the SR-regression task, we use a two-
layer feed-forward network f;., to project v to a real-valued
vector with dimensions 36 x D, and compute the loss using
mean-squared error (MSE) with respect to the ground-truth
object coordinates yy.cg -

»CSR—'reg = LZWSE(f'reg(v)a yreg)~ (4)

For the bin-classification task, we train a two-layer feed-
forward network fy;,, to predict 36 x C' x D bin classes for
each object along each dimension, where C' is the number
of classes, trained using cross-entropy loss:

Lsr-vin = LoE(foin(V), Ypin), ©)

where yp;,, are the ground-truth object location bins.
The total loss is given by:

L=a -Lvoa+ B Lsr, wherea,p e (0,1]. (6)

Yreg and yp;, are obtained from the object centroids com-
puted during preprocessing (Sec. 3.1) from depth estimation
networks and object bounding boxes. Since the real 3D co-
ordinates of objects in the scene are unknown, these ¥r.cq
and yp;,, act as proxies and therefore can weakly supervise
our spatial reasoning tasks.

4.2. Spatial Pyramid Patches

As LXMERT only takes as input the distinct object and
the 2D bounding box features, it inherently lacks the depth
information required for 3D spatial reasoning task. This is
confirmed by our evaluation on the 2D and 3D spatial rea-
soning tasks, where the model has strong performance in
2D tasks, but lacks on 3D tasks, as shown in Table 1. In
order to incorporate spatial features from the original image
to capture relative object locations as well as depth infor-
mation, we propose the use of spatial pyramid patch fea-
tures [4] to represent the given image into a sequence of
features at different scales. The image I is divided into a
set of patches: p, = {l;,,...,I;,},each I;, beingai; x i;
grid of patches, and ResNet features are extracted for each
patch. Larger patches encode global object relationships,
while smaller patches contain local relationships.

4.3. Fusion Transformer

In order to combine the spatial pyramid patch features
and features extracted from LXMERT, we propose a fusion
transformer with e-layers of transformer encoders, contain-
ing self-attention, a residual connection and layer normal-
ization after each sub-layer. We concatenate the p,, patch
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Figure 4. Overall architecture for our approach shows conventional modules for object feature extraction, cross-modal encoding,

and

answering head, with our novel weak supervision from depthmaps, patch extraction, fusion mechanisms, and spatial prediction head.

features with v visual, & cross-modal and ¢ textual hidden
vector output representations from LXMERT, to create the
fused vector h, which is fed into the fusion transformer. Let
M be the length of the sequence after concatenating all hid-
den vectors, then for any hidden vector m in the sequence:

W= [X,V.T,F).

Te _
h"m -

e—1

Self-att(he L, [REY, ..., hSrY)); Ve.

T

| (N
The output of fusion transformer he = [&, 7,1, pn] is then
separated into its components, of which, #, ¢ are used as in-
puts for VQA and SR task, on the same lines as Section 4.1,

4.4. Relative Position Vectors as Inputs

The final set of features that we utilize are the pair-wise
relative distance vectors between objects as described in
section 3.3. In this case, the pairwise distances are used as
inputs, in addition to visual, textual, cross-modal and patch
features, and the model is trained to reconstruct the pairwise
distances. This makes our model an auto-encoder for the
regression task. For each input visual object feature v, we
create a relative position feature ;. using the pair-wise dis-
tance vectors projected from the input dimensions of 36 x 3
to 36 x H using a feed-forward layer, where H is the size of
the hidden vector representations. We evaluate two-modes
of fusion of these features. In Early Fusion, 7. is added to
vy, the output of the LXMERT encoder. In Late Fusion, 7y,
is added to ¥y, the output of the fusion transformer. Figure 4
shows the architecture for the final model that utilizes both
the patch features and relative positions as input.

5. Experiments

Datasets. We evaluate our methods on two popular
benchmarks, GQA [2!] and GQA-OOD [26], both of which

contain spatial reasoning visual questions requiring compo-
sitionality and relations between objects present in natural
non-iconic images. Both datasets have a common training
set, but differ in the test set: GQA uses an i.i.d. split, while
GQA-OOD contains a distribution shift. There are 2000
unique answers in these datasets, and questions can be cat-
egorized based on the type of answer: binary (yes/no an-
swers) and open-ended (all other answers).

Evaluation Metrics. For evaluating performance in fully-
supervised, few-shot, as well as 0.0.D. settings for the
GQA task, we use metrics defined in [21]. These in-
clude exact match accuracy, accuracy on the most fre-
quent head answer-distribution, infrequent tail answer-
distribution, consistency to paraphrased questions, valid-
ity, and plausibility of spatial relations'. We evaluate SR
tasks using mean-squared error (MSE) for SR-Regression
and classification accuracy for SR bin-classification.

Model Architectures. LXMERT contains 9 language
transformer encoder layers, 5 visual layers, and 5 cross-
modal layers. This feature extractor can be replaced by
any other transformer-based V&L model. Our Fusion trans-
former has 5 cross-modal layers with a hidden dimension
of H = 512. For visual feature extraction, we use ResNet-
50 [ 18] pre-trained on ImageNet [ 1] to extract image patch
features, with 50% overlap, and Faster RCNN pre-trained
on Visual Genome [30)] to extract the top 36 object features.
We use 3 x 3, 5 x 5, 7 x 7 patches, and the entire image
as the spatial image patch features. The image is uniformly
divided into a set of overlapping patches at multiple scales.

"Detailed definitions of these metrics can be found in Section 4.4. of
Hudson er al. [ 1] or accessed on the GOQA Challenge webpage
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Model GQA-Valt  2D-Reg) 2D Bin Classification GQA-Valt  3D-Reg) 3D Bin Classification
2D-3wT  2D-15wT  2D-30w? 3D-3wt  3D-15wf  3D-30wt

LXMERT + SR 59.85 0.64 88.20 76.75 55.12 60.05 0.44 55.66 52.80 48.15
+ Late Fusion 59.90 0.47 92.60 81.24 60.42 60.18 0.29 71.20 69.45 52.84
+ Early Fusion 60.10 0.36 96.40 82.48 64.85 61.32 0.24 78.67 74.20 54.73
+ Patches 60.52 0.41 89.60 79.56 59.40 60.64 0.28 73.21 71.74 50.94
+ Late Fusion + Patches 60.80 0.33 95.20 82.10 67.38 61.80 0.21 85.35 79.60 65.45
+ Early Fusion + Patches 60.95 0.29 97.40 84.60 71.46 62.32 0.17 89.58 81.47 68.20

Table 1. Results for the LXMERT model trained for the spatial reasoning task (LXMERT + SR), on 2D and 3D Relative Position Estimation
(RPE), for regression as well as C-way bin classification tasks. A comparison with the same model weakly supervised with additional
features (image patches) and weak supervision with relative position vectors extracted from depth-maps is shown. GQA-Val scores are for
the best performing weak-supervision task, which are 2D-15w and 3D-15w respectively. Regression scores are in terms of mean-squared
error, and classification scores are percentage accuracy. I15w: 15-way bin-classification.

Model GQA-Valt
LXMERT + SR 59.40
+2D OCE (Regression) 5733
+ 3D OCE (Regression) 58.28
+ 2D RPE (Regression) 59.85
+ 3D RPE (Regression) 59.54
42D OCE (15-bin Classification) 5864
+ 3D OCE (15-bin Classification) 59.90
+ 2D RPE (15-bin Classification) 60.95
+ 3D RPE (15-bin Classification) 62.32

Table 2. Comparison of different weakly supervised spatial rea-
soning tasks on the GQA validation split.

Training Protocol and Hyperparameters. Our Fusion
transformer has 5 cross-modal layers with a hidden dimen-
sion of H = 512. All models are trained for 20 epochs with
a learning rate of le—>5, batch size of 64, using Adam [29]
optimizer, on a single NVIDIA A100 40 GB GPU. The val-
ues of coefficients («, 3) in Equation 6 were chosen to be
(0.9,0.1) for regression and (0.7, 0.3) for classification.

Baselines. We use LXMERT jointly trained SR and GQA
tasks as a strong baseline for our experiments. In addition,
we also compare performance with existing non-ensemble
(single model) methods on the GQA challenge, that di-
rectly learn from question-answer pairs without using ex-
ternal program supervision, or additional visual features.
Although NSM [22] reports a strong performance on the
GQA challenge, it uses stronger object detectors and top-
50 object features (as opposed to top-36 used by all other
baselines), rendering comparison with NSM unfair.

5.1. Results on Spatial Reasoning

We begin by evaluating the model on different spatial
reasoning tasks, using various weak-supervision training
methods. Table 1 and 2 summarize the results for these
experiments. It can be seen that the LXMERT+SR base-
line (trained without supervision from depthmaps) performs

poorly for all spatial reasoning tasks. This conforms with
our hypothesis, since depth information is not explicitly
captured by the inputs of the current V&L methods that uti-
lize bounding box information which contains only 2D spa-
tial information. On average, improvements across SR tasks
are correlated with improvements across the GQA task. In
some cases, we observe that the method predicts the correct
answer for the spatial relationship questions on the GQA
task, even when it fails to correctly predict the bin-classes
or object positions in the SR task. This phenomenon is ob-
served for 18% of the correct GQA predictions. For ex-
ample, the model predicts ‘left’ as the GQA answer and a
contradictory SR output corresponding to ‘right’.

Comparison of different SR Tasks. Centroid Estimation
requires the model to predict the object centroid location in
the unit-normalized vector space, whereas the Relative Po-
sition Estimation requires the model to determine the pair-
wise distance vector between the centroids. Both the tasks
provide weak-supervision for spatial understanding, but we
observe in Table 2 that bin-classification for the 3D RPE
transfers best to the GQA accuracy.

Regression v/s Bin-Classification. Similarly, the regres-
sion version of the task poses a significant challenge for
V&L models to accurately determine the polarity and the
magnitude of distance between the object. The range of
distances in indoor and outdoor scenes has a large varia-
tion, and poses a challenge for the model to exactly predict
distances in the regression task. The classification version
of the task appears to be less challenging, with the 3-way
2D relative position estimation achieving significantly high
scores (~90%). The number of bins (3/15/30) also impacts
performance; a larger number of bins implies that the model
should possess a fine-grained understanding of distances,
which is harder. We find the optimal number of bins (for
both RPE and GQA) is 15.
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Model Accuracy?t Binaryt Opent Consistency Validity? Plausibility Distribution|
Human [21] 89.30 91.20 87.40 98.40 98.90 97.20 -
Global Prior [21] 28.90 42.94 16.62 51.69 88.86 74.81 93.08
Local Prior [21] 31.24 47.90 16.66 54.04 84.33 84.31 13.98
BottomUp [2] 49.74 66.64 34.83 78.71 96.18 84.57 5.98
MAC [20] 54.06 71.23 38.91 81.59 96.16 84.48 5.34
GRN [22] 59.37 77.53 43.35 88.63 96.18 84.71 6.06
Dream [22] 59.72 77.84 43.72 91.71 96.38 85.48 8.40
LXMERT [51] 60.34 77.76 44.97 92.84 96.30 85.19 8.31
This Work 62.11 78.20 47.18 93.13 96.92 85.27 1.10

Table 3. Comparitive evaluation of our model with respect to existing baselines, on the GQA test-standard set, along all evaluation metrics.

Comparison of different methods. The Early Fusion
with Image Patches method, which uses both the relative
position distance vectors and the pyramidal patch features
with the fusion transformer, achieves the best performance
across all spatial tasks and the GQA task. It can be observed
from Table | that both of these additional inputs improve
performance in 3D RPE. These performance improvements
can be attributed to the direct relation between the distance-
vector features and prediction targets. On the other hand,
patch features implicitly possess this spatial relationship in-
formation, and utilizing both the features together results in
the best performance. However, even with a direct corre-
lation between the input and output, the model is far from
achieving perfect performance on the harder 15/30-way bin-
classification or regression tasks, pointing to a scope for fur-
ther improvements.

Early v/s Late Fusion. We can empirically conclude that
Early fusion performs better than Late fusion through our
experiment results in Table 1. We hypothesize that the Fu-
sion Transformer layers are more efficient than Late Fusion
at extracting the spatial relationship information from the
projected relative position distance vectors.

Effect of Patch Sizes. We study the effect of different im-
age patches’ grid sizes, suchas 3 x 3,5 x5, 7x7,and 9 x 9
and several combinations of such sets of patch-features. We
observe the best performing feature combination to be the
entire image and a set of patches with gridsin 3 x 3,5 x 5
and 7 x 7. Adding smaller patches such as 9 x 9 grid did
not lead to an increase in performance. Extracting features
from ResNet101 also leads to minor gains (+0.05%).

5.2. Results on GQA

Tables 3 and 4 summarize our results on the GQA and
GQA-OOD visual question answering tasks. Our best
method, LXMERT with Early Fusion and Image Patches,
jointly trained with weak-supervision on 15-way bin-
classification Relative Position Estimation task improves
over the baseline LXMERT, by 1.77% and 1.3% respec-

Model Uses Image  Acc-AllT  Acc-Tailf Acc-Head?
Question Prior [26] No 21.6 17.8 24.1
LSTM [3] No 30.7 24.0 34.8
BottomUp [2] Yes 46.4 42.1 49.1
MCAN [62] Yes 50.8 46.5 53.4
BAN4 [28] Yes 50.2 472 51.9
MMN [¢] Yes 52.7 48.0 55.5
LXMERT [51] Yes 54.6 49.8 57.7
This Work Yes 55.9 50.3 594

Table 4. Comparison of several VQA methods on the GQA-OOD
test-dev splits. Acc-tail: OOD settings, Acc-head: accuracy on
most probable answers (given context), scores in %.

tively on GQA and GQA-OQOD, achieving a new state-of-
the-art. It performs slightly better than LXMERT (72.9%)
on VQA-v2. The most significant improvement is observed
on the open-ended questions (2.21%). We can observe that
weak-supervision and joint end-to-end training of SR and
question answering using the transformer architecture can
train systems to be consistent in spatial reasoning tasks and
to better generalize in spatial VQA tasks.

OOD Generalization. We also study generalization to
distribution shifts for GQA, where the linguistic priors seen
during training, undergo a shift at test-time. We evaluate
our best method on the GQA-OOD benchmark and observe
that we improve on the most frequent head distribution of
answers by 1.7% and also the infrequent out-of-distribution
(OOD) tail answer by 0.5%. This leads us to believe that
training on SR tasks with weak-supervision might allows
the model to reduce the reliance on spurious linguistic cor-
relations, enabling better generalization abilities.

Few-Shot Learning. We study the effect of the weakly
supervised RPE task in the few-shot setting on open-ended
questions, with results shown in Figure 5. We can ob-
serve that even with as low as 1% and 5% of samples,
joint training with relative position estimation improves
over LXMERT trained with same data by 2.5% and 5.5%,
respectively, and is consistently better than LXMERT at all
other fractions. More importantly, with only 10% of the
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Figure 5. Performance of our best method, when trained in the
few-shot setting and evaluated on open-ended questions from the
GQA-testdev split, compared to LXMERT.

training dataset our method achieves a performance close to
that of the baseline LXMERT trained with the entire (100%)
dataset. Most spatial questions are answered by relative
spatial words, such as “left”, “right”, “up”, “down” or ob-
ject names. Object names are learned during the V&L pre-
training tasks, whereas learning about spatial words can be
done with few spatial VQA samples and a proper supervi-
sion signal that contains spatial information.

5.3. Error Analysis

We perform three sets of error analyses to understand
the different aspects of the weakly-supervised SR task, the
consistency between the relative SR task and the VQA task,
and the errors made in the VQA task.

Spatial Reasoning Tasks. SR-Regression appears to be
the most challenging version, as the system needs to recon-
struct the relative object distances from the input image to a
3D unit-normalized vector space. The classification variant
has a higher recall and better polarity, i.e., an object to the
“right” is classified correctly in the ‘right’ direction regard-
less of magnitude, i.e. the correct distance bin-class, com-
pared to the regression task. The majority of errors (~ 60%)
are due to the inability to distinguish between close objects.

Consistency between SR and VQA. The baseline
LXMERT trained only on weak-supervision tasks without
patch features or relative position distance vectors predicts
18% of correct predictions with wrong spatial relative posi-
tions. This error decreases to 3% for the best method that
uses early fusion with image patches, increasing the faith-
fulness or consistency between the two tasks. We manually
analyze 50 inconsistent questions and observe 23 questions
contain ambiguity, i.e., multiple objects can be referred by
the question and lead to different answers.

Manual Analysis. We analyze 100 cases of errors from
the GQA test-dev split and broadly categorize them as fol-
lows, with percentage of error in parentheses:

1. predictions are synonyms or hypernyms of ground-
truth; for example, “curtains—drapes”, *“cellphone—
phone™, “man—person”, etc. (8%)

2. predictions are singular/plural versions of the gold an-
swer, such as, “curtain-curtains”, “shelf-shelves”. (2%)

3. Ambiguous questions can refer to multiple objects lead-
ing to different answers; for example, in an image with
two persons having black and brown hair standing in
front of a mirror, a question is asked: “Does the person
in front of the mirror have black hair?”. (5%)

4. Errors in answer annotations. (5%)

5. Wrong predictions. Examples of this include predicting
“right” when the true answer is “left” or the prediction of
similar object classes as the answer, such as “cellphone—
remote control”, “traffic-sign—stop sign”. In many cases,
the model is able to detect an object, but unable to re-
solve its relative location with respect to another object;
this could be attributed to either spurious linguistic bi-
ases or the model’s lack of spatial reasoning. (80%)

This small-scale study concludes that 20% of the wrong pre-

dictions could be mitigated by improved evaluation of sub-

jective, ambiguous, or alternative answers. Luo et al. [34]

share this observation and suggest methods for a more ro-

bust evaluation of VQA models.

6. Discussion

The paradigm of pre-trained models that learn the cor-
respondence between images and text has resulted in im-
provements across a wide range of V&L tasks. Spatial
reasoning poses the unique challenge of understanding not
only the semantics of the scene, but the physical and ge-
ometric properties of the scene. One stream of work has
approached this task from the perspective of sequential
instruction-following using program supervision. In con-
trast, our work is the first to jointly model geometric under-
standing and V&L in the same training pipeline, via weak
supervision from depth estimators. We show that this in-
creases the faithfulness between spatial reasoning and vi-
sual question answering, and improves performance on the
GQA dataset in both fully supervised and few-shot settings.
While in this work, we have used depthmaps as weak su-
pervision, many other concepts from physics-based vision
could further come to the aid of V&L reasoning. Future
work could also consider spatial reasoning in V&L settings
without access to bounding boxes or reliable object detec-
tors (for instance in bad weather and/or low-light settings).
Challenges such as these could potentially reveal the role
that geometric and physics-based visual signals could play
in robust visual reasoning.
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