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Abstract—In this paper, a hybrid shared controller is pro-
posed for assisting human novice users to emulate human expert
users within a human-automation interaction framework. This
work is motivated to let human novice users learn the skills of
human expert users using automation as a medium. Automation
interacts with human users in two folds: it learns how to
optimally control the system from the experts demonstrations
by offline computation, and assists the novice in real time
without excess amount of intervention based on the inference
of the novice’s skill-level within our properly designed shared
controller. Automation takes more control authority when the
novices skill-level is poor, or it allows the novice to have more
control authority when his/her skill-level is close to that of
the expert to let the novice learn from his/her own control
experience. The proposed scheme is shown to be able to improve
the system performance while minimizing the intervention
from the automation, which is demonstrated via an illustrative
human-in-the-loop application example.

I. INTRODUCTION

Human-automation interaction has been employed in the
fields of driver assistance systems [1], robots [2], teleopera-
tion systems [3], and exoskeletons [4], so that human users
can perform complex tasks through collaboration between
the human and automation. In particular, the shared control
frameworks have recently been studied to control the system
safely and effectively by the automation assisting the human
when the human user lacks the skill-level for controlling the
system [5]. Along with many applications, the shared control
has many interpretations or definitions [6]. In this paper,
we refer the shared control as a control scheme where the
human user and automation share the same control space, and
the control input of the system is the weighted average (or
blending) of human input and automation input. That weight-
ing is called control authority [7], [8]. Various approaches
such as game theoretic methods [9], optimal control [1], and
reinforcement learning [5] have been used to dynamically
allocate control authority depending on scenarios.

Many existing works have established various shared
control schemes for driving [10]–[13], robot control [14],
and specific missions [15]–[17]. Each related work presents
methods to determine the control authority according to the
situation. A large number of schemes introduce automation
to the shared control only when the system is about to
violate predefined safety conditions [15] or minimize the
intervention from the automation [5]. Automation provides
awareness of the situation, assesses the performance in real
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time, and allocates sufficient amount of control authority
to the human user whenever the human input does not
deteriorate the system’s performance significantly. As human
input is accepted in the shared control systems, human users
can experience controlling the system to improve their skill-
levels without loss of situational awareness and avoiding
rejection of the assistance [18], [19]. Existing frameworks
are well designed considering human factor, but there are two
limitations. First, to assure that the automation has the correct
mission objective to the optimization problem which means
that for a certain mission, the shared control system should
follow a predefined control criterion regardless of the user’s
perception or understating of the system [20]. However, a
correct mission objective might not be easily predefined
depending on the task. Second, existing interactive schemes
typically do not take into account the different characteristics
of human users. In practice, there are not only differences
between experts and novices, but also differences between
novices. A concept of skill-based personalized assistance was
introduced in [21], but it does not provide a shared control.

A skill-level-based hybrid shared control framework is
proposed to overcome the two major limitations of the
existing frameworks by learning the mission objective from
a human expert user and customizing the shared control
scheme based on a skill-level of a human novice user. We
define the skill-level as a value indicating the degree to which
a human user adheres to the expert’s mission objective. The
expert’s mission objective can be inferred from demonstra-
tions of the expert by using a data-driven method, such as
inverse optimal control (IOC) [22]. The inferred objective
is employed as a performance measure to evaluate the time-
varying skill-level of human novice users using another data-
driven method, such as online dynamic mode decomposition
(DMD) [23]. Then, the control authority is allocated in
real time: more control authority to the novice when his
performance is close to that of the expert, or more control
authority to the automation when the novice’s performance is
poor. The control authority is assigned in a discrete manner
by determining the discrete mode of the hybrid systems [24].
Human users can perceive discrete control authority better
than continuous values and the number of discrete modes
can be adjusted depending on the scenarios.

The rest of the paper is organized as follows. In Section
II, we propose the hybrid shared control scheme. The hybrid
shared controller is formally presented in Section III. In Sec-
tion IV, the proposed hybrid shared controller is tested and
demonstrated via an illustrative example using a quadrotor
simulator. Conclusions are given in Section V.
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Fig. 1. Skill-level-based hybrid shared control scheme.

II. SKILL-LEVEL-BASED HYBRID SHARED CONTROL

We propose a skill-level-based hybrid shared control
scheme which is designed for assisting a human novice user
in a personalized way based on his skill-level to emulate
a human expert user with minimum intervention from an
automation (Fig. 1). The proposed scheme employs the
expert as a data source such that the automation can extract
a mission objective and control strategy from his demon-
stration by offline computation. The novice is modeled and
assisted online by a hybrid shared controller which allocates
the control authority based on the skill-level discrepancy
between the expert and the novice while avoiding excessive
assistance. In this section, we introduce and design each
element of the proposed scheme: a plant, a human expert
user, a human novice user, and a hybrid shared controller.

A. Plant
We consider a linear time-invariant (LTI) plant. Note that

many practical systems can be modeled as LTI plants [25].

x(k + 1) = Ax(k) +Bu(k), x(0) = x0 (1)

where x(k) ∈ X ⊆ Rn, u(k) ∈ U ⊆ Rm, and x0 ∈ Rn

denote the continuous state, shared input, and initial state,
respectively. k ∈ T = {0, 1, · · · , T} is the time index.
A ∈ Rn×n and B ∈ Rn×m denote the system matrices.
We assume that the system (A,B) is controllable so that the
problem is well-posed.

B. Expert Performance Modeling
An expert provides his demonstrations which are used to

extract a quantified mission objective and his control strategy.
We consider the expert to be a human user who is capable of
optimally controlling the plant based on his knowledge and
experience. Thus, the expert’s behaviors can be interpreted
as an optimal control strategy with an unknown mission
objective. Note that when the expert operates the system,
there is no intervention from the automation.

We formulate the expert’s task objective function Je(D)
as a quadratic function [14], with the expert’s demonstration
De = {xe,ue}[0,T ] which denotes the time history of the
state and control input from the expert for time step k ∈ T :

De = argmin
D

Je(D) (2)

subject to (1) and

Je(D) =

T∑
k=0

(
x(k)TQx(k) + u(k)TRu(k)

)
(3)

where Q ∈ Rn×n and R ∈ Rm×m denote the unknown task
objective matrices which are positive definite.

IOC is used to quantify the task objective matrices (Q,R)
in (3) from the given expert’s demonstration De [22]. An
expert’s task objective function can be described by the
feature Φ(x,u) ∈ Rr:

Je(w, De) =
T∑

k=0

Φ(xe(k),ue(k)) ·w (4)

where w ∈ Rr is the feature weight and the elements of
feature Φ = [ϕ1, ϕ2, · · · , ϕr]T are quadratic forms, such as
ϕi = x2i or ϕj = u2j . Using IOC, we can compute the weight
w, or equivalently (Q,R), from the given demonstration De

and the system model (1). Suppose {xe,ue}[t:t+l−1] denotes
a piece of demonstration with the observation length l. The
Karush-Kuhn-Tucker (KKT) condition implies:

Ht,l

[
w

λ(t+ l)

]
= 0 (5)

where Ht,l denotes the recovery matrix which can be ob-
tained using the plant dynamics (1), state, and control input.
λ ∈ Rn denotes the dual variable. If the observation length
l is long enough and the demonstration De is informative
enough in a distinguishable manner, then w can be uniquely
determined with a normalization (∥w∥ = 1) [22].
An expert control strategy can be equivalently represented

as a linear state feedback controller by a linear-quadratic
regulator scheme using the linear system dynamics (1) and
the quadratic task objective function (4):

ue(k) = Kex(k), ∀k ∈ T (6)

where Ke ∈ Rm×n denotes the expert control gain and
ue(k) ∈ U denotes the modeled expert input. Note that the
system dynamics (1) with the expert control strategy (6) is
always stable, i.e., max(|λ(A+BKe)|) < 1 where λ denotes
the eigenvalue, which is reasonable since we assume that the
expert know how to operate the system optimally.

C. Novice Performance Modeling

A novice is a target user of the proposed scheme whose
skill-level is assessed by the automation based on his control
strategy. Unlike the expert case, we do not assume that a
novice control strategy optimizes anything. For instance, the
novice may not be able to operate the system properly due to
his lack of skill and experience. Another issue of the novice
modeling is variability of the novice’s skill-level: the novice’s
skill-level may change while performing a task. We model
the novice control strategy as a feedback controller but use
a linear approximation:

un(k) = Kn(x(k), k) ≈ K̂n(k)x(k), ∀k ∈ T (7)

whereKn(·) denotes the true but unknown novice’s feedback
control strategy, un(k) ∈ U is the modeled novice input, and
K̂n(k) ∈ Kn ⊆ Rm×n denotes the linear approximation of
the novice model.

We use the online DMD to obtain and update the novice
control strategy K̂n(k) in real time using the novice input
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and state of the plant. The online DMD is known to provide
efficient and accurate representation of the time-varying
system and widely accepted in control system identification
[23]. Let y(k) be the resultant state with the current state
x(k) and the novice input un(k) at time step k without
assistance, i.e., y(k) = Ax(k) + Bun(k). The goal of the
online DMD is to find a matrix Ã(k) = A + BK̂n(k). To
obtain Ã(k), the following cost function is minimized:

J̃(k) =
k∑

i=1

∥σk−iy(i)− σk−iÃ(k)x(i)∥2 (8)

where σ ∈ (0, 1] denotes the discount factor. The given pairs
of snapshots for i = 1, 2, · · · , k form matrices:

X(k) = [σk−1x(1) σk−2x(2) · · · x(k)]

Y(k) = [σk−1y(1) σk−2y(2) · · · y(k)]
(9)

where both have the same dimension Rn×k. Note that we
consider the over-constrained problem, i.e., k > n. The least-
square solution gives the following result.

Ã(k) = Y(k)X(k)† = Y(k)X(k)T
(
X(k)X(k)T

)−1
(10)

where † denotes the MoorePenrose pseudoinverse. In the next
time step k+1, Ã(k+1) can be obtained as a recursive least-
square form [23].

Ã(k + 1) = fDMD

(
Ã(k),y(k + 1),x(k + 1), σ

)
(11)

where fDMD denotes the recursive online DMD operation.
Finally, K̂n(k) can be computed as follows:

K̂n(k) = B†(Ã(k)−A) (12)

Note that we assume K̂n(k) is slowly varying in time [23]
which means the novice’s skill-level is not rapidly changing.

D. Hybrid Shared Controller Design

The hybrid shared controller (Fig. 1) allocates the optimal
control authority and provides the shared input with respect
to the novice’s skill-level. The control authority is discretized
and maps into the discrete mode of the hybrid system. The
automation input is generated based on the expert control
strategy. Thus, the hybrid shared controller performs four
functions in real time: i) generating automation input which
mimics the expert control strategy (6), ii) assessing the
novice’s skill-level and control strategy (7), iii) determining
the discrete mode and allocating the control authority based
on the novice’s skill-level in terms of trading-off between
the performance of the system and reduced amount of
intervention, and iv) generating the shared input using novice
input, automation input, and determined control authority.
Note that i) and ii) are already presented in Sections II-B and
II-C, respectively. Thus, we explain iii), the control authority
allocation method which is called a guard condition and iv),
how to produce the shared input in Section III.

III. HYBRID SHARED CONTROLLER

The hybrid shared controller generates the shared input as
a final output to improve the performance of a human-in-
the-loop system with a minimum amount of intervention,
as described in Section II-D. In this section, we explain
how to determine the optimal control authority and generate
the shared input with respect to the novice’s skill-level. The
hybrid shared controller can be formally written as a tuple
of elements:

H = (Q, I,O, f,G) (13)

where Q is a finite set of the discrete mode, I is the input,
O is the output, f stands for the shared control law, which
addresses how the shared input is generated under each
mode, and G denotes the guard condition that assigns the
previous mode to the current mode under a mode switching
condition. Each element of the tuple is designed as follows
to allocate the optimal control authority:

• Q = {1, 2, · · · , Nq}, i.e., the hybrid shared controller
has total Nq modes. With larger Nq , the control au-
thority is discretized more finely. However, if Nq is
too large, it might be difficult for novices to recognize
the change in the control authority, and the amount of
computation increases.

• I = X × U × Kn, i.e., inputs of the hybrid shared
controller are the state, human (novice) input, and
novice control strategy.

• O = U , i.e., output of the hybrid shared controller is
the shared input u(k).

• f : X × U ×Q → O is the shared control law.

u(k) = f(x(k),uh(k), q(k))

, θ(q(k))uh(k) + (1− θ(q(k)))ua(k)
(14)

where θ(q(k)) : Q → [0, 1] is the control authority, q(k) ∈ Q
denotes the mode, uh(k) is the human input, and ua(k) is
the automation input which is designed as:

ua(k) = Kex(k) (15)

In words, f is the weighted average of human input and
automation input. When θ = 0, the automation takes full
control authority, and when θ = 1, the human user has full
control authority. Any value between 0 and 1 can be set as
a discrete control authority depending on the scenarios.

A core part of the hybrid shared controller is to design
the guard condition which determines a mode transition, or
changing the control authority in the proposed scheme. We
define a loss function L, which is a tool for designing the
guard condition. The loss function is an estimated future per-
formance with (1), (7), (15), and the hybrid shared controller
(13). To estimate the future performance, it is assumed that
the novice model (7) at time step t is the valid estimate for
the future time horizon [t, t + N ] which can be interpreted
that the future behavior of the human novice user over time
[t, t + N ] is predicted based on the current novice model
at time step t. Note that it is reasonable since we assume
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that the novice model is slowly time-varying. Then, the loss
function L : X ×Kn ×Q → R+ is defined as:

L
[t,t+N ]
θ(q(t)) ,

t+N∑
k=t

(
x(k)TQx(k) + û(k; t)TRû(k; t)

+α(1− θ(q(t)))2ua(k)
TRua(k)

)
=

t+N∑
k=t

(
x(k)T (Q+Ks(t)

TRKs(t)

+α(1− θ(q(t)))2KT
e RKe

)
x(k))

(16)

where

û(k; t) , Ks(t)x(k), ∀k ∈ [t, t+N ]

Ks(t) = θ(q(t))K̂n(t) + (1− θ(q(t)))Ke

(17)

and û(k; t) denotes the best estimate of the shared input over
time k ∈ [t, t+N ] at time step t. Ks(t) denotes the shared
control gain at time step t, α > 0 denotes the tunable penalty
parameter on the assistance from the automation, and N is a
finite horizon. The loss function can be broken down into two
parts: the first part has the same structure as a task objective
function of the expert (3) and the second part denotes a
penalty on the assistance from the automation; If α = 0,
then the loss function is always minimized with θ = 0, which
means the automation takes the full control authority all the
time. A positive penalty α ensures that the hybrid shared
controller provides assistance only when the novice’s skill-
level is different from that of the expert. Based on the loss
function, the guard condition is designed as follows:

• G : Q×Q → 2X×Kn , i.e., the guard condition assigns
the previous discrete mode i = q(k − 1) ∈ Q to the
current discrete mode j = q(k) ∈ Q if the state and the
novice control strategy are inside of the guard condition.

G(i, j) = {x(k), K̂n(k) | x(k) ∈ X , K̂n(k) ∈ Kn,

j ∈ Q, l ∈ Q, j ̸= l, L
[k,k+N ]
θ(j) ≤ L

[k,k+N ]
θ(l) }

(18)

Note that the proposed guard condition implies:

q(k) = argmin
q(k)

L
[k,k+N ]
θ(q(k)) (19)

Note that the upper bound of the loss function is given when
θ = 0 (i.e., the automation has full control authority) with a
stable expert control strategy. The guard condition with that
upper bound ensures that the performance of the system is
also bounded regardless of the novice’s skill-level.

IV. APPLICATION EXAMPLE

We present an application example with human subjects to
demonstrate how the proposed scheme works and compare
with a baseline method.

A. Test-bed

We design an experimental test-bed, called the quadrotor
landing simulator (Fig. 2). The human users are requested
to land a quadrotor slowly on the touch-pad using a joystick
while checking the current status via a monitor. The quadro-
tor dynamics is linearized with respect to an equilibrium

Fig. 2. (Left) Quadrotor landing simulator: a screen shown in the simulator.
(Right) Test-bed configuration. The current control authority is indicated at
the left-lower corner: {blue, yellow, red} = {1, 0.5, 0}.

point [26]. The continuous states consist of the position, ve-
locity, attitude, and angular velocity; x = [x, y, ẋ, ẏ, ψ, ψ̇]T .
The time interval for discretization ∆t = 0.033 seconds and
the state domain X = [−512, 512]×[0, 768] in pixels are set,
respectively. The shared input is set to [ux, uy]

T ∈ [−1, 1]2.
An initial position is randomly generated but uniformly
distributed in x(0) ∈ [−412, 412] and y(0) ∈ [568, 668],
respectively. All other states are equal to zero initially.
To demonstrate the efficacy of the proposed hybrid shared

controller, we consider three discrete modes for control
authority allocation: {θ(1), θ(2), θ(3)} = {1, 0.5, 0}. These
three modes denote the full control authority to the human
user, half-control authority to the human user, and full control
authority to the automation, respectively. The initial discrete
mode for about 1.7 seconds is q = 1 as the online DMD
requires minimum time for modeling the novice user from
his real time demonstrations. Other parameters are set as
follows; the penalty parameter α = 10, the discount factor
σ = 0.9 (refer to [23] for a detailed method to determine a
proper discount factor), and the finite time horizon N = 200
(about 7 seconds in real time). A basis function for IOC is set
to the quadratic terms of the states and control inputs; Φ =
[x2, y2, ẋ2, ẏ2, ψ2, ψ̇2, u2x, u

2
y]

T . Then, the feature weight w
denotes the diagonal terms of (Q,R) matrices in (3), i.e.,
Q = diag(w1, w2, w3, w4, w5, w6) and R = diag(w7, w8).

B. Human Subjects and Procedure
We first model an expert who is experienced with the

simulator. The primary objective for the expert is to land the
quadrotor slowly without crashing. Total 10 demonstrations
are provided by the expert and the inferred weight vector w
in (4) is obtained by an average value. Novices, who are new
to the simulator, are requested to land the quadrotor slowly
with or without the hybrid shared controller. An exercise
session is given before recording their performance. A total
of 6 novices participated in the experiment.

C. Results and Discussion
1) Individual Cases: We first present two individual cases

to show how the proposed scheme works in practice.
• Case 1 corresponds to a result of a novice with relatively

poor skill-level.
• Case 2 represents another result of a novice who per-

forms better than Case 1 but worse than the expert.
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Fig. 3. Two individual trajectories of a human-in-the-loop system with the
hybrid shared controller: Case 1 and Case 2 (Individual novice 1 with poor
skill-level and individual novice 2 with better skill-level).

Fig. 4. Time history of control input discrepancy: Case 1 and Case 2.

In Case 1, the novice’s trajectory deviates rather largely
from that of the recovered expert (Fig. 3). Note the expert’s
trajectory is computed using the inferred expert control
strategy (6). The hybrid shared controller begins to assist
the novice immediately after the first online DMD modeling
is finished at about 1.7 seconds by giving the full control
authority to the automation, and it is maintained until about
8.2 seconds. Even after 8.2 seconds, the automation shall not
pass over full control authority to the novice, but only half
of it, which shows that the novice’s skill-level is poor and
how the proposed scheme deals with it.

In Case 2, the novice’s trajectory deviates less from
that of the expert. The control authority is taken by the
automation after initial 1.7 seconds, same as Case 1, but it is
observed that the control input discrepancy, which is defined
as ∥uh(t) − ua(t)∥2, deceases after 1.7 seconds (Fig. 4),
which reveals that the inferred skill-level of the novice is
improving over time. As a result, the novice takes over the
full control authority again and the control input discrepancy
is maintained at a significantly smaller level than Case 1.
This means that the novice shows a similar skill-level to the
expert so that the proposed scheme allocates more control
authority to the novice over time.

2) Comparison with Baseline: A baseline method is ex-
amined along with the proposed method for comparison. We
choose the Maxwell’s demon algorithm (MDA) [14] as a
baseline method. The MDA has only two discrete modes;
one is fully accepting human user input when the human
input and the automation input are in the same half-plane.
Otherwise, another mode completely ignores the human user
input and provides zero shared input.

Each human novice user is requested to perform the
same quadrotor landing task. After they have an exercise

Fig. 5. (Top) Control performance comparison between manual control,
baseline (MDA), and proposed (hybrid shared controller) based on Jratio.
Error bars denote the standard deviation. (Bottom) Averaged control author-
ity when the proposed scheme is used. More control authority is given to
each participant when his performance is close to that of the expert.

Fig. 6. All recorded trajectories for three different control schemes (6
participants, n = 60 for each scheme): manual control, baseline (MDA),
and the proposed hybrid shared control scheme.

session, they perform the task with three different schemes
10 times for each: i) manual control without assistance, ii)
assisted by the baseline, and iii) assisted by the proposed
scheme. In order to compensate for the difference which
might be caused by the order of using each method, the
order of conducting each experiment is randomized [14]. The
following performance measures are used.

• The expert’s task objective function (4) is used to
compare the performance. Since the value of the task
objective function depends on the initial state, we mea-
sure the ratio of the evaluated task objective function
for each trial: Jratio , Je(Dn)/Je(De) (closer to 1 is
better) where De and Dn are demonstrations from an
expert and a novice, respectively.

• The averaged control authority, which is defined as
θavg , 1/T

∑T
k=0 θ(k), is shown to validate that the

proposed scheme indeed allows more control authority
to the novice when they perform close to the expert,
thereby reducing interference from the automation when
unnecessary.

In Fig. 5, the performance measure Jratio for all partic-
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ipants is presented. The order of the participants is sorted
in ascending order based on the Jratio with the proposed
scheme (green points). Manual control and baseline have no
statistically significant difference in Jratio (one-way ANOVA
p > 0.5) and the proposed scheme does improve Jratio
compared to the manual control (p < 0.001). In Fig. 5, when
a novice has better skill-level (lower Jratio), more control
authority is given to him as we design. Note that the averaged
control authority θavg can be adjusted by tuning the penalty
parameter α: If α = 0, the performance should be same
as the expert (Jratio = 1) only with automation input, i.e.,
u(k) = ua(k) and θavg = 0. If α → ∞, then the hybrid
shared control scheme is equivalent to the manual control,
i.e., u(k) = uh(k) and θavg = 1.

Finally, all trajectories are presented in Fig. 6. It is shown
that the proposed scheme can also improve the consistency of
trajectories, i.e., the landing performance is more consistent
across the novice users. This shows that the proposed scheme
is able to assist novices to emulate the expert, as we design.

V. CONCLUSIONS
A hybrid shared control algorithm that can explicitly

account for the human user’s skill-level was proposed to
improve the performance of human-automation systems by
providing customized assistance in real time to an individual
user based on his skill-level, which could reduce interference
from the automation when unnecessary, thereby enhancing
the effectiveness of the shared control. The proposed hybrid
shared controller was modeled as a hybrid system whose
discrete mode denotes the control authority allocation. Then,
an optimal control authority allocation is chosen by minimiz-
ing a loss function which represents the expected difference
between the expert’s and a novice’s performance. We tested
and demonstrated the efficacy of the proposed scheme with
an illustrative example using a quadrotor landing simulator.
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