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Abstract—The emergence of diverse network applications
demands more flexible and responsive resource allocation for
networks. Network slicing is a key enabling technology that
provides each network service with a tailored set of network
resources to satisfy specific service requirements. The focus of this
paper is the network slicing of access networks realized by Passive
Optical Networks (PONs). This paper proposes a learning-based
Dynamic Bandwidth Allocation (DBA) algorithm for PON access
networks, considering slice-awareness, demand-responsiveness,
and allocation fairness. Our online convex optimization-based
algorithm learns the implicit traffic trend over time and de-
termines the most robust window allocation that reduces the
average latency. Our simulation results indicate that the proposed
algorithm reduces the average latency by prioritizing delay-
sensitive and heavily-loaded ONUs while guaranteeing a minimal
window allocation to all ONUs.

Index Terms—Dynamic Bandwidth Allocation (DBA), Online
Convex Optimization (OCO), Passive Optical Networks (PONs)

I. INTRODUCTION

Emerging 5G networks are being designed to support
a diverse array of network applications. Enhanced Mobile
Broadband (eMBB) targets up to 10 Gbit/s download speeds
for mobile devices, while massive Machine Type Communi-
cations (mMTC) handles dense connections for IoT and M2M
applications, and Ultra Reliable Low Latency Communications
(URLLC) involves strict latency constraints [1]. An approach
for accommodating massive and diverse connections in 5G
access networks is to implement network slicing in Passive
Optical Networks (PONs) [2]. Optical access networks have
attracted many industrial attentions, as they are expected to
reduce operational expenditure (OPEX) [3]. In particular, the
current development of C-RAN technology for mobile net-
works accelerates the benefit of such optical access networks
(41, [5].

A PON consists of an Optical Line Terminal (OLT) and
multiple Optical Network Units (ONUs) as depicted in Figure
1. The OLT and ONUs may be logically sliced so that one
physical network can host multiple network infrastructure
slices that are tailored for various types of applications. In
this slicing scenario, additional consideration should be made
to prioritize delay-critical network slices. For example, if a
network slice hosts a URLLC network service, the ONUs on
the slice should receive more bandwidth to meet the strict
delay requirement on the order of 1 ms for both upstream and
downstream traffic [6].
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Fig. 1. PON Access Network Architecture: A physical network is sliced to
support different application requirements.

Time Division Multiplexing (TDM) for the upstream traffic
from ONUs to an OLT is facilitated by a Dynamic Bandwidth
Allocation (DBA) algorithm that adjusts time windows for
each ONU to minimize the latency of upstream traffic [7].
Conventional DBA algorithms periodically solve a static opti-
mization problem to minimize the traffic latency by choosing
an optimal bandwidth allocation given traffic information of
the ONUs [8], [9], [10], [11]. The traffic information can be
an estimation of the future traffic amount at the time when
the ONU starts sending traffic to the OLT. The estimation is
computed based on historical data, the amount of remaining
data in queues, and/or neural network-based traffic predic-
tion. Nevertheless, errors in such estimations may lead to
suboptimal solutions for the bandwidth allocation problem.
The suboptimality ironically originates from the fact that
such estimation-based algorithms try to achieve the optimum
window allocation in each static optimization problem, which
is defined based on the estimated traffic demand. Since the
allocation is optimum only for the estimated demand, the
discrepancy between the estimation and the real traffic patterns
is directly reflected in the performance of the algorithms.

Therefore, we propose a performance-guaranteed online
DBA algorithm based on Online Convex Optimization (OCO),
which does not involve static optimizations based on an unre-
liable estimation of traffic patterns. An OCO algorithm gener-
ates a sequence of decisions, observing the actual past traffic
information rather than an estimation of future states. The
decision sequence will be adjusted along its runs to minimize
the regret, the loss incurred by diverting from a decision that
is robust over the entire time horizon. Note that a truly robust
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Fig. 2. Conventional interactions between OLT and ONUs: The OLT decides
a bandwidth allocation x¢[¢] to each ONU wu; based on the demand request
included in a REPORT message.

decision can be defined only in retrospect. In the PON context,
the OCO-based DBA algorithm decides a window allocation
for the next time cycle based on the historical window sizes
and actual traffic information observed in the previous cycles,
so that the resulting allocation becomes robust against the
fluctuating traffic. In other words, the algorithm implicitly
learns a potential distribution of future traffic and provides
a safe window allocation that can accommodate any traffic
dynamics that may happen under the distribution. Furthermore,
the performance of the algorithm can be theoretically bounded
in terms of regret [12]. Our algorithm is more promising than
DBA algorithms based on traffic estimation, since its allocation
would realize lower latency within a potential traffic range,
instead of being optimal only at one estimated traffic amount.
Our DBA problem is formulated in such a way as to ensure
fairness among ONUs, which guarantees that each ONU
receives a minimal size of time window even when it is not
heavily loaded. This formulation could be seen as an extension
of the work in [13] to a dynamic setting. The simulation
results show that our OCO-based DBA algorithm reduces the
latency at all ONUs, demonstrating slice-awareness, demand-
responsiveness, and allocation fairness.

II. PON ACCESS NETWORK MODEL

A Passive Optical Network (PON) consists of an Optical
Line Terminal (OLT) and Optical Network Units (ONUs).
Since all the ONUs share one optical cable connecting them to
the OLT, they need to be coordinated to share the bandwidth
for upstream traffic. Time Division Multiplexing (TDM) PON
realizes the sharing by allocating a time window to each ONU
in each logical time cycle.

Figure 2 illustrates conventional interactions of an OLT and
an ONU u; € U in a PON. An OLT has a Dynamic Bandwidth
Allocation (DBA) algorithm that decides the allocation to
ONUs. In EPON or 10G EPON standards, an ONU sends a
REPORT message that includes a demand request for its next
turn. The request is generated by an traffic estimation algo-
rithm at ONUs, which may consider the amount of currently
buffered traffic and the future traffic pattern. Receiving the
request, the OLT decides the actual bandwidth allocation for

the ONU and informs the ONU of the assigned time windows
through a GATE message.

However, it is pointed out that the DBA computation using
the latest requests from ONUs causes an extra delay to
grant the next TDM windows [14]. Therefore, some works
even propose DBA algorithms that do not use the REPORT
messages. For example, Cooperative DBA algorithms (CO-
DBAs) [15] compute the future bandwidth allocation based
on the mobile schedule information provided by a Base Band
Unit (BBU), which is not an element of a PON itself, instead
of waiting for the requests from ONUs. The allocation decision
that does not rely on the ONU requests enables CO-DBAs to
reduce the overall latency.

Based on the discussion about the negative effect of request
messages, we also consider a bandwidth allocation problem in
a PON model that is slightly different from the conventional
OLT/ONU interactions. Our model does not have allocation
requests from ONUs, which cause the extra delay and could
include unreliable statistics such as outdated queue state or
estimated future traffic demands. The REPORT messages
are repurposed so that they report the actual traffic amount,
which implies the discrepancy between the actual window size
needed and the actual allocation executed in the previous time
cycle. In other words, GATE messages to grant next upstream
windows are generated based on not the ONU requests but the
allocation decision computed from the history of the actual
traffic amount buffered at each ONU.

In this paper, we assume that an OLT divides the time
horizon into multiple logical time cycles {C;} (t = 1,...,T)
and solves the bandwidth allocation for each time cycle.
Note that each ONU receives its turn to send out upstream
traffic within the time cycle. With the notation, the amount
of bandwidth allocated to an ONU wu; € U at a cycle Cy is
denoted as x;[].

III. PROBLEM STATEMENT

Our DBA problem is formulated to provide slice-aware,
demand-responsive, and fair bandwidth allocation for ONUs.
The slice awareness indicates the capability to satisfy addi-
tional delay requirements imposed by some slices. The demand
responsiveness is defined as the ability to adjust window sizes
based on the amount of traffic loads at ONUs. Furthermore,
the bandwidth allocation is fair when some ONUs with huge
traffic do not dominate a cycle; i.e., each ONU receives an
opportunity to send a minimal amount of its queued traffic
within each cycle.

The concept of proportional fairness [16] is introduced to
formulate the DBA problem incorporating the three properties.
A vector x* is said to be (w,1)-proportionally fair if the
proportions of value differences in any other allocations x € X
sum to negative:

Zwiwgo (vx € X). (1)
p x*|i]

Here, the weight w; indicates the relative importance of
component ¢, which receives a resource quota.



It is known that a maximizer x* for the objective function
of the following form over a convex space X = {x} satisfies
the proportional fairness [13].

Z w; log x[i]. (2)

The intuition behind the relationship between the objective
function in Eq. (2) and the fairness concept comes from the
decreasing increment of logarithmic functions. Let us consider
two points x; and x2 such that z; < z5. When evaluating the
increment of a logarithmic function & with the same increment
d from each point, h(z1 + 6) > h(z2 + 0) always holds.

In our context, the increment of our objective function,
which represents the utility of a specific bandwidth allocation,
becomes larger when providing more bandwidth to an ONU
that is assigned a smaller bandwidth window. This property
enables us to avoid the domination of a time cycle by a small
number of ONUs.

The DBA problem is to determine a time partition x; =
(x¢[1])i=1,...,;u| of a cycle C;, where each element in the
partition corresponds to a window size allocated to an ONU
u; € U. Let C € Ry denote the fixed cycle duration where
every ONU receives a fraction of the cycle. An ONU slice
S; C U is defined as a subset of ONUs that are running on a
network slice j, and the prioritization weight p; indicates the
sensitivity of the slice S; to delay.

Assuming the availability of accurate information regarding
the amount b; = (by[i]);—1, |y of data queued in every
ONU u; at the starting time of its window in C}, the opti-
mization problem, which maximizes the total weighted utility
of allocated windows, is defined as follows:

Maximize f;(x;) = Z by [i]p;j.u,es, min{log(x[i] + 1),

log(by[i] +1)} 3)
subject to xtTlN <C - Z dii], @

where d is a vector of guard window sizes that prevent
collisions when switching ONUs.

The min function prevents the utility function from increas-
ing by overallocation. The maximum utility that an ONU
u; can experience at a cycle C; must be bounded by the
allocation that empties its entire buffer (x;[i] = by[i]). When
the allocation is less than the emptying allocation, the utility of
the ONU should be represented as an increasing function over
the allocation x. To represent these property, the objective cuts
off the increase in the utility by taking a minimum between
two logarithm values.

Since the constraint in Eq. (4) defines a scaled simplex of x,
the decision space X is a convex set. The objective function f
has the exact same form as the proportionally fair optimization
discussed above, recognizing the pair of variables b,[i] and
Pjiuzes; as a weight wy.

In addition, the fairness is defined with respect to two
weights b and p that indicate the load on ONUs and the
prioritization weight of slices, respectively. Therefore, the

maximization with these weights realizes the slice awareness
and demand responsiveness, since ONUs with more traffic load
and/or with more stringent delay requirements would receive
more bandwidth allocations.

IV. PERFORMANCE-GUARANTEED DYNAMIC BANDWIDTH
ALLOCATION BASED ON OCO

A. OCO-based DBA Algorithm

With the assumption of an oracle to report the accurate
amount of queued data by, the defined DBA problem is
easy to solve, as it has a concave objective function and a
convex variable space. However, the practical difficulty of
DBA problems arises from the fact that it is impossible to
obtain the actual data amount by at the starting time of the
window allocated to each ONU. This is because the demand
request in a REPORT message is computed based on the data
amount at the time when the message is issued. Furthermore, a
prediction of future traffic often differs from the actual amount.

The unavailability of the actual traffic amount hinders an
optimal bandwidth allocation. Conventional DBA algorithms
try to solve the problem by estimating the future traffic amount
with statistical or machine learning methods. Nevertheless,
the static optimization relying on the such estimates may
demonstrate high variance in its performance, as the estimation
is not an easy task in general even with recent machine
learning techniques. Furthermore, such estimation will be
more complex when considering the high user mobility in
access networks. Hence, it seems desirable to use an allocation
algorithm that gradually adjusts its allocation strategy based on
the past traffic patterns to obtain an optimal allocation robust
against fluctuating traffic over time, instead of changing an
allocation at every time cycle to make it the exact optimum for
an estimated traffic amount. In this sense, we want to design
an allocation algorithm that is numb to traffic changes over a
short time span.

Our proposal is to compute the window size x; from
the actual traffic from Cy to C;_; by an Online Convex
Optimization (OCO) algorithm, instead of solving the static
optimization problem with the estimated amount b,. Since the
exact amount of queued data at the previous cycle Cy_ is
observed after the window allocation x;_1, our algorithm can
use the actual data b,_; to decide an allocation for the next
cycle Cj.

By defining a convex version of the objective, g;(x;) =
—fi(x¢), the maximization problem of f; is converted to a
minimization problem of a convex function g; over x; with
the same constraint in Eq. (4). We use Projected Gradient
Descent (PGD) [12] to solve this problem. At Cj_;, the
accurate amounts of queued data are collected at the OLT via
REPORT messages (See Figure 2). Thus, the actual objective
function at the previous cycle g;—; becomes available (Eq.
(4) with b;_1). Note that this approach is different from the
traditional use of REPORT messages in that ONUs report the
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Fig. 3. Average Latency at ONUs in respect to the cycle size C' = 1.

actual traffic amount after the allocated window at C;_; starts.
PGD computes the next window size x; by

®)

where IIx (x) is a projection bringing x; back to the space
X, and n;_; is a diminishing learning step size. Since the
allocation for the next round is defined as a function of the
previous allocation, the recursive relation can be represented
as x; + PGD(x, ..., X;—1), which was initially desired.

xt < Hx (xe—1 — m—1Vge—1(xe-1))

B. OCO Performance Bound

We are interested in bounding the average performance of
a DBA algorithm over time rather than obtaining the exact
optimum allocations at each cycle, since the exact optimum
solution is not feasible without an oracle reporting the exact
future traffic amount b;. The regret of an algorithm A quan-
tifies the discrepancy between a sequence of allocations by A
and a hindsight optimum allocation (the most robust allocation
over all cycles till C'r):

T T
regretp(A) = sup { gt (x¢) — min th (X)} :
{91,--,97}CG | 1=/ e t=1

Note that the supremum over all possible sequences of
objective functions implies that the regret bound considers
adversarial scenarios, which is, in our case, a situation where
the actual traffic pattern is extremely irregular.

The gradient descent-based solution (PGD), which we use,
is known to have O(logT)-bound for the regret with the
convergence rate of 1/v/T for a convex objective function
over a convex variable range [12].

V. EXPERIMENT AND DISCUSSION
A. Network Settings

Simulations are conducted in a network with three slices:
So, 51, and Sy. The network hosts ten ONUs, and each slice
has a different number of ONUs as follows: {ug, u1, ..., us} €
So, {us,ug,ur} € Si, and {us,ug} € Sy. Among the ten
ONUs, ONUs ug, us,ug, and ug are heavily loaded with a
traffic generation function based on the Poisson distribution
Pois(A = 10), while the traffic for the other ONUs is generated

based on Pois(A = 1). Unless otherwise specified, the slice
prioritization weight p; is set to 1.0 for all slices. It is only
changed when evaluating the slice-awareness.

B. Performance Comparison: Typical DBA Algorithms

The proposed method is compared with typical generic DBA
algorithms: MAXWIN and AVGPRED.

1) MAXWIN: allocates either the predefined maximum
window size m or the traffic amount queued in ONUs, which
is reported in the previous REPORT message. Thus, this
algorithm is quite responsive to the demand from each ONU.
While both m = 0.2 and 0.4 are tested in the simulations,
only the result with m = 0.2 is discussed below, since their
performances are similar.

2) AVGPRED: assigns the average of the actual traffic
queued at each ONU in past cycles. When computing the
average at round C}, the algorithm uses the past traffic amounts
from Cy_; to Ci_p, where h is a given time horizon. The
performance is shown with a horizon h that provided the
best result among different h’s (h € {10,100,1000}). This
algorithm stays optimum for every static problem defined with
a predicated traffic amount. Note that an allocation vector can
be projected back to the solution space to make it a feasible
solution, preserving the relative allocation ratio among ONUs.

C. Experimental Results

We discuss our simulation results from the three aspects
desired for a DBA algorithm; namely, demand-responsiveness,
slice-awareness, and allocation fairness. In addition, an inter-
pretation of the OCO performance guarantee in our problem
is briefly summarized at the end.

1) Demand-responsiveness: Figure 3 illustrates the average
latency versus the delta value (At) depicted in Figure 2, during
which additional traffic unknown to a DBA arrives. This value
implies the amount of traffic that was not reported to the OLT
and can be added to the queues of ONUs before the next round.
The y-axis is the average latency of each traffic unit from 50
simulation runs. At and the average latency are represented
with respect to the cycle size C' = 1.

The proposed OCO-based algorithm realizes the lowest
queuing delay, on average, among the three methods. This
result indicates that our solution reduces the average latency
even though it does not provide the optimum for every single
static optimization. This is because the OCO-based approach
gradually adjusts its solution to an allocation that is robust
against underlying fluctuations of traffic.

The general decreasing trend of MAXWIN and AVGPRED
in the average latency could be explained by excessive ad-
justment towards traffic amount in each time cycle. As At
increases, the total amount of unreported traffic becomes
more random. Therefore, the negative impact of an unmatched
bandwidth allocation will be smaller in scale on average.
In contrast, the impact stays notable when At is smaller. It
is worth mentioning that this behavior does not imply the
usefulness of MAXWIN and AVGPRED with a larger At. This
is because it is reasonable to assume the duration between a
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GATE message and the previous REPORT message (At) is
within one time cycle C, and our OCO approach performs
better in the range.

Figure 4 shows the learning process of the allocation to
ONU wug by the proposed algorithm along with the observed
actual traffic pattern (grey bars) and the allocations of the other
algorithms. The result indicates that the OCO-based algorithm
quickly adjusts its allocation to the traffic pattern at earlier
cycles and continues fine-tuning at later cycles. The result also
indicates the convergence of our OCO-based allocation over
time.

Figure 5 illustrates the converged allocation to ONU ug
at Cigooo by each method. It indicates that the proposed
algorithm allocates slightly more resources to normally loaded
ONUs. While the difference in the allocation among the three
methods is quite small (on a scale of 107?), the results
discussed above show that the small difference in allocation
succeeds in reducing the average delay. Since the heavily

TABLE I
ALLOCATED WINDOW SIZES WITH DIFFERENT SLICE PRIORITIZATION
WEIGHTS: THE SLICE WEIGHT p;j ALLOWS DELAY-SENSITIVE SLICES TO
BE ALLOCATED LARGER WINDOW SIZES. (UNIT: CYCLE)

Latency-sensitive Slice | Standard Slice
(pj=12) (pj =1.0)
Heavily-loaded ONU 0.2642 0.1657
Normally-loaded ONU 0.0569 0.0169
TABLE II

AVERAGE LATENCY AT EACH ONU AND STANDARD DEVIATION oy OF
THE DELAYS IN ALL ONUS IN U. (UNIT: CYCLE)

ONUO | ONU1 | ONUS5 | ONU 6 ou
oCco 0.0351 0.0172 | 0.0169 | 0.0352 0.0094
MAXWIN 0.0230 | 0.0304 | 0.0302 | 0.0231 0.0039
AVGPRED 0.0231 0.0306 | 0.0310 | 0.0230 0.0039

loaded ONUs aggressively request the resources, the other
algorithms, which are relatively myopic, tend to allocate more
resources towards the ONUs with heavier loads. However, the
overallocation could be alleviated in the proposed algorithm
due to its gradual allocation updates towards a robust solution.

2) Slice-awareness: Table 1 indicates the difference in the
allocated window sizes depending on the difference among
network slices with different delay-sensitivity. The slice pri-
oritization weight p; was adjusted to represent the specific
delay requirements. In particular, assuming that slice S hosts
a delay-sensitive network service, the weight ps of slice S
was set to 1.2, while the weights for the other slices are 1.0. It
is observed that the ONUSs on S5 receive more bandwidth. For
example, the heavily-loaded ONU ug on S is allocated 0.2642
cycles at round C1ggpg, While the heavily-loaded ONUs on .Sy
and Sy receive 0.1657 cycles. This result empirically verifies
the possibility to accommodate different types of network
slices with diverse requirements through the tuning of the
parameter p;.

3) Fairness: Table II summarizes the average latency in
representative ONUs (ug, u1,us, and ug) and the standard
deviation oy of the delays across all ONUs in U. The
standard deviation of the proposed OCO-based algorithm is
relatively higher than the other methods. While this implies
the prioritization of some ONUs, the standard deviation stays
in the same order (1073) as the other algorithms. This fact
empirically shows that the proposed algorithm maintains the
fairness in allocation in terms of the latency, even though it
allocates more resources to some ONUs depending on the
weight metrics. In other words, the algorithm fairly allocates
the resources so that the latency levels stay within a certain
range across all ONUs.

VI. CONCLUSION

This paper proposes an Online Convex Optimization (OCO)
based solution to the Dynamic Bandwidth Allocation (DBA)



problem. Our algorithm is aimed at realizing an bandwidth
allocation that is slice-aware, demand-responsive, and fair
among ONUs in PON access networks, formulating the DBA
problem based on the concept of proportional fairness with
appropriate weight parameters. The use of the OCO scheme
enables our allocation solution to be robust against fluctuations
of traffic, which eventually results in the reduction of the
average latency over time. The simulation results indicate
that the proposed solution mitigates the latency compared to
other typical allocation approaches. Furthermore, the results
infer the effectiveness of a robust allocation over time for
access networks with dynamic traffic patterns, in contrast to
the optimum solutions at static optimizations formulated with
an estimated traffic pattern.
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