
A Reinforcement Learning-Based Admission
Control Strategy for Elastic Network Slices

Zhouxiang Wu, Genya Ishigaki, Riti Gour, and Jason P. Jue
Department of Computer Science, The University of Texas at Dallas, Richardson, Texas 75080, USA

Email: {Zhouxiang.Wu, gishigaki, rgour, jjue}@utdallas.edu

Abstract—This paper addresses the problem of admission
control for elastic network slices that may dynamically adjust
provisioned bandwidth levels over time. When admitting new
slice requests, sufficient spare capacity must be reserved to allow
existing elastic slices to dynamically increase their bandwidth
allocation when needed. We demonstrate a lightweight deep
Reinforcement Learning (RL) model to intelligently make ad-
mission control decisions for elastic slice requests and inelastic
slice requests. This model achieves higher revenue and higher
acceptance rates compared to traditional heuristic methods. Due
to the lightness of this model, it can be deployed without
GPUs. We can also use a relatively small amount of data to
train the model and to achieve stable performance. Also, we
introduce a Recurrent Neural Network to encode the variable-size
environment and train the encoder with the RL model together.

Index Terms—Network Slicing, Admission Control, Reinforce-
ment Learning, Proximal Policy Optimization

I. INTRODUCTION

5G communication networks are expected to provide service
not only for traditional mobile communication but also for
a wide range of other heterogeneous applications. Network
slicing is an attractive technology for addressing this prob-
lem. Network slicing enables the creation and deployment of
multiple virtualized network slices over a common physical
infrastructure, with each slice consisting of a set of isolated
virtual computing and networking resources that are capable
of satisfying the unique requirements of specific applica-
tions. With the help of network function virtualization (NFV)
and software-defined networking (SDN) [1] in 5G networks,
swiftly instantiating network slice and allocating resources
becomes possible.

Network slices may be characterized as either static or
elastic. In a static slice, the amount of resources provisioned
for the slice is fixed and cannot change during the service
time of the slice. On the other hand, in an elastic slice, the
amount of resources provisioned for the slice may change over
the lifetime of the slice. With elastic slices, the network can
accommodate a greater number of slices compared to the case
in which each slice is allocated its maximum peak bandwidth;
however, some spare capacity needs to be available to allow
slices to dynamically transition to higher rates when needed.
Thus, in addition to a dynamic resource allocation scheme
for network slicing, a slice admission control policy must be
deployed to ensure sufficient quality of service for elastic slices
while maximizing revenue for the network operator.

Several slice admission policies [2] have been developed

in recent years; however, they have various drawbacks. Also,
existing works do not explicitly consider the elastic slice
requests. We propose a novel reinforcement-learning-based
admission control policy that utilizes foresight and attempts to
optimize revenue in the long-term instead of only considering
immediate rewards. Reinforcement learning is goal-directed
learning and has been applied in many artificial intelligent con-
trollers for games. This paper adopts a reinforcement learning
technology named Proximal Policy Optimization (PPO) [3],
which is the default method used in OpenAI Gym. We employ
this technique to implement an admission controller that gains
more revenue and a higher acceptance rate in the long term
compared to existing heuristic methods. Our RL controller
policy does not require prior knowledge of the request arrival
process or the bandwidth distribution for elastic slice requests,
and the policy can be deployed by the network operator
independently. Despite lacking traffic load information, the
controller can reject some requests to avoid congestion in the
future based only on information about remaining bandwidth
and the set of current slice requests in service. A critical
prerequisite of deep learning is that the neural network input
is a tensor with a fixed size; however, the number of slice
requests in service changes from time to time. We use one
variant of Recurrent Neural Networks (RNNs) [4] to transform
the variable-size environment state description into a fixed-size
vector. We test this model on a single link with various types
of slice requests. Only about 100 pieces of data are needed to
train our model. Thus, this model’s overhead is limited, and
in the test phase, the time required for each decision is around
3 msec.

The remainder of the paper is organized as follows. Section
II defines the network slice requests and a pricing strategy.
In Section III, we briefly introduce RL and RNN to facilitate
understanding of the proposed model. Section IV describes the
model in detail and includes discussion on training, validation,
and test phases. In Section V, we show the procedure of
producing data, and we evaluate the model’s performance.
Finally, we discuss related work in Section VI and conclude
in Section VII.

II. SLICE REQUEST AND PRICING STRATEGY

A. Slice Request

In general, a network operator receives two types of requests
from slice operators: deployment requests and scale requests.
A deployment request Rd defines a blueprint of a new slice

TABLE I
PREDEFINED CLASS

Class I Class II
b0 0% 100% 50%
b1 100% 0% 0%
b2 0% 0% 50%

by specifying a slice topology, each source-destination pair
(s, d) in the topology, a holding time h, the initial bandwidth
requirement bsd(t0), and the estimated distribution of future
bandwidth B̂sd, where t0 represents the time when the new
slice will be deployed into the physical network. In this
work, we assume that a slice operator chooses one of several
predefined classes to specify the distribution of bandwidth
B̂sd. Table I shows a simple example of predefined slice
classes, where each slice specifies the percentage of its holding
time during which it expects to use one of three possible
bandwidth levels (b0, b1, and b2). The type of slice (elastic or
inelastic) is specified by this distribution of future bandwidth;
for example, Class I in Table I corresponds to inelastic slice
requests while Class II corresponds to elastic slice requests.
Also associated with a set of slice classes is a pricing structure,
which determines the price per unit bandwidth for each class at
each bandwidth level. A scale request Rs, which is issued only
by elastic slices, indicates a request for increase or decrease of
resources assigned to the slice and specifies a new bandwidth
allocation bsd(tj) at next time step tj(tj ∈ [0, h]). In most
cases, each slice operator has its own unique policy, based
on its traffic pattern, that determines when it wants to send a
scale request to the network operator. The definitions of the
elastic slice classes will depend on the traffic being carried
by the slices. A slice operator may estimate the intensity or
distribution of traffic on a slice link as a function of time and
map this to a discrete set of pre-determined bandwidth levels.
The slice operator may either indicate the fraction of time at
each bandwidth level or may provide more detailed distribu-
tions for the time spent at a given level. The network operator
can then use this information to determine the parameters of
the elastic slice classes that it will support.

B. Pricing Strategy

In order to model the profit of a network operator, the
revenue from providing bandwidth to slices and the penalty of
rejecting scale requests from the existing slices are defined as
follows. When receiving a deployment request, the admission
control module of a network operator decides if the request
should be accepted or not. A rejection of a deployment
request implies that the physical network does not have enough
resources to serve the new slice. This scenario does not give
the network operator an explicit penalty, since there is no
commitment to the slice by the operator. However, the network
operator loses opportunities to profit by rejecting too many
new slices; i.e., the low utilization of physical infrastructure.

On the other hand, the admission module should not reject a
scale request because the acceptance of a deployment request

Fig. 1. Slice pricing: (a) Static slice, price = 50; (b) Elastic slice, price = 60;
(c) Static slice with peak rate, price = 80.

could be seen as a contract that the operator promises to
accommodate the future scaling of the slice. However, in
reality, it is possible for a network operator to have insufficient
resources to provision additional resources for a scale request
if too many slices attempt to scale up their bandwidth at
the same time. This unsuccessful scaling may incur a severe
penalty, as it is a contract violation. An exception to the
penalty for unsuccessful scale requests is the case in which
the requested bandwidth bsd(tj) in a scale request diverges
from the reported distribution B̂sd . Note that the distribution
of future traffic could be based on a rough estimation; however,
inaccurate estimation of expected bandwidth levels by a slice
operator may cause more rejections of the slice operator’s scale
requests. Therefore, there is an incentive for a slice operator
to provide more accurate information to the network operator
[5].

The revenue of a slice is calculated by the amount of
bandwidth used by the slice over its holding time h. The price
function p is a function of the predefined bandwidth classes.
Suppose there is an elastic slice request and an inelastic slice
request. We observe the following principles: (1) When the
total bandwidth used by both slices is the same, an elastic
slice should be charged slightly more per unit of bandwidth
than a slice with static bandwidth (See Fig. 1-a, b), since the
dynamics in resource allocation for an elastic request results
in increased complexity for the network operator when pre-
planning the provisioning. (2) When a slice operator opts for
a dynamic slice with reduced overall bandwidth as opposed
to a static slice provisioned for the slice’s peak bandwidth
requirement, the total amount charged should be reduced since
the freed resources may be used by the network operator to
accommodate additional slices and earn additional revenue
(See Figure 1-b, c). In order for elastic slicing to be worthwhile
to the network operator, the total revenue generated from
elastic slices at a lower revenue per slice (but higher revenue
per unit of reserved bandwidth) must be greater than the
revenue generated by accommodating only fixed slices at a
higher revenue per slice.

To discourage slice operators from issuing scale requests for
amounts of bandwidth that significantly exceed its bandwidth
distribution profile, we alleviate punishment by a factor α ∈
[0, 1] which is the similarity between history distribution and

Fig. 2. RL Procedure

Fig. 3. RL compared with classification

reported distribution. Kullback–Leibler divergence DKLis a
measure of how one probability distribution is different from
a second, reference probability distribution. Since the higher
DKL is, the larger difference between the two distributions.
We use a variant of KL-divergence as the value of α, which
should be between 0 and 1 and decrease with KL-divergence
increasing. We choose −exp−DKL . We multiply this value
with basic reward as the punishment for rejection of elastic
scale requests.

III. BACKGROUND ON DEEP RL AND RNN

In this paper, we use a policy-based RL method as shown
in Fig. 2. The controller employs a policy π, which takes the
environment state as the input and whose output is the selected
action. Rewards are used to determine the best policy.

A. Policy Evaluation

Instead of following a traditional approach which utilizes
RL with a Markov Decision Procedure, we choose to approach
RL from the deep learning perspective. In traditional deep
learning applications, such as image classification, the input
may be a pixel matrix, and the output is a predicted label
distribution, as shown in Fig. 3 (a). The procedure for deep
reinforcement learning is similar to classification. The core
part in both methods is a Deep Neural Network (DNN). As
Fig. 3 (b) shows, the input of a DNN consists of environment
state features, and the output is the action distribution. In
classification, there is a ground truth label for each image. We
can compute the difference between the output of the model
and ground truth distribution precisely, then we optimize the
DNN function based on the difference, which usually is called
loss. However, in RL, we do not have ground truth for each
environment state, so we cannot directly calculate the loss.

Instead, we use the following method to evaluate a policy
πθ, where θ is the parameter set for DNN. First, we use
π to interact with the environment and record the process

as a trajectory τ of the tuples. Each tuple contains state
si, action ai, and reward ri. Suppose the controller ends
the game within time T . Thus, the sequence is represented
as {(s1, a1, r1), (s2, a2, r2), ..., (sT , aT , rT)}. The total reward
for the τ is given by:

Rθ(τ) =
T∑
t=1

rt. (1)

The cumulative reward is a reliable way to evaluate the pol-
icy. However, even with the same actor, Rθ could be different
from time to time due to the environment’s randomness. Thus,
the expectation of the cumulative reward Rθ is more suitable
to evaluate the policy. Suppose we use the policy πθ and play
the game N times to obtain {τ1, τ2, ...τN}. We calculate the
expected cumulative reward as follows:

Rθ =
∑
τ

Rθ(τ)P (τ |θ) ≈
1

N

N∑
n=1

R(τn). (2)

The gradient of the expected cumulative reward can be calcu-
lated by:

∇Rθ =
∑
τ

R(τ)∇P (τ | θ)

=
∑
τ

R(τ)P (τ | θ)∇ logP (τ | θ)

= Eτ∼Pθ(τ)[R(τ)∇ logPθ(τ)].

(3)

Algorithm 1 Policy Gradient
1: Initialize the policy parameter θ at random and learning

rate µ
2: while Not Converge do
3: Generate trajectories {τ1, τ2, ...τN} on policy πθ
4: Calculate expectation of cumulative reward Rθ
5: Update policy parameters by θ ← θ + µ∇Rθ
6: end while

B. Proximal Policy Optimization

Each batch of trajectories in the policy gradient updates
the parameters θ only once. We call this type of policy-
based method the on-policy method. The on-policy feature
is a problem when trajectories are challenging to produce,
which is the case for most realistic situations. The goal of
Proximal Policy Optimization (PPO) is to use the trajectories
from policy πθ′ to train θ with fixed θ

′
. Thus, we can reuse

the trajectories to save resources. In the policy gradient, the
gradient of expected cumulative rewards is defined as follows:

∇Rθ = Eτ∼Pθ(τ)[R(τ)∇ logPθ(τ)]. (4)

With the help of importance sampling [6], the new gradient
function could be represented as follows:

∇Rθ = Eτ∼pθ′ (τ)

[
pθ(τ)

pθ′(τ)
R(τ)∇ log pθ(τ)

]
. (5)

However, Pθ cannot diverge too far from Pθ′ since the vari-
ance of expectation of cumulative reward increases with the
difference between Pθ and Pθ′ . PPO employs KL divergence
between Pθ and Pθ′ to constrain the difference. We introduce
the main idea of PPO and omit the implementation details due
to paper length restrictions.

C. RNN

Recurrent neural networks (RNNs), are a class of neural
networks that allow previous outputs to be used as inputs while
having hidden states. RNNs have the following advantages.

1) Possibility of processing inputs of any length
2) Model size not increasing with the size of input
3) Computation taking into account historical information
4) Weights are sharing across time

There are two well-known variants of RNNs, which are long
short-term memory (LSTM) and gated recurrent unit (GRU)
[7]. This paper takes the advantage of RNNs and employs
GRU as an encoder of variable-size features.

IV. PROPOSED MODELS

This section discusses how to extract features from the
environment, the RNN encoder, the DNN structure, and the
objective function.

A. Environment Description

Feature engineering is a critical cornerstone for successful
machine learning. Thus, the accurate description of envi-
ronment features is crucial for reinforcement learning. We
divide the environment features into two parts. The first part
includes the requests in service {R1, R2, ..., RN}, where N
is the number of requests in service. Each request is a tuple
Ri = (Bi, Ti, Ri) where Bi is the request bandwidth, Ti is
the remaining service time, and Ri is the request type in the
one-hot encoding format. Ri ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)},
where (1,0,0), (0,1,0) and (0,0,1) corresponds to the static slice
deployment request type, the elastic slice deployment request
type, and the elastic slice scale request type, respectively.
Thus, each Ri can be represented by a 1 × 5 vector. For
example, there are three requests in service. The first request
R1 is a static deployment type whose request bandwidth is
two units, and the remaining service time is 1 second. The
second request R2 is an elastic deployment type whose request
bandwidth is 1 unit and remaining service time is 3 seconds.
The third request R3 is elastic scale type whose bandwidth B3

is 8 units and whose service time T3 is 0.05 second. These
three requests can be represented as the following sequence:
{(2, 1, 1, 0, 0), (1, 3, 0, 1, 0), (8, 0.05, 0, 0, 1)}, and the RNN
module can take one row at a time. The second part includes
the value of the remaining bandwidth, slice request, which is
represented in a 1 × 5 vector as above, except replacing the
remaining service time with the total service time. As a result,
we encode the second part as a 1× 6 vector.

Fig. 4. Encoding Procedure

B. RNN Encoder

Since the number of slice requests in the system changes
from time to time, we utilize RNN to encode requests in
service as a fixed-length vector. To manifest the essential
principle, we choose a single-level RNN module to explain
the procedure of transforming from requests to a fixed-size
vector.

In Fig. 4, we have three service requests {R1, R2, R3},
and three corresponding outputs: {O1, O2, O3}. Hidden State
(HS) is initialized to the zero vector. We concatenate a request
Ri and a hidden state from the last step HSi−1 and put the
result into the RNN model to get output Oi. We use O3 as
input to another fully connected layer. The output of this layer
is the code of these three requests. In this way, we transform
variable-size codes of requests into a fixed-size vector, and
the vector contains information of all requests. With the help
of PyTorch, we could effortlessly replace RNN with other
variants, such as LSTM, GRU, and multi-level variants. The
output length is a hyper-parameter, which we set to 10 in our
experiment. Then, we concatenate the final layer’s output and
the second part of the environment features into a 1×16 vector.
We utilize this vector as input of the DNN model.

C. DNN Model

We use the Proximal Policy Optimization (PPO) algorithm
to train an intelligent controller. As mentioned in Section III,
the heart of PPO is a deep neural network model. The input to
this model consists of features extracted from the environment,
as described in the subsection B, and the output is an action
distribution. We introduce two more functions. One of them
is ReLu, and another is Softmax. ReLu is the most popular
activation function in deep learning and is shown as follows:

h(x) =

{
x, if x > 0
0, otherwise (6)

Softmax could convert any list of real numbers to a dis-
tribution. For example, if the input of Softmax is a list
[a1, a2, .., aN], then the output is a list [σ1, σ2, .., σN] where
σi =

eai∑N
n=1 e

an
. The output of Softmax is a discrete distribu-

tion. We employ two fully connected layers with ReLu and
apply the Softmax function for the output layer. The entire
procedure is shown in Fig. 5.

Fig. 5. Complete Procedure

D. Objective Function

We use the policy πθk to interact with the environment
and obtain N trajectories, which contains Tn tuples for each
trajectory n. We show the first trajectory τ1 as follows:

τ1 : {(s11, a11, R(τ1)), (s22, a22, R(τ2))...(s
T1
2 , aT1

2 , R(τT1))}.

The remaining trajectories {τ2, τ3...τN} have the exact same
format as τ1. To increase accuracy, we replace R(τn) with
Aθ(s

n
t , a

n
t), which is defined as follows with the discount

factor γ ∈ [0, 1]:

Aθ
k

(snt , a
n
t) =

Tn∑
t′=t

γt
′−trnt′ . (7)

We define two more values, Jθ
k

(θ) and Jθ
k

PPO(θ).

Jθ
k

(θ) ≈
∑

(st,at)

pθ (at | st)
pθk (at | st)

Aθ
k

(st, at) (8)

Jθ
k

PPO(θ) = Jθ
k

(θ)− βKL
(
θ, θk

)
(9)

We use the Algorithm 2 to update parameter θ and generate
policy πθ.

Algorithm 2 PPO
1: Initialize the policy parameter θ0, β, KLmax and KLmin
2: for each iteration do
3: Using θk to interact with the environment to collect

{st, at}and compute advantage Aθ
k

(snt , a
n
t)

4: Find θ optimizing Jθ
k

PPO

5: if KL
(
θ, θk

)
> KLmax then

6: increase β
7: end if
8: if KL

(
θ, θk

)
< KLmin then

9: decrease β
10: end if
11: end for

While the policy πθk interacts with the environment, we
employ the exploit strategy, which samples actions from the
output action distribution. While this model actually makes
decisions, we apply a greedy strategy, which takes the action
with the highest possibility.

V. PERFORMANCE EVALUATION

In this section, we introduce our experimental setup and
compare the performance of the proposed scheme with First-
In-First-Out (FIFO) and two random methods.

TABLE II
PREDEFINED CLASS

Scenario No. ID bandwidth λ µ distribution

Scenario 1
0 [2] 1 1 [1]
1 [5] 1 1 [1]
2 [2,8] 1 1 [0.5,0.5]

Scenario 2

0 [2] 0.33 1 [1]
1 [5] 0.5 0.5 [1]
2 [2,8] 1 0.33 [0.5,0.5]
3 [2,4,6] 0.25 0.25 [0.5,0.2,0.3]
4 [1,9] 0.33 0.33 [0.5,0.5]

Fig. 6. Cumulative Reward in Scenario 1 Traning

A. Simulated Data

We consider two scenarios, with each consisting of a set of
possible elastic and inelastic request types. Each type contains
four elements: ID, request bandwidth, arrival rate λ, service
rate µ, and reported distribution. Each request arrival event
follows a Poisson process with parameter λ, and service time
follows an exponential distribution with parameter µ. We
define a specific numerical value for each element in Table
II.

For the elastic type, the amount of time it stays in a
given state is sampled from an exponential distribution with
parameter 50. Thus, the average time an elastic request stays in
one state is 0.02 units of time, which means that the switches
between states occur frequently during one elastic request.

B. Training Phase

In Scenario 1, on average, requests require 12 units of
bandwidth, and we set the system to contain ten units of
bandwidth to stress the controller to learn an effective strategy
rather than accept all requests. We generate ten trajectories and
generate 20 requests for each type and each trajectory to train
the model. In the validation phase, each type of request has
300 requests, and we produce five trajectories. We employ the
validation data to locate the best model during training. To be
more accurate, we produce 300 of each type request and ten
trajectories in the test phase. Fig 6. shows average validation
cumulative rewards during training. After 200 iterations, the
performance of the model converged.

TABLE III
RESULT SUMMARY

No. Criteria RL FIFO Rand1 Rand2

1

Revenue 1442.431 1408.226 599.603 1335.188
AR 0.630 0.432 0.135 0.411

AR for SD 0.566 0.588 0.350 0.558
AR for ED 0.313 0.728 0.497 0.682
AR for ES 0.684 0.400 0.071 0.379

2

Revenue 9472.215 9317.903 4081.671 8392.998
AR 0.683 0.653 0.405 0.621

AR for SD 0.758 0.749 0.493 0.712
AR for ED 0.851 0.869 0.593 0.810
AR for ES 0.666 0.632 0.378 0.601

Fig. 7. AR for ES change with γ in Scenario 2

In Scenario 2, the basic setup is similar to Group 1. We
change the total bandwidth to 20 units to test the model’s
performance in a relatively rich environment. There is a
potential risk that the agent may accept requests when there
are insufficient remaining resource to fulfill the request. In this
situation, we reject the request and give a harsh punishment
to the agent to indicate that the behavior is illegal.

C. Result

We compare our model with three other simple methods that
we have developed. The first method is FIFO which rejects
requests only when the system cannot provide the requested
resource. The second method is to randomly reject requests
according to the ratio of residual bandwidth in the system to
total bandwidth. The third method has a ten percent chance
of rejecting the request. Table III shows the results, where
Rand1 and Rand2 correspond to the second and third methods.
AR is the request acceptance ratio and AR for SD, AR for
ED, and AR for ES corresponds to the acceptance ratio of
static deployment request type, the acceptance ratio of elastic
deployment request type, and the acceptance ratio of elastic
scale request type, respectively.

During the experiment, we find that the discount factor
γ is a critical hyper-parameter. We need to set γ to 0.9 to
maximize the model’s performance in a relatively lower total
bandwidth setup. On the other hand, when the system has
higher bandwidth, we could set the discount factor to 0.4 or

0.5 to obtain higher cumulative revenue. A higher value of γ
indicates that the model places a greater emphasis on future
benefits. When we set γ equal to 1, the model would focus on
accepting elastic scale requests to obtain the highest value for
AR for ES, as shown in Fig 7. Our environment is different
from the typical RL environments because, unlike a game, our
environment does not contain a beginning and an end; thus, γ
selection is different from the traditional RL.

Generally, based on the experimental results, we conclude
that our model is able to utilize foresight in order to avoid
punishment by rejecting deployment requests before the band-
width is fully occupied; however, the overall revenue and
acceptance ratios increase despite these rejections.

VI. RELATED WORK

In [2] the authors describe the four main objectives of slice
admission control strategies, including revenue optimization,
quality of service (QoS) control, inter-slice congestion control,
and slice fairness assurance. The authors also divide the strate-
gies into five groups: FIFO, priority-based, random, greedy,
and optimal. We compare our model with FIFO and two
random methods. The priority-based methods always require
prior knowledge of ranking for the slice types. The greedy
policy makes decisions greedily based on history. The optimal
policy is not realistic in our situation due to its time-consuming
nature.

VII. CONCLUSIONS

We propose a lightweight deep RL model for making ad-
mission control decisions for elastic slices. The model obtains
higher revenue compared with some heuristic methods. Our
model training process requires only a relatively small amount
of data, and it could reuse data which avoids wasting time and
resources on collect training data. We have examined other
RL technologies such as Q-learning and Pathwise Derivative
Policy Gradient. However, these methods’ performance were
found to be unstable. We plan to fine-tune more advanced RL
methods and apply the models in the future.

REFERENCES

[1] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie, “A survey on software-
defined networking,” IEEE Communications Surveys & Tutorials, vol. 17,
no. 1, pp. 27–51, 2014.

[2] M. O. Ojijo and O. E. Falowo, “A survey on slice admission control
strategies and optimization schemes in 5g network,” IEEE Access, vol. 8,
pp. 14977–14990, 2020.

[3] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[4] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn
encoder-decoder for statistical machine translation,” 2014.

[5] V. Sciancalepore, K. Samdanis, X. Costa-Perez, D. Bega, M. Gramaglia,
and A. Banchs, “Mobile traffic forecasting for maximizing 5g network
slicing resource utilization,” in IEEE INFOCOM 2017-IEEE Conference
on Computer Communications, pp. 1–9, IEEE, 2017.

[6] R. M. Neal, “Annealed importance sampling,” Statistics and computing,
vol. 11, no. 2, pp. 125–139, 2001.

[7] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

