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Steady-State Rate-Optimal Power Adaptation in
Energy Harvesting Opportunistic Cognitive

Radios With Spectrum Sensing and
Channel Estimation Errors
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Abstract—We consider an uplink opportunistic cognitive radio
network, operating in frequency division duplexing (FDD) mode
and consisting of Nu secondary users (SUs) and an access point
(AP), that can access a spectrum band licensed to a primary user.
Each SU is capable of harvesting energy, and is equipped with
a finite size battery, for energy storage. The SUs operate under
a time-slotted scheme, where each time slot consists of three
non-overlapping phases: 1) spectrum sensing phase; 2) channel
probing phase; and 3) data transmission phase. The AP feeds
back its estimates of fading coefficients of SUs–AP link to SUs.
To strike a balance between the energy harvesting and the energy
consumption, we propose a parametrized power control strategy
that allows each SU to adapt its power, according to the feedback
information and its stored energy. We establish a lower bound
on the achievable uplink sum-rate of SUs–AP links, in the pres-
ence of both spectrum sensing and channel estimation errors. We
optimize the parameters of the proposed power control strategy,
such that the derived uplink sum-rate lower bound is maxi-
mized, subject to an interference constraint. Via simulations, we
corroborate our analysis and explore spectrum sensing-channel
probing-data transmission trade-offs.

Index Terms—Opportunistic cognitive radio, energy harvest-
ing, imperfect spectrum sensing, channel estimation, constrained
sum-rate maximization, average interference power constraint,
finite-size battery, steady-state battery operation, adaptive trans-
mission power.

I. INTRODUCTION

A. Literature Review

THE EXPLOSIVE rise in demand for high data rate wire-
less applications has turned the spectrum into a scarce

resource. Cognitive radio (CR) technology is a promising
solution which alleviates spectrum scarcity problem by allow-
ing an unlicensed secondary user (SU) to access licensed
frequency bands in a such way that its imposed interference
on primary users (PUs) is limited [1]–[3]. Therefore, CR
systems can increase spectrum efficiency significantly. CR
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systems are mainly classified as underlay CR and opportunis-
tic CR systems. In underlay CR systems, SUs use a licensed
frequency band simultaneously with PUs, conditioned that
the interference power cuased by SUs and imposed on PUs
remains below a pre-determined level. In opportunistic CR
systems, SUs use a licensed frequency band as long as the
frequency band is not used by PUs. While opportunistic CR
systems do not require coordination between PUs and SUs
to acquire channel state information (CSI) corresponding to
SU-PU link, they necessitate spectrum sensing to monitor
and detect PUs’ activities and protect PUs against harmful
interference caused by SUs [4]–[6]. In these systems, the sta-
tus of PUs’ activities (i.e., whether or not PUs are busy or
idle) and the duration of spectrum sensing affect the system
performance [5]–[9]. Spectrum sensing is prone to errors.
These errors can be characterized in terms of mis-detection
and false alarm probabilities and need to be considered in
the system design. Another important factor that impacts
the performance of opportunistic CR systems is the level of
assumption made regarding the availability of CSI. In oppor-
tunistic CR systems, although CSI corresponding to SU-PU
link is not required, still CSI corresponding to SU transmitter–
SU receiver (SUtx–SUrx) link is needed for properly adapting
the data transmission.
In addition to spectral efficiency, energy efficiency is

another important metric to consider when designing com-
munication systems [10]–[16]. Energy harvesting (EH) has
been recognized as an effective approach for improving the
energy efficiency. EH-powered devices can operate without
the need for external power cables or periodic battery replace-
ments [17], [18]. EH-enabled CR systems have received
substantial attention as a promising solution for increasing
both energy efficiency and spectral efficiency [19]–[21]. EH-
enabled communication systems can harvest energy from
ambient energy sources (e.g., solar, wind, thermal, vibra-
tion) or radio frequency (RF) signals. For instance, in an
ambient RF EH-enabled CR system, the energy of emit-
ted RF signals from TV/radio broadcast towers, cellular
base stations, and Wi-Fi access points (APs) is captured by
SUtx antenna and stored in its battery [22]–[26]. A dedicated
RF signal source can be utilized for energy harvesting and
enabling simultaneous wireless information and power transfer
(SWIPT) [27], [28].
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The body of research on EH-enabled communication
systems can be grouped into two main categories, depend-
ing on the adopted energy arrival model [10], [29]: in the
first model, the energy arrival is deterministic and the trans-
mitter has a causal or non-causal knowledge of the energy
arrival at the beginning of transmission [30]. In the second
model, the energy arrival is stochastic [10]. In practice, the
energy arrival of ambient energy sources, including ambient
RF signal sources, is intrinsically time-variant and often spo-
radic. This natural factor degrades the performance of the
battery-free EH-enabled communication systems in which a
“harvest-then-transmit” strategy is adopted, i.e., users can only
transmit when the energy harvested in one time slot is suffi-
cient for data transmission [31]. To flatten the randomness of
the energy arrival, the harvested energy is stored in a battery,
to balance the energy arrival and the energy consumption [10].
In practice, the capacity of the batteries is limited, and this can
result in an energy overflow.
Power/energy management in EH-enabled communication

systems with finite size batteries is necessary, in order to adapt
the rate of energy consumption with the rate of energy har-
vesting. If the energy management policy is overly aggressive,
such that the rate of energy consumption is greater than the
rate of energy harvesting, the transmitter may stop function-
ing, due to energy outage. On the other hand, if the energy
management policy is overly conservative, the transmitter may
fail to utilize the excess energy, due to energy overflow, and
the data transmission would become limited in each energy
allocation interval.
Focusing on opportunistic EH-enabled CR systems, we real-

ize that power control strategies, aiming at optimizing the
performance of SUs, should be designed such that spectrum
sensing and its corresponding errors, as well as spectrum
sensing-data transmission trade-offs are incorporated in the
design process. For instance, the authors in [22] considered
a system model, where SUtx can perform energy harvest-
ing and spectrum sensing simultaneously. Depending on the
outcome of its spectrum sensing, SUtx continues to harvest
energy when the spectrum is sensed busy, or transmits data
when the spectrum is sensed idle, and studied maximizing
SUtx–SUrx channel capacity, via optimizing the threshold of
the energy detector employed for spectrum sensing. Aiming
at a similar goal (i.e., maximizing the SU’s channel capacity),
the authors in [26] considered a modified system model, where
SUtx cannot perform energy harvesting and spectrum sensing
at the same time. The authors investigated the optimal mode
selection policy (i.e., to choose whether to access the spec-
trum or to harvest energy) for CR sensor networks. Targeting
the same goal as [22], [26], the authors in [7], [16] studied
the optimal allocation of energy to be consumed for spectrum
sensing versus data transmission, assuming that SUtx has a
finite size data buffer. The authors in [8] considered a different
system model, where energy harvesting, spectrum sensing, and
data transmission occur in three non-overlapping time intervals
within a frame. They studied maximizing the SUtx–SUrx link
throughput, via optimizing the duration of spectrum sensing
and the threshold of the energy detector employed for spec-
trum sensing, and investigated the energy harvesting-spectrum

sensing-data transmission trade-offs. We note that the works
in [7], [8], [16], [22], [26] assume that CSI of SUtx–SUrx link
is perfectly known at both SUtx and SUrx.

In general, the power control strategies designed for oppor-
tunistic EH-enabled CR systems should depend on the level
of assumption made regarding the availability of CSI corre-
sponding to SUtx–SUrx link, and whether the adapted transmit
power levels are continuous or discrete values. In practice,
only partial CSI can be available at SUtx and SUrx due to
several factors (e.g., channel estimation error and limitation
of feedback channel from SUrx to SUtx). Partial CSI has
deteriorating effects on the performance of communication
systems, including EH-enabled CR systems, and should not
be overlooked. In the following, we reference several works
that consider the effects of partial CSI on the performance of
EH-enabled communication systems, with stochastic energy
arrival model and finite size batteries. Assuming perfect CSI
at the receiver (Rx) and quantized CSI (due to limited feedback
channel) at the transmitter (Tx), the authors in [32] aimed at
maximizing the Tx’s bit rate, via adapting discrete-valued data
transmit power and modulation order, according to the quan-
tized CSI of Tx–Rx link and the Tx battery state. Assuming
perfect CSI at the Rx and single-bit partial CSI at the Tx (due
to severely limited feedback channel), the authors in [30] tar-
geted at maximizing the Tx-Rx link throughput, via optimizing
the threshold of the binary channel quantizer and discrete-
valued data transmit power. Assuming perfect CSI at the Rx
and partial CSI at the Tx (due to channel estimation error),
the authors in [29], [33] analyzed maximizing the Tx’s aver-
age throughput, in two asymptotic regimes, where the rate
of energy harvesting is very small or very large, via opti-
mizing continuous-valued data transmit power. We note that,
none of the referenced works in [29], [30], [32], [33] consid-
ered CR systems. Furthermore, these works assume that CSI
is perfectly known at the Rx.

B. Knowledge Gap and Our Contributions

We consider an uplink opportunistic EH-enabled CR
network operating in frequency division duplexing (FDD)
mode and, consisting of Nu SUs and an access point (AP),
that can access a wideband spectrum licensed to a primary
network. Each SU is capable of harvesting energy from natural
ambient energy sources, and is equipped with a finite size
rechargeable battery, to store the harvested energy. Our main
objectives are 1) to study how the achievable uplink sum-rate
of SUs is impacted by the combined effects of spectrum sens-
ing error and imperfect CSI of SUs–AP links (due to channel
estimation error) and 2) to design an energy management strat-
egy that maximizes the achievable uplink sum-rate of SUs,
subject to a constraint on the average interference power that
SUs can impose on the PU. To the best of our knowledge, our
work is the first to study the impact of these combined effects
on the performance of an uplink opportunistic EH-enabled CR
network.
The importance of our study is evident by the works

in [34]–[39], which demonstrate the significance of consid-
ering the effect of imperfect CSI at the Rx, due to channel
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estimation, on the Tx achievable rate. We note that the Tx
in these works is a primary transmitter (i.e., it is not a sec-
ondary transmitter in a CR system) and has a traditional stable
power supply. One expects that spectrum sensing error, com-
bined with random energy arrival at the Tx, exacerbates the
effect of imperfect CSI on the Tx achievable rate. The chal-
lenges of our study are twofold: first, it requires integration of
energy harvesting, spectrum sensing, and channel estimation.
Successful achievement of this integration entails stochastic
modeling of energy arrival, energy storage, and PU’s activities.
These stochastic models are utilized to establish an achievable
sum-rate of SUs that takes into account both spectrum sens-
ing error and channel estimation error. Second, one needs to
properly design energy control strategies for SUs, that strike
a balance between the energy harvesting and the energy con-
sumption, and adapt transmit power according to the available
CSI and the battery state.
We assume that SUs operate under a time-slotted scheme,

and SUn is capable of harvesting energy during the entire time
slot. Each time slot consists of three sub-slots corresponding
to (i) spectrum sensing phase, during which SUn senses the
spectrum, (ii) channel probing phase, during which SUn sends
pilot symbols to the AP, when the spectrum is sensed idle,
for estimating the fading coefficient corresponding to SUn–
AP link, and (iii) data transmission phase, during which SUn
sends data symbols to the AP. Assuming that the AP feeds
back its estimate of the fading coefficient to SUn , SUn adapts
its transmit power based on this information as well as the
available energy in its battery.
Our main contributions can be summarized as follow:
1) Our system model encompasses the stochastic energy

arrival model for harvesting energy, the stochastic energy stor-
age model for the finite size battery, the stochastic model of
PU’s activities, spectrum sensing error, and channel estimation
error at both SUs and the AP. We model the dynamics of the
battery as a finite state Markov chain.
2) We propose a power adaptation strategy for SUn that

mimics the behavior of the rate-optimal power adaptation
scheme with respect to the estimated channel power gain ĝn
available at SUn and the AP, i.e., when ĝn is below a cut-off
threshold θn , the transmit energy is zero, and when ĝn exceeds
θn , the transmit energy increases monotonically in proportion
to a parameter Ωn , as ĝn increases. The parameters Ωn and
θn play key roles in balancing the energy harvesting and the
energy consumption.
3) Given our system model, we establish a lower bound

on the achievable uplink sum-rate of SUs-AP links, in the
presence of both spectrum sensing error and channel estima-
tion error at both SUs and the AP. We formulate a novel
constrained optimization problem with the optimization vari-
ables {Ωn , θn}Nu

n=1, aiming at maximizing the derived uplink
sum-rate lower bound, subject to the average interference con-
straint (AIC) imposed on the PU and the causality constraint of
the battery. We solve the formulated constrained optimization
problem assuming that the battery reaches its steady-state.
4) We derive closed form expressions for the battery

outage probability and transmission outage probability and
demonstrate their behaviors, in terms of the average number

of harvesting energy packets and the AIC. We also study the
existing trade-offs between spectrum sensing-channel probing-
data transmission and how these trade-offs impact the uplink
sum-rate of our CR network.
Our work is different from [29]–[32]. In particular, these

works view the energy management policy design as a sequen-
tial decision making problem, and hence, they adopt the
Markov decision process (MDP) framework to solve the
problem. In this framework, the goal is typically optimizing a
specific metric over a horizon spanning several time slots. The
obtained solutions using dynamic programming are dependent
across time slots, and also depend on the initial condition
(i.e., the initial state of the battery). Here, we assume that the
battery operates at its steady-state, and hence, our proposed
constrained optimization problem can be solved for each time
slot. Furthermore, the problem can be solved offline and the
optimized transmission parameters {Ωn , θn}Nu

n=1, which do
not depend on the initial condition of the battery, can become
available apriori at the AP and SUs. During the data transmis-
sion phase, SUn chooses its symbol power, using its optimized
transmission parameters Ωn , θn , and based on its partial CSI
of SUn -AP link received via the feedback channel as well as
the available energy in its battery.

C. Paper Organization

The remainder of the paper is organized as follows.
Section II explains our system model. Section III describes
the spectrum sensing phase and our binary energy-based detec-
tor for detecting PU activity. Section IV discusses the channel
probing phase. Section V explains the data transmission phase
and derives a lower bound on the achievable uplink sum-rate
of our CR network. Also, it formulates our proposed con-
strained optimization problem. Section VI corroborates our
analysis on the proposed optimization problem with MATLAB
simulations. Section VII concludes the paper.

II. SYSTEM MODEL

We consider an uplink opportunistic EH-enabled CR
network, operating in FDD mode, that can access a wide-
band spectrum band licensed to a primary network, consisting
of M non-overlapping narrowband spectrum bands, each with
a bandwidth of W Hz [3]. The primary network consists of
a primary transmitter (PUtx) and a primary receiver (PUrx).
The secondary network consists of an AP and Nu SUs (see
Fig. 1). The AP can serve up to M SUs simultaneously and
we assume that Nu ≤ M . We also assume that narrowband
spectrum bands are pre-assigned to SUs and thus each SU
knows which band to sense and transmit data over. The SUs
are equipped with identical energy harvesting circuits to har-
vest energy from the ambient environment and identical finite
size batteries for energy storage (see Fig. 2). We consider block
fading channel model and suppose flat fading coefficients from
PUtx to SUn , PUtx to AP, SUn to PUrx, and, SUn to AP are
four independent zero-mean complex Gaussian random vari-
ables, which we denote by un , q, zn and hn with variances
δun , δq , δzn and γn , respectively.
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Fig. 1. Schematics of the uplink CR network.

Fig. 2. Our CR system model corresponding to SUn for n = 1, . . . ,Nu.

Fig. 3. Slot structure of SUs.

A. Battery and Energy Harvesting Models

We assume that SUs operate under a time-slotted scheme,
with slot duration of Tf seconds, and they always have data
to transmit. Each time slot is indexed by an integer t for
t = 1, 2, . . . The energy harvester at each SU stores randomly
arriving energy packets in a finite size battery and consumes
the stored (harvested) energy for spectrum sensing, channel
probing, and data transmission. Each battery consists of K
cells (units) and the amount of energy stored in each unit is
equal to eu Joules. Thus, the battery can store up to Keu Joules
of energy.
When k cells of the battery is charged (i.e., the amount

of stored energy in the battery is keu Joules) we say that
the battery is at state k. Let B(t)

n ∈ {0, 1, . . . ,K} denote the
discrete random process indicating the battery state of SUn at
the beginning of time slot t. We define the probability mass
function (pmf) of the discrete random variable B(t)

n as ζ(t)k ,n =

Pr(B(t)
n = k), where

∑K
k=0 ζ

(t)
k ,n = 1. Note that B(t)

n = 0 and

B(t)
n = K represent the empty battery and full battery levels,

respectively.
Let E(t)n denote the randomly arriving energy packets at

SUn during time slot t, where the energy packet measured
in Joules is eu Joules. The discrete random process E(t)n is

typically modeled as a sequence of independent and identi-
cally distributed (i.i.d.) random variables [16], regardless of
the spectrum occupancy state of PUtx. We assume that the
discrete random variables E(t)n ’s are i.i.d. over time and inde-
pendent across sensors. We model E(t)n as a Poisson random
variable with the pmf fEn(r) = Pr(E = r) = e−ρnρrn/r !
for r = 0, 1, . . . ,∞, where ρn denotes the average number of
arriving energy packets during one time slot of SUn .1 Let α

(t)
hn

be the number of stored (harvested) energy units in the battery
at SUn during time slot t. This harvested energy α

(t)
hn

cannot
be used during time slot t. Since the battery has a finite capac-
ity of K cells, we find that α(t)

hn
is an element of the finite set

{0, 1, . . . ,K}. Also, α(t)
hn

are i.i.d. over time slots and inde-
pendent across sensors. Let fαhn

(r) = Pr(αhn = r) denote

the pmf of α(t)
hn

. We can find the pmf of α(t)
hn

in terms of the

pmf of E(t)n as the following2

fαhn
(r) =

{
fEn (r), if 0 ≤ r ≤ K − 1∑∞

m=K fEn (m), if r = K .
(1)

B. Slot Structure of SUs

Each time slot consists of three sub-slots (see Fig. 3),
corresponding to spectrum sensing phase, channel probing
phase, and data transmission phase, with fixed durations of
τs = Ns/fs, τt = Nt/fs, τd = Nd/fs, respectively. Note that
fs is the sampling frequency, Ns is the number of collected
samples during spectrum sensing phase, Nt is the number of
training symbols sent during channel probing phase, and Nd
is the number of data symbols sent during data transmission
phase. Also, we have Tf = τs + τt + τd.
During spectrum sensing phase, SUn senses its pre-assigned

single spectrum band to detect PUtx’s activity. We model the
PUtx’s activity in each spectrum band as a Bernoulli ran-
dom variable and we assume the statistics of PUtx are i.i.d.
across M spectrum bands and over time slots. Therefore, we
can frame the spectrum sensing problem at SUn as a binary
hypothesis testing problem. Suppose H(t)

1 and H(t)
0 represent

the binary hypotheses of PUtx being active and inactive in time
slot t, respectively, with prior probabilities Pr{H(t)

1 } = π1
and Pr{H(t)

0 } = π0. SUn applies a binary detection rule to
decide whether or not PUtx is active in its pre-assigned band.
Let Ĥ0,n and Ĥ1,n , with probabilities π̂0,n = Pr{Ĥ0,n} and
π̂1,n = Pr{Ĥ1,n}, denote the SUn detector outcome, i.e.,
the detector finds PUtx active and inactive (i.e., the result of
spectrum sensing is busy or idle), respectively. The accuracy

1We note that ρn does not depend on the duration of spectrum sensing
phase, since we assume each node is capable of harvesting energy during the
entire slot. If we limit harvesting energy to spectrum sensing phase, then ρn
would change to ρnτs/Tf . Poisson distribution for statistical modeling of
ambient energy and solar energy has been applied before in [40]. We note,
however, that our analysis is not tied to this specific distribution and can be
applied for any discrete non-Poisson distribution.

2Equation (1) assumes that the energy storage process is lossless. For a
lossy storage process, one needs to model such loss via establishing a func-
tional relationship between αhn and En , i.e., αhn = Jn (En ), where the
function Jn (·) can be approximated using the battery type and specifications.
Knowing Jn (·) and the pmf fEn (r), one can find the pmf fαhn

(r) using
transformation method.
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of this binary detector is characterized by its false alarm and
detection probabilities. The details of the binary detector are
presented in Section III.
Depending on the outcome of its spectrum sensing, SUn

stays in spectrum sensing phase or enters channel probing
phase. In channel probing phase, SUn sends Nt training sym-
bols with fixed symbol power Pt = αteu/τt, to enable channel
estimation at the AP, where αt is the number of consumed
cells of energy for channel probing.3 We assume that the bat-
tery always has αt units of stored energy for channel probing.
Let h(t)n denote the SUn -AP fading coefficient in time slot t
and g

(t)
n = |h(t)n |2 be the corresponding channel power gain.

Using the received signals corresponding to the training sym-
bols, the AP estimates ĥ(t)n and lets ĝ(t)n = |ĥ(t)n |2 and shares
this value with SUn via a feedback channel. Next, SUn enters
data transmission phase. During this phase, SUn sends Nd
Gaussian data symbols with adaptive symbol power accord-
ing to its battery state and the received information via the
feedback channel about SUn–AP link. When the battery is
at state k and the feedback information is ĝ

(t)
n , then SUn

allocates α
(t)
k ,n cells of its stored energy for each data sym-

bol transmission, implying that the adaptive symbol power is
P
(t)
k ,n = α

(t)
k ,npu, where pu = eu/τd. Note that since α

(t)
k ,n is

discrete, P (t)
k ,n is discrete. The details of the choice of α

(t)
k ,n

according to the battery state k and the feedback information
ĝ
(t)
n are given in Section II-C and the details of channel
estimation are explained in Section IV.

C. Transmission Model and Battery Dynamics

As we stated, we assume that during time slot t SUn adapts
its transmit energy per data symbol (transmit power) according
to its battery state k and the feedback information ĝ

(t)
n . In

particular, we choose a power adaptation strategy that mimics
the behavior of the rate-optimal power adaptation scheme with
respect to the channel power gain [6], i.e., when ĝ

(t)
n is smaller

than a cut-off threshold θn (to be optimized), the transmit
energy is zero, and when ĝ

(t)
n exceeds θn , the transmit energy

increases monotonically as ĝ
(t)
n increases until it reaches its

maximum value of %kΩn& − αt, where Ωn ∈ [0, 1] (to be
optimized), and %·& denotes the floor function. Mathematically,
we express α(t)

k ,n for SUn as the following

α
(t)
k ,n = max

{
α
(t)
k ,n , 0

}
, for k = 0, 1, . . . ,K , (2a)

α
(t)
k ,n =

Ωnk

(
1− θn

ĝ
(t)
n

)+
− αt, (2b)

where (x )+ = max{x , 0}. The parameters Ωn and θn in (2)
play key roles in balancing the energy harvesting and the
energy consumption for transmission. Given θn , when Ωn
is large (or given Ωn , when θn is small), such that the rate

3For ease of presentation, we assume that circuit power (energy) consump-
tion is negligible in comparison to the consumed energy for channel probing
and data transmission. Otherwise, it can easily be incorporated into the system
model.

of energy consumption for transmission is greater than the
rate of energy harvesting, SUn may stop functioning, due to
energy outage. On the other hand, given θn , when Ωn is small
(or given Ωn , when θn is large), SUn may fail to utilize the
excess energy, due to energy overflow, and the data transmis-
sion would become limited in each time slot. Note that α(t)

k ,n
in (2) ensures that the battery always has αt units of stored
energy for channel probing. Furthermore, the transmission pol-
icy in (2) satisfies the causality constraint of the battery. The
causality constraint restrains the energy corresponding to sym-
bol transmit power to be less than the available stored energy
in the battery, i.e., α(t)

k ,n ≤ k − αt. Note that α(t)
k ,n is a dis-

crete random variable and α
(t)
k ,n ∈ {0, 1, . . . ,K − αt}.4 Let

ψε
i ,k ,n = Pr(α

(t)
k ,n = i |Hε) denote the conditional pmf of

α
(t)
k ,n given Hε, ε = 0, 1. We have

ψε
i ,k ,n =






1, if 0 ≤ k ≤ αt, i = 0
0, if 0 ≤ k ≤ αt, i '= 0
Y ε
k ,n , if k ≥ αt+!1, i = 0

Qε
i ,k ,n , if k ≥ αt + 1, 1 ≤ i ≤ %kΩn& − αt

0, if k ≥ αt + 1, i ≥ %kΩn& − αt + 1

(3)

in which

Qε
i ,k ,n = F ε

ĝn

(
ci ,k ,n

)
− F ε

ĝn

(
ai ,k ,n

)
(4a)

Y ε
k ,n = F ε

ĝn (θn ) +

min(#kΩn$,αt)∑

m=1

Qε
m−αt,k ,n (4b)

ai ,k ,n =
θnkΩn

kΩn − αt − i
, ci ,k ,n =

θnkΩn

kΩn − αt − i − 1
, (4c)

where F ε
ĝn
(x ) = Fĝn (x |Hε) is the cumulative distribution

function (CDF) of ĝn given Hε. Note that if ci ,k ,n < 0, we
set ci ,k ,n = +∞.

The battery state at the beginning of time slot t + 1 depends
on the battery state at the beginning of time slot t, the harvested
energy during time slot t, the transmission symbol, as well as
αt. In particular, if at time slot t, SUn senses its spectrum
band to be idle, the state of its battery at the beginning of slot
t + 1 is

B(t+1)
n = min

{(
B(t)
n − αt − α

(t)
k ,n + α

(t)
hn

)+
,K

}
. (5)

On the other hand if at time slot t, SUn senses its spectrum
band to be busy, the state of its battery at the beginning of
slot t + 1 is

B(t+1)
n = min

{(
B(t)
n + α

(t)
hn

)+
,K

}
, (6)

since α
(t)
k ,n = 0. Considering the dynamic battery state model

in (5) and (6) we note that, conditioned on α
(t)
hn

and α
(t)
k ,n the

4Examining (2) we realize that the largest value that α(t)
k ,n can take is

K−αt. Hence, the maximum transmit energy of SUn is bounded by K−αt.
The system designer can choose K such that signal distortion, due to the
nonlinear behavior of power amplifiers, is prevented and the operation of
power amplifiers in their linear regions is guaranteed.
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Fig. 4. Schematics of Markov chain corresponding to the battery state random
process B(t)

n .

value of B(t+1)
n only depends on the value of B(t)

n (and not
the battery states of time slots before t). Hence, the battery
state random process B(t)

n can be modeled as a Markov chain
(see Fig. 4). Let the probability vector of battery state in time
slot t be ζ

(t)
n = [ζ

(t)
1,n , . . . , ζ

(t)
K ,n ]

T . Note that the probability

ζ
(t)
k ,n depends on the battery state at slot t − 1, the number of
battery units filled by the harvested energy during slot t − 1,
the probability of spectrum band sensed idle, and, the number
of energy units allocated for data transmission at slot t − 1

when the spectrum band is sensed idle, i.e., ζ
(t)
k ,n depends

on B(t−1)
n ,α

(t−1)
hn

, π̂0,n ,α
(t−1)
k ,n , respectively. Assuming the

Markov chain is time-homogeneous,5 we let Φn denote the
(K + 1)× (K + 1) transition probability matrix of this chain
with its (i+ 1, j+ 1)-th entry φni ,j = Pr(B(t)

n = i |B(t−1)
n = j )

given in (7), shown at the bottom of the page, where Fαhn
(·)

is the commutative distribution function (CDF) of αhn . We
have

ζ
(t+1)
n = Φnζ

(t)
n . (8)

Since the Markov chain characterized by the transition prob-
ability matrix Φn is irreducible and aperiodic, there exists
a unique steady-state distribution, regardless of the initial
state [41]. Let ζn = limt→∞ ζ

(t)
n be the unique steady-state

probability vector. This vector satisfies the following equations

ζn = Φnζn , (9a)

ζTn 1 =
K∑

k=1

ζk ,n = 1, (9b)

where 1 is an all-ones vector, i.e., ζn is the normalized eigen-
vector corresponding to the unit eigenvalue of Φn , such that

5A Markov chain is time-homogeneous (stationary) if and only if its tran-
sition probability matrix is time-invariant. Adopting homogeneous Markov
chain model for studying EH-enabled communication systems is widely
common [41].

TABLE I
MOST COMMONLY USED SYMBOLS

the entries of ζn sums up to one. The closed-form expression
for ζn is [42]

ζn = (Φn − I +B)−11, (10)

where B is an all-ones matrix and I is the identity matrix.
From this point forward, we assume that the battery is at its
steady-state and we drop the superscript t.
To illustrate our symbol transmission model in (2) we con-

sider the following simple numerical example. Assuming that
the battery has K = 7 cells, Fig. 5 shows an example of
αk ,n for our CR system for two sets of {Ωn , θn} given as

Ω
(a)
n = 0.75, θ

(a)
n = 0.02 and Ω

(b)
n = 0.95, θ

(b)
n = 0.02. The

corresponding transition probability matrices are given in the
following

Φ
(a)
n =





0.42 0.29 0.17 0.08 0.02 0 0 0

0.12 0.13 0.12 0.09 0.05 0.02 0 0

0.19 0.12 0.13 0.12 0.09 0.05 0.02 0

0.07 0.19 0.12 0.13 0.12 0.09 0.05 0.02

0.05 0.07 0.19 0.12 0.13 0.12 0.09 0.05

0.05 0.05 0.07 0.19 0.12 0.13 0.12 0.09

0.04 0.05 0.05 0.07 0.19 0.12 0.13 0.12

0.06 0.1 0.15 0.2 0.27 0.46 0.58 0.71





,

Φ
(b)
n =





0.54 0.43 0.31 0.18 0.08 0.03 0 0

0.18 0.11 0.13 0.12 0.1 0.06 0.02 0

0.04 0.18 0.11 0.13 0.12 0.1 0.06 0.02

0.04 0.04 0.18 0.11 0.13 0.12 0.1 0.06

0.05 0.04 0.04 0.18 0.11 0.13 0.12 0.1

0.05 0.05 0.04 0.04 0.18 0.11 0.13 0.12

0.04 0.05 0.05 0.04 0.04 0.18 0.11 0.13

0.06 0.1 0.15 0.2 0.24 0.28 0.46 0.57





.

φn0,j =
K∑

l=0

[
ψ0
l ,j ,n π̂0,nFαhn

(αt + l − j )
]
+ π̂1,nFαhn

(−j ) (7a)

φnK ,j =
K∑

l=0

[
ψ0
l ,j ,n π̂0,n

(
1− Fαhn

(αt + l +K − j )
)]

+ π̂1,n
(
1− Fαhn

(K − j )
)

(7b)

φni ,j =
K∑

l=0

[
ψ0
l ,j ,n π̂0,n fαhn

(αt + l + i − j )
]
+ π̂1,n fαhn

(i − j ), for i = 1, . . . ,K − 1 (7c)
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Fig. 5. This example shows how many energy units (αk ,n ) SUn spends
for data transmission, given its battery state and the received information
about its channel gain via feedback link. (a) Ω

(a)
n = 0.75, θ

(a)
n = 0.02,

(b) Ω(b)
n = 0.95, θ

(b)
n = 0.02.

Our goal is to find the transmission parameters {Ωn , θn}
in (2b) for all SUs such that the uplink sum-rate of our CR
network is maximized, subject to a constraint on the average
interference power that collective SUs can impose on PUrx.
We assume that this optimization problem is solved offline at
AP, given the statistical information of (i) fading channels and
noises, (ii) randomly arriving energy packets, and (iii) PU’s
activities, the number of samples collected during spectrum
sensing phase Ns, the number of training symbols sent during
channel probing phase Nt and power of training symbols Pt.
The solutions to this optimization problem, i.e., the optimal set
{Ωn , θn}Nu

n=1 is available a priori at the AP and SUs, to be
utilized for adapting symbol power during data transmission
phase. The idea of offline power allocation optimization with a
limited feedback channel has been used before for distributed
detection systems in wireless sensor networks [43]. In the fol-
lowing sections, we describe how SUs operate during spectrum
sensing phase, channel probing phase, and data transmission
phase. For the readers’ convenience, we have collected the
most commonly used symbols in Table I.

III. SPECTRUM SENSING PHASE

In order to access its spectrum band, SUn first needs to
sense its band during spectrum sensing phase, to determine
whether it is busy or idle (see Fig. 3). We formulate the spec-
trum sensing at SUn as a binary hypothesis testing problem,
where the received signal at SUn can be written as:

H0 : yn [m] = wn [m],

H1 : yn [m] = un [m] p[m] + wn [m], (11)

for m = 1, . . . ,Ns, where p[m] is the transmit signal of
PUtx, wn [m] ∼ CN (0,σ2wn

) is the additive white Gaussian
noise (AWGN) at SUn and un [m] is the fading coefficient
corresponding to PUtx–SUn channel. The two hypotheses
H0 and H1 with probabilities π0 and π1 = 1 − π0 denote
the spectrum is truly idle and truly busy, respectively. We
assume that π0 and π1 are known to SUs based on long-
term spectrum measurements. For spectrum sensing we con-
sider energy detector, where the decision statistics at SUn
is Zn = 1

Ns

∑Ns
m=1 |yn [m]|2. The accuracy of this detec-

tor is characterized by its false alarm probability Pfan =
Pr(Ĥ1,n |H0) = Pr(Zn > ξn |H0) and detection probabil-
ity Pdn = Pr(Ĥ1,n |H1) = Pr(Zn > ξn |H1), where ξn is
the local decision threshold. For large Ns, we can invoke cen-
tral limit theorem and approximate the cumulative distribution
function (CDF) of Zn as Guassian. Hence, Pfan and Pdn can
be expressed in terms of Q function as below [44]

Pfan = Q

((
ξn
σ2wn

− 1

)√
Ns

)
, (12a)

Pdn = Q

((
ξn
σ2wn

− νn − 1

)√
Ns

2νn + 1

)
, (12b)

where νn = Ppδun /σ
2
wn

and Pp is the average transmit power
of PUtx. For a given value of Pdn = Pd, the false alarm
probability can be written as

Pfan = Q
(√

2νn + 1Q−1(Pd
)
+ νn

√
τsfs

)
. (13)

The probabilities π̂0,n and π̂1,n corresponding to the SUn

detector outcome Ĥ0,n and Ĥ1,n respectively, are related to
Pdn and Pfan . In particular, we have π̂0,n = β0,n + β1,n and
π̂1,n = 1− π̂0,n where

β0,n = Pr
{
H0, Ĥ0,n

}
= π0

(
1− Pfan

)
, (14a)

β1,n = Pr
{
H1, Ĥ0,n

}
= π1

(
1− Pdn

)
. (14b)

IV. CHANNEL PROBING PHASE

Depending on the outcome of its spectrum sensing, SUn
either stays in spectrum sensing phase (i.e., remains silent in
the remaining of time slot) if its band is sensed busy (i.e.,
the detector outcome is Ĥ1,n ), or it enters channel probing
phase if its band is sensed idle (i.e., the detector outcome is
Ĥ0,n ). During channel probing phase, we assume SUn sends
training vector x t =

√
Pt 1, where 1 is an Nt × 1 all-ones

vector to enable channel estimation at the AP. Let vector sn =
[sn (1), . . . , sn (Nt)]T denote the discrete-time representation
of received training symbols at the AP from SUn . Assuming
the fading coefficient hn corresponding to SUn–AP channel
is unchanged during the entire time slot, we have

H0, Ĥ0,n : sn [m] = hn
√

Pt + vn [m],

H1, Ĥ0,n : sn [m] = hn
√

Pt + q [m]p[m] + vn [m], (15)

for m = 1, . . . ,Nt, vn [m] ∼ CN (0,σ2vn ) is the AWGN at the
AP, and q[m] is the fading coefficient corresponding to PUtx–
AP channel. The linear minimum mean square error (LMMSE)
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estimate of hn given Ĥ0,n is [6], [45]

ĥn = ChnsnC
−1
sn sn , (16a)

Chnsn = E{hnsHn |Ĥ0,n} = γn
√

Pt1, (16b)

Csn = E
{
sns

H
n |Ĥ0,n

}
= ω0,nE

{
sns

H
n |H0, Ĥ0,n

}

+ ω1,n E
{
sns

H
n |H1, Ĥ0,n

}
, (16c)

where

ω0,n = Pr
{
H0|Ĥ0,n

}
=

π0
(
1− Pfan

)

π̂0,n
=

β0,n
π̂0,n

, (17a)

ω1,n = Pr
{
H1|Ĥ0,n

}
=

π1
(
1− Pdn

)

π̂0,n
=

β1,n
π̂0,n

, (17b)

and

E
{
sns

H
n |H0, Ĥ0,n

}
=

(
γ̂0nPt + σ2vn

)
I , (18a)

E
{
sns

H
n |H1, Ĥ0,n

}
=

(
γ̂1nPt + σ2vn + σ2p

)
I . (18b)

After substituting (17) into (16), ĥn reduces to

ĥn =
γn

√
Pt

γnPtNt + σ2vn + ω1,nσ2p

Nt∑

m=1

sn [m], (19)

where σ2p = Ppδq . The estimation error is h̃n = hn − ĥn ,
where ĥn and h̃n are orthogonal random variables [45], and
ĥn and h̃n are zero mean. Approximating q[m]p[m] as a zero-
mean Gaussian random variable with variance σ2p , we find
that the estimate ĥn given Ĥ0,n is distributed as a Gaussian
mixture random variable [6]. Let γ̂n and γ̃n , represent the
variances of ĥn and h̃n , respectively. Also, Let γ̂0n and γ̂1n rep-
resent the variances of ĥn under {H0, Ĥ0,n} and {H1, Ĥ0,n},
respectively. We have

γ̂0n = VAR
{
ĥn |H0, Ĥ0,n

}

=
γ2nPtNt

(
γnPtNt + σ2vn

)
(
γnPtNt + σ2vn + ω1,nσ2p

)2 , (20a)

γ̂1n = VAR
{
ĥn |H1, Ĥ0,n

}

=
γ2nPtNt

(
γnPtNt + σ2vn + σ2p

)

(
γnPtNt + σ2vn + ω1,nσ2p

)2 . (20b)

Therefore, γ̂n = ω0,n γ̂
0
n + ω1,n γ̂

1
n . Also, let γ̃

0
n and γ̃1n indi-

cate the variances of h̃n under {H0, Ĥ0,n} and {H1, Ĥ0,n},
respectively. We have

γ̃0n = VAR
{
h̃n |H0, Ĥ0,n

}
= γn − γ̂0n , (21a)

γ̃1n = VAR
{
h̃n |H1, Ĥ0,n

}
= γn − γ̂1n . (21b)

Hence, γ̃n = ω0,n γ̃
0
n + ω1,n γ̃

1
n . For ideal spectrum sensing,

we get ω0,n = 1 and ω1,n = 0 and ĥn becomes Gaussian. Let
F ε
ĝn
(x ) denote the CDF of ĝn under {Hε, Ĥ0,n} for ε = 0, 1.

Note that under {Hε, Ĥ0,n} for ε = 0, 1, ĥn is zero mean
complex Gaussian. Hence, under {Hε, Ĥ0,n} for ε = 0, 1, ĝn
is an exponential random variable with mean γ̂εn and CDF

F ε
ĝn (x ) = 1− e

−x
γ̂εn . (22)

The CDF of ĝn , denoted as F ε
ĝn
(x ), can be expressed in terms

of F 0
ĝn
(x ) and F 1

ĝn
(x ) as the following:

Fĝn (x ) = ω0,nF
0
ĝn (x ) + ω1,nF

1
ĝn (x ). (23)

After channel estimation, the AP feeds back the channel gains
ĝn = |ĥn |2 over a feedback link to SUn .

V. DATA TRANSMISSION PHASE

After channel probing phase, SUn enters this phase. We note
that entering this phase is only possible, if in spectrum sens-
ing phase the outcome of the binary detector is Ĥ0,n . During
this phase, SUn sends Gaussian data symbols to the AP, while
it adapts its transmission power according to information pro-
vided by the AP through the feedback channel about SUn–AP
link as well as its battery state. In particular, SUn trans-
mits Nd zero-mean i.i.d. complex Gaussian symbols xn [m]
for m = 1, . . . ,Nd with power Pk ,n = αk ,n pu, when the
battery is at state k and αk ,n is given in (2). Let sn [m] denote
the discrete-time representation of received signal at the AP
from SUn . Due to error in spectrum sensing, we need to dis-
tinguish the signal model for sn [m] under H0 and H1. We
have

H0, Ĥ0,n : sn [m] = hnxn [m] + vn [m],

H1, Ĥ0,n : sn [m] = hnxn [m] + q [m]p[m] + vn [m]. (24)

Substituting hn = ĥn + h̃n in (24), we reach at6

H0, Ĥ0,n : sn [m] = ĥnxn [m] +

new noise ηn,0[m]

h̃nxn [m] + vn [m],

H1, Ĥ0,n : sn [m] = ĥnxn [m]

+ h̃nxn [m] + q [m]p[m] + vn [m]

new noise ηn,1[m]

,

(25)

where the new noise terms depend on h̃n . Given ĝn at the
AP, we obtain an achievable rate expression for a time slot by
considering symbol-wise mutual information between channel
input and output over the duration of Nd data symbols as
follows

Rn =
WDd

Nd

×
Nd∑

m=1

[
β0,nE

{
I
(
xn [m]; sn [m]

∣∣ĝn ,H0, Ĥ0,n

)}

+ β1,nE
{
I
(
xn [m]; sn [m]

∣∣ĝn ,H1, Ĥ0,n

)}]
,

(26)

6We note that under Hε, our channel model hn = ĥn + h̃n can be
extended to include both the effects of channel estimation error and delayed
feedback due to SUn ’s mobility. In particular, we can model hn = χhn+zn ,
where the parameter χ = J0(2πvTf/λ) is from Jakes’ model for Rayleigh
fading [46], v is the velocity of SUn , and λ is the wavelength of transmit
signal, hn is the outdated CSI available at SUn , and zn ∼ CN (0, (1 −
χ2)γ̂εn + γ̃εn ). Substituting this channel model in (24) we reach at a signal
model that is different from (25), which can be used to derive a new rate
lower bound Rn,LB.
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where Dd = τd/Tf is the fraction of the time slot used
for data transmission and the expectations in (26) are taken
over the conditional probability density functions (pdfs) of ĝn
given {Hε, Ĥ0,n} for ε = 0, 1. To characterize Rn in (26) we
need to find E{I (xn [m]; sn [m]|ĝn ,Hε, Ĥ0,n )}. Exploiting the
chain rule we can rewrite this expectation as follows

E
{
I
(
xn [m]; sn [m]

∣∣ĝn ,Hε, Ĥ0,n

)}

=
K∑

k=0

ζk ,n I
(
xn [m]; sn [m]

∣∣ĝn , k ,Hε, Ĥ0,n

)
. (27)

Note that I (xn [m]; sn [m]|ĝn ,Hε, Ĥ0,n ) in (27) is the mutual
information between xn [m] and sn [m] when the battery state
is k, given ĝn and {Hε, Ĥ0,n}. From now on, we drop the
variable m in xn [m] and sn [m] for brevity of the presentation.
Focusing on I (xn ; sn |ĝn ,Hε, Ĥ0,n ), we have

I
(
xn ; sn

∣∣ĝn , k ,Hε, Ĥ0,n

)
= h

(
xn

∣∣ĝn , k , Ĥ0,n ,Hε

)

− h
(
xn

∣∣sn , ĝn , k , Ĥ0,n ,Hε

)
,

(28)

where h(·) is the differential entropy. Consider the first
term in (28). Since xn ∼ CN (0,Pk ,n ) we have
h(xn |ĝn , k , Ĥ0,n ,Hε) = log2(πePk ,n ). Consider the second
term in (28). Due to channel estimation error, the new noises
ηn,ε’s in (25) are non-Gaussian and this term does not have a
closed form expression. Hence, similar to [34], [38], [47] we
employ bounding techniques to find an upper bound on this
term. This term is upper bounded by the entropy of a Gaussian
random variable with the variance Θn,ε

M

Θn,ε
M = E

{∣∣xn − E
{
xn |ĝn , k , Ĥ0,n ,Hε

}∣∣2
}
, (29)

where the expectations are taken over the conditional
pdf of xn given sn , ĝn , k , Ĥ0,n ,Hε. In fact, Θi ,ε

M is
the mean square error (MSE) of the MMSE estimate
of xn given sn , ĝn , k , Ĥ0,n ,Hε. Using minimum vari-
ance property of MMSE estimator, we have Θn,ε

M ≤
Θn,ε
L , where Θn,ε

L is the MSE of the LMMSE esti-
mate of xn given sn , ĝn , k , Ĥ0,n ,Hε. Combining all,
we find h(xn |sn , ĝn , k , Ĥ0,n ,Hε) ≤ log2(πeΘ

n,ε
L ) and

I (xn ; sn |ĝn , k , Ĥ0,n ,Hε) ≥ log2(Pk ,n/Θ
n,ε
L ) where

Θn,ε
L =

Pk ,nσ
2
ηn,ε

σ2ηn,ε + ĝnPk ,n
, (30)

σ2ηn,ε = γ̃εnPk ,n + σ2vn + εσ2p . (31)

At the end, we obtain the lower bounds as follow

I
(
xn ; sn

∣∣ĝn , k , Ĥ0,n ,H0

)
≥ log2

(
1 + ĝnb

0
k ,n

)
, (32a)

I
(
xn ; sn

∣∣ĝn , k , Ĥ0,n ,H1

)
≥ log2

(
1 + ĝnb

1
k ,n

)
, (32b)

where

b0k ,n =
Pk ,n(

γ̃0nPk ,n + σ2vn
) , b1k ,n =

Pk ,n(
γ̃1nPk ,n + σ2vn + σ2p

) .

(33)

Substituting equations (27) and (32) in (26) and noting that
the symbol-wise mutual information between channel input
and output for Nd data symbols are equal we reach at

Rn ≥ Rn,LB

= Ddβ0,nW
K∑

k=0

ζk ,nE
{
log2

(
1 + ĝnb

0
k ,n

)
|H0

}

+ Ddβ1,nW
K∑

k=0

ζk ,nE
{
log2

(
1 + ĝnb

1
k ,n

)
|H1

}
.

(34)

Next, we compute the conditional expectations in (34), in
which we take average over ĝn , given Hε. Using (3) and (4c)
we have

E
{
log2

(
1 + ĝnb

ε
k ,n

)
|Hε

}

=

#kΩn$−αt∑

i=1

∫ ci,k,n

ai,k,n
log2

(
1 + Sεi ,n x

)
f εĝn (x )dx

=

#kΩn$−αt∑

i=1

Vk (S
ε
i ,n , γ̂

ε
n ) (35a)

in which

S0i ,n =
ipu(

γ̃0n ipu + σ2vn
) ,

S1i ,n =
ipu(

γ̃1n ipu + σ2vn + σ2p
) , (35b)

Vk
(
Si ,n , γ̂n

)
= M

(
ci ,k ,n , Si ,n , γ̂n

)

− M
(
ai ,k ,n , Si ,n , γ̂n

)
, (35c)

and

M (x , S,w) =

∫
log2(1 + S x )

e
−x
w

w
dx

=
e

1
Sw

ln(2)
Ei

(
−x

w
− 1

Sw

)
− e

−x
w log2(1 + S x ).

(36)

Also, ci ,k ,n and ai ,k ,n are given in (4c). Substituting (35a)
in (34) we reach to

Rn,LB = Ddβ0,nW
K∑

k=αt+1

#kΩn$−αt∑

i=1

ζk ,nVk

(
S0i ,n , γ̂

0
n

)

+ Ddβ1,nW
K∑

k=αt+1

#kΩn$−αt∑

i=1

ζk ,nVk

(
S1i ,n , γ̂

1
n

)
.

(37)

We note that the lower bounds in (32) are achieved when
the new noises ηn,0, ηn,1 in (25) are regarded as worst-case
Gaussian noise and hence the MMSE and LMMSE of xn
given sn , ĝn , k , Ĥ0,n ,Hε coincide. Given the rate lower bound
Rn,LB for SUn , the uplink sum-rate lower bound for all
SUn ’s is

RLB =
Nu∑

n=1

Rn,LB. (38)
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So far, we have established a lower bound on the achievable
sum-rate. Next, we characterize the average inference con-
straint (AIC). Suppose I av is the maximum allowed average
interference power, i.e., the average interference power that
collective SUs impose on PUrx cannot exceed I av. To satisfy
AIC, we have

Nu∑

n=1

In ≤ I av, (39)

where In is the average interference power that SUn imposes
on PUrx. We find

In = β1,nE{zn}[DdE{Pn (ĝn )}+DtPt] (40)

where Dt = τt/Tf and the expectation is over the condi-
tional pdfs of ĝn under {H1, Ĥ0,n}. Considering the right side
of (40), we note that the first term is the average interference
power imposed on PUrx when SUn transmits data symbols,
and the second term is the average interference imposed on
PUrx when SUn sends training symbols for channel estimation
at the AP. Using (3) we compute the term with expectation
inside (40) as follows

E{Pn(ĝn )} =
K∑

k=0

ζk ,n

K∑

i=0

Pr
(
αk ,n = i |H1

)
ipu

=
K∑

k=αt+1

ζk ,n

#kΩn$−αt∑

i=1

ψ1
i ,k ,n ipu. (41)

Substituting (41) into (39), we can rewrite the AIC in (39) as

Nu∑

n=1

β1,nδzn




K∑

k=αt+1

ζk ,n

#kΩn$−αt∑

i=1

ψ1
i ,k ,n ipu +DtPt





≤ I av. (42)

For ideal spectrum sensing we get β1,n = 0 in (14), implying
that data transmission from SUs to the AP does not cause
interference on PUrx and the left-hand side of (42) becomes
zero, i.e., the AIC is always satisfied.
Next, we examine how spectrum sensing error and channel

estimation error affect RLB and AIC expressions. First, spec-
trum sensing error affects AIC via β1,n , and RLB via β0,n and
β1,n . Recall β0,n ,β1,n depend on π0,Pfan ,Pdn (see (14)).
Second, channel estimation error affects AIC via Dt,ψ1

i ,k ,n ,
and RLB via γ̃εn .
Having the mathematical expressions for RLB and AIC,

our goal is to optimize the set of transmission parameters
{Ωn , θn} for all SUs such that RLB is maximized, subject to
the AIC. To inspect the underlying trade-offs between decreas-
ing the average interference power imposed by SUn ’s on
PUrx and increasing the uplink sum-rate lower bound RLB,
we note that increasing data symbol transmission power Pk ,n
increases RLB. However, it increases the average interference
power. Aiming to strike a balance between increasing RLB and
decreasing the imposed average interference power, we seek
the optimal {Ωn , θn}Nu

n=1 such that RLB in (34) is maximized,
subject to AIC given in (42). In other words, we are interested

in solving the following constrained optimization problem

(P1) Maximize
{Ωn , θn}Nu

n=1

RLB

s. t. : Ωn ∈ [0, 1], ∀n
θn ≥ 0, ∀n
ζn = (Φn − I +B)−11, ∀n
AIC in (43) issatisfied.

Problem (P1) is not convex with respect to {Ωn , θn}Nu
n=1.

Unfortunately, the objective function and the constraints
in (P1) are not differentiable with respect to {Ωn , θn}Nu

n=1.
Hence, existing gradient-based algorithms for solving non-
convex optimization problems cannot be used to solve (P1).
We resort to a grid-based search method, which requires 2Nu-
dimensional search over the search space [0, 1]Nu × [0,∞)Nu .

To reduce the computation complexity of solving (P1), we
propose to decompose (P1) to Nu sub-problems corresponding
to Nu SUs. To achieve such decomposition, we assume that
In in (40) cannot exceed I av/Nu. Let (SP1 - SUn ) refer to
the sub-problem corresponding to SUn . We have

(SP1 - SUn) Maximize
{Ωn , θn}

Rn,LB

s.t. : Ωn ∈ [0, 1],

θn ≥ 0,

ζn = (Φn − I +B)−1 1,
In ≤ I av/Nu.

We solve sub-problem (SP1 - SUn ) for n = 1, . . . ,Nu, using
a grid-based search method, which requires 2-dimensional
search over the search space [0, 1]× [0,∞). To curb the com-
putational complexity of these searches, we can limit θn ’s to
a maximum value, denoted as θmax. We refer to the solu-
tions obtained from solving (P1) and solving Nu sub-problems,
respectively, the “optimal” and the “sub-optimal” solutions.
Clearly, the accuracy of these solutions depend on the reso-
lution of the grid-based searches. We call the former solution
the “optimal”, in the sense that it is the best achievable solu-
tion, and the latter solution the “sub-optimal”, in the sense that
solving Nu sub-problems always yield a sub-optimal solution,
with respect to solving (P1), since AIC in (P1) is coupled
across all SUs. When I av in (39) is large enough such that
AIC is not active, the “optimal” and “sub-optimal” solutions
become identical. In the following, we compare the computa-
tional complexity of finding the “optimal” and “sub-optimal”
solutions.
For finding both the “optimal” and the “sub-optimal” solu-

tions, SUn needs to perform two tasks for each point in its
grid-based search: task (i) forming Φn and solving (10) to find
ζn , task (ii) calculating Rn,LB and In . Our numerical results
show that for a fixed Ωn , θn , the computational complexity of
task (i) and task (ii) are O(K 3.1) and O(K 2.1), respectively.
Assuming that the intervals [0, 1] and [0, θmax] are divided
into NΩ and Nθ sub-intervals, respectively, we realize that
SUn needs to perform task (i) and task (ii) for NΩNθ times in
total. Therefore, the computational complexity of finding the
“sub-optimal” solution is O(NuNΩNθ(K

3.1 +K 2.1)), which
can be simplified to O(NuNΩNθK

3.1).
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TABLE II
SIMULATION PARAMETERS

To solve (P1), however, the leftmost summation in (42) must
be computed for all combinations of {Ωn , θn}Nu

n=1 and its
computational complexity is O((NΩNθK

2.1)Nu). Therefore,
the computational complexity of finding the “optimal” solution
is O((NΩNθK

2.1)Nu + NuNΩNθK
3.1), which for Nu ≥ 2

can be simplified to O((NΩNθK
2.1)Nu). We note that the

computational complexity of obtaining the “optimal” and
the “sub-optimal” solutions grow exponentially and linearly,
respectively, in Nu.

VI. SIMULATION RESULTS

In this section we corroborate our analysis on constrained
maximization of the achievable uplink sum-rate lower bound
with MATLAB simulations, and examine how the optimized
uplink sum-rate lower bound depends on the average number
of harvesting energy packets ρn , the maximum allowed aver-
age interference power I av, the duration of spectrum sensing
phase τs, the number of consumed cells of energy for chan-
nel probing αt, and the size of the battery K. Our simulation
parameters are given in Table II.
• Spectrum Sensing- Channel Probing-Data Transmission

Trade-offs: To explore these trade-offs, in this section we let
Nu = 1 and examine how the rate lower bound RLB in (38) for
a single user changes when we vary τs, or αt. The simulation
parameters, except for αt, τs,σ2w ,σ

2
v are given in Table II.7

Fig. 6(a) shows RLB versus τs for two values of the energy
harvesting parameter ρ = 15, 16,σ2w = σ2v = 1 and αt = 1.
This figure suggests that there exists a trade-off between τs
and RLB. On the positive side, as τs (or equivalently Ns)
increases, the accuracy of the energy detector for spectrum
sensing increases (i.e., Pfan in (12b) decreases). A more accu-
rate spectrum sensing can reveal new opportunities for SUn to
be exploited for its data transmission, that can increase RLB.
On the negative side, as τs increases, the duration of data
transmission phase τd = Tf −τs−τt decreases. This trade-off
between spectrum sensing and data transmission indicates that,
given the parameters (including αt), there is an optimal τs,
denoted as τ∗s in Fig. 6(a), that maximizes RLB. For instance,
for ρ = 15, 16 we have τ∗s = 0.6, 0.75 ms.
Fig. 6(b) plots RLB versus αt for ρ = 18, 20, τs = 1ms

and σ2w = σ2v = 5. This figure suggests that a trade-off exists
between αt and RLB. On the positive side, as αt increases,
the accuracy of channel probing (measured by the variance

7Note that the variances of channel estimate and corresponding estimation
error in (20) depend on the product PtNt = αteufs and is independent of
τt. That is the reason, instead of τt, we consider varying αt, to understand
channel probing trade-offs.

Fig. 6. (a) RLB versus τs for K = 80, θ = 0.25,Ω = 0.35,σ2w = σ2v = 1,
(b) RLB versus αt for K = 200, θ = 0.25,Ω = 0.35,σ2w = σ2v = 5.

of channel estimation error in (20)) improves. A more accu-
rate channel probing can increase RLB. On the negative side,
as αt increases, the available energy for data transmission
decreases. This trade-off between channel probing and data
transmission shows that, given the parameters (including τs),
there is an optimal αt, denoted as α∗

t in Fig. 6(b), that max-
imizes RLB. For instance, for ρ = 15, 16 we have α∗

t = 4.
The x -axis in Fig. 6(b) can be converted to the normalized
channel estimation error variance γ̃/γ.
• Effect of the Optimization Variables Ω, θ : In this sec-

tion, we let Nu = 1 and we illustrate how the entries of the
steady-state probability vector ζ in (10), RLB in (38) for a
single user, and the battery outage probability POut

b defined
below, the spectral efficiency ηSE and the energy efficiency
ηEE defined below, depend on the optimization variables Ω
and θ. We define POut

bn
as the steady-state probability of the

battery of SUn being equal or lower than αt. When the bat-
tery is at outage, it cannot yield energy for data transmission
or channel probing. We have

POut
bn = Pr(Bn ≤ αt) =

αt∑

k=0

ζk ,n . (43)

We define the spectral efficiency of our CR system, denoted
as ηSE and measured in bits/sec/Hz, as

ηSE =
RLB

total available bandwidth
=

RLB

MW
(44)
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Inspired by [48], we define the energy efficiency of our CR
system, denoted as ηEE and measured in bits/Hz/Joule, as

ηEE =
ηSE

average transmit power of all SUs
(45)

Let P denote the average transmit power of all SUs dur-
ing channel probing and data transmission phases in our CR
system. We find P as the following

P = Dd

Nu∑

n=1

K∑

k=αt+1

ζk ,n

×
#kΩn$−αt∑

i=1

ipu
[
β0,nψ

0
i ,k ,n + β1,nψ

1
i ,k ,n

]

+ DtPt

Nu∑

n=1

π̂0,n . (46)

The simulation parameters are given in Table II. Also, we let
γ = 2, δu = 1, δz = 1. Fig. 7(a) illustrates RLB for a single
user versus Ω for ρ = 15, 20. We observe that RLB is neither a
convex nor a concave function of Ω. This figure suggests that
there is an optimal Ω, which we denote as Ω∗, that maximizes
RLB. Starting from small values of Ω, as Ω increases (until it
reaches the value Ω∗), RLB increases, because the harvested
energy can recharge the battery and can yield more power for
data transmission. However, when Ω exceeds Ω∗, the harvested
and stored energy cannot support the data transmission and
RLB decreases. Moreover, as ρ increases, RLB increases as
well. The behavior of RLB versus θ is shown in Fig. 7(b) for
ρ = 15, 18. We observe that RLB is neither a convex nor a
concave function of θ. Similar to Ω, there is an optimal θ,
which we denote as θ∗, that maximizes RLB. Starting from
small values of θ, as θ increases (until it reaches θ∗), RLB
increases. However, when θ exceeds θ∗, RLB decreases.
Fig. 8 plots the entries of the steady-state probability vector

ζ versus k for Ω = 0.45, 0.3 and θ = 0.2. Fig. 9 plots the
entries of ζ versus k for θ = 0.1, 0.5 and Ω = 0.35. To
quantify the effect of Ω and θ on the entries of ζ we define
the average energy stored at the battery of SUn as

Bn = E{Bn} =
K∑

k=0

k ζk ,n , (47)

where the largest possible value for Bn is K. Considering
Figs. 8(a) and 8(b), we find B(a)

= 16.97 for Ω = 0.45,
implying that the battery is near empty, and B(b)

= 66.30 for
Ω = 0.30, implying that the battery is near full. Considering
Figs. 9(a) and 9(b), we find B(a)

= 24.08 for θ = 0.1 and
B(b)

= 71.55 for θ = 0.5. Clearly, the values of Ω and θ
affect B. Given θ, when Ω is large, data transmit energy αk
in (2) is large. Due to large energy consumption for data trans-
mission, compared to energy harvesting, the battery becomes
near empty at its steady-state and SU may stop functioning,
due to energy outage. When Ω is small, αk in (2) is small.
Due to small energy consumption for data transmission, com-
pared to energy harvesting, the battery becomes near full at
its steady-state, indicating that SU has failed to utilize the

Fig. 7. (a) RLB versus Ω for K = 80, θ = 0.2, (b) RLB versus θ for
K = 80, Ω = 0.35.

excess energy. Both cases inevitably hinder data transmission,
leading to a reduction in RLB. Similar argument holds true,
when θ varies and Ω is given. In particular, when θ is small,
transmit energy αk in (2) is large, and when θ is large, trans-
mit energy αk in (2) is small. Again, both cases impede data
transmission, leading to a lower RLB. Overall, the observa-
tions we make in Figs. 7, 8, and 9 confirm that optimizing
both Ω and θ to achieve a balance between the energy har-
vesting and the energy consumption for data transmission is
of high importance.
Fig. 10(a) illustrates the behavior of POut

b for a single user
in terms of Ω for θ = 0.05. Fig. 10(b) plots POut

b versus θ
for Ω = 0.35. For αt = 1, POut

b in (43) reduces to POut
b =

ζ0 + ζ1, i.e., POut
b depends on Ω and θ, via only the first

two entries of vector ζ . Fig. 10(a) shows that, as Ω increases,
POut
b increases as well. This is because as Ω increases, given

θ, αk in (2) increases. Due to large energy consumption for
data transmission the chance of the battery depletion and hence
POut
b increase. Fig. 10(b) demonstrates that, as θ increases,

POut
b decreases. This is because as θ increases, given Ω, αk

in (2) decreases. Due to small energy consumption for data
transmission the chance of the battery depletion and hence
POut
b decrease.
Fig. 11(a) shows how ηEE and ηSE vary as Ω changes.

As Ω increases, both ηEE and ηSE increase, until Ω reaches
a certain value, denoted as Ω∗

EE. We note that at Ω = Ω∗
EE,

ηEE achieves its maximum value. When Ω exceeds Ω∗
EE, ηEE
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Fig. 8. ζk versus k for K = 80, ρ = 15, θ = 0.2, (a) Ω = 0.45,
(b) Ω = 0.30.

Fig. 9. ζk versus k for K = 80, ρ = 15,Ω = 0.35, (a) θ = 0.1, (b) θ = 0.5.

decreases while ηSE increases. This trend continues until Ω
reaches another certain value, denoted as Ω∗

SE. We note that at
Ω = Ω∗

SE, ηSE achieves its maximum value. When Ω exceeds

Fig. 10. (a) POut
b versus Ω for K = 80, θ = 0.05, (b) POut

b versus θ for
K = 80, Ω = 0.35.

Ω∗
SE, both ηEE and ηSE decrease. We also observe that Ω∗

SE >
Ω∗
EE.
Fig. 11(b) shows how ηEE and ηSE vary as θ changes. As

θ increases, both ηEE and ηSE increase, until θ reaches a
certain value, denoted as θ∗SE. We observe that at θ = θ∗SE,
ηSE achieves its maximum value. When θ exceeds θ∗SE, ηSE
decreases while ηEE increases. This trend continues until θ
reaches another certain value, denoted as θ∗EE. When θ exceeds
θ∗EE, both ηEE and ηSE decrease. We also observe that θ∗SE <
θ∗EE.
Motivated by [48] we define a new metric, denoted as Z

below, which is a weighted summation of ηSE and ηEE

Z = κηSE + (1− κ)ηEE. (48)

where 0 ≤ κ ≤ 1 is the weighting factor. When κ = 1, max-
imizing Z defined in (48) becomes equal to maximizing the
spectral efficiency (our problem in (P1)). When κ = 0, maxi-
mizing Z becomes equal to maximizing the energy efficiency.
Fig. 12(a) illustrates Z versus Ω for different values of κ. We
observe that the value of Ω which maximizes Z is different
for different values of κ. Fig. 12(b) illustrates Z versus θ for
different values of κ. We observe that the value of θ which
maximizes Z is different for different values of κ.
• Solving Problems ((P1) and (SP1-SU n )): Next, we

consider solving the constrained optimization problem (P1)
and (SP1 - SUn ) and plot the maximized RLB, denoted as
R∗
LB (R∗

LB is RLB evaluated at the solutions obtained from
solving (P1) and (SP1 - SUn)).
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Fig. 11. (a) ηEE versus ηSE for different values of Ω and θ = 0.02, (b)
ηEE versus ηSE for different values of θ and Ω = 0.6.

Fig. 12. (a) Z versus Ω for θ = 0.02, (b) Z versus θ for Ω = 0.6.

Fig. 13 depicts R∗
LB obtained by solving (P1)

and (SP1 - SUn ) versus I av for Nu = 3,π0 = 0.7, 0.8.
We let the statistics of fading coefficients be different across

Fig. 13. RLB versus I av for K = 60, ρ = 10,Nu = 3.

Fig. 14. R∗
LB versus K for I av = 2 dB.

SUs, γ = [2, 2.2, 2.1], δu = [1, 0.8, 1.2], δz = [1, 0.5, 0.8]
and K = 60, ρ = 10 be equal for all SUs. We observe
that for small I av the “sub-optimal” solution obtained from
solving (SP1 - SUn ) yields a lower sum-rate in comparison to
the “optimal” solution obtained from solving (P1). However,
for large I av, when AIC is not active these two solutions
become identical. As π0 increases, the probability of the
spectrum being actually idle increases and the opportunity for
SUs to utilize the spectrum for data transmission increases.
Consequently, the sum-rate lower bound increases as π0
increases, for a given I av.

Fig. 14 depicts R∗
LB versus K for Nu = 3, ρ = 30, 40.

We observe that as K increases, R∗
LB increases. This is

expected, since as K increases the chance of energy overflow
decreases, leading to a larger amount of stored energy in the
battery, which can be utilized to support a higher data rate
transmission.
Fig. 15 shows R∗

LB versus I av for K = 80, ρ = 10, 15 and
Nu = 3. For small I av, the AIC in (42) is active and conse-
quently, it limits transmit power of SUs. As I av increases, SUs
can transmit at higher power levels and R∗

LB increases, until
R∗
LB reaches its maximum value. Increasing I av any further,

beyond the knee point in Fig. 15, does not increase R∗
LB. This

is because for large I av, transmit power levels are restricted
by the amount of harvested and stored energy in the battery
(i.e., they are not restricted by AIC). Therefore, increasing I av
beyond the knee point has no effect on R∗

LB. Moreover, for
small I av where the AIC is active, increasing ρ has no effect
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Fig. 15. R∗
LB versus I av for Nu = 3, K = 80.

Fig. 16. POut
b1

for SU1 versus K when I av = 2 dB.

on R∗
LB. On the other hand, for large I av, when ρ increases,

R∗
LB increases.
Considering SU1, Fig 16 depicts POut

b1
of this user versus

K where the optimization variables Ω1 and θ1 are obtained
by solving (P1) and maximizing RLB and then substituting
the optimized variables in (43) to calculate POut

b1
. We observe

that increasing K leads to a lower POut
b1

.
We define the transmission outage probability POut

αn
as the

probability of SUn not being able to transmit data to the AP,
due to either a weak SUn–AP link with small fading coef-
ficient or insufficient amount of stored energy at the battery.
We have

POut
αn

= Pr(Pn = 0|Ĥ0,n ) = ω0,n Pr(Pn = 0|Ĥ0,n ,H0)

+ ω1,n Pr(Pn = 0|Ĥ0,n ,H1), (49)

where

Pr
(
Pn = 0|Ĥ0,n ,Hε

)

=
αt∑

k=0

ζk ,n Pr
(
αk ,n = 0|Ĥ0,n ,Hε,Bn ≤ αt

)

+
K∑

k=αt+1

ζk ,n Pr
(
αk ,n = 0|Ĥ0,n ,Hε,Bn ≥ αt + 1

)
.

(50)

Fig. 17. POut
α1

for SU1 versus I av for SU1 when K = 100.

Substituting (3) and (50) in (49) we get

POut
αn

=
αt∑

k=0

ζk ,n +
K∑

k=αt+1

ζk ,nYk ,n . (51)

Fig. 17 shows POut
α1

for SU1 versus I av where the optimization
variablesΩ1 and θ1 are obtained by solving (P1) andmaximizing
RLB and then substituting the optimized variables in (51) to
compute POut

α1
. Starting from small I av, as I av increases, SUs

can transmit at higher power levels and POut
α1

decreases, until
POut
α1

reaches its minimum value. Increasing I av any further,
beyond the knee point in Fig. 17, does not reduce POut

α1
. This

is because for large I av transmit power levels are restricted
by the amount of harvested and stored energy in the battery
(i.e., they are not restricted by AIC). Therefore, increasing I av
beyond the knee point has no effect on POut

α1
.

VII. CONCLUSION

We considered an uplink opportunistic CR network, that
can access a spectrum band licensed to a primary network.
Each SU is equipped with a finite size battery, for storing
energy. Modeling the dynamics of the battery as a finite state
Markov chain, we established a lower bound on the achiev-
able uplink sum-rate of SUs–AP links, in the presence of both
spectrum sensing and channel estimation errors. We proposed
a parameterized transmit power control strategy that allows
each SU to adapt its power, according to the received feedback
information from the AP regarding its link fading coefficient
and its stored energy in the battery. We optimized the trans-
mit parameters such that the derived uplink sum-rate lower
bound is maximized, subject to AIC. Since the proposed
constrained optimization problem is not convex and the objec-
tive function and the constraints are not differentiable with
respect to the optimization parameters, we resorted to grid-
based search methods to solve the problem. We explored the
trade-offs between RLB, spectrum sensing duration, and chan-
nel estimation error. We also illustrated the trade-offs between
spectral efficiency and energy efficiency for our CR system.
As future work, we plan to study how a non-ideal feedback
channel, combined with spectrum sensing and channel esti-
mation errors, will affect our sum-rate maximization problem.
In particular, we will consider the effects of SUn ’s mobility
and bandwidth-limited feedback channel on our optimization
problem and its solution.
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