
A Reinforcement Learning-Based Routing Strategy
for Elastic Network Slices

Zhouxiang Wu and Jason P. Jue
Department of Computer Science, The University of Texas at Dallas, Richardson, Texas 75080, USA

Email: {Zhouxiang.Wu, jjue}@utdallas.edu

Abstract—This paper addresses a routing selection strategy for
elastic network slices that dynamically adjust required resources
over time. When admitting elastic initial slice requests, sufficient
spare resources on the same path should be reserved to allow
existing elastic slices to increase their bandwidth dynamically.
We demonstrate a deep Reinforcement Learning (RL) model
to intelligently make routing choice decisions for elastic slice
requests and inelastic slice requests. This model achieves higher
revenue and higher acceptance rates compared to traditional
heuristic methods. Due to the lightness of this model, it can be
deployed in an embedded system. We can also use a relatively
small amount of data to train the model and achieve stable
performance. Also, we introduce a Recurrent Neural Network to
auto-encode the variable-size environment and train the encoder
together with the RL model.

Index Terms—network slice, reinforcement learning, routing,
policy gradient

I. INTRODUCTION

In the 5G era, network customers expect more tailored
services. With network slicing technology, network resource
can be easily partitioned into different slices to fulfill the
different requirements of different customer requests. Tradi-
tionally, the resources assigned to a slice do not change over
time. However, as the usage of resources on a slice varies
over time, if a slice is provisioned for its peak resource
usage, resources may be wasted. For this reason, elastic slices
are proposed to address this issue. With elastic slices, the
provisioned resources vary according to the needs of the slice
during service time, resulting in cost savings and more efficient
utilization of system resources. However, the elastic slices add
more complexity to resource allocation and scheduling.

The slice allocation strategy, which makes the slice admis-
sion decision and maps the slice request to proper resource,
is an important problem. For example, without an effective
strategy, the network system may accept too many slice re-
quests such that the system is unable to accommodate a request
from an existing slice to increase its resources, leading to a
degradation of slice users’ quality of experience and a potential
loss of revenue. In this paper, we propose a Reinforcement
Learning slice allocation strategy which can effectively map a
slice to a path in the topology.

To the best of our knowledge, this paper is the first to apply
RL to the elastic slice request routing problem. The remainder
of the paper is organized as follows. We discuss related work
in Section II. Section III introduces the system model and
problem formulation. Section IV gives a brief background on

Fig. 1. Elastic and Static Slice

related machine learning concepts, and describes the procedure
of feature selection, the proposed RL model, and the RL al-
gorithm. In Section V, we describe experiments for evaluating
the proposed approach, make essential observations, and give
suggestions on the training model. Finally, we conclude the
paper in Section VI.

II. RELATED WORK

We extend the problem from [1], which only considers
the admission strategy for the elastic slice. Several papers
apply RL to routing problems. However, they do not consider
elastic requests. In [2], the authors use an RL algorithm
to learn an SFC scheduling policy to increase the success
rate of SFC requests. In [3], the authors provide an online
routing reinforcement learning algorithm with multiple agents
for multiple service requirements. The algorithm is scalable
because the algorithm is implemented in each node of the
network. The author also normalizes different performance
metrics.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Physical Network Infrastructure

The physical network is represented as a graph G with
a node set V , and an edge set E. Each link e ∈ E has
bandwidth bwe. For each source-destination pair (s, d), there
is a predefined path set P(s,d) where each p ∈ P is a subset
of edges in E.

B. Network Slice

In general, a slice consists of a set of virtual networking
and computing resources configured in a virtual topology. In
this paper, we consider a linear slice topology; thus, a slice is
characterized by a source and destination node, as well as a
number of intermediate nodes corresponding to functions that

have some computing requirements. Virtual links of the slice
require some amount of bandwidth. In this paper, we consider
two types of slices: static slices, in which the amount of
bandwidth on each slice link remains fixed for the duration of
the slice, and elastic slices, in which the amount of bandwidth
on slice links may increase or decrease during the lifetime
of the slice. We assume for simplicity that all edges of a
given slice have the same bandwidth at any given time. We
further assume that each path p has sufficient computing
resources to accommodate the functions of a slice. Fig. 1
illustrates the bandwidth allocation for a static slice and a
dynamic slice. Note that an elastic slice offers the potential
for significant resource and cost savings versus allocating for
the peak capacity requirement in a static slice.

Slice deployment requests arrive to the network dynam-
ically over time and can be for either a new static slice
or a new elastic slice. Furthermore, existing elastic slices
may generate slice scaling requests, which are requests
to increase or decrease the bandwidth of the slice. A slice
deployment request can be represented as a tuple r =
(src, des, bw, tarr, thold, type), where src is the source node,
des is the destination node , bw is the bandwidth requirement,
tarr is the arrival time, thold is the holding time, and type
indicates its type. If the request is for a static slice, bw is a
scalar. Otherwise, bw is a list that contains all the potential
bandwidth levels for an elastic slice. The request for an elastic
slice also includes the distribution dist, which indicates the
fraction of time that the slice is expected to be at each of the
potential bandwidth levels. Slice scaling requests will identify
the slice and the new bandwidth level required by the slice.
Note that requests to reduce bandwidth are always satisfied,
while requests to increase bandwidth are only rejected if
insufficient resources are available.

The network operator gains revenue when it successfully
allocates a slice request, but it must pay a penalty if it rejects a
slice scaling request. The revenue of a static slice i is given by
Rsi = rs · bwi · ti, where rs is the revenue per unit bandwidth
per unit time for a static slice, bwi is the bandwidth of the
slice, and ti is the holding time of the slice. The revenue of
an elastic slice i is given by Rei = re ·

∑
b∈BWi

b · db · ti,
where re is the revenue per unit bandwidth per unit time for
an elastic slice, BWi is the set of bandwidth levels for elastic
slice i, db is the fraction of time the slice is at bandwidth level
b, and ti is the holding time of the slice. For each slice scaling
request that must be rejected due to insufficient resources, the
network operator must pay a fixed penalty, Rp.

Thus, the network operator must decide whether or not to
accept an incoming slice deployment request with the potential
risk of blocking future scaling requests if too many slices
are admitted. Furthermore, the network operator must select a
route for an admitted slice request in a manner that attempts to
minimize interference among slices that share common links in
the network. Note that the network operator must also achieve
the proper balance between static slices, which are expected to
generate higher revenue per slice but consume more resources,
and elastic slices, which generate less revenue per slice but

Fig. 2. RNN Procedure

allow for a greater number of slices.

C. Problem Formulation

We state the slice admission and routing problem as fol-
lows. Given 1) a network G = (V,E) with bandwidths
bwe for e ∈ E, 2) a slice deployment request r =
(src, des, bw, tarr, thold, type), 3) a set of potential paths,
P(s,d), for slice r, and 4) a set of existing static and elastic
slices in the network, along with their routes and bandwidth
levels, the problem is to 1) decide whether or not to admit
slice r, and 2) select a route, p ∈ P(s,d), for r if the slice
is admitted. The objective of the problem is to maximize the
long-term revenue for the network operator over time.

IV. FEATURE SELECTION, MODEL AND ALGORITHM

In this section, we introduce the background of related
machine learning concepts and discuss the selection of features
from the environment, the model we use as an agent, and the
RL algorithm we chose.

A. Background on related machine learning

A DNN model includes multiple layers where each layer
consists of a weight matrix W and a bias vector b. The input
of the DNN is a vector X = (x1, x2, x3...), and between two
layers, there is an activation function. The objective is to make
the output approach ground truth by tuning parameters of the
activation function. Usually, the tuning process employs the
gradient descent method.

A DNN’s input is a fixed-size vector; however, many obser-
vations cannot be represented in a fixed-size vector, including
graphs. A recurrent neural network (RNN) can solve this
problem. As shown in Fig. 2, the input contain three vectors,
(X1, X2, X3), and there is an initial hidden state H0. The RNN
model concatenates of the previous hidden state Hi−1 and
input Xi, and it outputs vector Oi and hidden state Hi. After
the loop ends, we obtain the final output O3 as an encoding of
(X1, X2, X3). This procedure is independent of the input size,
and the output contains all the information of (X1, X2, X3)
because each RNN model takes in a hidden state from the
previous step.

In RL, three crucial elements are the environment, the
agent with policy πθ, the reward function. The agent chooses
an action based on the environment and the policy. The
environment returns a reward based on the action. In our
problem, the agent attempts to maximize the profit of the
network provider over time.

Fig. 3. Encoder Procedure

B. Feature Selection

A slice request follows the previously defined slice request
type. Each slice request has a specific arrival time, service
time, and type. We use tuple Ri = (bandwidthi, timei, typei)
to represent the request i, where bandwidthi indicates the
bandwidth of the slice required, timei indicates the ser-
vice time, and typei is type of the slice. One-hot encod-
ing is used to indicate the type of slice request. typei ∈
(1, 0, 0), (0, 1, 0), (0, 0, 1), corresponding static deployment
slice type, elastic deployment slice type, and elastic scaling
slice type, respectively.

The features of the RL model include two parts. The first
part is the current slice request, which is encoded in a 1 × 5
vector, as described the above paragraph.

The second part encodes the environment, which includes
the remaining bandwidth resource on each network edge and
the set of slices that are currently in the network. We encode
the remaining bandwidth resources on each edge using a
vector of size |E| because the number of edges is fixed. The
slices currently deployed in the network are grouped by edge.
However, since the number of slices on each edge varies over
time, we employ an RNN to encode the information. For
example, suppose there are three slices on an edge, and each
slice is represented as a 1×5 vector. As shown in Fig. 2, these
three vectors can be transformed into a fixed-size vector. Fig.
3 shows the entire encoding procedure.

C. DNN Model

We employ a simple flat layer in deep learning. For this
simple graph, the model only contains 3 layers with 256
neurons on each layer. The activation function between each
layer is tanh. The output of the model is an action distribu-
tion. For example, if we assign three paths to every source-
destination pair, the action space is 4. Thus, the model needs
to output a 1× 4 vector, where the first element corresponds
to the probability of rejection, and the remaining elements
correspond to the probability of choosing the related path.
Since we need the output to be a distribution, the softmax

Fig. 4. Agent Model

function is used before the output. The softmax function is
defined as follows:

σ(z)i =
ezi∑K
j=1 e

zj

for i = 1, . . . ,K and z = (z1, . . . , zK) ∈ RK .
(1)

We illustrate our model in Fig. 5.

D. RL algorithm

There are two major categories of RL algorithms, policy-
based algorithms, and value-based algorithms. This paper
implements Proximal Policy Optimization (PPO), which is
a policy-based algorithm. Before introducing PPO, we first
briefly introduce the Policy Gradient algorithm, a classic
algorithm in RL. We name the DNN model mentioned
in the previous subsection as policy πθ. The policy πθ
interacts with the environment to produce a trajectory τ :
[(s1, a1, r1), (s2, a2, r2), ...(sn, an, rn)], where si is the envi-
ronment encoding, ai is π(si), and ri is the reward from the
environment. The total reward for τ is given by:

Rθ(τ) =
T∑
t=1

rt. (2)

Sine the environment always has randomness, we usually need
to collect more trajectories {τ2, τ3...τN}. In this problem,
we assume that each action has little affect on the following
reward. Thus, instead of using the total reward, we assign
Aθ(si, ai) to each (si, ai) pair, which is defined as follows:

Aθ
k

(snt , a
n
t) =

Tn∑
t′=t

γt
′−trnt′ , (3)

where γ ∈ [0, 1] is the discount factor, determining how long
the current action affects the reward. We take gradient of
Aθ(si, ai) to update θ. [4] describes the details to calculate
the gradient.

One problem with policy gradient is the efficiency of
trajectory usage. We can only use trajectories produced by
πθ once, since the original data is updated after the θ is out
of date.

PPO employs importance sampling [5] to bypass this prob-
lem. We define two more values, Jθ

k

(θ) and Jθ
k

PPO(θ)

Jθ
k

(θ) ≈
∑

(st,at)

pθ (at | st)
pθk (at | st)

Aθ
k

(st, at) (4)

Jθ
k

PPO(θ) = Jθ
k

(θ)− βKL
(
θ, θk

)
. (5)

The PPO algorithm is shown in Algorithm 1. We can reuse
trajectories multiple times before the policy, which interacts
with the environment, diverges too far from the training policy.

Fig. 5. Complete Procedure

Algorithm 1 PPO
1: Initialize the policy parameter θ0, β, KLmax and KLmin
2: for each iteration do
3: Using θk to interact with the environment to collect

{st, at}and compute advantage Aθ
k

(snt , a
n
t)

4: Find θ optimizing Jθ
k

PPO

5: if KL
(
θ, θk

)
> KLmax then

6: increase β
7: end if
8: if KL

(
θ, θk

)
< KLmin then

9: decrease β
10: end if
11: end for

While the policy πθk interacts with the environment, we
employ the exploration strategy, which samples actions from
the output action distribution rather than select the action with
the highest possibility. While this policy πθ predicts the real
situation, we apply an exploitation strategy.

We combine the elements, from feature selection to training
strategies, into a complete procedure, as shown in Fig. 5.

V. PERFORMANCE EVALUATION

In this section, we describe the experimental setup, compare
the RL algorithm’s performance with the Shortest-Path-First
(SPF) method, which always chooses the shortest available
path, and we make some observations.

A. Reward Function
The reward Function is critical in reinforcement learning

and relatively subjective, since, in most scenarios, we cannot

define an exact reward for each action. In this paper, the basic
format of the reward function is shown as follows:

reward =

{
bw × time, if accepted
0, otherwise , (6)

where bw is the bandwidth required by the slice request and
time is the service time of the slice.

Besides the primary reward, we consider four additional
factors that may affect the reward. First when the network
operator accepts a request for the deployment of a new elastic
slice, it should also be expected to accept future scaling
requests for this slice, as long as such requests fall within the
bandwidth profile agreed upon between the network operator
and the slice owner. If the operator rejects a scaling request
due to insufficient resources, there should be a penalty for
the network operator, since it would be considered a violation
of the agreement between the network operator and the slice
owner when the elastic slice request was accepted. Second, the
penalty for rejecting a scaling request should be eliminated
if the bandwidth requested by the slice exceeds the amount
indicated by the slice’s bandwidth distribution profile. For
example, if a slice’s distribution dist is [0.8, 0.2], and its
bandwidth bw is [2, 8] but during service, the slice’s actual
distribution dist is [0.5, 0.5] based on the history of this user,
then the user is using more bandwidth than was indicated
in the initial request. When rejecting such scaling requests,
the punishment should be lower. We use a variant of KL-
divergence to indicate the difference between the reported dist
and actual dist. KL-divergence is defined as follow:

DKL(P‖Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(7)

where the P and Q are two distributions and X is the set of
potential values of random variable x. In this example, P is
the reported distribution, and Q is the actual distribution. We
calculate the KL-divergence for the example above as follows:

DKL = 0.2× log

(
0.2

0.5

)
+ 0.8× log

(
0.8

0.5

)
≈ 0.193. (8)

If two distributions are identical, then the DKL is 0. DKL

increases with the difference between two distributions. How-
ever, we wish the variant of the KL-divergence to be 1
when the reported distribution and the actual distribution are
identical. Since the slice’s behavior is valid in this scenario,
the punishment should be full. On the other hand, when these
two distributions diverge significantly, the variant of the KL-
divergence should be a small number. Thus, we define the
variant as VKL = exp(−DKL). When a penalty is incurred,
it is multiplied by VKL.

The third factor is that, for an elastic request, the revenue
should be higher than a static request when the average
required bandwidth is the same, due to the increased network
complexity associated with providing elastic slices. For exam-
ple, if an elastic request’s reported distribution is [0.8, 0.2],
with bandwidth levels [2, 8], then the average bandwidth is
2 × 0.8 + 8 × 0.2 = 3.2. The cost of such an elastic request

Fig. 6. Experiment Topologies

should be relatively higher compared to a static request with
3.2 units of bandwidth. Thus, we multiply the reward with a
coefficient e.

The fourth factor is that different paths may have different
rewards. For example, paths with fewer nodes should yield
greater revenue since less resources are used. In this paper,
we introduce a coefficient p = 0.9n−2, where n is the number
of nodes in the path. For example, for source-destination pair
(a, d) in Fig. 6 (a) , there are two path, a → d and a →
b → e → d. The coefficient p of the first path is 1, and the
coefficient of the second path p is 0.92.

Overall, the reward function for a static slice request
rewardSS is shown as follows:

rewardSS(req) =

{
bw × time× p, if accepted
0, otherwise . (9)

The reward function for a elastic slice initial request
rewardESI is shown as follows:

rewardESI(req) =

{
bw × time× e× p, if accepted
0, otherwise .

(10)
The reward function for a elastic slice scaling request
rewardESS is shown as follows:

rewardESS(req) =

{
bw × time× e× p, if accepted
−bw × time× e× VKL, otherwise .

(11)

B. Environment Setup

1) Network Topology: We set up two scenarios, the first
scenario is a simple graph with only 6 nodes, shown as Fig. 6
(a), and the second scenario is a more complex graph, which
shares the same structures as the Sprint backbone network, as
shown in Fig. 6 (b).

For simplicity, we primarily focus on the experiments and
results from the simple graph environment, and we verify
the concepts on the complex graph to prove that algorithm
is robust.

2) Request Type: We assume slice requests arrive to the
network according to Poisson process with parameter λ and
that the service time for a request follows an exponential
distribution with parameter µ. We list the request types used
in the simple graph in Table. I. Similar request types are used
in the complex graph scenario.

3) Path: We assign three paths for each source-destination
pair and summarize these paths in Table. II. The last column
is path coefficient for each path.

TABLE I
REQUEST TYPE

src, des ID bw λ µ dist

a,d
0 [6] 0.75 0.5 [1]
1 [9] 1.5 1 [1]
2 [4,9] 3 2 [0.8,0.2]

c,f
0 [5] 1.5 1 [1]
1 [9] 0.75 0.5 [1]
2 [5,8] 3 2 [0.70.3]

b,e
0 [4] 0.75 0.5 [1]

1.5 [12] 1 1 [1]
2 [3,13] 3 2 [0.9,0.1]

TABLE II
PREDEFINED PATH

s, d path p s, d path p s,d path p

a,d
a,d 1

c,f
c,f 1

b,e
b,e 1

a,b,e,d 0.81 c,b,e,f 0.81 b,a,d,e 0.81
a,b,c,f,e,d 0.66 c,b,a,d,e,f 0.66 b,c,f,e 0.81

C. Training Phase

We set the trajectory time to 20 units in training, while
we set the trajectory time for the test to 200. The model
πθ’s performance converged after 1000 iterations. Because the
model is relatively shallow, the total training time is short. Fig.
7 shows the total evaluation reward change during training.

D. Result and Observation on Simple Graph

Tables III and IV show the reward values and the slice
acceptance rates of static requests (SRAR) and elastic requests
(ERAR) for different discount factors and baseline values.

1) Discount Factor: While tuning the hyper-parameters,
we noticed that the discount factor γ plays a critical role in
performance. The discount factor is usually set to 0.9 to 0.99
in common RL scenarios; however, in our situation, the agent
does not have a specific endpoint. The endpoint is actually set
up by the total trajectory time. If we set the γ as high as 0.9 or
0.99, as shown in Eqn. 3, the state s and action a occur earlier
in a trajectory, corresponding to a larger accumulated reward
and a greater effect on θ updating. To alleviate this problem,
we set the γ to a relatively low value. As observed in Table
III, when γ = 0.3, the model has the best performance.

2) Baseline: As shown in Eqn. 3, we notice that the reward
is always a non-negative number. This situation leads to a
decrease in the probability that actions are not sampled. An
action that is not sampled could be a potential promising
action. Thus, not sampling the action causes a loss of per-
formance. We set a very small, non-negative baseline bs value
and calculate the advantage value as follows:

Aθ
k

(snt , a
n
t) =

Tn∑
t′=t

γt
′−trnt′ − bs. (12)

We show the improvement of setting the baseline to 2 in Table
III.

Fig. 7. Training Phase

TABLE III
DISCOUNT FACTOR AND BASELINE TUNING

Baseline = 0 Baseline = 2
γ Reward SRAR ERAR reward SRAR ERAR
SPF 327.344 0.435 0.408 327.344 0.435 0.408
1.0 278.42 0.432 0.307 450.895 0.538 0.491
0.9 437.705 0.543 0.508 400.366 0.483 0.558
0.8 435.170 0.551 0.581 447.692 0.538 0.650
0.7 422.184 0.538 0.543 473.358 0.451 0.650
0.6 416.190 0.527 0.593 451.766 0.522 0.594
0.5 456.955 0.561 0.576 473.782 0.556 0.598
0.4 466.268 0.554 0.623 469.049 0.557 0.645
0.3 483.348 0.608 0.651 502.634 0.609 0.652
0.2 437.182 0.525 0.499 472.070 0.609 0.635

3) Encoder Selection: The vanilla RNN tends to vanishing
or exploding its gradient. There are two common tricks to
alleviate this problem. The first is gradient clipping. As the
name says, we can clip the gradient if the gradient exceeds a
given threshold. The second solution is to use a gated structure
RNN, such as Long Short-Term Memory Networks (LSTM)
or Gated recurrent unit (GRU) [6]. We choose GRU in this
experiment, which is more lightweight compared to LSTM
and has a similar performance with LSTM.

4) Safety Boundary: It is possible that the agent may
choose to accept a request, even though there is not enough
bandwidth for this request. We will check the remaining
bandwidth before allocating resources according to the agent’s
decision to prevent this situation. If the remaining resource
cannot fulfill the request, we reject the request.

E. Result on Complex Graph

Because the input size increases linearly with the number of
graph edges, for this graph, we choose deeper and wider DNN
as an agent, which contains 6 fully connected layers, with
the widest layer containing 1024 neurons. The training time
grows accordingly. The result is shown in Table IV. Overall,
compared with SPF, the RL agent has better performance with
suitable parameters.

In our RL approach, the agent could adjust its behavior
without saving history and gain more revenue over a relatively
long period of time. We don’t provide the RL agent with the
type of requests; thus, the algorithm is robust. Besides RL, we
implement an Auto Encoder to encode the network environ-
ment. With the Auto Encoder’s help, we convert variable-sized

TABLE IV
RESULT IN COMPLEX GRAPH

Baseline = 0 Baseline = 2
γ Reward SRAR ERAR reward SRAR ERAR
SPF 482.23 0.613 0.355 482.23 0.613 0.355
0.5 585.72 0.545 0.459 660.13 0.564 0.575
0.4 621.47 0.543 0.512 754.97 0.518 0.597
0.3 543.89 0.459 0.362 623.66 0.502 0.538

environments into a fixed-sized vector. Another benefit of the
Auto Encoder is that we can train the encoder with the RL
agent and provide an end-to-end experience.

VI. CONCLUSION

The primary contributions of this works are (i) defining a
framework for virtualizing slice requests and network environ-
ments, (ii) designing an RL agent and employing a Proximal
Policy Optimization algorithm to train the agent to route slice
requests, and (iii) designing a pricing strategy to prevent a user
from abusing elastic policy and to help to allocate resource
efficiently.

The model is tested in both simple and complex network
topologies and outperforms heuristic methods. The algorithm
only requires a small amount of data to train a satisfied model.
However, we still need to tune two hyper-parameters, discount
factor and baseline, in addition to the normal hyper-parameters
in DNN, such as the learning rate. In the future, we wish to find
a better way to decide the baseline parameter. Another problem
of this algorithm is that the model’s complexity grows at least
linearly with the size of edges in the network graph. We wish
to have a more reliable scalable performance by employing a
more advanced encoder, such as GNN.

VII. ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under Grant No. CNS-2008856.

REFERENCES

[1] Z. Wu, G. Ishigaki, R. Gour, and J. P. Jue, “A reinforcement learning-
based admission control strategy for elastic network slices,” in 2021 IEEE
Global Communications Conference (GLOBECOM), pp. 01–06, IEEE,
2021.

[2] J. Jia, L. Yang, and J. Cao, “Reliability-aware dynamic service chain
scheduling in 5g networks based on reinforcement learning,” in IEEE
INFOCOM 2021 - IEEE Conference on Computer Communications,
pp. 1–10, 2021.

[3] C. Liu, M. Xu, Y. Yang, and N. Geng, “Drl-or: Deep reinforcement
learning-based online routing for multi-type service requirements,” in
IEEE INFOCOM 2021-IEEE Conference on Computer Communications,
pp. 1–10, IEEE, 2021.

[4] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in International conference
on machine learning, pp. 387–395, PMLR, 2014.

[5] T. Kloek and H. K. Van Dijk, “Bayesian estimates of equation system
parameters: an application of integration by monte carlo,” Econometrica:
Journal of the Econometric Society, pp. 1–19, 1978.

[6] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

