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Abstract

We study weighted ensemble, an interacting particle method for sampling distributions
of Markov chains that has been used in computational chemistry since the 1990s. Many
important applications of weighted ensemble require the computation of long time aver-
ages. We establish the consistency of weighted ensemble in this setting by proving an
ergodic theorem for time averages. As part of the proof, we derive explicit variance
formulas that could be useful for optimizing the method.
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1. Introduction

Weighted ensemble [6, 11, 16, 17, 23, 25, 35, 39, 40, 51, 52, 56] is an importance sampling
method, based on interacting particles, for distributions associated with a Markov chain. In
this article we focus on sampling the average of a function with respect to the steady-state
distribution of a generic Markov chain. By generic, we mean that the only thing we might
know about the Markov chain is how to sample it; in particular, we may not know its stationary
distribution up to a normalization factor.

Weighted ensemble consists of a collection of evolving particles with associated weights. In
this sense, weighted ensemble can be understood as a kind of sequential Monte Carlo method
[4, 18, 19, 20, 28, 32, 48, 49]. In weighted ensemble, the particles evolve between selection
steps according to the law of the underlying Markov chain. In each selection step, some of the
particles are copied while others are killed; the resulting particles are given new weights so
that weighted ensemble is statistically unbiased [52].

The selection step is based on dividing the particles into bins, where the particles in each bin
are resampled according to their relative weights. In practice, the binning, and the number of
copies in each bin, should be chosen so that important particles survive and irrelevant particles
are killed. The definition of the bins, and how many copies to maintain in each, requires some
care. With appropriate choices, weighted ensemble can have drastically smaller variance than
direct Monte Carlo, or independent particles; see the references above, or [54] for a more
complete list.

Weighted ensemble was developed for applications in computational chemistry [35] rang-
ing from state space exploration [23] to protein association [35] and protein folding [55]. One
important application we have in mind is the computation of the mean time for a protein
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An ergodic theorem for weighted ensemble 153

to unfold [6]. This time can be reformulated as the inverse of the steady-state flux into the
unfolded state of the underlying Markovian molecular dynamics, with an added sink in the
unfolded state and source in the folded state [34]. This dynamics can approach its steady
state on time scales significantly smaller than the mean unfolding time [53]. As the flux into
the unfolded state is usually very small, importance sampling is needed to estimate it with
substantial precision [6, 43].

Other unbiased methods, differing from weighted ensemble in that they usually sample
finite-time quantities rather than ergodic averages, include Adaptive Multilevel Splitting [7, 8,
10], Forward Flux Sampling [1], and some sequential Monte Carlo methods [13, 20, 49]. This
unbiased property allows for a relatively straightforward study of variance using martingale
techniques [2, 7, 18, 20]. In this article we extend these techniques to study the long-time
stability of weighted ensemble.

Our main contribution here is a proof of the consistency of weighted ensemble via an
ergodic theorem. We believe that this is the first ergodic theorem for an interacting particle
system in which the interactions come from resampling.

A secondary contribution comes from explicit formulas for the variance of weighted ensem-
ble at finite particle number. The proof of the ergodic theorem is a straightforward consequence
of these formulas. On the theoretical side, our variance formulas are handy for understanding
the rate of weighted ensemble convergence, and on the practical side, they could be used
for optimizing the method. We mostly leave this discussion to other works, including our
companion paper [3]; see also [2] and the references above.

This article is organized as follows. In Section 2 we describe weighted ensemble in detail.
In Section 3 we state our main results, including the unbiased property (Theorem 2), the
ergodic theorem (Theorem 3), and the variance formulas (Theorem 4). In Section 4 we compare
weighted ensemble to direct Monte Carlo, and give a simple example illustrating the potential
gain. All of our proofs are in Section 5.

2. Description of the method

Weighted ensemble consists of a fixed number, N, of particles belonging to a common state
space, each carrying a positive scalar weight, and undergoing repeated selection and mutation
steps. In the selection step, some of the particles are copied, and others are killed, according
to a stratification or binning scheme. In the mutation step, the particles evolve according to an
underlying Markov kernel K.

At time ¢ before selection, the particles, called parents, are stl, R S,N . At time ¢ after
selection, the particles, called children, are 5,1, e, étN . The weights of the parents and chil-
dren are a),l, e, wiv and c?)tl, e, c?)ﬁv , respectively. The following diagram illustrates weighted
ensemble evolution:

parents {St"}i:1 """ N parents’ weights {wf}izl""*N user-chosen
J selection J selection parameters
children {£/}="N children’s weights {@]}="" <« (1)
J mutation J mutation
new parents {£/ | }*="~"  new parents’ weights {/ }="N
The initial particles é&, R E(I)V can be arbitrary. The initial weights must be strictly positive

and sum to one: a)(l) > ( for all i, and w(l) 4+ a)’a/ = 1. The children are initially just copies
of their parents, but they evolve forward in time conditionally independently. When we say
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154 D. ARISTOFF

conditionally independent, we mean conditional on the o -algebra representing the information
from (1) up to the current time.

Weighted ensemble requires the user to choose, before the selection step at time ¢, a col-
lection of non-empty bins that partition the set of parents, as well as a particle allocation that
defines the number of children in each bin. We write u for the bins, and N,(«) > 1 for the num-
ber of children in bin u at time 7. We require that ), N;(«) = N. The bins can change in time,
but for simpler notation we leave this implicit.

In the selection step, the children in each bin are obtained by sampling with replacement
from the parents in the bin, according to their weight distribution, as many times as the particle
allocation specifies. The children’s weights in each bin are all the same after selection, and the
total weight in the bin is preserved [16].

In more detail, define the total weight in bin u at time ¢ as

wi(u) = Z a)ﬁ.

it Eleu

The numbers, Nf , of children of the parents E,i € u are conditionally multinomial:

i
{N;: & eu} ~Multin0mial(N,(u), { @ & € u}) (2)
(1)
Children are assigned to the same bins as their parents, with weights
o)y
= if & eu. 3
N T ®

Selections in distinct bins are conditionally independent.
In the mutation step, the children evolve conditionally independently via K:

Gl END~KE L ) x - x KEN, ). )
The weights do not change during the mutation step. Thus
W =d, j=1,....N. 3)
We summarize weighted ensemble in the following algorithm.
Algorithm 1. Choose initial weights a)(l), ceey a)f)v > 0 summing to 1 and initial particles
501, R éév. Then iterate over t > 0:

Selection step

1. Partition the parents é,], R SIN into a collection of bins.

2. Assign a number Ny(u) > 1 of children to the parents in each bin u.

3. Sample Ny(u) children from the parents in bin u, with replacement, using
o,

(1)

! is the total weight in bin u.

P(sample E‘,/ in bin u) =

’

where w,(u) := Y

it &eu
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4. Give all the children in bin u the same weight

N oolu) s i
=—— ifé&eu
3 N[(H) fsl
Mutation step
1. Evolve the children é,l, cey étN conditionally independently using K to get the next
parents srl-H’ e, Ezlil' Keep the same weights wi_H = é)ﬁ,j: 1,...,N.

2.1. Algorithm details and remarks
A few remarks are in order to clarify Algorithm 1.

e We abuse notation by writing £/ € u or & € u to indicate that £/ or & is in bin u, even
though the bins form a partition of the particles, and not (necessarily) a partition of the
state space.

e A child is simply a copy of its parent: if & is a child of &/, then & = &’. The indices of
the children are not important, so specifying the number of children of each parent is
enough to define them.

e Since the weights do not change in the mutation step and the the selection step preserves
the total weight, the total weight is constant in time: @} + - - - + @ =1 for all > 0. We
discuss the importance of this in Remark 1.

e We assume that the bins and particle allocation at time ¢ are included in ¥, the o -algebra
generated by the information from Algorithm 1 just before the 7th selection step. We also
write %; for the o -algebra generated by the information from Algorithm 1 just after the
tth selection step. See Section 5.1 for details.

e We assume multinomial sampling in the bins because it leads to simple explicit variance
expressions in terms of intrabin variances. In Remark 3 we comment on residual sam-
pling, which performs much better than multinomial resampling and still admits nice
variance formulas.

For our ergodic theorem, the bins and particle allocation can be arbitrary. To actually do
better than direct Monte Carlo, they must be judiciously chosen. The most common strategy is
to define bins based on a carefully constructed partition of state space — particles occupy the
same bin when they belong to the same element of the partition — and then allocate children
approximately uniformly among these bins. Some knowledge about the underlying problem
is needed to choose the bins, but this strategy has had considerable success, as the references
in the introduction attest (see [54] for a mostly current list of application papers). We propose
a different strategy in our companion paper [3] that uses our variance analysis below. We
summarize that strategy in Section 4 below.

3. Main results

3.1. Unbiased property

We begin with the unbiased property of weighted ensemble. This property was previously
noted in [52], and proved in a slightly different setting in [2].
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156 D. ARISTOFF

Theorem 2. (Unbiased property.) For each t > 0 and all bounded measurable g,

N
E[Z wﬁg(éf)} = f K'gdv,
i=1

where v is the weighted ensemble initial distribution,

N
/gdv = E[Z a)(i)g(éé)]
i=1

We could interpret Theorem 2 as follows. If (X;) is a Markov chain with kernel K and initial

distribution v, then
N
E[Z wfg(éf)} =E[g(X)].
i=1

In this sense, weighted ensemble gives unbiased estimates of the law of the underlying Markov
chain.

3.2. Ergodic theorem

To ensure that weighted ensemble is ergodic, the underlying Markov kernel K must be
ergodic in some sense. We assume that K is uniformly ergodic [27].

Assumption 1. There is ¢ > 0, X € [0, 1) and a probability measure  such that
IK'(€,-) — u(ll7v < el for all & and all t > 0.
Here and below, f is a fixed bounded measurable function.

Theorem 3. (Ergodic theorem.) If Assumption I holds, then with probability 1,

T-1 N

dim Z D wfE)= / fdp. ©)

t—Ot 1

Convergence of the mean of the time average in (6), at the same rate as direct Monte Carlo,
follows from Assumption 1 and the unbiased property (Theorem 2). For the ergodic theorem to
hold, and for weighted ensemble to beat direct Monte Carlo, the variance of the time average
should be sufficiently small. Well-behaved variance is not automatic for unbiased methods; see
Remark 1 below.

3.3. Variance formulas

Here, we give exact, finite N formulas for the variance of weighted ensemble, based on a
martingale decomposition. To get nice concise formulas, we need some notation. Define the

intrabin distributions )
u &
= —— i,
i Z (1) &
it&leu
where §¢ is the Dirac delta distribution centered at &. Define also

T—t—1

ht,Tz Z st.

s=0
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An ergodic theorem for weighted ensemble 157

For a probability measure 1 and bounded measurable function g, define
n(g) = / gdn,  Vary(9) =n(g") — n(e),

and in particular, let Vargg(§) := Varg »(g) = Kg2(&) — (K9)*(£).
Theorem 4. (Variance formulas.) For each time T > 0,

T-1 N

I «— o
Var(? Z . w;f(gg)) )
=0 i=1
= iVar Z whh & 9 (initial condition variance) (8)
12 0%0,7(So
i=1
+ 5 Tiz I Z MV&T «(Khit1,7) | (selection variance) )
T2 = - Nt(u) Ny t+1,T
T—2 )
1
+ I 2 E[; %ﬂ?(\’amhzﬂj)} (mutation variance). (10)

The expression in (8) can be interpreted as the variance coming from the initial condition,
while the expressions in (9) and (10) can be understood as the variances arising from each
selection and mutation step, respectively.

Using Theorem 4, the proof of the ergodic theorem is straightforward. Under
Assumption 1, we can show that variances of i; 7 and Kh; 7 are uniformly bounded in ¢ and 7.
This makes the weighted ensemble variance

T-1 N

Var(% 22 wif@;’)) =0(1/7).

t=0 i=1

The ergodic theorem then follows from standard arguments. Note that the variance expressions
(7)-(10) by themselves do not require Assumption 1.

Beyond the ergodic theorem, these variance formulas are interesting in their own right,
since they could be used to design binning and particle allocation schemes that minimize the
weighted ensemble variance. Indeed, that is what we have done in our companion paper [3]
(see also [2]). We discuss this more in the next section.

4. Comparison to direct Monte Carlo

There are many existing works showing that weighted ensemble can provide significant
gains over direct Monte Carlo: see for instance the references list in [54], and our compan-
ion paper [3]. The main goal of this article is to prove the consistency of weighted ensemble
from explicit variance formulas, and not to reaffirm this point. Nonetheless, we include a brief
discussion here.

Weighted ensemble works by reducing the mutation variance (10), compared to that of
direct Monte Carlo (see (28) below), via the selection step. However, this comes at the cost of
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a positive selection variance (9), compared to direct Monte Carlo, which has selection variance
equal to zero. Thus weighted ensemble beats direct Monte Carlo if the reduction in mutation
variance is greater than the selection variance cost. (The initial condition variances may be
ignored, since they are O(1/7?) for weighted ensemble and direct Monte Carlo, while the
overall variances are O(1/7).)

In more detail, the weighted ensemble mutation variance is

1 =22 wr(1)?
= ZE[Z N U?(Varkhr+1,r)j|~ (11)
=0 u !

A Lagrange multiplier calculation shows that the expression inside the expectation in (11) is
minimized over N,(u), subject to the constraint Zu Ny(u) =N, when

Neoy(u)y/nf (Varg hys1.7) 1)
- i) /nf (Varghig1,7)°

Plugging this into (11) makes the weighted ensemble mutation variance

Ni(u) ~

1 T—2 2
~ s LB| (S evoiiangn) | (13)
=0 u

By Jensen’s inequality, (13) is less than or equal to

)
1
NT2 Z E[Z wt(u)ﬂ}‘(VarKhtH,T)} (14)
t=0 u

which, by the unbiased property of weighted ensemble (Theorem 2), is exactly the direct Monte
Carlo mutation variance (see Remark 2 below). This form of optimal mutation variance gain
was originally observed in [2, Remark 4.1].

The selection variance (9) is small whenever, at each time ¢, bins u are chosen inside which
Kh; 41,7 does not vary too much. With enough particles and bins, it is possible to keep the
selection variance arbitrarily small, while also controlling the mutation variance by keeping
the particle allocation close to the optimal (12). Even with modest numbers of particles and
bins, weighted ensemble has proved to be useful; see the list of applications in [54], most of
which use relatively small N.

In our companion paper [3], we propose an optimization strategy based on choosing the
particle allocation to minimize mutation variance, and the bins to minimize selection vari-
ance. There, the particle allocation is a simplified version of (12), in which we use the limit
h:= lim7_ oo (hy7 — (T — 1) f fduw) in place of Ay 7, and the bins are chosen to make the
intrabin variances of Kh small. Of course, estimating Kh and Vargh is a difficult problem. In
[3] we propose using a Markov state model to get ‘cheap’ approximations of Ki and Vargh;
such models are already commonly used for preconditioning weighted ensemble simulations
[6, 14, 15].

4.1. Example

Below is a simple example illustrating the variance reduction in weighted ensemble, com-
pared to direct Monte Carlo, in the context of our variance analysis above. Consider a Markov
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FIGURE 1. Comparison of weighted ensemble with direct Monte Carlo when § =0.001 and 7" = 500.
(a) Average values of (1/7T) Z[T;Ol Zf\]:l a);:f(éti) versus N, computed from 10* independent trials, for
weighted ensemble and direct Monte Carlo. Error bars widths are o7/102, where a% are the empirical
variances. (b) Weighted ensemble empirical standard deviation compared with (15). (c¢) Direct Monte

Carlo empirical standard deviation compared with (16).

chain on three states, with transition matrix
K(1,2)=K(2,3)=48, KI,1)=K2,1)=1-8, K@GB,1)=1,

where § > 0 is small, and we take f(1) =f(2)=0and f(3) = 1.

For weighted ensemble, we will assign particles to the same bin if and only if they
occupy the same point in space. Following the usual method in the literature, we allocate an
approximately equal number of children to each bin.

In this case the variance of weighted ensemble can be estimated as

T-2 3 "2 3 2 3
1 (D) . 1 (i) . 658
— E Vargh N — Vargh N —, 15
72 ; [; Ny VK t+1,7() T ; N3 VUK LT~ (15)
where the first approximation in (15) holds for large enough N and 7', and the second approxi-
mation uses direct calculations, dropping terms of higher order than 8. The variance of direct
Monte Carlo (see Remark 2) can be estimated by

T-2 1 2 83
1 ~ ~
NTZ ;_0 v(K'(Varghey1,7)) =~ _NTM(VaTKht-i-l,T) ~NT (16)

for large 7. Figure 1 shows numerical confirmation of these estimates. Note the smaller
variance (higher order in §) for weighted ensemble, compared to direct Monte Carlo.

5. Derivations

5.1. Notation

Below, #; is the o -algebra generated by the parents and their weights from times 0 < s <f,
the children and their weights from times 0 < s <7 — 1, and the bins and particle allocations
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160 D. ARISTOFF

from times 0 < s < 7. Meanwhile, %; is the o -algebra generated by ¥; together with the children
and their weights at time ¢. Throughout, g denotes a bounded measurable function, and ¢ a
positive constant whose value can change between different equations. We will use the notation

par(é]) = £/ <= & is the parent of El. 7
5.2. One-step means
Lemma 1. Foreachi=1,...,N andt >0,
Elo),18/,1) | F1 = @Kg(E)). (18)

At each time t > 0, for each bin u,

E[ Y e z}z > wigE). (19)

it Eleu it &eu

Proof. By (4), Elg(¢[, ) | 1= Kg(€}). Now (18) follows from this and (5). Meanwhile, by
(2), E[N! | F1 = N{(u)o! /wy(u) if & € u. Thus, by (3) and (17),
d

E[Zwég<éf } ZJE[ > alsé)

i: Eleu irEleu ) parE)=gl

_ wt(”) i
—Z N’ gEDEIN! | F7]
it &feu

> wjgE). 0

it &eu

Lemma 2. (One-step means.) For each time t > 0,

N N
E[Z ol 18l ) f] Z ojKg(E)), (20)
i=1 i=1
[Z oigEl } =) wigE). 1)
i=1
Proof. This follows immediately from Lemma 1, by summing over the particles in (18) to
get (20), and summing over the bins in (19) to get (21). U

5.3. Proof of the unbiased property
Proof of Theorem 2. By repeated application of Lemma 2 with the tower property,

N N
E[Z wjg(E)) 7’0} =" whK'g(E)). 22)
i=1 i=1
Taking expectations in (22) gives the result. U
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5.4. Doob martingale and variance decomposition

Below, define the Doob martingale

T—1 N ‘ . T—-1 N R
:E[Zzwy(gg) z}, b,:E[ZZ 37,]
s=0 i=1 s=0 i=1

Proposition 1. For 0 <t <T — 1, we have

D, = Z Z Wif (&) + Z wKhip1 7(E), D= Z Z wif (&) + Z O}Khiy1 7(ED.

s=0 i=1 s=0 i=1
(23)
Proof. This comes from Lemma 2 by repeated application of the tower property. U
Proposition 2. (Martingale variance decomposition.) For each T > 0,
-1 N
Var( J(ét )
=0 i=1
| = T-2
= Va0 +5 ) ElD-D)'1+ Z E[(Dy1 =Dl (24)
——— =0 =0
initial condition variance
selection variance mutation variance

Proof. 1t is straightforward to check that all the martingale differences Dy —D; and

A

D; — D, are uncorrelated with each other and with Dg. The proof is finished by writing

T-1 N

Dy =) wlfE)

=0 i=1

as a telescoping sum of the martingale differences, computing IE[D%_I] in terms of the
martingale differences, and subtracting E[D7_1 ]2 = ]E[Do]2 from the resulting expression. [

In the proof of Theorem 4 below, we will see that the initial condition variance, selection
variance, and mutation variance in (24) are the same as those in (8)—(10).

5.5. Proof of the variance formulas

Proof of Theorem 4. Using the formula (23) for the Doob martingale, together with the one-
step mean formula (20), the weight update formula (5), and the conditional independence of
particle evolution in (4),

%)

N
=Y (@) Varghi1.7()). (25)

i=1

N
E[(Dy1 — D)* | F1= Var<Z of e €l )
i=1
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By (25), the weight update formula (3), and the bin mean formula (19),

E[(Dy+1 — D)1= E[Z ;‘;’EZ; Z lNarghys1, T@,)}
u t

i
:E[Z ]"\ZEZ) Z i Varghys 1, T(g,)}
Gu

In light of Proposition 2, this gives (10). Now we turn to (9). Using the formula (23) for the
Doob martingale, the one-step mean formula (21), and the fact that selections in distinct bins
are conditionally independent,
N
E[(D; — D)’ | 11 = Var(Z &)Khi1,7E) z)
i=1

= Z Var( Z wtKht—H T(éz

i S,eu

fz) (26)

Using (26), the weight update formula (3), and the conditional independence property of
multinomial resampling (see e.g. [26, equation (6)),

E(D, — D) | Fl=) wt(usar( Z Kheyr 7E) | 7

Ne(w)

w,(u)*
= Z Ny vt (K ).

Taking expectations in this expression and appealing to Proposition 2 gives (9). O

5.6. Remarks on the variance formulas

Remark 1. We briefly comment on the variance for other methods of the selection and muta-
tion type (1). Consider a method with the same mutation step, but a different selection step that
is still unbiased in the sense of (21).

In this case the same variance decomposition (24) applies, with selection variance

fz)} 27)

For a method like weighted ensemble in which the total weight is always 1, Kh;41 1 can be
replaced with Kh,1 7 — (T —t—1) [ f du in (27) without otherwise changing the equation.
Assumption 1 shows that K, 7 — (T —t—1) f fdu is uniformly bounded in 7 and 7. As a
result, the selection variance (27) is O(1/T), and the ergodic theorem remains valid.

We observed numerically that if the total weight varies at each time, then the weights tend
to approach zero, and the variance (7) is of order T as T — oo. Indeed, Kh,y 7 is typically
of order T as T — oo, which suggests that in this case the selection variance (27) is of the

T-2 N
Z E [Var (Z Wi

order of
3‘})] as T — oo.
=0 i=1

Of course, the ergodic theorem fails if the variance (7) goes to infinity as 7' — o0.

T-2

Z El(D: — D)’ = = Z E[Var(z &) Khi1,7(E)

i=1
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Remark 2. Note that direct Monte Carlo — which we define as independent, equally weighted
particles — is a special case of weighted ensemble in which each particle always has weight
1/N, every parent always gets its own bin u, and N(u) is always 1. In this case the selection
variance is zero, while the mutation variance is

-2

1
NT2 Z [ Z VarKht-H T(Et )i| NT2 Z U(K (VaI'KhH-] T)) (28)

Remark 3. If the selections in the bins use residual multinomial resampling [26] instead of
multinomial resampling, then the selection variance (9) becomes

T-2
1 Z Z wt(“)
= =0 E[ " Ny(u)? ri(Vary (Khesro) |
where r,(1) and /" are defined from the residuals

P Nt(u)wi {Nt(u)wg J
ry= —

(1) w(u)

by ‘
. rl
1 u t
ri(u) = r, = —— 8.
W= w'= 2 b
it &leu i &leu
We omit proof, but include this formula in case it is useful for optimizations, since residual

multinomial resampling performs much better than multinomial resampling yet still admits
simple explicit variance expressions.

5.7. Proof of the ergodic theorem

Lemma 3. If Assumption 1 holds, then as T — oo,

T-1 N

Var( 0 wifE) ) =0(1/T).
=0 i=l1
Proof. By Assumption 1, we have
IK'f(x) — K'f(y)| <cA' forall x,y and all > 0, (29)
where now ¢ > 0 is a different constant. Thus
T—t-2 c
1, 70 = b O < ) 1K) = KO < 1— = C.
s=0 A

This shows that Var,h, 17 < C2, and similarly Var,Kh; 17 < C2, for any probability distri-
bution 1. As a result, the selection and mutation variances (9) and (10) are both O(1/T) as
T — oo. By similar arguments,

N
Var(Z wé%,r(éé)) <C
i=1

which makes the initialization variance (8) O(1/7?). Thus the variance in (7) is O(1/T). O
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Proof of Theorem 3. Define
=
_ igosi
or = Xoj Zl Of (€)-
=0 =

Then, for0 <S<T,

T-1 N

S 1 o S
|07 — 05| = ’(; - 1)6’s+ T ; ;wif(é,’) <2sup lfl(l - ?) (30)
By Lemma 3, Var(67) = O(1/T). So by Chebyshev’s inequality, there is ¢ > 0 so that
P(167 — E[67]] > cT'/371/2) < !
(167 — El0r]| = ¢ )< T3

for large enough 7. With T,, = n?, by the Borel-Cantelli lemma, there is 7 such that
07, — E[6r,1] < cT)/3~12  as. for all n > ny. (31)
By the unbiased property and Assumption 1,
Tli)moo El0r] = /f du. (32)

Now given S > 0, we can choose 7}, so that 7}, <§ < T,,;| and write

65 — /fdMI <|0s — Or,| + 101, — El07,1| + [E[07,] — /fd,ul- (33)
By (30)—(32), with probability 1, the right-hand side of (33) vanishes as S — oo. [
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