Abstraction-based Synthesis for Stochastic Systems
with Omega-Regular Objectives

Maxence Dutreix®*, Jeongmin Huh?, Samuel Coogan®
The Georgia Institute of Technology, Atlanta, GA, USA
@School of Electrical and Computer Engineering

bSchool of Electrical and Computer Engineering and School of Civil and Environmental
Engineering

Abstract

This paper studies the synthesis of controllers for discrete-time, continuous state
stochastic systems subject to omega-regular specifications using finite-state ab-
stractions. Omega-regular properties allow specifying complex behaviors and
encompass, for example, linear temporal logic. First, we present a synthesis
algorithm for minimizing or maximizing the probability that a discrete-time
switched stochastic system with a finite number of modes satisfies an omega-
regular property. Our approach relies on a finite-state abstraction of the un-
derlying dynamics in the form of a Bounded-parameter Markov Decision Pro-
cess arising from a finite partition of the system’s domain. Such Markovian
abstractions allow for a range of probabilities of transition between states for
each selected action representing a mode of the original system. Our method
is built upon an analysis of the Cartesian product between the abstraction and
a Deterministic Rabin Automaton encoding the specification of interest or its
complement. Specifically, we show that synthesis can be decomposed into a
qualitative problem, where the so-called greatest permanent winning compo-

nents of the product automaton are created, and a quantitative problem, which

*Corresponding author
Email addresses: maxdutreix@gatech.edu (Maxence Dutreix), jhuh32@gatech.edu
(Jeongmin Huh), sam.coogan@gatech.edu (Samuel Coogan)
This project was supported in part by the NSF under project #1749357, and by the Air
Force Office of Scientific Research under project FA9550-19-1-0015.

Preprint submitted to the Nonlinear Analysis: Hybrid Systems Journal May 4, 2022

requires maximizing the probability of reaching this component in the worst-case
instantiation of the transition intervals. Additionally, we propose a quantitative
metric for measuring the quality of the designed controller with respect to the
continuous abstracted states and devise a specification-guided domain partition
refinement heuristic with the objective of reaching a user-defined optimality tar-
get. Next, we present a method for computing control policies for stochastic
systems with a continuous set of available inputs. In this case, the system is
assumed to be affine in input and disturbance, and we derive a technique for
solving the qualitative and quantitative problems in the resulting finite-state
abstractions of such systems. For this, we introduce a new type of abstrac-
tions called Controlled Interval-valued Markov Chains. Specifically, we show
that the greatest permanent winning component of such abstractions are found
by appropriately partitioning the continuous input space in order to generate
a bounded-parameter Markov decision process that accounts for all possible
qualitative transitions between the finite set of states. Then, the problem of
maximizing the probability of reaching these components is cast as a (possibly
non-convex) optimization problem over the continuous set of available inputs.
A metric of quality for the synthesized controller and a partition refinement
scheme are described for this framework as well. Finally, we present a detailed
case study.

Keywords: finite-state abstractions, formal methods, interval-valued Markov

chains, bounded-parameter Markov decision processes, stochastic systems.

1. Introduction

The need for systems that are both complex and reliable is more critical than
ever. Not only are the models describing these systems becoming increasingly
complicated, but the tasks they are expected to perform also continue to grow in
complexity. For example, the operating specification may combine an invariance
and a reachability condition and require that the system will always return to a

good state while always avoiding a bad state. Such specifications can be formally

20

25

30

35

and unambiguously represented as, for instance, a Linear Temporal Logic (LTL)
[1] specification, among other classes of symbolic languages. In this paper, we
consider the class of w-regular properties [2], a superset of LTL.

Recent research efforts in formal verification and synthesis have focused on
the development of robust controllers to ensure that systems requirements are
unequivocally met for broad classes of specifications and dynamics [3] [4] [5] [6]
[7] [8] [9]. A general approach is to obtain a (non)deterministic finite abstraction
of the continuous-state system, encode the specification as an appropriate tran-
sition system called an automaton, compute a product construction between
the system abstraction and the automaton, and then synthesize a controller by
solving graph-based problems on the product [10] [11]. The controller obtained
from the finite abstraction is then mapped onto the original abstracted states.
However, this basic recipe does not immediately work for stochastic systems
because the random disturbances acting upon such systems add a quantitative
component to the transitions between states in the form of transition proba-
bilities, preventing the use of standard transition systems as finite abstractions
for this framework. Typically, this limitation is overcome by using probabilistic
finite transition systems as abstractions for stochastic systems [12] [13] [14] [15]
[16]. Even though general synthesis procedures for such abstractions inherit
ideas from approaches proposed in non-stochastic settings, the mathematical
machinery required is quite different.

Indeed, for stochastic systems, satisfaction of a specification may never be
fully guaranteed due to randomness. Therefore, the synthesis problem requires
finding a control policy which maximizes or minimizes the probability of oc-
currence of some desired behavior from a given initial condition. In this work,
we consider the problem of synthesizing a control policy for a discrete-time,
continuous-state stochastic system subject to an w-regular specification. Al-
though the existence of optimal policies for this problem is not known, we seek
to devise policies which are satisfactory with respect to a reasonable metric of
quality. First, we consider the case when the control action is selected from a

finite set of modes that the system can switch between at each time step. Then

40

45

50

55

60

65

we consider the case when the control action is selected from a continuous set

of possible inputs.

Recent literature demonstrated the effectiveness of Bounded-Parameter Markov

Decision Processes (BMDP) as a tool for the synthesis of control policies in
stochastic systems [16] [17]. Indeed, BMDPs are naturally amenable to finite-
state abstractions of switched stochastic systems constructed from a finite par-
tition of the continuous system domain. As each discrete state abstracts the
behavior of an uncountably infinite number of underlying continuous states, the
probabilities of transition between states are specified as intervals for each mode
of the BMDP, rather than just a single number as in standard Markov Decision
Processes. Solving for an optimal switching policy in the BMDP abstraction
results in a near-optimal policy for the objective of maximizing or minimizing
the probability of satisfying the specification with respect to the original ab-
stracted states. The quality of this policy with respect to the original system
states naturally depends on the quality and fineness of the continuous domain
partition from which the abstraction is constructed.

In [16], the authors present an algorithm for computing switching policies
that either minimize or maximize the probability of satisfying Probabilistic
Computation Tree Logic (PCTL) specifications in a BMDP. The theory de-
veloped in [16] has been applied to linear systems with additive Gaussian noise
subject to cosafe LTL specifications and was shown to be computationally effi-
cient [18]. This BMDP-based technique was also recently implemented in the
comprehensive verification and synthesis toolbox StocHy [19]. However, PCTL
and cosafe LTL are strictly less expressive than the w-regular logic and cannot
articulate certain important liveness and persistence properties, such as the in-
finite repetition of some event [20]. A similar problem was solved in [21] for LTL
specifications, but the proposed solution makes simplifying assumptions on the
connectivity properties of the system’s abstraction which drastically reduces its
scope of applicability. The synthesis of control strategies for interval Markov
decision processes with multi-objectives that include w-regular properties was

discussed in [22]; unfortunately, the qualitative structure of the transition sys-

70

75

80

85

90

95

100

tem is again assumed to be invariant, which alleviates key difficulties associated
with the problem. The authors of [23] reinterpret the switching policy synthesis
problem for w-regular properties in BMDPs as an w-regular stochastic game for
which optimal policies can be computed. However, it is unclear how the game-
theoretic framework used in this work can be extended to refine the BMDP
abstraction of the original system if deemed necessary after the policy has been
determined.

In this paper, we implement a procedure for computing switching policies
in finite-mode discrete-time stochastic systems with the objective of minimizing
or maximizing the probability of occurrence of any w-regular property. We first
create a partition of the continuous domain from which a BMDP abstraction
of the system is generated. We then consider the Cartesian product between
the BMDP abstraction and a Deterministic Rabin Automaton (DRA) repre-
senting the w-regular property of interest for the maximization problem, or
the complement of the property for the minimization problem, which is a dif-
ferent approach from [23]. We prove that any such product BMDP induces
a largest set of so-called Permanent Winning Component for a subset of all
possible switching policies, and show that the probability maximization and
minimization problems reduce to a reachability maximization task on these sets
of states in the product BMDP. Note that our approach does not necessitate
any assumption on the connectivity structure of the BMDP unlike in [21] and
[22]. Furthermore, we introduce a quantitative measure capturing the quality
of the switching policy designed in the BMDP abstraction when mapped onto
the continuous abstracted states with respect to the objective of minimizing or
maximizing the probability of fulfilling some specification in the original system.
Finally, we propose a partition refinement technique inspired by our method in
[24], which considered only the verification problem without inputs, in order
to reach a desired level of optimality for the computed policy with respect to
the continuous system states and progressively discard control actions which
are guaranteed to be suboptimal. While no formal proof of the convergence of

this technique is provided in this article, such refinement-based heuristics have

105

110

115

120

125

130

shown to work remarkably well in practice and offer advantages in terms of
scalability.

Expanding on the theory for finite-mode systems, we address the problem of
synthesizing controllers for stochastic systems with w-regular objectives from a
continuous set of available inputs using finite-state abstractions. Related works
discussed the synthesis of controllers for continuous input stochastic systems
subject to subsets of w-regular properties, such as Biichi objectives [25], using
abstraction-based methods. Here, we specifically study the class of stochastic
systems which are affine-in-disturbance and affine-in-input. We introduce Con-
trolled Interval-valued Markov Chains (CIMC), which serve as abstractions for
continuous input systems. We present an algorithm for constructing the largest
permanent winning components in the product between a CIMC and a DRA.
Then, we show that the reachability maximization step on these components
can be formulated as an optimization program. The quality of the designed pol-
icy with respect to the original abstracted system and state-space refinement
are discussed as well in this framework.

In brief, the novel contributions of this article over existing works, and in
particular over our work on the verification of stochastic systems in [24], are as

follows:

e We present a synthesis procedure for finite-mode discrete-time stochas-
tic systems against w-regular specifications, implemented in Algorithm 4.
Our approach employs BMDP abstractions constructed from a partition of
the continuous domain of the system, and, in contrast to [23], we devise an
automaton-based synthesis algorithm for BMDPs against w-regular spec-
ifications from the results of Theorem 1 in conjunction with Algorithms 1
to 2. These algorithms perform a search of specific components of a BMDP
which do not exist in abstractions without control actions along with the
computation of policies generating these components, and therefore are

more involved than the graph search algorithms found in [24].

o We introduce a quantitative measure of the quality of the policy computed

135

140

145

150

155

from the BMDP abstraction with respect to the original abstracted system
states. The results in [24] are not concerned with the computation of
switching policies and therefore do not propound such a measure. This

metric is determined from the facts highlighted in Theorem 2.

e We develop a specification-guided refinement strategy on the partition of
the system domain in Algorithm 3 to enhance the quality of the switching
policy in refined BMDP abstractions of the dynamics. While an algorithm
is presented in [24] for verification that is similar in spirit, major differences
are found in the input of both algorithms, their termination criteria and

the computations performed to select the states to be refined.

e We extend the techniques above to synthesize controllers for affine-in-
disturbance, affine-in-input stochastic systems with a continuous set of
permissible inputs. The control policy is computed by means of CIMC ab-
stractions constructed from a partition of the system domain and mapped
onto the abstracted states as detailed in Algorithm 7. To this end, we
present a synthesis procedure for CIMC abstractions arising from systems

with the aforementioned structure that relies on Algorithms 5 and 6.

e For such systems with continuous input sets, we propose a refinement
scheme for the domain partition to improve the quality of the computed

controller with respect to the original abstracted states.

The paper is organized as follows: Section 2 introduces some preliminaries;
Section 3 formulates the problem to be solved; Section 4 describes our con-
troller synthesis strategy for finite-mode stochastic systems; Section 5 presents
a controller synthesis algorithm for stochastic systems with a continuous set of

inputs; Section 6 shows a case study; Section 7 concludes our work.

2. Preliminaries

A Deterministic Rabin Automaton (DRA) [11] is a 5-tuple A = (S, 11, §, sg, Acc)

where:

160

165

170

175

180

e S is a finite set of states,

IT is an alphabet,
e §: S5 xII — S is a transition function,
e 5q is an initial state,

o Acc C 2% x 2%, An element (E;, F;) € Acc, with E;, F; C S, is called a
Rabin Pair.

A DRA A reads an infinite string or word over alphabet IT as an input and
transitions from state to state according to §. The resulting sequence of states
or run is an accepting run if some states of F; are visited infinitely often and all
states of F; are visited finitely often for some i. A word is said to be accepted
by A if it produces an accepting run in A. We call a set of words a property.

The property accepted by A is the set of all words accepted by A.

A property over an alphabet II is w-regular if and only if it is accepted by
a Rabin Automaton with alphabet IT (for more detailed definitions of w-regular
properties, see [11, Section 4.3.1]). In particular, all properties defined by a
Linear Temporal Logic (LTL) formula are w-regular. See [11] for a detailed

description of the syntax and semantics of LTL.
3. Problem Formulation
We first consider the discrete-time, continuous-state stochastic system
wlk + 1] = Fa(x[k], walk)) (1)

where z[k] € D C R” is the state of the system at time k, a € A where A is
a finite set of modes, w,[k] € W, C RP« is a random disturbance (which could
be mode-dependent), F, : D x W, — D is a continuous map. Let L : D — 2%
be a labeling function, where ¥ is a finite alphabet, 2% its power set, and

such that, for all ¢ € X, the subset D, C D defined by D, = {z € D :

185

190

195

200

205

o € L(z)} can be written as a finite union of subsets of D, that is, D, =
UN,Ji, J; € D,n € N. In Section 5, we extend this setup to allow for an
infinite set of modes, i.e., a control input selected from a continuous set of
inputs. An infinite random path x[0]z[1]x[2] .. . satisfying (1) generates the word
L(z[0))L(x[1])L(z[2]) ... over 2%. At each time-step k, a mode a € A is chosen
and the random disturbance w,[k] is sampled from a probability distribution
with probability density function f,, : RP* — Ry satistying f,,(2) = 0 if
z & W,. Then, a transition from state x[k| to state z[k+ 1] takes place according
to the dynamics defined by mode a. The set of all infinite paths of (1) is denoted
by Paths. A finite sequence of states m = x[0]x[1]...z[n] produced by (1) is
called a finite path. The set of all finite paths of (1) is denoted by Pathsy,.
A function p : Pathsf;, — A assigning a mode to each finite path in (1) is
called a switching policy and the set of all switching policies of (1) is denoted
by U = {p | p: Pathsysi, — A}. For simplicity, we assume that all modes of A
are available at each state of D. A policy p € U induces a unique, well-defined
probability measure Prob,, on the outcome space of infinite paths of (1) [26, Ch.
2.2].

We denote by ¥ an arbitrary w-regular property over alphabet ¥ and write
as (p¥), the probability that a word generated by a random path starting in
satisfies property ¥ under policy p (for a rigorous formalization of this probabil-
ity, see, e.g., [14]). Our objective is to determine switching policies Jig, and [y
that respectively minimize and maximize the probability of satisfying property
¥ for any path in the system and, by extension, for any initialization to z of

the system.

Problem 1: Given a system of the form (1), any initial state © € D and an
w-regular property ¥, find switching policies iz, € U and iy € U that respec-
tively minimize and maximize the probability of satisfying ¥ from x, i.e.,

iy = argmin(py), , Hy = argmax(py), -
pneu pneu

210

215

220

225

230

For complex specifications and dynamics, devising these exact optimal poli-
cies is likely to be intractable or infeasible due to the uncountably infinite num-
ber of states of the system’s domain. To determine a policy which is close to
optimal, we consider an abstraction-based approach that consists in partition-
ing D into a finite collection of states P to construct a finite abstraction of the

stochastic dynamics.

Definition 1 (Partition). A partition P of a domain D C R™ is a collection of
discrete states P = {Q;}7,, Q; C D, satisfying

° U;n:1 Qj=D,
e int(Qy) N int(Q)) =0 Vil j £,

where int denotes the interior. For any continuous state x belonging to a state

Qj, we write x € Q.

For a partition P of the domain D of (1), the likelihood of transitioning from
a state @); of P to another state)y generally varies with the continuous state
abstracted by); from which the transition is actually taking place. There-
fore, we cannot use partition P to exactly abstract the system into a standard
finite-mode Markovian model, such as an MDP. Instead, we propose produc-
ing a BMDP abstraction of the system where, for each action of the BMDP
abstracting the behavior of (1) under some mode, the transition probabilities

between states are constrained within some bounds, as depicted in Figure 1.

Definition 2 (Bounded-parameter Markov Decision Process). A Bounded-
parameter Markov Decision Process (BMDP) [17] is a 6-tuple B = (Q, Act, T, T,
qo, X2, L) where:

e () is a finite set of states,

10

e Act is a finite set of actions, and the set of actions available at state
Q; € Q is denoted by A(Q;) C Act,
e T :Qx Act x Q — [0,1] maps pairs of states and an action to a lower
transition bound so that TQj 20, = T(QJ—, a,Qg) denotes the lower bound
240 of the transition probability from state @Q; to state Q¢ under action a €

A(Qj), and

o T: Q X Act x Q — [0,1] maps pairs of states and an action to an upper
transition bound so that fQJ%Qz = T(Qj, a,Qq) denotes the upper bound
of the transition probability from state Q; to state Q¢ under action a €

245 A(Q]),

e qo C Q is a set of initial states,

Y is a finite set of atomic propositions,

o L:Q — 2% is a labeling function from states to the power set of ¥,
and T and T satisfy T(Qj7a,Q4) < f(Qj7a,Q4) for all Q;,Q¢ € Q, all a €
A(Qj), and

> T@QnaQ) <1< Y T(Qa,Q)
QieqQ QeeQ

for all Q; € Q and all a € A(Q;).
250

Definition 3 (BMDP Abstraction). Given the system (1) evolving on a domain
D C R" and a partition P = {Q;}]y of D, a BMDP B = (Q,Act,T,ﬁ qo, %, L)

is an abstraction of (1) if:

o (Q:= P, that is, the set of states of the BMDP is the partition P,
255 o Act:= A, that is, the set of actions of the BMDP are the modes of (1),
o For all Q;,Q, € P and action a € Act,

o<
TQj_>Q[< $1€n5j Pr(Fu(z,ws) € Qp), and

~

o >
TQJ‘—>Q15 = mseucg’j Pr(Fa(z, wa) € Qu),

11

1 Q2 Qs

D —>
Q4 Qs Q6

Action aq Action asy
@@ ‘ @ ‘““8]‘

0.7, 0.8 0.5 [0, 0.5]
MT()?N) l \ T[m 0.2] 01T09;\[021 \ [0, 1]
), '

(0.370.7] (0,0.4] 0.1, 09] (071

Figure 1: A finite-state BMDP abstraction B of system (1) with domain D. A partition P
of D is generated and bounds on the transition probabilities between states are estimated for

two actions a1 and as of B.

where Pr(Fq(x,w,) € Q) for fivred x denotes the probability that (1) tran-

sitions from x to some state ¥’ = Fo(x,w,) in Q¢ under mode a,
o P =qq, i.e., the set of initial states of the BMDP is the partition P,

e For all Q; € P and for any two states x;,x¢ € Qj, it holds that L(Q;) =
260 L(x;) = L(xy), that is, the partition conforms to the boundaries induced

by the labeling function.

For a given action, two continuous states belonging to the same discrete

state of a BMDP abstraction B may, in general, give rise to different transition

x5 probabilities. This fact is encoded in B by the upper and lower transition
probabilities.

In this paper, we do not present algorithms for computing BMDP abstraction

of (1), which typically rely on overapproximating reachable sets; see [27] for such

an approach. Thus, we assume that BMDP abstractions are available given a

12

270

275

280

285

290

295

partition P of D for (1). However, we will focus on the problem of refining P
in order to obtain better BMDP abstractions.

Furthermore, we make the assumption that any state in @@ of a BMDP can
serve as an initial state. From a given initial state, a BMDP B generates a finite
sequence of states m = qq . . . qx called a finite path by selecting an action in Act
at each time step and non-deterministically resolving a probability distribution
over the transition probabilities which is compatible with the bounds imposed
by the chosen action and sampled to determine the state of B at the next time
step. Denoting the set of all finite paths of a BMDP B by (Pathsyin)s, a
switching policy p : (Pathsyi,)p — Act for B is a function assigning an ac-
tion to all finite paths in B. The set of all switching policies of B is denoted
by Us = {pn | n : (Pathssin)p — Act}. Under a switching policy u, the
available actions in BMDP B reduce to a single possibility at each time step,
namely, that prescribed by the switching policy p, inducing a (possibly count-
ably infinite-state) Interval-valued Markov Chain (IMC), defined formally next.
As will be discussed further, only finite-memory policies need to be considered

in this work, which induce finite-state IMCs.

Definition 4 (Interval-valued Markov Chain). An Interval-valued Markov Chain
(IMC) T = (Q, T, f, qo, 2, L) is defined similarly to a BMDP with the difference

that a single action (which is omitted in the defining tuple) is available.

The IMC induced by policy p in BMDP B is denoted by B[u].

The state of an IMC Z evolves as follows: at each time step k, the environ-
ment non-deterministically chooses a transition matrix T} compatible with the
transition bound functions 7' and T of Z, that is, T, is a |Q| x |Q| row stochastic
matrix such that the entries satisfy the lower and upper bounds prescribed by

T and T, and the next transition occurs according to Tj, [28] L. A mapping v

IThis is the Interval Markov Decision Process interpretation of IMCs.

13

300

305

310

315

320

325

from a finite path m = qg...qx in Z to a transition matrix T} is called an ad-
versary. The set of all adversaries of Z is denoted by vz. A unique probability
measure Prob, is induced over the set of all infinite paths Pathsz of IMC T
under adversary v € vz [11, Def. 10.10]. By extension, a probability measure
Prob,, is induced over the set of all infinite paths Pathsz of BMDP B under
policy p and adversary v € vg|,).

The probability of satisfying w-regular property ¥ starting from initial state
Q; in IMC Z under adversary v is denoted by Pz,)(Q; = ¥). The greatest
lower bound and least upper bound on the probability of satisfying property
U starting from initial state Q; in IMC Z are denoted by Pz(Q; = ¥) =
inf,e,, Prp)(Q; F ¥) and ﬁI(Qj = V) = sup,¢,, Prp)(Q; = V) respectively.
When these bounds are the same for all states in a set of states C of Z, we write

Pz(C =) and Pz(C =).

To design switching policies in BMDPs, it is crucial to note that a BMDP
B subject to a switching policy p reduces to an IMC B[u]; therefore, finding
the probability of satisfying a specification ¥ from some initial state of B[u]
amounts to solving a verification problem on an IMC. As discussed above, the
probability of satisfying a specification ¥ in an IMC is not uniquely defined
and depends on the instantiation of a non-deterministic adversary. Conse-
quently, the verification of the IMC B[u] induced by a policy p in a BMDP
B does not compute, in general, a fixed probability but an interval of satis-
faction probabilities (I;), = [(27,:) 1> (Phhas)] for all initial states Q; of Blu].
The meaning of this interval is that the probability of fulfilling ¥ from state
Q; in B[y] is contained in (I;), for all possible adversaries of B[], that is,
Poiuiw(Q; = ¥) € (i), Y € vp).

Because a switching policy in a BMDP returns an interval of satisfaction for
all its initial states, it may not seem obvious which quantities to minimize or
maximize when synthesizing policies in BMDP abstractions of continuous state
systems. Note that a policy p for a BMDP abstraction B of (1) maps to a policy

for (1) in the natural way, i.e., the control action prescribed by u at a discrete

14

330

335

340

345

350

state @; of B is applied to all continuous states z € Q; in (1). By virtue of B
being an abstraction of (1), it then holds that the exact probability of satisfy-
ing ¥ from any continuous initial state € @; for (1) is contained within the
bounds of the interval (I;), induced by policy p for initial state @; in B [16].
Therefore, given a BMDP abstraction B of (1) generated from a partition P of
the domain D, our approach to Problem 1 is to find policies ﬁ{f}w and iy in B
that respectively maximize the lower bound probability (for the maximization

objective) and minimize the upper bound probability (for the minimization ob-

jective) of satisfying U for all initial states Q; of B.

Subproblem 1.1: Given a system of the form (1), a partition P of its
domain D, a BMDP abstraction B of (1) arising from P, any initial state Q; €
Q of B and an w-regular property ¥, compute switching policies Jiy € Ug and

[€ Ug that respectively minimize the upper bound probability and mazimize

the lower bound probability of satisfying ¥ in B, i.e.,

ﬁq\;lp = arg min ﬁB[/L](Qj): \II) s ﬁl\l(/)w = argmax ,ﬁB[/L] (Q] ’: \II) .
neUp HEURB

If B is a BMDP abstraction of (1), then a unique control action is assigned
to all continuous states abstracted by some Q; in B. In this case, the quality
of the policies Al and ﬁ“j{’ heavily depends on the quality and fineness of the
partition P of the domain D. Indeed, because these policies only accommodate
the extreme behaviors of all discrete states of B, it is reasonable to assume that
the computed policies may be suboptimal for a collection of continuous states
abstracted by some @Q;. In this work, we address this problem by starting with
a coarse partition of the system’s domain; then, we iteratively and selectively
refine this partition so as to target discrete states that are at a higher risk of
containing suboptimally controlled continuous states or are responsible for con-
siderable uncertainty in the control of other states. As finer partitions result
in larger abstractions to be analyzed, it is crucial to avoid performing unnec-

essary refinement in order to alleviate the state-space explosion phenomenon.

15

355

360

365

370

The procedure terminates once a precision threshold which will be defined in

further sections has been reached.

Subproblem 1.2: Given a system of the form (1) with a BMDP abstrac-
tion B arising from a partition P of the domain D and an w-regular property
W, refine the partition P of D until the computed switching policy reaches a
user-defined threshold of quality with respect to the objective of minimizing or

mazximizing the probability of satisfying ¥ in (1).

After presenting solutions to Subproblem 1.1 and 1.2 in Section 4, we next

investigate stochastic systems of the form
z[k + 1] = F(z[k], u[k], w[k]) (2)

where z[k] € D C R" is the state of the system at time k, u[k] € U where
U C R™ is a continuous set of inputs, w[k] € W C RP is a random disturbance
whose probability density function f,, is assumed to be independent of w, F :
D xUxW — D is a continuous map. Here, a control policy is a function
p: Pathsgi, — U assigning a control action to each finite path in (2). The set
of all control policies of (2) is denoted by U = {yu | p : Pathsf;, — A} as in the
finite-mode system case.

The difficulty of establishing policies aiming to maximize or minimize the
probability of satisfying a temporal property in (2) is highly dependent on the
structure of the considered system. In this work, we restrict our attention to

systems which are affine in input and disturbance, that is
xlk + 1) = F(x[k]) + ulk] + wik] . (3)

As in the finite-mode case, we are interested in the design of a control policy

that maximizes or minimizes the probability of satisfying an w-regular property

v,

Problem 2: Given a system of the form (3), any initial state x € D and an

16

375

380

385

390

395

400

w-regular property ¥, find control policies Jigz € U and iy € U that respectively

minimize and mazximize the probability of satisfying ¥ from x.

Solving this problem for an arbitrary property ¥ again involves a partition
P of the domain D from which a finite-state abstraction of the system is con-
structed and analyzed. In this work, we introduce new abstraction tools called
Controlled Interval-valued Markov Chains (CIMC) which differ from BMDPs in
that the set of available actions is uncountably infinite. CIMCs are the abstrac-

tions of choice for systems of the form (3).

Definition 5 (Controlled Interval-valued Markov Chain). A Controlled Interval-
valued Markov Chain (CIMC) is a 6-tuple C = (Q, U, T, f, qo, 2, L) defined sim-
tlarly to a BMDP with the difference that a continuous set of inputs U C R™

replaces the finite set of actions Act.

Definition 6 (Controlled Interval-valued Markov Chain Abstraction). Given
the system (3) evolving on a domain D C R™ and a partition P = {Q;}72, of
D, a CIMCC = (Q,U, T, f, qo, %, L) is an abstraction of (3) if it satisfies the
same conditions as a BMDP abstraction with the difference that a continuous

set of inputs U C R™ replaces the finite set of actions Act.

Denoting the set of all finite paths in a CIMC C by (Pathsgn)c, a control
policy p : (Pathsyin)c — U for C is a function assigning an input to all finite
paths in C. The set of all control policies of C is denoted by Ue = {u | w :
(Pathsfin)c — U}. A policy p applied to a CIMC C induces an IMC denoted
by Clp].

For all possible finite paths in C, the goal is to find the input in the uncount-
able set U that yields the most favorable IMC abstraction with respect to the

desired objective. Note that, unlike in a BMDP abstraction, this problem offers

17

405

410

415

420

425

an infinite set of available inputs to select from.

Subproblem 2.1: Given a system of the form (3), a partition P of its
domain D, a CIMC abstraction C of (3) arising from P, any initial state Q; € Q
of C and an w-reqular property ¥V, compute the control policies ,E:f,p € Ue and
~low

g € Ue that respectively minimize the upper bound probability and mazimize

the lower bound probability of satisfying ¥ in C, i.e.,

~low

P — argminﬁc[u](Qj EU) , gt = argmaxﬁc[u](Qj =) .
nEUC nEUC

As our approach again relies on finite-state abstractions, finer partitions of
the domain D generally yield higher-quality control policies. Therefore, parti-

tion refinement for this case is discussed as well.

Subproblem 2.2: Given a system of the form (3) with a CIMC abstraction
C arising from a partition P of the domain D and an w-regular property ¥, re-
fine the partition P of D until the computed control policy reaches a user-defined
threshold of quality with respect to the objective of minimizing or mazximizing the

probability of satisfying ¥ in (3).

In the next section, we comprehensively detail our solution to the synthesis
of switching policies for finite mode systems as formalized in Problem 1. Specifi-
cally, Subsections 4.1 and 4.2 focus on the computation of controllers for BMDP
abstractions as stated in Subproblem 1.1, whereas Subsection 4.3 is concerned
with Subproblem 1.2 and the refinement of BMDP abstractions for the synthesis

of improved policies with respect to the abstracted system.

4. CONTROLLER SYNTHESIS FOR FINITE MODE SYSTEMS

4.1. BMDP CONTROLLER SYNTHESIS
In this subsection, we present the theory for addressing Subproblem 1.1. We

adopt an automaton-based approach for computing maximizing and minimiz-

18

430

435

440

445

450

ing switching policies in a BMDP B with respect to an w-regular property V.
As discussed in Section 2, for every such property, there exists a corresponding
DRA representation A. Similar to [11, page 798] and [24] where the Cartesian
product with a Markov Chain (MC) and an IMC are introduced, we define the
product B ® A between a BMDP and a DRA.

Definition 7 (Product Bounded-Parameter Markov Decision Process). Let B =
(Q,Act,if’, f, 40,3, L) be a BMDP and A = (S,2%,0,s9, Acc) be a DRA. The
product B® A= (Q x S, Act,T/’, j’\’, qS, Acc’, L") is a BMDP where:

o) x S is a set of states,

o Act is the same set of actions of B, where A({Q;,s:)) = A(Q;) for all
Qj; € Q and for all s; € 5,

~

- ! __
. T// NT0) = TjS>Qe’ if s = 6(8’L(Q€))
(Q1,8)={Qe,s") 0, otherwise
o~ . !
o T\/ N — TQj%Qza Zf 5= 5(S’L(Q£))
Q;,s Qe,s’
(Qy,5)=(Qe,s") 0, otherwise

e ¢ ={(Qj,%0) : Qj € Q} is a finite set of initial states,

Acd = {Ey,Es,...,Ex, F1,F5, ..., F} is a set of atomic propositions,

where E; and F; are the sets in the Rabin pairs of Acc,

L':Q x S — 24 such that, for all atomic proposition H € Acc’, for all
Q; € Q and for all s; € S, H € L'({Qj, s;)) if and only if s; belongs to

the set in the Rabin pairs of Acc corresponding to H.

In this product construction, the DRA A is used as a finite-memory in-
strument that monitors all transitions occurring in B and assesses whether the

resulting path satisfies V. Indeed, any random path m = gpq; ... in B generates

19

455

460

465

470

475

a unique path ﬂg = (qo, S0) (q1,s;) ... in B® A which depends on the labels of
the states of B as per Definition 7. It follows that a switching policy in B can be
induced by inspecting the sequences of states generated in B ® A and choosing

control actions accordingly.

Definition 8 (Generated Path in Product BMDP). Consider a BMDP B with
set of states @ and labeling function L and a DRA A with set of states S and
transition function 6. A path ﬂg = (g0, 80) , {q1,81) -+, @ €Q, s; €S, in the
product BMDP B ® A is said to be generated by the path ™ = qg,q1 ... in B if
it holds that sj_ | = (s}, L(qi+1)),Vi =0,1,2,... .

Definition 9 (Induced Switching Policy). Consider a BMDP B, a« DRA A
and o switching policy p € Ug. Let m € (Pathsyin)p be any finite path in B.
We denote by Wg the path generated by 7 in the product BMDP B ® A. The
switching policy p is said to be induced by a switching policy pg of B® A if,
for all m € (Pathsgiy)p, it holds that p(m) = pg(T4).

For a fixed switching policy p of B, the probability of satisfying ¥ in the
induced IMC BJu] is equal to the probability of reaching a so-called Accepting
Bottom Strongly Connected Component (BSCC) in the product IMC B[u] @ A
[24] defined below. The probability of reaching an accepting BSCC in B[u] ® A
is not uniquely defined and depends on the assumed transition values within
the probability intervals selected by a non-deterministic adversary v € vp[g4

which induces a product MC Blu][V]4.

Definition 10 (Product Interval-valued Markov Chain). LetZ = (Q, T, f, qo, 2, L)
be an IMC and A = (S,2%,6,50,Acc) be a DRA. The product Z ® A =
(Q,T/', ﬁ, q, Acc', L") is an IMC defined similarly to a product BMDP with

20

480

485

490

495

500

505

the difference that a single action (which is omitted in the defining tuple) is

available.

Definition 11 (Markov Chain). A Markov Chain (MC) M = (Q,T,qo, %, L)
is defined similarly to an IMC with the difference that the transition probability

function or transition matriz of the Markov Chain T : Q x Q — [0,1] satisfies

0<T(Q;,Qe) <1 forallQ;,Qe € Q and 3,0 T(Q), Q) =1 for all Q; € Q.
The probability of satisfying property ¥ in Markov Chain M from initial state
Qj is denoted by Py(Q; = 7).

Definition 12 (Induced Product Markov Chain). A Product Markov Chain
I[V]é = (Q x S,T,q3, Acc', L) is said to be induced by an adversary v of a
product IMC T® A if they share the same Q (for memoryless policies 1), A, qf,
L’ and Acc, and for all gj, go € Q X S and all action a = pu(g;), the transition

17)) T a < y < T a .
probability function T satisfies qu—>qz <T(gj,q0) < qu—hpz

Definition 13 (Bottom Strongly Connected Component). Given a Markov
Chain M with states @, a subset B C @ 1is called a Bottom Strongly Connected
Component (BSCC) of M if

e B is strongly connected: for each pair of states (q,t) in B, there exists a
path qoqi - . . qn such that T(q¢;,qiv1) > 0,1 =0,1,...,n—1, and ¢; € B

for 0 <i<n withqy=4q, g, =t,
e no proper superset of B is strongly connected,

o Vs € B, SiepT(s,t) =1.

In words, every state in a BSCC B is reachable from any state in B, and

every state in B only transitions to another state in B.

21

Definition 14 (Accepting and Non-Accepting Bottom Strongly Connected
Component). A Bottom Strongly Connected Component B of a product Markov
Chain Mg is said to be accepting if:

di Z<3<Qj784> eEB : F; e L/(<Qj78g>)) A <V<Qj,8@> €B : E; g L/(<Qj78z>))

Mé is said to be non-accepting if it is not accepting.

s A key observation is that, for any policy p in B induced by a policy pg in the
product B ® A, the bounds on the probability of reaching an accepting BSCC
from the initial states of B[u] ® A are identical to the bounds on the probability
of reaching an accepting BSCC from the initial states of (B ® A)[ug] according
to Definitions 7 and 10 which ensure that the elements in the defining tuples

sis of B[] ® A and (B ® A)[ug] are the same. Consequently, an analysis of the
product B ® A is sufficient for approaching the synthesis problem.

Because w-regular properties are closed under complementation, the prob-
lem of minimizing the upper bound probability of satisfying property ¥ in B
can be converted to the problem of maximizing the lower bound probability of

s satisfying the complement property ¥ with corresponding DRA A. It follows
that Subproblem 1.1 is solved by applying the same tools to both B ® A and
B® A.

Fact 1. Let B be a BMDP and U be an w-regular specification. We denote by
U the complement of property . For any initial state Q; € Q of B and policy
w € Up, it holds that

Po (@ = ¥) = 1= Pry(@ B D)
Poiu Qs =) = 1= Po Qs = T) -

525 Therefore, our objective consists in computing a policy that maximizes the

lower bound probability of reaching an accepting BSCC from all initial states

22

530

535

540

545

550

555

of the resulting product IMC B[u] ® A. We introduce the class of memoryless
policies, which solely depend on the current state of the BMDP and will further
prove optimal for our problem in the product BMDP B ® A. Additionally, we
introduce the class of memoryless adversaries of an IMC, which will prove suf-
ficient for achieving the extreme probabilities of satisfying the specification as

established in Lemma 1 and 2, and Theorem 1 and 2.

Definition 15 (Memoryless Policy). A policy u € Up of a BMDP B is said to be
memoryless if, for all finite paths m = q[0]q[1] ... q[k] of B, it holds that u(w) =
w(qlk]), where q[k] is interpreted as a finite path of length 1 in the expression
w(q[k]). That is, a policy p is memoryless if and only if for every distinct pair

of finite paths m and 7' ending in the same state q, we have u(mw) = p(w').

Definition 16 (Memoryless Adversary). An adversary v € I, of an IMC T is
said to be memoryless if, for all finite paths m = q[0]q[1]...q[k] of Z, it holds
that v(m) = v(q[k]), where q[k] is interpreted as a finite path of length 1 in the
expression v(qlk]). That is, an adversary v is memoryless if and only if for
every distinct pair of finite paths m and 7’ ending in the same state q, we have

v(r) =v(r').

Before presenting a solution to Subproblem 1.1, we first recall some basic
results established in [24] for the purpose of verification in IMCs which we then
extend to compute switching policies in BMDPs.

For a given policy p of B and automaton A, the sets of accepting and non-
accepting BSCCs of the resulting product IMC B[u] ®.A depend on the assumed
probability values for the transitions with zero lower bound and non-zero upper
bound. Specifically, whether a zero or a non-zero value is assigned to these
transitions directly affects the qualitative structure of the product IMC, and

therefore its sets of accepting and non-accepting BSCCs, as a zero probability

23

560

565

570

575

580

implies that a transition can never occur between the corresponding states, while
a non-zero probability indicates that a transition is possible. When a non-zero
probability is assumed for such a transition, we describe the transition as being
“on”, and we say that the transition is “off” in the scenario that a probability
of zero is assumed. Nonetheless, it is shown in [24] that, for any product IMC,
there exists a largest winning component and a largest losing component which
can be created among all combinations of “on” and “off” transitions allowed by
the transition bound functions of the product IMC. A winning component of a
product MC is a set of states that reach an accepting BSCC with probability

1, while a losing component is a set of states that reach a non-accepting BSCC

with probability 1.

Definition 17 (Winning Component). [24] A winning component WC' of a
product MC M3 is a set of states satisfying P(WC' = OR) = 1, where R is the
set of states belonging to an accepting BSCC in /\/lg.

Definition 18 (Losing Component). [24] A losing component LC' of a product
MC M2 is a set of states satisfying P(LC |= OR) = 1, where R is the set of

. . . A
states belonging to a non-accepting BSCC in M.

Definition 19 (Largest Winning/Losing Components). [24] A state (Q;,s;) €
Q x S of a product IMC T is a member of the Largest Winning (respectively,
Losing) Component (WC)y, (respectively, (LC) L) if there exists a product MC

induced by T such that (Q;,s;) is a winning (respectively, losing) component.

Moreover, it was shown in [24] that the upper bound probability of satis-
fying ¥ in the IMC Z from state Q); is equal to the upper bound probability
of reaching the largest winning component (W), of the product Z ® A from

24

585

590

595

600

605

state (Q;, so). Likewise, the lower bound probability of satisfying ¥ is found by
solving a reachability problem on the largest losing component (LC)y. These
results naturally apply to product IMCs B[u]®.A4 constructed from an IMC B[u]
induced by a policy u of a BMDP B.

Fact 2 ([24]). Let B[] be an IMC induced by a switching policy p of a BMDP
B and A be a DRA corresponding to the w-regular property ¥. Let (WC)y, and
(LC) L be the largest winning and losing components of Blu] ® A respectively. It
holds that, for all initial states Q; of Blu],

P (@i E) = Ppjea((Q). s0) E O(WO)L)
Pui(Q5 F) = 1 — Ppiea((Q), s0) E O(LC)L) .

The intuitive interpretation of this property is that any IMC B[u] has a “best-
case” adversary and a “worst-case” adversary in the product B[u] ® A that
respectively maximizes and minimizes the probability of reaching an accepting
BSCC for all initial states of B[u] ® A simultaneously, since reachability proba-
bilities are maximized by memoryless adversaries. These probabilities are equal
to the upper and lower bound probabilities of satisfying ¥ from the initial states
of B[u]. In an induced product MC corresponding to the best-case scenario, the
set of winning components is as large as it can possibly be; in an induced prod-
uct MC corresponding to the worst-case scenario, the set of winning components

is reduced to the smallest possible set of permanent winning components.

Definition 20 (Permanent Winning Component). [24] A state (Q;,s;) € QxS
of a product IMC T ® A is a member of the Permanent Winning Component
(WC)p of I& A if (Qj, si) is a winning component for all product MCs induced
by Z ® A.

25

610

615

620

625

630

We further introduce the notions of permanent accepting BSCC, which is a sub-
set of the permanent winning components of a product IMC. These sets, which

are unique for a given product IMC, will prove useful in subsequent sections.

Definition 21 (Permanent Accepting Bottom Strongly Connected Compo-
nent). [24] A state (Qj,s;) € Q x S of a product IMC I ® A is a member
of the Permanent Accepting BSCC (U4)p of T ® A if (Qj,s:) belongs to an
accepting BSCC' for all product MCs induced by T @ A.

Recall our primary objective which is to find switching policies ﬁl\f,p and ﬁff,’w
that respectively minimize the upper bound probability and maximize the lower
bound probability of satisfying property ¥ from initial state ; in a BMDP B.
In light of the above facts, this amounts to enforcing the best possible worst-
case scenario with respect to the probability of reaching an accepting BSCC in
the product B ® A for the maximization case, or in the product B ® A for the
minimization case. To this end, we first state in the following lemma that there
exist sets of memoryless switching policies of B ® A resulting in the greatest
possible set of permanent winning components in the corresponding induced

product IMCs.

Lemma 1. Let B be a BMDP and ¥ be an w-reqular property with corresponding
DRA A. The set of policies of the product B& A is denoted by Uéﬁ‘ and the set of
memoryless policies of the product B® A is denoted by (UL)mem C UZ. There
exists a set of memoryless switching policies Z/I(Wc)g C (Z/lgé)mem generating the
set (W) in B&A such that, for all u € Uz, (WC)p C (WC)E where (WC)p
is the permanent winning component of (B ® A)[u], and, for all p € U cys
the permanent winning component of (B ® A)[u] is (WCO)§.

A constructive proof of this lemma is provided in the Appendix. The set (WC)$

26

635

640

645

is called the Greatest Permanent Winning Component of the product BMDP
B® A.

From Lemma 1, we infer in the following theorem that a maximizing policy
with respect to ¥ in BMDP B is induced by a policy (i%")g in the product
BMDP B® A that effectively generates the set (WC)$ and, for all states not in
(WC)E, maximizes the lower bound probability of reaching this set; on the other
hand, a minimizing policy with respect to ¥ in 5 is induced by a policy (ﬁ“;f)e
achieving the same thing in B® A, with A denoting a DRA for the complement
property of ¥. Because optimal switching policies for reachability objectives are
memoryless in BMDPs [29], it follows that the policy (#{*)g maximizing the
lower bound probability of reaching an accepting BSCC in B ® A is the same
for all initial states of B® A. Likewise, the policy (Jig) maximizing the lower
bound probability of reaching an accepting BSCC in B ® A is the same for all
initial states of B ® A.

Theorem 1. Let B be a BMDP, VU be an w-reqular property with corresponding

DRA A, and ¥ be the complement of ¥ with corresponding DRA A. Let (WC)$

and (W)g be the greatest permanent winning component, respectively, of the

product BUDP B® A and B® A, and Uweyg and Ugyeyg be the memoryless

policies generating these sets in the corresponding product BMDP as defined in

Lemma 1. A lower bound mazimizing and upper bound minimizing switching
~low

policy g™ and ﬁﬁ,” in B with respect to ¥ are respectively induced by switching

policies (I%")s in B® A and (fig)g in B® A such that

(A5")e = argmax Pse.ay ((Qj:s0) = O(WC)E) (4)
MEM(WC)}Q

(g) = argmax 75(5®Z)[M](<Qj750> = O(W),Ci) (5)
”eu<W)§

0 for all initial states Q; of B.

Proof. We first prove equation (4). For all states belonging to (WC)%, the
lower bound probability of reaching an accepting BSCC under the defined policy

27

655

660

665

670

675

680

~low ~low

(1g")e is equal to 1, since (Iig")e € Uy, and is therefore maximized.

Next, in [24, Theorem 1], it was shown that a lower bound on the probability
of reaching an accepting BSCC in a product IMC Z ® A is achieved in an
induced product MC (Mgg) with the smallest possible set of winning components
admissible by Z ® A, which is the permanent winning component (WC)p of
Z ® A, for all states of Z ® A. Furthermore, it was shown in [24, Lemma 9]
that the probability of reaching an accepting BSCC in an induced product MC
(M) increases for all states of (MZ) as more states are added to the set of
winning components of (Mg) while keeping all other transition probabilities
identical. Assume the optimal policy p* does not belong to L{(Wc)g for some
initial state (Q;, so) of B ® A and denote by (WC)} the permanent winning
component of B® A[u*]. As per the facts above, it follows that the probability
of reaching an accepting BSCC from (Q);, so) in the worst-case MC of B® A[u*]
has to be less than the probability of reaching an accepting BSCC from (Q;, so)
in the worst-case MC of B® A[(1*)], where (1*)" € Uy cyg allows the states in
(WC)E\(WC)% to be members of the permanent winning component and is the
same as p* for all states outside of (WC)%, which is a contradiction. Therefore,
for all states of B ® A which are not in (WC)%, a policy 4 maximizing the
lower bound probability of reaching a winning component has to belong to the
set U(Wc)g and generates the largest possible permanent winning component
in (B A)[yl

Due to the properties of reachability problems in BMDPs, whose optimal
policies are memoryless [29], there exists a policy in Z/{(Wc)g maximizing the
lower bound probability of reaching (WC)% simultaneously for all states which
are not in (WC)$, and, in particular, for all initial states (Q;, so) of B® A that
do not belong to (WC)$, concluding the proof of (4). Symmetric arguments
combined with Fact 1 prove (5). O

This theorem shows that the desired policies are computed by solving a
lower bound reachability maximization problem on a fixed set of states, which

can be accomplished using the value iteration scheme presented in [16]. An

28

685

690

695

700

705

algorithm for finding the sets (WC)% and (WC)% as well as their associated
control actions are presented in the next subsection.

In this work, we also consider the policies (fiy)e and (;\Zg)w

)g that respec-
tively maximize the upper bound and minimize the lower bound probability of
reaching a winning component for all states in a product BMDP B ® A. While
these policies are not mapped onto the original system states, they will prove
useful for assessing the quality of Al and ﬁ';f in further sections. These are
found by solving an upper bound reachability maximization problem on the
Greatest Winning Component (WC)¢ in B® A (or B® A), whose existence is

established in the lemma below.

Lemma 2. Let B be a BMDP and ¥ be an w-reqular property with corresponding
DRA A. The set of policies of the product B& A is denoted by Z/I(gt and the set of
memoryless policies of the product B ® A is denoted by (L{gg)mem C Ugg‘. There
exists a set of memoryless switching policies Z/I(Wc)f C (Uéf‘)mem generating the
set (WC)§ in B&A such that, for all u € Uz, (WC), C (WC)F where (WC),
is the largest winning component of (B ® A)[u], and, for all p € Ucys, the
largest winning component of (B ® A)u] is (WO)§.

Proof. Lemma 2 follows from a similar constructive argument as the one in the
proof of Lemma 1 where the lower bound probability operators are replaced

with upper bound probability operators and vice versa. O

The set (WC)$ is called the Greatest Winning Component of the product
BMDP B ® A.

Theorem 2. Let B be a BMDP, ¥ be an w-regular property with correspond-
ing DRA A and ¥ be the complement of U with corresponding DRA A. Let
(WCYG and (WCO)§ be the greatest winning component, respectively, of the
product BMDP B® A and B® A, and Uweye and U(W)g be the memoryless

29

710

715

720

725

policies generating these sets in the corresponding BMDP as defined in Lemma
2. An upper bound mazimizing and lower bound minimizing switching policy fig’
and ZZ{I(,)U) in B with respect to U are respectively induced by switching policies

(ig)e in B® A and (ﬁiﬁw)@ in B® A such that

(A4)e = argmax P(sg.a ((Q), s0) F O(WC)E) (6)
/‘GZ’{(WC)E;

low = —

(fiy)e = argmax P(3®X)M(<Qj750> = ()(WC)%) (7)
#GU(W)f

for all initial states Q; of B.

Proof. As shown in [24, Theorem 1], an upper bound on the probability of
reaching an accepting BSCC in a product IMC Z ® A is achieved in an induced
product MC (Mg) with the largest possible set of winning components allowed
by Z® A, which is the largest winning component (W), of Z® A, for all initial
states of Z® A. Hence, the same arguments as in the proof of Theorem 1 proves

(6). Symmetric arguments combined with Fact 1 prove (7). O

We remark that replacing (WC)¢ in (6) by the greatest accepting BSCC (U)§ C
(WC)¥ of B® A does not change the validity of (6). The set (U)% contains all
states which belong to an accepting BSCC for at least one induced product MC
under at least one policy in B® .A. The proof of the existence of a set of control
policies generating this set is similar to the first part of the proof of Lemma 1.
This substitution can be done because, by definition, 73(B® A(A)) ((WC’)E =
OU)g) = 1, and leads to algorithmic simplifications as the full set (WC)¢
may not need to be computed explicitly. A similar reasoning holds by replacing
(WC)§ with the greatest accepting BSCC of B® A in (7). The components
(WC)§ and (WC)$ as well as the control actions generating these components

are found via a graph search, as detailed in the next subsections.

4.2. WINNING COMPONENTS SEARCH ALGORITHMS
Now, we present graph-based algorithms for finding the greatest permanent

winning component (WC)% of a product BMDP B ® A defined in Lemma 1.

30

730

735

740

745

750

755

Furthermore, we show how to design a switching policy that effectively generates
this greatest permanent component.

The search is decomposed in two parts: first, we determine a superset of
the greatest permanent accepting BSCC, denoted by (U)$, of B ® A following
Algorithm 1. The set (U)% contains all states which belong to a permanent
accepting BSCC for some control policy in BR.A, and all such states are a part of
(WC)$G as seen in the proof of Lemma 1. We call the superset of (U)$ returned
by this algorithm an extended greatest permanent accepting BSCC, denoted
by (U4)%. This set additionally satisfies (U)% C (U1)% C (WC)%. Although
Algorithm 1 is driven by a search of the sets (U)%, our implementation allows
us to find additional members of (W(C)% in some instances.

Then, by using an iterative technique which alternates between a graph
search and a reachability maximization step in Algorithm 2, one can find the
set of states which are not members of (U;)% but for which the lower bound
probability of reaching an accepting BSCC is equal to 1 nonetheless for some

control policy, and effectively create (WC)%.

4.2.1. GREATEST PERMANENT BSCC SEARCH ALGORITHMS

We now detail an algorithm for finding an extended greatest permanent
accepting BSCC (U4)% of a product BMDP B ® A.

We introduce the following notations and terminology: a set of states in a
product B ® A is said to be accepting if it satisfies the acceptance condition in
Definition 14 and is said to be non-accepting otherwise. A state (Q¢, s;) of B®A
with labeling function L’ is said to be Rabin accepting with respect to the it"
Rabin pair of Aif F; € L'((Qe, s;)); (Qe, s;) is said to be Rabin non-accepting
with respect to the it" Rabin pair of A if E; € L'((Qq,s;)). A Rabin accepting
state with respect to the i*" pair is said to be unmatched in a set of states C' if,
for all (Qe,s;) € C, E; & L'({Qy, s;)), and it is said to be matched otherwise.
Act(C) is a set containing all sets of actions allowed for each state in a set C, that
is, if C' = {qo,q1,.--,qx}, ¢ € Q@ xS, then, Act(C) = {A(q), A(q1),--.,A(qx)}
Atp(B,C, Act(C)) is a function which outputs the set of states in C' which have

31

760

765

770

775

780

785

790

a non-zero probability of transition to B for at least one adversary under all
actions in Act(C). In addition, this function removes all actions from the sets
in Act(C) for which a transition to B is possible under at least one adversary
and returns the updated set of allowed actions for each state of C.

We provide a short description of the algorithm: Algorithm 1 first finds the
largest possible set of Strongly Connected Components (SCC), denoted by S,
that can be constructed in the product BMDP in line 4 and 5 assuming all
actions are available, as the greatest permanent BSCCs are a subset of these
by Definition 13. Set S is determined by applying a standard SCC search
techniques on the graph G defined in line 4.

Then, the algorithms iteratively remove the actions and states which prevent
these SCCs from being a permanent BSCC, that is, actions and states which
allow for a transition outside of the SCCs, as captured by line 9. Note that a
state is discarded in set C; once its action set is empty. Then, new SCCs are
computed with the remaining states and actions in line 12. If the algorithm
finds an SCC Sy which does not allow any transition outside of Sy for any state
and action available, then it is potentially a member of (U4)$ (line 13).

Next, the acceptance status of SCC Sy, is checked at line 14. This is done by
inspecting the states belonging to the SCC and comparing them with Definition
14. If S} is not accepting, states which can revert the acceptance status of Sy
are removed and new SCCs are computed with the remaining states in line 23.
Otherwise, the algorithm enters the if-statement in line 14 for a further analysis
of S.

An additional condition for Sk to be a part of (U4)% is that no subset of
states of Si can form a non-accepting BSCC under any scenario allowed by the
transition intervals of the product BSCC. Too make sure that no subset of S
can form a non-accepting BSCC, we choose control actions for the states in Sy
that maximize the lower bound probability of reaching the unmatched Rabin
accepting states contained in Sy in line 14 to 17. If this lower bound is zero
for some subset of Sj, then these states could potentially form a non-accepting

BSCC inside Sy for some assignment of the probabilities under all available

32

795

actions. The set of all such states is denoted by Apqq. If Apeq is empty, the
algorithm found a control policy that guarantees S; to be accepting for all
possible adversaries of the induced product IMC, since no state of Sy can form
a BSCC which doesn’t contain at least one of the unmatched accepting states,
and Sy, is added to (U4)% in line 18. Otherwise, the SCCs which can be formed
by the states in Apq and by the states in Si \ Apeq With the remaining actions

are computed and added to S in line 20.

33

800

Algorithm 1 Find Extended Greatest Permanent Accepting BSCC

1:
2:

oW

13:

15:
16:

17:
18:

19:
20:

21:
22:
23:

Input: Product BMDP B® A
Output: Extended greatest permanent accepting BSCCs (U+)}GD with corresponding policy
(@'g™)g for the states in this set
Initialize: (U4)§ :=
: Initially allow all actions for all states. Construct G := (V, E) with a vertex for each state in B®
A (V = @x85) and an edge between states (Q;, s;) and (Q,7,5;/) iFT((Q4, 55) ,a, (Qur, 551)) >0
for some a € A((Q3,s;))
Find all SCCs of G and list them in S
: for S, € S do
Co:=0,i:=0
repeat
R; := Si\Ui_oCe; Tr;:=V\Ri; (Cit1,Act(R;)) = Atp(Tri, Ry, Act(R;)); i=1i+1
until C; = 0 and no action is removed from Act(R;)
if ¢ # 1 then
Find all SCCs of R; (with the remaining actions) and add them to S
else
if S} is accepting then
Find the set A of all unmatched Rabin accepting states of Sy
For all states in Sj, maximize the lower bound probability of 0. A. Find the set of states

Apag whose lower bound probability of reaching A is zero after the maximization step

if Apuq = 0 then
(U)E := (U4)E U Sy, and save the actions computed in the maximization of ¢ A to
(Alg™) g for all states of Sy

else
Compute the SCCs formed by the states in Apqq and the states in Sy \ Apqq with
the remaining actions and add them to S

end if

else

If S does not contain any Rabin accepting state, continue. Otherwise, for all Rabin
accepting set of states A; with respect to pair 4 in Sy, find the set A7'°™ of all states in
Sk which are non-accepting with respect to the same pair as A;. Compute the SCCs
formed by the states in S \ A’*" with the remaining actions and add them to S
end if
end if
: end for

~low

: return (U4)§ | (B2%) g for states in (U4)§

We offer the following reasoning as a proof sketch for the correctness of the

algorithm, i.e, to show that the output (U})% of Algorithm 1 satisfies the chain

of inequalities ()% C (U;)% C (WC)$: for a set of states Sy to belong to a

permanent BSCC of a given kind in a product IMC, the following conditions

m

ust hold: 1) its constituents are not allowed to transition outside of Sy under

34

805

810

815

820

825

830

any adversary, 2) its constituents have to be reachable from one another under all
adversaries, 3) its constituents have to fulfill the requirements for accepting and
non-accepting BSCCs defined in Definition 14, 4) no subset of Sy is allowed to
form a BSCC of the opposite acceptance status under any adversary. Condition
1) is guaranteed by lines 7 to 10; Condition 2) is not enforced and is the reason for
outputting a superset of (U)}Ci. This is because, as long as the other 3 conditions
are fulfilled, the states in the set Sy will still be permanently winning, although
the transition bounds within S}, might allow these sets to be winning via different
scenarios that are not only a BSCC formed by all the states of Sy (e.g. a subset of
S always transitioning to another subset of Sy forming a BSCC); Condition 3)
is enforced by the if-statement in line 14 and the corresponding else-statements
of lines 22 to 24; Condition 4) is imposed by the remainder of the main for-loop.
Lastly, the algorithm iteratively removes the minimum number of actions and
states causing a set Sy to violate one of these conditions and analyze all of
the remaining states, ensuring that the procedure does not skip any permanent
component. Note that none of the removed states could form a permanent
BSCC between each other under any policy. Indeed, if these states did not
belong to a common SCC in S, this would be a contradiction. Therefore, by
virtue of this fact, Algorithm 1 does not “miss” any permanent BSCCs and
it must hold that (U)% C (U4)%. Moreover, the previous discussion regarding
Condition 2 ensures that all states in (U1)3\ (U)$ are still permanently winning,
guaranteeing that (Uy)% C (WC)$ and concluding the proof sketch.

This algorithm can be adapted to determine an extended greatest accepting
(U)$ by replacing all instances of the function Atp(B,C, Act(C)) with the
function At,ot (B, C, Act(C)), where At (B, C, Act(C)) returns the set of states
of C which have a non-zero probability of transition to B for all adversaries
under all allowed actions. This function also removes all actions from Act(C)
for which a non-zero probability of transition to B exists under all adversaries of
the induced IMC and returns the updated set of allowed actions. In addition, all
mentions of the term “lower bound” have to be replaced with “upper bound”.

The extended set is such that (U)¥ C (U;)¥ € (WO)§.

35

835

840

845

850

1

=)

L1

-
L

[os,ox /&3.0.7} @ 0.1) @

Figure 2: Depiction of the product IMCs in Example 1. On the left, state Q3 transitions to
the BSCC formed by @1 and Q2 under all possible adversaries and is therefore a permanent
sink state. On the right, state Q2 is either a sink state with respect to state Q1 or a BSCC

itself for all realizations of the probability intervals.

4.2.2. GREATEST PERMANENT COMPONENTS SEARCH ALGORITHMS

Next, we present an algorithm which constructs the greatest permanent win-
ning components (WC)$G in a product BMDP B® A once an extended greatest
permanent BSCC (U;)% has been found.

In a product IMC Z® A, some states which are not in a permanent BSCC can
still be a part of the permanent winning component of Z® A, as discussed in the
second part of the proof of Lemma 1. These states are those which belong to a
set of states C such that no transition outside the union of C' and the permanent
BSCCs of Z ® A is possible for any adversary, and such that no subset of C'
can form a non-accepting BSCC status under any adversary. We can further
classify these states into permanent sink states, which cannot be a part of a
BSCC under any scenario but transition to another winning set of state with
lower bound probability 1, and states which allow non-deterministic scenarios
where the state is sometimes a sink state with respect to another permanent
winning set of states and sometimes a part of a winning component that reaches
a non permanent accepting BSCC with probability one. The examples below,

illustrated in Figure 2, present situations where these scenarios can occur.

Example 1. Consider three states Q1, Q2 and Qs of a product IMC such
that Q1 and Qy form a permanent BSCC, with T(Q1,Q2) = T(Q2,Q1) = 1.

Furthermore, T(Q37Q1) = T(Q35Q2) = 0.3 and f(6237621) = f(Q?nQQ) =
0.7. Clearly, Qs is not a member of the BSCC encompassing Q1 and Qs; yet,

36

855

860

865

870

875

880

Q3 always transitions to either Q1 or Qo with probability probability 1 and is
therefore a permanent sink state.

Now, consider two states Q1 and Qo such that T(Ql, Q1) =1, T(QQ’ Q1) =
T(QQ,QQ) = 0 and T(Q%Ql) = f(QQ,Qg) = 1. While Q1 is a permanent
BSCC, Q- is neither a permanent sink state nor a permanent BSCC. However,
all adversaries of the product IMC make Qo either a sink state with respect to

Q1 or a BSCC with itself.

Consequently, we describe a procedure in Algorithm 2 that finds all states
in a product B® A for which a control policy induces one of the aforementioned
scenarios given extended greatest permanent BSCCs (U4)%.

We explain the main features of this algorithm: first, the greatest permanent
winning component (WC’)% is initialized to the extended greatest permanent
accepting BSCCs in line 3. Then, in line 5, the lower bound probability of
reaching this component is maximized in the product BMDP to reveal the states
which can be rendered permanent sinks with respect to (WC)IG), as these states
yield a lower bound of 1 of reaching the component. The sink states are added
to (WC)§ in line 8.

Next, we define the greatest potential accepting BSCC (U)got of a product
BMDP, which are computed by taking the set difference between the greatest
winning BSCC and the greatest permanent winning BSCC. States in (U)Eot are
those which could engender the second type of permanent components previ-
ously discussed. If (U)gat happened to contain a permanent sink state found in
line 8, we compute the greatest accepting and non-accepting BSCC as well as

their associated allowed actions with the remaining states in line 10 to update

(U)[?ot'
Then, in lines 12 to 17, for all BSCCs S which can be created in (U)got, we

check whether there exists a policy such that no state of S can transition outside
of the union of S and the current version of the greatest permanent winning
component for any instantiation of the resulting transition intervals. If such a

policy does not exist, states and actions for which a transition outside of the

37

885

890

895

900

905

aforementioned set is possible are removed from S and the BSCCs which can be
created inside the greatest BSCC of the remaining states are added to the list
N of BSCCs to inspect in line 19. On the other hand, if S only contains valid
states and corresponding actions, the algorithm enters the else-statement in line
20, where we need to choose a policy for the states in .S which additionally does
not allow the existence of a non-accepting BSCC within S under any adversary.

This step is done similarly as in Algorithm 1 by maximizing the lower bound
probability of reaching the unmatched Rabin accepting states in S and removing
the states yielding a lower bound probability of 0. If no such state is found,
then we designed a policy that effectively makes S either a set of sink states
or an accepting BSCC for all adversaries, and the states of S are added to the
greatest permanent winning component (WC)]GD. This process is described in
line 21 to 28.

In the case that new states were added to (WC)% upon execution of the
reachability maximization step and the graph search, which is checked in line
31 to 33, we return to the beginning of the while-loop and repeat this process
with the augmented version of the greatest permanent winning component, as
it could now allow previously discarded states to become permanently winning.
Otherwise, the loop is exited and the algorithms return the true set (WC)$§
with its associated control actions.

A slight modification of Algorithm 2 can be employed to compute the great-
est set (WC’)% defined in Lemma 2. However, in this paper, we solely use
the greatest accepting BSCC (U4)¢ as our target set for computing the upper
bound maximizing and lower bound minimizing policies (iy’)g and (o), as

explained in Subsection 4.1.

38

Algorithm 2 Find Greatest Permanent Winning Components

1:

11:
12:
13:

14:
15:
16:

17:
18:
19:

20:
21:
22:

23:
24:
25:
26:
27:

28:
29:
30:
31:
32:

© ® 3T kW

Input: Product BMDP B ® A, extended greatest permanent accepting BSCC (UJF)}%7 extended

greatest accepting BSCCs (U+)g

: Output: Greatest permanent winning component (WC)& with corresponding policy (Z%%)g

for the states in this set

: Initialize: (WO)E = (U)E, ()5, := (UN)F \ (UNE, (WO)E ., = (WO)E

P,prev

: repeat

Maximize the lower bound probability of O(WC)ICf for all states (Q;,s;) in B® A
Construct the set L of all states with a lower bound equal to 1 that are not in (WC)IGD
for Q € L do

(W)€ := (WC)E U Q, save the action (A%")g(Q) computed during maximization step

end for

Find the greatest accepting BSCC of (U)S,, \ L using Algorithm 1 and set (U)S, to this

pot pot
new set of states
Construct the set N of all accepting BSCCs constructed in (U)got under some policy

for S, € N do

Construct G := (V, E) with a vertex for each state in B® A (V = Q x S) and an
edge between states (Q;,s;) and (Q,s,s;/) if T(Qi,s5) a,(Qur, s47)) > 0 for some a €

A((Qi, 85))
Co:=0,i:=0
repeat
R; = Sp \ Ui_Cu; Tr; == V \ (R; U (WO)$); (Ci41, Act(Ry;))

AtP(TT‘i,Ri,ACt(Ri)); 1:=1+ 1
until C; = 0 and no action is removed from Act(R;)
if ¢ # 1 then

Find the greatest accepting BSCC of R, (with remaining actions) using Algorithm 1,

enumerate all accepting BSCCs constructed in this set under some policy, and add

them to N
else

Find the set A of all unmatched Rabin accepting states of S

For all states in Sy, maximize the lower bound probability of ¢ A. Find the set of states
Apaa whose lower bound probability of reaching A is zero after the maximization step
if Apqq = 0 then
(WC)G := (WC)E U Sy, save corresponding actions in (Fi0%)g for the states in Sy
(U)o == (U)ot \ Sk
else

Compute the greatest accepting BSCC of Apgq and Sk \ Apea using Algorithm 1,

enumerate all accepting BSCCs constructed in this set under some policy, and add

them to N
end if
end if
end for
Y= (WOE\ (WG e,
(WS e 1= (WO)E

33: until Y =0
34: return (WC’)IGD s (ﬁf{”’)@y for states in (VVC’)IGD

39

910

915

920

925

930

935

In summary, we develop a procedure for computing policies that either max-
imize the lower bound probability or minimize the upper bound probability of
satisfying an arbitrary w-regular property in a BMDP. To this end, we show
that these policies are induced by policies in the product between the BMDP
and a DRA encoding the specification of interest for the maximization objective,
or a DRA encoding the complement of the specification for the minimization
objective. In Lemma 1, we remarked that a product BMDP always possesses
a greatest permanent winning component. In Algorithms 1 and 2, we devise
graph-based techniques for determining this component as well as the corre-
sponding control actions for the states composing them. Finally, we show in
Theorem 1 that, for the remaining states in the product BMDPs, the opti-
mal policies are found by carrying out a lower bound reachability maximization

computation on the greatest permanent winning component.

4.3. STATE SPACE REFINEMENT
4.3.1. QUALITY OF COMPUTED POLICY

In the previous subsections, we implemented a technique for computing an
optimal switching policy in a BMDP subject to an w-regular specification. How-
ever, recall that, in the problem at hand, BMDPs are used as abstractions of
the underlying system (1) with respect to a partition of the system’s continuous
domain.

Here, we provide a measure of the suboptimality of the control strategy com-
puted in a BMDP abstraction with respect to the abstracted system. While the
discussion in this section focuses on optimality for the probability maximization
problem with respect to specification ¥, the same facts can straightforwardly be
applied to the dual minimization problem by replacing the instances of (7%%)g,
(if)e and B® A with (Jig))e, (;\ngw)@ and B ® A respectively, where A is a
DRA representing the complement specification W.

The value iteration algorithm used to design the policies (A5")g and (g)
discussed in Theorem 1 and Theorem 2 provides useful information amenable

to a quantitative measure of the quality of the lower bound maximizing policy

40

940

945

(11%")g. In particular, for all states (Q;,s;), the algorithm determines a lower

bound on the maximum lower bound probability of reaching an accepting BSCC
achievable from (Q);, s;) over all memoryless policies of B® A choosing the lower
bound maximizing action agmex = (5")e((Q;, si)) at state (Q;,s;), and an
upper bound on the maximum upper bound probability of reaching an accepting
BSCC achievable from (Q;, s;) over all memoryless policies of B ® A choosing
action ay at state (Q;,s;) for all actions ay € A({Qj,s;)). Denoting these
lower and upper bounds by P, and p, respectively for action a,, and the set of
memoryless policies of B® A by (UZ)mem, this is formally stated as

\ﬁl,mam Se(mjix 7\5(B®A)[u](<Qj7 51’> ': OR) s
I

® mem
s.t.
u({Qj,s:))=ae,max

where the subscript £, max refers to the lower bound maximizing action and,

for all actions a; € A((Q;, S3)),

pe > (gl}x Psoay (@), s:) F OR)

HEMUL Y mem

b((Q)) =ar
where QR is a slight abuse of notation denoting the objective of reaching an
accepting BSCC — which is generally not a fixed set of states as discussed in
previous sections — in the product IMC (B ® A)[u].

Therefore, we introduce the suboptimality factor €, s,y of state (@, s;) with

respect to the lower bound maximizing policy (jif”)g in the product BMDP
B ® A which is defined as

~

€@ = 0o Pe = Psg e (Qrs:) EOWC)E) . (8)

The quantity €., s,) represents an upper bound on the maximum improvement
in the probability of satisfying W, using a memoryless policy with respect to the
DRA states, any continuous state in); could achieve by choosing another fixed
action from the one prescribed by (7i!¢”)g when the product state is (Q;, s;),

as the maximum satisfaction probability attainable when applying a different

action is upper bounded by maxg¢ maes Pr- Therefore, the smaller €(Q,,s:) 18

41

950

955

960

965

970

~low

the more certain we are that (if")g is close to the best memoryless (in the
product) policy for all states in (); when the automaton state is s;.
Furthermore, the bounds computed by the value iteration algorithm can
additionally be used to show that certain actions are suboptimal or optimal at
a given state of a product BMDP B ® A and, by extension, that the modes
represented by these actions are suboptimal or optimal for some continuous
states of the abstracted system for policies that are memoryless in the product.
By comparing these bounds for all actions in an action space of a given state of
the product BMDP B ® A, some of these actions may appear to surely perform
worse or better than others at that particular state, as illustrated in the example

below.

Example 2. Consider a state (Qj,s;) of the product BMDP B ® A with a set
of actions A({Q;,s:)) = {a1,a2,a3}, and (1¥*)e((Qj,5:)) = a1. Suppose the
probabilities of reaching an accepting BSCC' from (Q;, s;) under all 3 actions

are described by the following intervals:
e (11Q,,s))a, = [0.5,0.8],
e (11q,,s,))ar = [0.0,0.7],
e (11q,,s,))as = [0.0,0.45],

where the lower bounds correspond to a lower bound on the maximum lower
bound probability of reaching an accepting BSCC from state (Q;,s;) achiev-
able over all memoryless policies of B® A choosing the corresponding action at
state (Qj, si), and the upper bounds correspond to an upper bound on the mazi-
mum upper bound probability of reaching an accepting BSCC from state (Q;, si)
achievable over all memoryless policies of B ® A choosing the corresponding
action at state (Qj, s;).

Although action a; maximizes the lower bound probability of reaching an ac-
cepting BSCC at 0.5, it appears that some continuous states of Q; could poten-
tially produce a higher probability — up to 0.7 — of reaching an accepting BSCC

under action as, since a non-deterministic scenario of the product BMDP allows

42

975

980

985

990

995

1000

for this probability to occur under some policy choosing as. However, under no
memoryless policy and adversary can action as generate a higher probability of
reaching an accepting BSCC than action a1, since 0.45 < 0.5, and can therefore
be discarded.

In spite of action az being removed, the suboptimality factor of (Q;,s;) with
respect to (") in this case is €q, s,y = 0.7 — 0.5 = 0.2, as there still exists
an action achieving a higher upper bound probability of reaching an accepting

BSCC, namely as with 0.7, than the lower bound probability of reaching an

accepting BSCC under the lower bound mazximizing action, namely a; with 0.5.

Definition 22 (Optimal/Suboptimal Action). Consider a state (Q;,s;) of a
product BMDP B ® A with a set of actions A({(Q, s:)). Let us denote by p, a
lower bound on the maximum lower bound probability of reaching an accepting
BSCC from (Qj, s;) achievable over all memoryless policies of B® A choosing
action ap € A((Qj,s:)) at state (Q;,s:), and by py an upper bound on the
mazimum upper bound probability of reaching an accepting BSCC from (Q;, si)
achievable over all memoryless policies of B ® A choosing action ay at state
(Qj,s:). An action ag is said to be suboptimal for state (Q;, s;) with respect to
A((Qj, s;)) if there exists an action ar, € A((Qj, s:)), k # ¢, such that Py < Py,
An action ag is said to be optimal for state (Q;,s;) with respect to A((Qj, S:))
if, for all a, € A((Qj,5:)), k # £, Dy > Di.-

Definition 23 (Optimal/Suboptimal Mode). Let 7 = x[0]x[1]z[2] ... z[k] be any
finite path of (1) such that the word L(z[0])L(x[1])L(x[2]) ... L(x[k]) produces
a run s[0]s[1]s[2]...s[k] in automaton A corresponding to property ¥, where
x[k] =i x € D and s[k] = s; € S. Let us denote by P, a lower bound on the
maximum (respectively, minimum) probability of an infinite path with prefix =
to satisfy W in (1) over all policies of (1) choosing mode ay € A for path w, and

by pe an upper bound on the mazimum (respectively, minimum) probability of an

43

1005

1010

1015

1020

1025

1030

infinite path with prefix m to satisfy ¥ in (1) over all policies of (1) choosing mode
a¢ € A for path m. When the objective is to maximize (respectively, minimize)
the probability of satisfying ¥, a mode ay is said to be suboptimal for state x
with respect to automaton state s; and the set of modes A if there exists a mode
ar, € A, k # £, such that pp < P, (respectively, P, > D). A mode ay is said to
be optimal for state x with respect to automaton state s; and the set of modes

Adf, for all ay € A, k # L, pr <P, (respectively, py < Py).

If the set of actions A((Qj, s;)) of state (Q;, s;) contains an optimal action, then

the suboptimality factor €,) is set to 0.

R

4.3.2. REFINEMENT PROCEDURE

Now that a quantitative measure for the quality of the computed switching
policy has been introduced, our next objective is to design a domain parti-
tion refinement scheme to address Subproblem 1.2 and achieve a user-defined
level of optimality. In order to mitigate the state-space explosion phenomenon,
the refinement algorithm should specifically target the states causing the most
uncertainty in the domain partition.

We define the greatest suboptimality factor €,q. as

e T @ enelaxs) (@ ®)

which can be used as a natural precision criterion for a given domain partition P.
A low factor €,,4, ensures that no state in the original system is poorly controlled
under the switching policy computed in the BMDP abstraction arising from P.
Looser notions of optimality, such as the average suboptimality factor or the
fraction of states below a fixed optimality threshold, are less sensitive to outliers
and can alternatively be considered. We denote the desired suboptimality target
by €h-. Note that a target e, equal to 0 requires to find an optimal action
for all states in B ® A in the case of maximization or in B ® A for the case of

minimization.

44

1035

1040

1045

1050

1055

1060

Formally, a partition P’ is a refinement of a coarser partition P if all states
in P is equal to the union of a set of states in P’. In the general case, ab-
stractions constructed from a refinement P’ of P will exhibit a lesser degree of
non-determinism than abstractions constructed from P, allowing for the com-

putation of higher-quality controllers with respect to the abstracted system.

Definition 24 (Partition Refinement). A partition P’ is a refinement of a
partition P if, for all states Q; € P, there exists a set of states {Q;?,}kmzjo n P’
such that Q; = UZZOQ?,.

The proposed refinement procedure to achieve a target precision €y, is inspired
by our technique in [24] where refinement was conducted for the purpose of
verification in an IMC and whose main features are extended to the synthesis
problem at hand. This new procedure is based on a heuristical scoring of the
states in a partition P which highlights the regions of the state-space causing
the most uncertainty with respect to the specification of interest and the set of
actions at hand. Specifically, this score aims to capture how differently a par-
tition state behaves between the extreme cases induced by the two maximizing
(or minimizing) policies previously discussed, as well as how much this state
influences other states which are known to be suboptimaly controlled.

Our scoring algorithm is presented in Algorithm 3 and is summarized as
follows: first, we take as input a “best-case” product MC (Mg)u and a “worst-
case” product MC (Mg)l. For the case of maximization, the worst-case product
MC (Mg), is a worst-case product MC induced by the IMC (B ® A)[(7%")e)]
with respect to the objective of reaching an accepting BSCC, while the best-
case product MC (MZ), is a best-case product MC induced by the IMC (B ®
A)[(g)). Similarly, for the case of minimization, the worst-case product
MC (M%), is a worst-case product MC induced by the IMC (B ® A)[(Jiy) o]
with respect to the objective of reaching an accepting BSCC, while the best-
case product MC (MZ), is a best-case product MC induced by the IMC (B ®

45

1065

1070

1075

1080

1085

1090

A) [ﬁi;w]. Again, the aforementioned MCs are automatically constructed when
applying the reachability value iteration algorithm used in Algorithms 1 and 2
and for designing the two maximizing (or minimizing) policies.

Next, for all state (@, s;) of the product BMDP B ® A (or B® A) whose
suboptimality factor is greater than the target €., we compute the probability
Py (i of reaching any state (Qj/, s¢) from (Qj,s;) in the MC (MZ), on
line 7 using the results in [30]. Then, for all states (Q;/,sy) of the product
BMDP that do not belong to a permanent component (as these do not require
refinement), the quantity p; iy (i) - ||T<“j,7i/> — Tfj,7l,,>||2 is added to the score
o of the partition state (); on line 10, where T<'L;./’Z.,> and T{j’,z") are the rows
corresponding to state (Q;, s;/) in the transition matrices of (MZ),, and (MZ),
respectively. The term ||T<1p‘7.,,i/> — Té,vi,
(Qj, si7) behaves in the two extreme MCs, while Pjiy—(j',7y 18 a term associated

>||2 aims to capture how differently state

with how much state (Q;/,s;/) affects state (Q;,s;). Finally, from line 10 to
13, we additionally increment the score of states which have the potential of
changing the qualitative connectivity structure of the “best” and ”worst” case
scenarios. These states are those which belong to a BSCC that is present in one
of the scenarios and not in the other and have the potential of confirming or
invalidating the existence of these BSCCs, that is, states which have an outgoing
transition with a zero lower bound and a non-zero upper bound for at least one
available (non-suboptimal) control action.

Once a score is attributed to each state of P via Algorithm 3, states with
a score above a user-defined threshold are refined to generate a finer partition
P’. A new switching policy is computed in a BMDP abstraction constructed
from P’, and more refinement steps are subsequently applied if necessary. The
procedure terminates once the optimality factor €,,,, becomes less than the
target eipr.

It should be noted that a product IMC generally does not induce a unique
worst-case and best-case MC, but rather induces sets of possible worst-case and

best-case MCs yielding the same probabilities of reaching an accepting BSCC

46

1095

1100

1105

1110

1115

from all states [24]. Therefore, the choice of inputs for Algorithm 3 may not be
unique. As previously discussed, we choose to input the MCs computed in the
process of designing the control policies for the BMDP. Although selecting other
MCs is possible, we claim that the design of Algorithm 3 renders the effect of
choosing other input MCs negligible in the long-term behavior of the synthesis
algorithm in all but pathological cases. The reasoning behind this claim is that
a lot of discrepancies between different worst-case (or best-case) MCs occur in
the transitions within permanent winning or losing components which belong to
the set G defined in Line 5 of Algorithm 3, as the existence of these components
depend on the qualitative structure of the IMC and not on the exact transition
values, and have no influence on the computation of the refinement scores.
Other large discrepancies between different such MCs may be found in the
potential BSCCs stored in set R in Line 4. However, the relative difference

TZ

captured by the term ||T(“ G

3ty T >||2 at such states is likely to be similar
regardless, causing only a minor variation in refinement scores for two different
input MCs, and the set R may quickly become empty after a few iterations of
the refinement algorithm as the states causing this set to exist, namely states
without zero lower bound and non-zero upper bound, are targeted in Line 12 to
14. Finally, different transitions between two worst-case (or best-case) MCs can
be found outside of the aforementioned sets, but this scenario is improbable for
abstractions computed from dynamical systems with continuous state-spaces.
Indeed, this would require for at least two states outside these sets to have the
exact same probability of reaching an accepting or a non-accepting BSCC in
the extremal assignments of the transition probabilities, which is unlikely when
using transition bounds derived from integrals over continuous sets. Such a
scenario may be encountered on coarse abstractions with very few states that
are all bound to be refined no matter which best or worst-case MC is chosen,

and finding such states with equal reachability probabilities in high-dimensional

MCs would be an isolated event with little impact on the refinement algorithm.

47

Algorithm 3 Refinement Scoring Algorithm

1:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

Input: Product BMDP B ® A, best-case product MC (Mé)u, worst-case
product MC (Mg})l, threshold suboptimality factor €, suboptimality fac-
tors €(q, s,y for all states (Q;,s;) of B& A

Output: Refinement scores o = [00, Olyee ,U‘Q‘_l] for all states of parti-
tion P

Initialize: 0 = [00, O1yen. ,U‘Q‘,l] where o; =0

In R, list all states of B® A belonging to a BSCC that exists in (/\/lg)u and

not in (Mg),, or vice-versa
In G, list all states of B ® A with a probability of reaching an accepting
BSCC of 0 in both (M%), and (MZ); or of 1 in both (M%), and (MZ);
for (Q;,s;) € B® Ado
if €(Q;.5:) = Ethr then
Compute the probability p(; ;) (/) of reaching (Qj/, sy#) from (Q;, s;)
in (Mg)u, for all (Q;/,si) € B® A, using the technique in [30]
for (Qj/, si7) € B® A such that (Q;/,sy) ¢ G do
01 = 05+ Dy (i) ||T<“j,7i,> - T(lj’,i/>||27 where T7, ;.\ and Tfj’,i’)
are the rows corresponding to state (@, s;/) in the transition matri-
ces of (MZ), and (MZ), respectively
if (Qj/,sy) € R then
for (Q;~,si) € B® A such that (Q;,si) and (Qj~,s;») belong
to a common BSCC in (M3), or (MZ), do
if (Q;, sy+) has an outgoing transition with a zero lower bound
and a non-zero upper bound for at least one available (non-
suboptimal) control action then
05 = 0y + PG50y TG iy = Toran ll2
end if
end for
end if
end for
end if

end for

48

1120

1125

1130

1135

1140

1145

The fact that a partition P’ is a refinement of a partition P allows us to
make inferences about the properties of the states in P’ from the synthesis com-
putations performed on the states in P. First, as discussed previously, not all
actions allowed in P may need to be considered in the refined partition P’ when
computing a new switching policy. Indeed, given a partition Q; = UZZOQ?, of a
state (); € P, it follows that a certainly suboptimal action with respect to the
action set of a product state (Q;, s;) will also be suboptimal with respect to all

<Q§/, sl> and can be eliminated in the synthesis procedure applied to P’.

Proposition 1. Let B be a BMDP abstraction constructed from a partition P
of the domain D of (1), A be a DRA corresponding to specification ¥, and P’
be a refinement of P. Let {Q;“, v, C P, be a partition of state Q; € P. If
action a € A((Qj, s;)) is suboptimal for state (Q;, s;) with respect to A((Q;, s;))
in the product BMDP B ® A, then the mode of (1) represented by action a is
suboptimal for all x € Q; with respect to the automaton state s; and the set of

available modes, and, in particular, for all x € Q?, k=0,1...,m;.

Proof. The proof assumes the objective of synthesis to be the maximization of
the probability of satisfying ¥. We denote by p an upper bound on the maximum
upper bound probability of reaching an accepting BSCC in B® A from (Q;, s;)
achievable over all memoryless policies choosing action a € A((Q;, s;)) at state
(Qj,si). The assumption that a is suboptimal with respect to A((Q;,s;)) in
B ® A implies that there exists an action o’ € A({(Qj, s;)) with a known a lower
bound 73’ on the maximum lower bound probability of reaching an accepting
BSCC in B® A from (Qj;, s;) achievable over all memoryless policies choosing
action o’ € A((Qj, s;)) and such that p < P . Therefore, by virtue of B being
an abstraction of (1), Vx € @, it follows that Poede < ﬁlmode, where Prode
and ;T)inode are a lower bound and an upper bound on the maximum probability
that an infinite path of (1) with prefix = = z[0]z[1]z[2] ... z[k], z[k] =: z, such
that the word L(x[0]) L(x[1])L(z[2]) ... L(x[k]) produces a run s[0]s[1]s[2] ... s[k],

with s[k] = s;, satisfies ¥ over all the (memoryless in the product) policies of

49

1150

1155

1160

1165

1170

1175

(1) choosing the modes represented by actions a and a’ respectively at path .
It follows that the mode represented by action a is suboptimal for all z € @Q;
with respect to automaton state s; and the set of available modes. In particular,
this statement is true for all = € Q?,, k=0,1...,m;, since Q;% C Qj, proving
the proposition. Symmetric arguments prove this proposition in the case of

minimization.]

Furthermore, out of the remaining actions, only a subset of them may be
retained for the qualitative problems of constructing the largest and permanent
components in P’ using Algorithms 1 and 2. Indeed, all actions in A((Q;, s;))
which were discarded during the graph search for (WC)¢ could not, under any
policy and adversary, generate a winning component in B ® A. Therefore, we
can define the set of actions Aqual(<Q§,, sl>) - A(<Q§?,, sz>) used specifically for

the component graph search and containing all actions which, at state (Q;, s;),

allowed for the existence of (WC)¢ with respect to the partition P.

Proposition 2. Let B be a BMDP abstraction constructed from a partition
P of the domain D of (1), A be a DRA corresponding to specification ¥, A
be a DRA corresponding to complement specification VU, and P’ be refinement
of a partition P. If state (Q},s;) is not a member of (WC)¥ in the product
BMDP B ® A (respectively, B ® A) under any memoryless policy p of B® A
(respectively, B @ A) such that u((Q;,s:)) = a € A((Qj,s:)), then, for all
x € Q;, the probability that an infinite path with prefic m = z[0)z[1]z[2] ... z[k],
zlk] =: z, such that the word L(x[0])L(x[1])L(z[2]) ... L(z[k]) produces a run
s[0]s[1]s[2] ... s[k], with s[k] = s; in automaton A, satisfies U is strictly less
than 1 (respectively, strictly greater than 0) for all policies of (1) choosing the
mode represented by action a at state x. In particular, this statement is true for
all x € Q;’?,, k=0,1...,m;, where {Q;?/}ZZO, Q?, € P’, is a partition of state
QjeP.

Proof. The proof assumes the objective of synthesis to be the maximization

50

1180

1185

1190

1195

1200

1205

of the probability of W. If state (Q;,s;) is not a member of (WC)¢ under
any memoryless policy u such that p((Q;,s:)) = a, then it must be true that
p < 1, where p is an upper bound on the probability of (Q;,s;) to reach an
accepting BSCC in B®.A under all memoryless policies i such that u((Qj;, s;)) =
a. Therefore, by virtue of B being an abstraction of (1), it follows that the
probability of an infinite path with prefix 7 = x[0]x[1]z[2] ... z[k], z[k] =: =, such
that the word L(x[0])L(x[1]) L(z[2]) ... L(z[k]) produces a run s[0]s[1]s[2] ... s[k],
with s[k] = s; in automaton A to satisfy ¥ is upper bounded by p for all
policies of (1) choosing the mode represented by action a for the path 7 and is
thus strictly less than 1. In particular, this statement is true for all x € Q?,,
k=0,1...,m;, since Q?, C Qj, proving the proposition. Symmetric arguments

prove the proposition with respect to the minimization objective. O

An analogous proposition can be established with respect to the greatest
BSCCs (U)§ for Algorithm 1.

We remark that any state (Q;, s;) belonging to the greatest permanent win-
ning components (WC)% of a BMDP abstraction B®.A constructed from a par-
tition P has to belong to the greatest permanent components with respect to a
refined partition P’ if the same control action applied to all (Q;, s;) € (WC)$ in

the abstraction resulting from P is applied to all their refinement states <Q§,, sl>

Proposition 3. Let B be a BMDP abstraction constructed from a partition
P of the domain D of (1), A be a DRA corresponding to specification ¥, A
be a DRA corresponding to complement specification ¥, and P’ be refinement
of a partition P. A policy u of B induced by a policy in B ® A (respectively,
B® A in the case of minimization) generating the greatest permanent winning
component (WC)% of B® A (respectively, of B ® A) selects an optimal mode
(with the appropriate mode/action correspondence) for all x € Q; such that
(Qj,8:) € (WC)G with respect to the automaton state s; and the set of available

modes, and, in particular, for all x € Q?,, k=0,1...,m;, where {Qfl ZZO,

o1

1210

1215

1220

1225

1230

1235

k . ey
Q3 € P', is a partition of state Q; € P.

Proof. The proof assumes the objective of synthesis to be the maximization of
the probability of W. A policy (u)g generating (WC)$ in B® A ensures that
PUQj,s:) = O(WC)S) =1 for all (Q,s;) € (WC)E. The policy p in B induced
by (1)g applied to all z € @; such that (Q;,s;) € (WC)% when the automaton
state is s; with the appropriate mode/action correspondence guarantees that, for
all such z, the probability of an infinite path with prefix 7 = z[0]z[1]x[2] ... z[k],
z[k] =: z, such that the word L(x[0])L(z[1])L(z[2]) ... L(x[k]) produces a run
s[0])s[1]s[2] ... s[k], with s[k] = s; in automaton A to satisfy ¥ is equal to 1,
by virtue of B being an abstraction of (1). Therefore, p selects an optimal
mode for all such z. In particular, this statement is true for all z € Qf,,
k=0,1...,m;, since Q?, C Qj, proving the proposition. Symmetric arguments

prove the proposition with respect to the minimization case. O

Therefore, by pruning all states which were a member of (WC)% in an
abstraction constructed P, since an action engendering a fixed probability of
reaching an accepting BSCC equal to 1 is known for such states, we can reduce
the effective set of states for which a controller has to be synthesized in the
abstraction arising from a refined partition P’ after each refinement step.

Finally, additional crucial information can be exploited to tremendously re-
duce the number of operations performed in a refined partition. For example,
in the numerical examples presented further, all states which were shown to be
reachable from a given state (); under some action in partition P are stored in
memory, and only these states or their subsets are inspected for computing the
transitions from @), in the abstraction arising from a refined partition P’. This
is justified by the fact that, if f(Ql, Q2) = 0 for any @; and Q5 in partition P,
then it follows that f(k Q%) =0 for any Q¥ C Q; and Q5 C Q.

This novel iterative approach that removes suboptimal actions at each re-
finement step is promising in terms of scalability compared to existing methods.

For instance, prominant tools such as StocHy [19] and FAUST? [31] employ a

92

1240

1245

1250

1255

1260

1265

1270

single gridding approach where a unique (often conservative) partition of the
domain guaranteeing a target abstraction error is created and used for comput-
ing a switching policy; in this case, all possible actions allowed by the original
abstracted system have to be considered on possibly very fine partition grids,
causing intractability issues when the action space is large. Here, the action
space to be analyzed for the refined states reduces in size as the partition is
progressively rendered finer. Therefore, the number of computations performed
to synthesize a switching policy for an equivalent level of abstraction fineness
is reduced compared to the aforementioned tools. Furthermore, the continuous
domain grid in StocHy and FAUST? depends primarily on the properties of the
abstracted system whereas our refinement is specification-guided, i.e, tailored to
the specification under consideration, diminishing the generation of unnecessary
discrete states. The iterative refinement proposed in [16] does not implement
an action removal scheme and suffers from the same tractability issues discussed
above. In addition, structural properties inherited from coarser partitions are
not discussed and leveraged to lessen the computational burden of synthesis.
Also, the termination criterion of the algorithm in [16] is a low abstraction error
under the lower bound maximizing (or upper bound minimizing) policy which,
unlike the suboptimality factor introduced in this work, does not directly cap-
ture the possible improvement one could achieve by choosing a different policy
(which is memoryless in the product construction) on a refined abstraction.
Lastly, the selection of states to be refined in [16] focuses on one-step transi-
tion errors and does not involve the inspection of the overall structure of the
abstraction between the two extreme scenarios of the BMDP as in Algorithm 3.

Our specification-guided, refinement-based synthesis procedure for finite-
mode systems is summarized in Algorithm 4. We assume that states selected
by the scoring scheme are split in half along their greatest dimension. In this
case, the worst-case growth of the BMDP abstraction throughout the proce-
dure is O(|S| - |Act| - 2I21) when every state in the partition is refined. However,
the iterative removal of considered actions, coupled with the scoring algorithm

targeting only specific regions of the domain, mitigates this exponential growth

93

1275

in practice. The run-time complexity of the sub-components of Algorithm 4 is
as follows: Algorithm 1 is exponential in |S| - |Q| as the number of SCCs to
analyze may grow exponentially in the worst-case; consequently, Algorithm 2,
which calls Algorithm 1, displays the same run-time complexity; the iterative
reachability maximization algorithm on the winning components is polynomial
in |Act|-|S]-|Q] [16] and Algorithm 3, whose limiting factor is the computation

reachability probabilities in MCs, is therefore polynomial in |S| - Q).

Algorithm 4 Controller Synthesis for Finite-mode Systems

1: Input: Partition Py of domain D of (1), w-regular property ¥ (complement
property ¥) and corresponding DRA A (A), target controller precision €.
2: Output: Maximizing (minimizing) switching policy g™ (fiy), final parti-
tion Ppip

3: Initialize: ¢4, :=1,7:=0

4: while €,,4, > €, do

5. Compute the sets (WC)G and (WC)¢ of the product BMDP B®.A (Bx.A)

constructed from P; using Algorithms 1 and 2
6: Compute the policies %" and iy’ (Jig, and ﬁffw) of the BMDP B ac-
cording to Subsections 4.1

7. Compute €4, using (9)

8 if €40 > €15 then

9: Compute a best-case and worst-case product MC (M,)4 and (M)A
as discussed in Subsection 4.3.2

10: Apply the scoring procedure in Algorithm 3 and refine all states above
a user-defined threshold score to produce P;

11: Update the set of actions of all states in P;;; for the component search
and reachability problem as discussed in Subsection 4.3.2

12: 1:=1+1

13: end if

14: end while

~low

15: return Y (fig), Pfin := P

o4

1280

1285

1290

1295

1300

1305

4.3.3. MONOTONICITY AND CONVERGENCE OF SYNTHESIS PROCE-
DURE

As pointed out in [24], it is possible to construct scenarios where, for two
states (Q; and @; in a given partition, and two states @} and Q} generated
from a refinement of @, that is, Q; = Q; UQ7, the inequality fem(Qi7 a,Q;) <
fw(Qi,a,Qg) + fegj(Qi,a,Q;’) holds for some mode a of system (1), where
T.. (Qs, a,Q;) returns the least upper bound on the probability for any continu-
ous state € @; to transition to a state in); under mode a. As a consequence,
because the current implementations of the graph search and reachability max-
imization algorithms view the abstractions created from a partition and its re-
finements as being independent from one another, our synthesis algorithm may
assign a larger amount of probability to the transition from state Q; to the total
refined states constituting @); in the refined abstractions than was allowed in

the coarser ones. This phenomenon may cause:

e The set (WC)$ to increase and the set (WC)% to decrease upon re-
finement. Specifically, given a state (Q;, s;) of a product BMDP B ® A
constructed from a partition P, and a state <Q;, s;) of a product BMDP
B’ ® A constructed from a refinement P’ of P, where Q' C Q;, it is pos-
sible for (Q,s;) to belong to (WC)f in B’ @ A while (Q;,s;) does not
belong to this set in B ® A, and it is possible for (Q;,s;) to belong to
(WC)$ in B® A while (Q}, s;) does not belong to this set in B’ ® A,

e The lower bound probabilities of reaching (WC)$G to decrease from some
states of the product BMDP for a fixed policy, and the upper bound
probability of reaching (WC)¢ to increase from some states of the product

BMDP for a fixed policy.

Therefore, a finer partition could provide “less certainty” and result in the syn-
thesis of a switching policy yielding a smaller satisfaction lower bound (or greater
upper bound in the case of minimization) for some states of the refined BMDP
abstraction. This means that a monotone decrease of the greatest suboptimality

factor €4, is not guaranteed under the proposed iterative refinement method.

99

1310

1315

1320

1325

1330

1335

We address the first bullet point by saving the states that belong to the afore-
mentioned components in the coarser abstraction before each refinement step
and using the facts enunciated in Propositions 2 and 3; however, the second
bullet point affects the monotonicity of the value iteration algorithm of [16] in
its current state.

Nonetheless, under a continuity assumption on the dynamics and using ade-
quate BMDP abstraction techniques, it seems that having the size of all discrete
states which are not in a permanent component approach zero in the limit is
sufficient for guaranteeing convergence of Algorithm 4, as seen in related case
studies using iterative refinement [16], [24] and the case study presented further.
We conjecture that the scoring and refinement procedure applied in Algorithm
4 satisfies this condition and therefore ensures convergence; however, we leave a

thorough investigation and potential formal proof of these facts for future work.

In brief, we introduce a quantitative measure of the suboptimality of the
devised switching policy in a BMDP abstraction with respect to the original
continuous abstracted states. This suboptimality factor defined through (8)
and (9) corresponds to an upper bound on the potential improvement any con-
tinuous state of the system could experience in the probability of satisfying the
specification using memoryless (in the product) policies by choosing a different
control action from the one prescribed by the computed policy. This factor is
established in the BMDP abstraction through a comparison between the worst-
case assignment of the probability intervals under the computed policy and the
best-case assignment of these probabilities under a policy assuming the most op-
timistic outcome of the transition intervals. Furthermore, these worst-case and
best-case scenarios are used to identify control actions that are certainly subop-
timal for a given state as formalized in Proposition 1. Lastly, in Algorithm 4,
we presented an iterative partition refinement heuristic which selectively targets
certain regions of the state-space by comparing these two extreme scenarios with
the objective of achieving a user-defined precision threshold. Some structural

properties transmitted from coarser abstractions to refined ones are identified

96

1340

1345

1350

1355

1360

1365

in Proposition 2 and 3, allowing to reduce the number of required computations
after each refinement step.

While the techniques derived in this section are applicable to finite mode
stochastic systems, they do not straightforwardly extend to the synthesis of
control policies for stochastic systems with a continuous set of available inputs

as stated in Problem 2, which is the focus of the next section.

5. CONTROLLER SYNTHESIS FOR CONTINUOUS INPUT SYS-
TEMS

In this section, we discuss synthesis for stochastic systems with a continuous
set of inputs as defined in Problem 2. Recall that we focus on systems of the
form (3) with state update equation z[k + 1] = F(x[k]) + ulk] + w[k].

To synthesize controllers for such systems, we again construct a finite par-
tition P of the continuous domain D of (3) to generate a CIMC abstraction C
of the system. Note that the results presented in the lemmas and theorems of
Section 4 for BMPDs are not altered if the set of available actions is infinite and
consequently apply identically to CIMCs. Therefore, our approach is similar
to the synthesis method for BMDPs, that is, a DRA representation A of the
specification of interest ¥ is computed, and the problem is converted to a com-

ponent search and a reachability maximization step in the product CIMC C® A.

Definition 25 (Product Controlled Interval-valued Markov Chain). Let C =
(@Q,U, T, T\, 90,3, L) be a CIMC and A = (S, 2%,9, so, Acc) be a DRA. The prod-
uct CeA = (QxS,U, .7, a8, Acc, L") is a CIMC defined similarly to product
BMDP with the difference that a continuous set of inputs U C R™ replaces the
finite set of actions Act.

However, because the number of “modes” of (3) corresponding to different

choices of input u can be viewed as being uncountably infinite, the techniques

o7

1370

1375

1380

1385

1390

established in Section 4, which rely on exhaustive searches over all possible
actions at all states of the abstraction, cannot be applied directly in this con-
text. Instead, we need to consider the underlying continuous dynamics of the
abstracted system and exploit their relationship with the bounds of the CIMC
abstraction C.

To propose a solution to this problem, we make the following assumptions
on (3) which allow to derive closed-form expressions for the lower and upper

bound transition maps T and T as a function of the input parameter u.

Assumption 1. The partition P of the domain D of system (3) conforms
to the labeling function of (3) and is rectangular, that is, VQ; € P, Q; =

[,] % [a3,b3] x ... x [ad,, b]].

n’»-n

Assumption 2. For every discrete state Q); in the partition P of D, a rectangu-
lar over-approzimation of the one-step reachable set from Q; under F, denoted

by Rq, = [, 7] x [F3, 73] X ... x [, 73], is available.

Assumption 3. The random disturbance w(k] in (3) is of the form wlk] =
wilk] walk] ... wy [k]}T, where each w; € W; C R has probability density
function fo,(x;), W; is an interval, and the collection {w;}, is mutually in-
dependent. We denote by Fy, (x) = [*_ fu,(0)do the cumulative distribution
function for w;. Moreover, the probability density function f,, for each random

variable w; s symmetric and unimodal with mode c;.

For systems which cannot satisfy Assumption 1, derivations of probability
bounds using over and under-approximations of labeled regions are found in
[18] and can be extended to our synthesis framework to allow for a rectangular

partition. Assumption 2 is relevant for wide classes of systems. For example,

98

1395

1400

1405

1410

it was shown that a rectangular over-approximation of the reachable set from
any box state could be efficiently computed under mixed-monotone dynamics,
which include the well-known class of monotone systems [32] [33]. Note that,
under this assumption, an over-approximation of the reachable set of state @;
under F with an additive input u € U is a shifted version of the rectangular set

Rq,, denoted by Rf) .

Remark 1. Let Rg, = [7, 7] x [F%,?%] X ..o X [Fil,ﬁn} D{F(z):z € Q,} be
an over-approzimation of the one-step reachable set from discrete state QQ; € P
under the state update map F(x). Then, Ry = [FJI +u1, 7 4] X [Fé +ug, 7+
U] X ... X [Fh 4 U, 70 4+ uy] D {F(z) +u:z € Q,} is an over-approzimation

of the one-step reachable set from Q; under the state update map F(x) + u.

In [27], we showed that under Assumptions 1 to 3 and for a fixed u, an
upper bound on the probability of transition from state (); to state @, is com-
puted by placing the mode ¢ of disturbance w, restricted to the reachable set

5j, as close as possible to the center of Q. A lower bound on this probabil-

ity is computed by placing the mode of w as far as possible from the center of Q.

Fact 3 ([27]). For system (3) under Assumptions 1 to 8, an upper and lower
bound on the probability of transition from state Q); to state Qq, Q;,Q¢ € P,

under input u = [uy,ug,...,u,] € U, are given by
n bf
T - R Y _
TQ;‘L)QZ - . fwi (xl - Si,maz) dxl?
i=1v%

3

= H (Fwi (bf - Sz,?nfm) - F'wi (af - SZ,?nfm))r

1=

=

n

b
T = R _
TjS>Qg - H/z fwi (xl - sz’,min) dx;
i=1"%

S

/) 0) Y,
(Fwi (b; — Szzm) — Fu,(a; — Sfﬁm))
1

.
Il

99

1415

1420

Uy

Qj

=
S

Figure 3: 2D depiction of the synthesis problem for system (3). Every state Q; has a reachable
set RQ,- under F which is shifted when input u is applied. The permanent component con-
struction problem requires positioning RQJ- such that all instances of noise inside RQj ensures
the satisfiability of the specification. If no input can achieve this, the lower bound reacha-
bility maximization problem requires positioning Rq; such that the probability of reaching a

permanent component is maximized in the worst instance of noise inside RQJ,.

where F,,, is the cumulative distribution function for w; and

¢ YR vl = _
si,maaw Zf Si,maw € [7"1- —|—’LLZ,’)"1 +ul]

J=t _) op ~j
Siomaz = \ T3 +Uis A Si e > T Ui (10)
< T =
4w, if i maz < Ti + Wi,
5 + if j— > M +
j—=L i Ui, 2 Si,ma:r 2 Us 1
7] +w;, otherwise ,
14 2
. Vi _a;+b;)
With $; e = ~5+ — Ci-

According to Remark 1, given a CIMC abstraction C of (3), for every state
(Qj, s;) of the product CIMC C® A (or C® A when the objective is to minimize
the probability of satisfying W), the goal is to shift the reachable set Rq, of Q;
via the application of an input u so as to maximize the lower bound probability of
reaching a permanent winning component from (Q;, s;), as illustrated in Figure
3. As in the finite-mode case, this is achieved by first solving a qualitative
problem, which we call component construction problem, where the greatest
permanent winning component of C ® A (C ® A for minimization) is created;

then, a quantitative problem is solved where an input maximizing the lower

60

1425

1430

1435

1440

1445

1450

bound probability of reaching these components is computed for all states of
C® A

In the following sections, we first provide a solution to Subproblem 2.1 and
show that, although the input space U of a CIMC C is uncountably infinite,
the qualitative problem can be converted to a finite-mode component search by
carefully selecting a finite number of inputs of U, which are identified geomet-
rically under the stated assumptions. Subsequently, we derive an optimization
problem for solving the quantitative problem and obtain the desired policies for
the CIMC abstraction C of the system. Finally, the refinement of the partition
P, from which the CIMC abstraction C arises, is addressed so as to reach a set

level of optimality for the control policies with respect to the abstracted system.

5.1. COMPONENTS CONSTRUCTION

In this subsection, we discuss the problem of generating the greatest perma-
nent component (WC)% in a product CIMC C ® A when C abstracts (3) under
Assumptions 1 to 3, that is, the transition bounds between the states of C are
given as in Fact 3.

First, we remark that if all density functions f,,, of the disturbance vector
wlk] have infinite support, the probability of making a transition between any
two states of C has a non-zero lower bound for all choices of input. In this case,
the IMC abstraction induced by some policy of C always induces MCs where all
possible transitions have a non-zero probability, greatly simplifying the compo-
nent construction problem. Here, we remove this restriction and alternatively
assume that each w; has a probability density function living on a bounded

interval support.

Assumption 4. All probability density functions f,,, of the disturbance vec-
T

tor wlk] = [wl[k] wolk] ... wn[k;]} of system (3) have a bounded interval

support, that is W; = [W;,W;] C R and fy,(x;) =0 Vo, & W;.

61

1455

1460

1465

1470

1475

1480

Recall that, in an IMC, a transition between two states); and Q); can be

classified into three different categories:
e An “off” transition if f(Qj, Q) =0,
e An “on” transition if T(QJ,QZ) > 0,

e A transition which could be either “on” or “off” depending on the assumed

transition values if T(Qj, Q;) =0 and f(Qj, Q;) > 0.

The connectivity properties of an IMC Z dictate which states belong to a perma-
nent winning component or a largest winning component in the product between
7 and an automaton A. Provided that the partition P of the system’s domain
is finite, the number of possible connectivity structures of an IMC abstraction
arising from this partition is finite as well. Therefore, in the case of a CIMC
abstraction, the objective is to find all connectivity structures which are achiev-
able with the set of inputs U, choose an input u € U for all such structures
and for all states); of C, and feed the resulting finite-input BMDP B into
the component search algorithms introduced in Section 4 in order to compute
the permanent winning component of the product CIMC C ® A, where C is the
CIMC abstraction of (3) with domain partition P. The same procedure can be

applied to find the greatest winning (WC)¥ of C ® A.

Fact 4. The problem of computing the greatest permanent winning component
(WC)S as well as the greatest winning component (WC)§ of a product CIMC

C ® A can be converted to a component search in a product BMDP.

Finding the appropriate actions for state @); is done by partitioning the in-
put space U into regions such that the resulting IMCs upon application of an
input in different regions are qualitatively different, as illustrated in Figure 4.
We achieve this by first finding the subsets of U where, for each state Q); reach-

able by Q; under some input, the transition from @; to Q; behaves differently

62

1485

1490

1495

Figure 4: Sketch example of the component construction problem. The reachable set RQj of
state ; induces a partition of the input space U where each region produces a qualitatively

different set of transitions. Dashed lines separate regions of U where the transition to some

)

state is turned “on” or “off”, solid lines separate regions where the lower bound probability of

transition to some state is zero and non-zero. Blue lines correspond to state @1, green to Q2
and orange to Q3. Dark red regions highlight inputs causing several transitions to have a zero

lower bound and a non-zero upper bound; such regions may need to be further partitioned.

(“on”, “off” or either), formalized below as trigger regions.

Definition 26 (Trigger Region). For any states Q; and Q; of P, the trigger
regions of Q; with respect to Q; are subsets of the input space U defined as

follows:

e The “off” trigger region UQJ;J_ (Qi) C U is the set of inputs such that
T(Qja“w Ql) = 0} Yu € UQfQJ (Qi)7

e The “on” trigger region Uéj(Qi) C U is the set of inputs such that
T(Qjau’a QZ) > 0; Yu € Ucozj (Qi);

e The “undecided” trigger region Ugj (Qi) C U is the set of inputs such that
T(ijua Ql) =0 and f(ijuv QZ) > 07 Vu € Ug] (Qz)

Note that some of these triggers regions may evaluate to the empty set for some
choices of partition P. In addition, the union of all trigger regions of state @Q;
with respect to state @; is equal to the input space U. For system (3) with
Assumptions 1 to 4, these trigger regions for state @); are geometrically identi-

fiable due to the structure of both the disturbance and the over-approximation

63

1500

1505

1510

of the one-step reachable state of @; highlighted in Remark 1. The “off” trigger
region corresponds to shifted reachable sets of (); where disturbance w cannot
reach);, the “on” trigger region corresponds to shifted reachable sets where any
position of the disturbance results in an overlap with @;, and the “undecided”
trigger region corresponds to shifted reachable sets where some positions of the

disturbance cause an overlap with @; and some do not.

Proposition 4. The trigger regions of state Q; € P with respect to state QQ; € P
and input space U under dynamics (3) with partition P and satisfying Assump-

tions 1 to 4 are given by

UL (Qi) ={u € R": 3k 7 +uy, + @ < a}
or ¥, + ug + Wy, > bk N U,

= i pi
Uéj(Qi):{UER":Vk (M—i—u ZL;‘k_i
; . S iy
and?i+uk+7j)k§b}b€) or (Tk‘g‘rk+uk<ct,€74—,€

= —C

andﬁ—l—uk—l—@kZa};)}ﬂ U,

Us (Qi) = (Rn \ (U8, Q) uUS (Q)))) nu.

It follows that different overlaps of the trigger regions of state ¢); induce quali-

tatively different profiles for the outgoing transitions of @;.

Definition 27 (Trigger Regions Overlap). A Trigger Regions Overlap Hq, € U
of state QQ; € P is a subset of the input space U such that

HQj(tl,tQ,...,t|p|): ﬂ US](QI))

i€{1,2,...,|P|}

where t; € {f,o,n}, Vi.

64

1515

1520

7N
0,05 -7 3 %n.s] /
- 400.03]

@ @ O~ o}
@ @

’ i [0, ()N ! —

0,04] , \
.
L

Figure 5: Two IMC transition profiles with similar transition types but different qualitative
structures as discussed in Example 3. The transitions from ()1 to the three other states are
of the same type in both cases; however, while the transitions from Q1 to Q2 and Q3 cannot
be set to zero simultaneously for any adversary in the top example, this can be achieved in

the bottom example.

Note that an overlap of two or more undecided trigger regions could produce
qualitatively different transitions for several subset of its inputs and have to be

further examined, as illustrated in the following example depicted in Figure 5.

Example 3. Consider the following two transition profiles from state Q1 to

three states QQ2, Q3 and Q4:
i T(leQQ) = [0705]7 T(Ql?Ql’)) = [0703} and T(Q17Q4) = [02708]7
L4 T(Ql,Qg) = [0704], T(Ql,Qg) = [0706] and T(Q17Q4) = [017 1]

Although T(Q1,Q2) and T(Q1,Q3) are undecided in both cases and T(Q1,Q4)
is “on” in both cases, the two profiles are qualitatively different. In the first

case, no probability assignment can simultaneously turn off the transitions from

65

1525

1530

1535

1540

1545

1550

Q1 to Q2 and from Q1 to Q3; however, in the second case, it is possible to turn
off these two transitions at the same time by assigning a probability of 1 to the

transition from Q1 to Q4.

For all states); € P, we denote the set of overlaps with 2 or more undecided
trigger regions by ’H”j, and all other overlaps by ng.

In summary, we remark that the components construction problem in a
product CIMC C ® A is solved by converting it to a component search in a
finite-action product BMDP B ® A. The construction of B is achieved by parti-
tioning the input space of all states Q; of C into trigger region overlaps yielding
qualitatively different transition profiles, and by choosing one control action
per overlap in H%j, and possibly more than one control actions per overlap in
ng. Indeed, we observed in Example 3 that, for every overlap in the set ’ng
of a state ;, we have to distinguish the sets of inputs allowing for different
combinations of inactive uncertain transitions. We show that the overlaps are
geometrically identified for system (3) under Assumption 1 to 4.

The input selection procedure is detailed in Algorithm 5. This algorithm
chooses the minimum energy input in all overlaps in H%j and performs a search
over from the overlaps in ’Haj in order to find control inputs allowing for dif-
ferent combinations of inactive uncertain transitions. We emphasize that the
optimization problem on line 20 is non-convex under our system assumptions
and is in general hard to solve. Note that Algorithm 5 in its current state may
select more actions than needed from the overlaps in ’H’éj . Indeed, our procedure
is likely to choose different actions for two distinct combinations of achievable
“off” uncertain transitions S and S’, where none of these combinations is a strict
subset of the other, while a single action may be able to accommodate these two
combinations at once. Consequently, the resulting BMDP B may have a larger
action space than necessary. This could be addressed by considering multiple
such combinations at once in the constraints on line 20, at the cost of having to

potentially solve a greater number of optimization problems.

66

Algorithm 5 Input Selection for State Q;

1:

2:

3:

4:

5:

6:

7

8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

20:

21:

22:

24:

25:

26:

27:

Input: Sets of overlaps H%J, and ’H’éj of state Q;
Output: Finite set of actions A(Q;)

Initialize: A(Q;) =0

for H; € ’Héj do

u* = arg min, ¢4,

ulld, AQy) « u*
end for
for H; € H’éj do
L=0,0:=0,Y:=0
For all states Qy, such that U3 NH; # 0, O < Qy,
For all states Qy, such that U3 NH; #0, Y < Qy
L<Y
for S € L do
for v € A(Q,) do
Check if }° o f(Qj, U, q) + ey s f(ij u,q) > 1
end for
if Feasible for some u € A(Q;) then
Continue for-loop (Line 13)
end if
Solve w* = argmin,cy [|ul[3 such that > gco f(Qj, u,q) +
D gev\s T(Qj,u,q) > 1
if Feasible then
A(Q;) « u”
else
Add the (I S!|S—|1) combinations of |S| — 1 states of S (which are not
already in L and for which no superset of states previously returned
a feasible solution) to L
end if
end for
end for

return A(Q;)

67

1555

1560

1565

Algorithm 6 Component Construction Method for (3)
Input: Domain Partition P, input Space U, DRA A of specification ¥

2: Output: Winning components (WC)G and (WC)¢ of product CIMC C®.4

constructed from P
Create a BMDP B with the same states as P and with each action set A(Q);)
initialized to the empty set

4: Compute the overlap sets for all); € P using Proposition 4 and according
to Definition 27
for Q; € P do

6: Compute the set of actions A(Q;) using Algorithm 5 as well as their

corresponding transition profiles

end for

8 return (WC)$E and (WC)¢ and their corresponding control actions by

applying the component search in Algorithm 1 and 2 to B® A

Algorithm 6 summarizes the component construction procedure and outputs
the greatest permanent winning component (WC)$ of a product CIMC C ® A,
as well as its greatest winning component (WC)¥, where C serves as a CIMC

abstraction of system (3).

5.2. REACHABILITY MAXIMIZATION

To devise an optimal control policy for system (3) abstracted by a CIMC C,
we now have to find the control inputs in the continuous set U maximizing the
lower bound probability of reaching (WC)$ in a product CIMC according to
Theorem 1.

Our approach is inspired from the lower bound reachability maximization
algorithm for BMDPs in [16]. In this algorithm, the procedure for computing a
control policy maximizing the lower bound probability of reaching a target set

of states G in a finite-action BMDP is based on value iteration and is as follows:

1. Initialize a probability vector W% = [p,p3, ..., p%] where p? = 1if p; € G

and 0 otherwise.

68

1570

1575

1580

1585

1590

1595

2. At each time step k, construct an ascending ordering Or = q1¢2 ... ¢m,

¢; € Q, of the states such that p§ <pk <... <pk.

3. For each state @; and for each action in A(Q);), allocate as much probabil-
ity mass z{ as possible to state ¢;, then allocate as much probability mass
zé as possible to state go with the amount of probability left, etc., in order
to construct the worst possible assignment of the probabilities allowed by

the IMC under each action with respect to the objective of reaching G.

4. For each state, pick the action from A(Q;) that yields the highest worst-

k+1 __
i =

case probability p Z;nzl pfz; of reaching G.

5. Update the probability vector W*+! such that pf“ = ZT:l p;’?zé, with

pf“ being the computed probability under the chosen action at state @,
and construct a new ordering O*T!. Repeat this process until vector W
converges [34] and the last selected actions are the lower bound reachabil-

ity maximizing actions for all states.

We propose to follow the same procedure for computing lower bound maxi-
mizing policies in the product CIMC C®.A. However, while finite-mode systems
rely on exhaustive search over every possible action to choose the most optimal
one at each step k of the above algorithm, systems with a continuous set of
inputs U require solving an optimization problem at Step 3 of the above algo-
rithm to find the reachability maximizing input w for all states (Q;,s;) of the
product CIMC C ® A.

We first note that the transition bound functions in C ® A are determined by
the transition bound functions in C, as seen in the definition of a product CIMC.
We formulate an optimization problem that outputs the best action u € U for
state (Q;,s;) at some time step k of the aforementioned algorithm. Consider
the set of states {g¢}}*, which are reachable by (Q;, s;) under some input, that
is Ju € U such that f((Qj,si>,u,qg) >0, 1 =1,2,...,m. We denote the
probability of reaching the desired component from state gy at the current time

step of the algorithm by p,. Consider an ascending ordering O = ¢1¢2q3 - - - ¢m

69

1600

1605

1610

1615

1620

of the states reachable by (Q;,s;) such that p; < ps < ... < p,,. Step 3 and
4 of the reachability maximization algorithm for the continuous input case are

formulated as the optimization program

m Qe "

-1 m
st. zp = mln{f(<Qj35i> 7u7q€)7 1- sz - Z T(<Qj78i> 7“7‘]1@)}7
k=1

k=0+1

(=1,2,3,....,m,

where the lower and upper bound terms are given by (10) and (11) for the specific
case of system (3) under Assumption 1 to 3, rendering this problem non-convex.
The constraints ensure that, for a given input u, each state in O is allocated
either its upper bound probability of transition or the maximum probability
mass allowed by the lower bound transition probability of the following states
in O and the probability mass distributed to the preceding states in 0. In
the case study section of this paper, we tackle optimization problem (12) using
numerical heuristics.

Unlike in the finite-mode case, this value iteration procedure for continuous
input sets is not guaranteed to converge in a finite number of steps. There-
fore, we suggest computing the maximum change in the reachability probability
among all states of C ® A at each step of the algorithm, and terminating the

procedure once this change reaches a user-defined convergence threshold.

5.3. STATE SPACE REFINEMENT

Finally, we discuss partition refinement for system (3) to address Subproblem
2.2.

The quality of the controller designed in the CIMC abstraction C with respect
to continuous states of (3) can be assessed as in Section 4 for the finite-mode
system case. In light of Subsection 4.3, we need to construct a best-case and

a worst-case product MC induced by the product CIMC C ® A to determine

70

1625

1630

1635

1640

1645

the suboptimality factor of each state of C ® A. In particular, when devising
a maximizing control policy, a best-case MC (Mg)u is constructed by solving
an upper bound reachability maximization problem on the greatest winning
component (WC)¢ of the product CIMC C®.A, where C is the CIMC abstraction
of (3) under the current partition P. When devising a minimizing control policy,
a best-case MC (M%), is constructed by solving an upper bound reachability
maximization problem on the greatest winning component of the product CIMC
C® A, where C is the CIMC abstraction of (3). These upper bound reachability
maximization problems are addressed using a similar procedure as in Subsection
5.2, with the difference that the ordering O = q1¢2q3 . . . ¢;, in the optimization
program (12) is now descending with respect to the probability of reaching the
target set G, that isp; > pa > ... > pm.

Propositions 1 to 3, which discuss some properties that are passed from
a partition to its refinements for the finite-mode case, are also valid in this
continuous input framework. In particular, as in the finite-mode case, subsets
of the input space U which can be shown to be certainly suboptimal may be
removed. To find such subsets, we suggest building a partition U((Q;, s;)) =
{U,({Qj,8:))}_, of the input space for all states (Q;,s;) of C ® A. Then, for
all subsets U,,, an upper bound maximization step on (WC)? is conducted;
subsets yielding an upper bound on the maximum upper bound probability of
reaching an accepting BSCC from (Q;, s;) which is lower than the lower bound

~up

produced by (15")s((Q;,5:)) (respectively, by (Jig)e ((Qj, si)) for the case of

minimization) are suboptimal with respect to the entire input set of (Q;,s;)
and are removed from U((Qj, s;)), as depicted in Figure 6. Note that a finer
discretization of the input space U((Q;, s;)) for the update step may result in
the removal of a greater volume of suboptimal inputs from U((Q;, s;)) at each
iteration of the synthesis procedure, allowing to “zoom in” on better inputs
for state (Q);,s;) in fewer iterations at the expense of having to solve a larger

number of optimization problems per iteration.

71

1650

1655

1660

1665

U Uupdated

Maximize

Upper Bound

of H(WEC)G

Figure 6: Sketch of an input space update before refinement of the domain partition. The
original input space U of the considered state is gridded and the upper bound probability of
reaching (WC’)E is maximized for all subsets of the grid. The subsets producing suboptimal

bounds are shown in gray and are discarded.

Finally, once (M%), and (MZ), are generated and all input sets are up-
dated, the scoring and refinement procedure are performed identical to the
finite-mode case. After refinement, the trigger regions and overlaps of a state
Q; calculated in Algorithm 6 have to be re-computed only if there exists a
state (Q;, s;) for some ¢ which belonged to the difference between the greatest
winning component and the greatest permanent winning component in the pre-
vious abstraction, as only such a state could potentially be a member of a new
permanent winning set of states in the refined abstraction as a consequence of
Proposition 2, and if either ¢); has been refined into children states in which
case the trigger regions of the children states have to be determined, or a state
that was reachable from); under some action in the input space U(Q;) has
been refined into children states with respect to which the trigger regions have
to be evaluated.

The controller synthesis algorithm for continuous input systems is summa-
rized in Algorithm 7. The run-time complexity of most sub-algorithms of Al-
gorithm 7 has already been presented in Section 4. Additionally, as previously
discussed, the input selection in Algorithm 5 grows combinatorially in |Q| and
the computation of overlaps in Algorithm 6 runs exponentially in |Q|. Lastly,
the computational complexity of the algorithm strongly depends on the opti-

mization method used for solving the reachability maximization step.

72

Algorithm 7 Controller Synthesis for Continuous Input Systems

1:

10:

11:

12:

13:

14:

15:

16:

17:

18:

19:

Input: Partition Py of domain D of (1), w-regular property ¥ (complement
property ¥) and corresponding DRA A (A), target controller precision €.
Output: Maximizing (minimizing) switching policy 7™ (Jig'), final parti-
tion Py
Initialize: €,,,, :=1,7:=0
while €,,4. > €1, do
Compute the sets (WC)G and (WC)$ of the product CIMC C®A (C®.A)
constructed from P; using Algorithm 6
Compute the policies %" and fig” (fiy, and ﬁl\f,)w) of the CIMC C accord-
ing to Subsection 5.2
Compute €4, using (9)
if €00 > € then
Compute the best-case and worst-case product MC (M2), and (MZ),
as discussed in Subsection 5.3.
Construct a partition {U,,((Q;, sm))}*_; of the input space U({Q;, $im))
of all states (Q;, sm) of the product CIMC C® A (C @ A)
for Un((Qj, sm)) € U((Qj,5m)) do
Maximize the upper bound probability of O(WC)§ from (Q;, sm)
with the set of inputs U, ((Q;, Sm))
end for
Apply the scoring procedure in Algorithm 3 and refine all states in P;
with a score above a user-defined threshold to produce P41
Update the set of inputs of all states in the product CIMC C®.A (C®.A)
constructed from P;; as discussed in Subsection 5.3.
1i=1+1
end if

end while

return ﬁff}“’ (ﬁ:f,p)7 Ptin = P;

73

1670

1675

1680

6. CASE STUDY

We now present a numerical example to demonstrate the synthesis proce-
dures derived in previous sections. The code used to generate this example was
written in Python 2.7 and is available at https://github.com/gtfactslab/
StochasticSynthesis. All computations were conducted on the Partnership
for an Advanced Computing Environment (PACE) Georgia Tech cluster [35]
which offered 120GB of memory. The examples in Section 6.1 were performed
on a single core, while those in Section 6.2 were distributed over 4 cores.

We consider a stochastic model of a bistable switch with dynamics

x1lk + 1] = 1 [k] + (—azi[k] + x2[k]) - AT + uy + wy
(z1[K])?
(z1[K])? + 1

where w; and ws are independent truncated Gaussian random variables sampled

(13)

zg[k+1]:x2[k]+(—bxg[k])~AT+u2+w2 ,

at each time step. w; ~ N (u = —0.3;0% = 0.1) and is truncated on [—0.4, —0.2];
wy is similarly defined. We will consider two sets of inputs in this case study:
the continuous set U = [—0.05,0.05] x [—0.05,0.05] and the finite set Uy;, =
{[0,0]7,[0.05,0]", [~0.05,0]7, [0,0.05]7, [0, —0.05]} which is a subset of U. The
domain D of (13) is [0.0,4.0] x [0.0,4.0]. To keep the system self-contained in D,
we assume that any time the disturbance would push the trajectory outside of
D, it is actually maintained on the boundary of D. We choose the parameters
a=1.3,b=0.25 and AT = 0.05. Our goal is to synthesize a controller for (13)
that maximizes the probability of satisfying the LTL specifications

o1 =0(-AN0A4) - (OOANOO0A4) ,
¢y = (OO0A — OB) A (OC — O-B) ,

<

where ¢; translates to “ always remain in an A state for at least 2 more time
steps when entering an A state” and ¢, translates to “reach a B state if the
trajectory always eventually returns to an A state, and never reach a B state if
the trajectory reaches a C state” in natural language. The DRA corresponding

to specification ¢; contains 5 states and has 1 Rabin pair, while the DRA rep-

resenting ¢- contains 7 states and has 3 Rabin pairs. Schematic representations

74

https://github.com/gtfactslab/StochasticSynthesis
https://github.com/gtfactslab/StochasticSynthesis
https://github.com/gtfactslab/StochasticSynthesis

1685

1690

1695

A {
{}
A A

A, R —
! ()

Ace = {(0, {s0,51}1)} Ace = {({s1}, {s0}), ({83}, {s2}), (0, {s5})}

Figure 7: Possible DRAs for specification ¢1 (Left) and specification ¢2 (Right), where double-
edged circles represent the initial states of the DRAs. Note that these DRAs assume the
convention that the state initialization “counts as a transition”, i.e., when a state of the BMDP

Qj is chosen as initial state, the product BMDP transitions from (Qj, so) to (Qj, 6(s0, L(Q;)))-

of these DRAs are found in Figure 7. Initial partitions of the domain D along
with the labeling of the states are presented in the next subsections. First,
we synthesize controllers using the finite set of inputs Uy;,. Second, we devise
control policies from the continuous set of inputs U. Finally, we compile some

observations and concluding remarks in a discussion subsection.

6.1. FINITE-MODE SYNTHESIS

First, we synthesize a switching policy for maximizing the probability of
satisfying ¢1 and ¢2 in (13) using the finite set Uy,,, where each input corre-
sponds to one mode, and applying the synthesis Algorithm 4 for finite-mode
systems with a target precision €, = 0.30. At each refinement step, states
of the current partition with a refinement score that is greater than 5% of the
maximum score are chosen to be refined and split in half along their greatest
dimension. The deterministic portion of the dynamics of system (13) are known
to be monotone. Therefore, BMDP abstractions of (13) for rectangular parti-

tions of D are efficiently computed using the technique in [27] for each mode.

()

1700

1705

1710

1715

1720

1725

The initial partition of the domain D for specification ¢, is given in Figure 8
(Left), and the initial partition for specification ¢9 is in Figure 9 (Left). At each
refinement step, the states selected for refinement are split in half along their
greatest dimension.

The component search algorithm is conducted at each iteration of the while
loop of Algorithm 4 until the set of potential accepting BSCCs (U)S,,; becomes
empty, in which case the component construction procedure is skipped and the
lower bound maximization problem in Line 6 is performed on the latest known
version of the greatest permanent winning component (WC)%. As no new per-
manent accepting BSCCs can be constructed anywhere else in the state space in
this scenario, an under-approximation of (WC’)% containing all possible perma-
nent BSCCs without all permanent sink states is sufficient for the reachability
problem. Note that (WC)% can be updated if permanent sink states with a
lower bound of 1 are constructed during the lower bound maximization step.

The controller synthesis procedure for specification ¢; terminated in 13 hours
and 27 minutes with a greatest suboptimality factor €,,,, = 0.2999, and created
18418 states in 18 refinement steps, corresponding to 92090 states in the product
BMDP constructed from the final partition. The final refined partition is shown
in Figure (8) (Right). For specification ¢, the procedure terminated in 38
minutes with a greatest suboptimality factor €,,,, = 0.2998 and created 7711
states in 15 refinement steps, corresponding to 53977 states in the product
BMDP constructed from the final partition. The final refined partition is shown
in Figure (9) (Right).

The cumulative execution time against the number of refinement steps is
plotted in Figure 10 for specification ¢, (Left) and specification ¢o (Right).
The average number of actions left at each state of the product BMDP B ® A
after each refinement step is displayed in Figure 11 for specification ¢; (Left)
and specification ¢y (Right). Lastly, three possible metrics of precision for
the computed controller — namely, the greatest suboptimality factor, average
suboptimality factor of the product BMDP and fractions of states above the

target precision €5, — as a function of the number of refinement steps are

76

1730

shown in Figure (12) for specification ¢; (Left) and specification ¢2 (Right).

Initial Partition for ¢; Synthesis

Final Partition for ¢; Synthesis (Finite-mode

4.0 4.0 ‘ =
35 3.5
3.0 3.0
2.5 A 2.5
g 20 g 20
15 A A 15
1.0 1.0
0.5 0.5
05 10 15 20 25 30 35 10 005 10 15 20 25 30 35 10
x &y

Figure 8: Initial domain partition with state labeling (Left) and final domain partition upon

synthesis of a controller for maximizing the probability of satisfying ¢1 in (13) using the finite

set of inputs Uy;y, after 18 refinement steps (Right). The final partition contains 18418 states,

corresponding to 92090 states in the resulting product BMDP abstraction.

Initial Partition for ¢, Synthesis

Final Partition for ¢, Synthesis (Finite-mode)

4.0 1.0
=t
35 B C 35—
=
3.0 3.0—1
2.5 B 2.5
£ 20 & 20
15 B B 15
10 10
0.5 A 0.5 55
H
0.0 _ _ _ _ _ 0.0 _ _ — _ EH
00 05 10 15 20 25 30 35 40 00 05 10 15 20 25 30 35 40
T T

Figure 9: Initial domain partition with state labeling (Left) and final domain partition upon

synthesis of a controller for maximizing the probability of satisfying ¢2 in (13) using the finite

set of inputs Uy, after 15 refinement steps (Right). The final partition contains 7711 states,

corresponding to 53977 states in the resulting product BMDP abstraction.

(s

: Cumulative Execution Time for ¢; Synthesis (Finite-mode)
50000

950, Crmulative Execution Time for 0, Synthesis (Finite-mode)
25
Cumula ition Time ution Time
40000 2000
0000 1500
20000 = 1000
10000 500
0 0
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14

Refinement Step Refinement Step
Figure 10: Cumulative execution time of the synthesis procedure with the finite input set Uy,
as a function of the number of refinement steps for specification ¢1 (Left) and specification ¢2

(Right). The synthesis procedure for ¢ terminated in 13 hours and 27 minutes; the synthesis

procedure for ¢2 terminated in 38 minutes

_ Average Number of Actions Left vs. Refinement Step (¢;. Finite-mode)
5

_ Average Number of Actions Left vs. Refinement Step (¢, Finite-mode)
5

— Number of Actions age Number of Actions
4 4

0 2 1 6 8 10 12 14 16 18 0 2 4

6 8 10 12 14
Refinement Step

Refinement Step

Figure 11: Average number of actions left at each state of the product BMDP as a function

of the number of refinement steps for specification ¢1 (Left) and specification ¢2 (Right).

1735

1740

1745

1, Optimality Metrics vs. Refinement Step (91 Synthesis, Finite-mode) 14 _Optimality Metrics vs. Refinement Step (¢, Synthesis, Finite-mode)

— Greatest Suboptimality Factor — t Suboptimality Factor

— Average Suboptimality Factor e Suboptimality Factor

— Fraction of States above ¢y, — Fraction of States above ¢,

Suboptimality Factor €

(.
) 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14
Refinement Step Refinement, Step

Figure 12: Different metrics of precision for the controller computed from the finite input
set Usin as a function of the number of refinement steps for specification ¢1 (Left) and
specification ¢2 (Right). The synthesis algorithm reaches the target e;p, = 0.30 for both
specifications. This means that the probability of satisfying the specifications can only increase
by a maximum of 0.30 from all possible states of the abstracted system by choosing another

switching policy.

6.2. CONTINUOUS INPUT SET SYNTHESIS

Next, we generate a control policy from the set of continuous inputs U by ap-
plying Algorithm 7. The desired threshold precision is chosen to be €, = 0.30.
At each refinement step, states of the current partition with a refinement score
that is greater than 1% of the maximum score are chosen to be refined and split
in half along their greatest dimension. Tight rectangular over-approximation of
the deterministic reachable set of (13) are obtained efficiently from the results
in [32] thanks to the monotone property of the state update map. The input
space of all states in the product CIMC is stored as a union of rectangles. When
evaluating the optimality of the synthesized controller before every refinement
step, we partition each rectangle of the input space of all states into 4 rectangles
of equal area. This allows the input spaces to always remain a union of rectan-
gles in case some sub-regions of the input space were removed, as in Figure 6,
which facilitates the computation of the overlaps in Algorithm 6.

The non-convex optimization problem in Algorithm 5, line 14, and the non-
convex optimization problem (12) are solved by gridding each rectangle U; of

the input space of interest with an N-by-N meshgrid, where N = max{N,,in,

79

1750

1755

1760

1765

1770

[Ninit - %]} with Ny = 3 and Ny, = 12, and using a convex solver
from all points of the grid. The component construction algorithm is conducted
at each iteration of the while loop of Algorithm 7 until the set of potential
accepting BSCCs (U)fot becomes empty, as in the finite-mode examples. The
threshold of convergence for the reachability value iteration scheme is set to
0.01.

The controller synthesis procedure for specification ¢, was manually ter-
minated after 12 refinement steps which lasted 22 hours and 32 minutes with
a greatest suboptimality factor €,,,, = 0.8705, and created 16079 states, cor-
responding to 80395 states in the product BMDP constructed from the final
partition. The final refined partition is displayed in Figure 13 (Right). The pro-
cedure for specification ¢ was manually terminated after 14 refinement steps
which lasted 73 hours with a greatest suboptimality factor €,,,, = 0.7754, and
created 24607 states in 14 refinement steps, corresponding to 172249 states in
the product BMDP constructed from the final partition. The final refined par-
tition is displayed in Figure 14 (Right).

The cumulative execution time against the number of refinement steps is
plotted in Figure 16 for specification ¢; (Left) and specification ¢, (Right).
The original input space for all states of the system is shown in Figure 15, along
with the reduced input space with respect to specification ¢; and ¢o upon
refinement for 2 states of the system. Finally, the greatest suboptimality factor,
average suboptimality factor of the product CIMC and fractions of states above

the target precision €, as a function of the number of refinement steps are

shown in Figure (17) for specification ¢, (Left) and specification ¢ (Right).

80

Initial Partition for ¢, Synthesis Final Partition for ¢; Synthesis (Continuous Input ¢

4.0 4.0
3.5 3.5
3.0 3.0
2.5 A 2.5
& 20 & 20
15 A A 15
L0 L0
0.5 0.5
0.0 049 : : : :

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 0.0 0.5 10 15 2.0 2.5 3.0 3.5 4.0

Figure 13: Initial domain partition with state labeling (Left) and final domain partition upon
synthesis of a controller for maximizing the probability of satisfying ¢1 using the continuous
set of inputs U after 12 refinement steps (Right). The final partition contains 16079 states,
corresponding to 80395 states in the resulting product CIMC abstraction.

10 Initial Partition for ¢, Synthesis Final Partition for ¢ Synthesis (Continuous Input ¢
35 B C
3.0
2.5 B
g 20
1.5 B B
1.0
0.5 A
0.0 — — = -
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 1.0

Figure 14: Initial domain partition with state labeling (Left) and final domain partition upon
synthesis of a controller for maximizing the probability of satisfying ¢2 using the continuous
set of inputs U after 14 refinement steps (Right). The final partition contains 24607 states,
corresponding to 172249 states in the resulting product CIMC abstraction.

81

Initial Input Space for All States

0.08
0.04
£ 0.00
—0.04
~00% 58 ~0.01 0.00 0.01 0.08
Uy
Final Input Space of State [1.8125, 1.828125] x [2.21875,2.234375], Final Input Space of State [2.8125,2.84375] x [1.484375,1.5),
Automaton State s, (¢, Synthesis) Automaton State s, (¢, Synthesis)
0.08 . . : 0.08 : : :
® Sclected Input ® Sclected Input
0.04 g 0.04
2000 42 000
o - L . |
—0.08 ~0.08
~0.08 ~0.01 0.00 0.04 0.08 =0.08 ~0.04 0.00 0.01 0.08
uy Uy

Figure 15: Plot of the initial input space U (Top) for all states of the state space. The
reduced input space of state [1.8125,1.828125] X [2.21875,2.234375] with automaton state sz
with respect to specification ¢1 upon refinement is shown in the bottom left plot. The reduced
input space of state [2.8125,2.84375] x [1.484375,1.5] with automaton state sp with respect

to specification ¢2 upon refinement is shown in the bottom right plot.

82

1775

Cumulative Execution Time for ¢, Synthesis (Continuous Input Set) Cumulative Execution Time for ¢, Synthesis (Continuous Input Set)

90000 300000
— Cumulative Execution Time cution Time
80000
250000
70000
60000 200000
= 50000 =
£ 150000
£ 40000 &
30000 100000
20000
50000
10000
0 0
0 2 1 6 B 10 12 0 2 1 6 B 10 12 14

Refinement Step Refinement Step

Figure 16: Cumulative execution time of the synthesis procedure with the continuous input set
U as a function of the number of refinement steps for specification ¢1 (Left) and specification

#2 (Right).

1 Optimality Metrics vs. Refinement Step (61 Synthesis, Continuous Input Set) Optimality Metrics vs. Refinement Step (¢ Synthesis, Continuous Input Set)

est Suboptimality Factor H — Greatest Suboptimality Factor
L Average Suboptimality Factor Lo — Average Suboptimality Factor
—— Fraction of States above €y, — Fraction of States above ¢y,

v 1.0

L‘% 0.8

;% 0.6

;; 0.4 @ 0.4
02 02 */\k
[”l[l 2 4 6 8 10 12 “'“() 2 4 6 8 10 12 14

Refinement Step Refinement Step

Figure 17: Different metrics of precision for the computed controller with the continuous
input set as a function of the number of refinement steps for specification ¢; (Left) and
specification ¢2 (Right). The synthesis algorithm is manually terminated before reaching the
target €, = 0.30 for both specifications.

6.3. DISCUSSION

The synthesis algorithms presented in the previous sections successfully de-
signed controllers from both the finite set of inputs Uy;, and the continuous
set of inputs U. Moreover, the algorithms conducted synthesis for two different
complex specifications that existing tools could not accommodate, and automat-
ically produced a targeted domain refinement for the two cases so as to achieve

a higher level of optimality for the computed controllers. We also consider our

83

1780

1785

1790

1795

approach to be an improvement over related synthesis works in terms of scala-
bility; for instance, our finite-mode algorithm is orders of magnitude faster than
the technique used for the synthesis case study in [16], which designed a switch-
ing policy for a 3-mode 2D linear system with a simple reachability specification
over the course of several days.

To further demonstrate the synthesis procedure, in Figure 18 (Top), we
display the verification of system (13) against ¢; without any available input
with respect to a satisfaction threshold of 0.8 from the work in [24], where the
initial states in green have a probability of satisfying the specification which
is greater than 0.8, the states in red have a probability which is below 0.8,
and the states in yellow are undecided at the level of precision of the available
partition. In the bottom left, we display the verification of system (13) under the
computed switching policy in the finite-mode section, and in the bottom right,
we show the verification of system (13) under the computed control policy from
the continuous set of inputs. As expected, moving counter-clockwise through
the plots, we observe that some red regions of the state-space are converted to

green regions.

84

1800

ent

Verifying ¢; after Refine

90

05 10 15 20 25 30 35 40

Verifying ¢, under Finite-mode Switching Policy Verifying ¢ under Continuous Input Set Control Poli

T

4.0 . . R 2. A 3. . 4.0
€ xr

Figure 18: Verification of system (13) against ¢1 with respect to a satisfaction threshold of 0.8
without any input (Top), and under both the switching policy computed from the finite input
set Ug;p (Bottom Left) and the control policy computed from the continuous input space U
(Bottom Right). The initial states in green have a probability of satisfying the specification
which is greater than 0.8, the states in red have a probability which is below 0.8, and the
states in yellow are undecided. The controlled versions of (13) convert some red regions of

the state-space in the uncontrolled case to green regions.

It is evident that computing controllers from a continuous set of inputs re-
quires a more significant amount of computational effort compared to the finite
input case. The largest portion of the continuous-input synthesis algorithm is
expended solving the optimization problems for the value iteration step of the
procedure, which is the clear scalability bottleneck of our current implementa-
tion. Moreover, we notice that the greatest suboptimality factor decreases at a
slower rate as a function of refinement steps in the continuous input case than

in the finite mode case, which causes a much finer partition of the domain and

85

1805

1810

1815

1820

1825

1830

is the reason for the manual termination in the former example. We explain
this phenomenon by observing that the suboptimality factor is more dependent
on the abstraction error when using the continuous set of inputs. To see this,
consider an optimal input u* computed for a state of the product CIMC C ® A,
yielding an interval of satisfaction [a,b] for this state. Now, consider another
input u* + € for a small disturbance e. Assuming the dynamics of interest are
continuous, it follows that the interval of satisfaction under the disturbed input
is [a + €4,b + €). Therefore, the suboptimality factor for this state will be at
least b + €, — a = b — a, which is the size of the satisfaction interval of the
considered state under the computed optimal input. Nonetheless, the algorithm
still results in overall progress towards the goal optimality across all metrics as

it performs more refinement steps.

7. CONCLUSION

In this paper, we developed abstraction-based controller synthesis techniques
for stochastic systems with w-regular objectives. First, we showed a method to
compute switching policies in stochastic systems with a finite number of modes
by performing a permanent component search and a reachability maximization
task in an abstraction of the dynamics. We proposed a specification-guided
domain partition refinement scheme which targets states causing the most un-
certainty in the abstraction and discards the system modes that are guaranteed
to be suboptimal. We extended these results to stochastic systems with a con-
tinuous set of inputs and designed a synthesis method for the specific class
of affine-in-input and affine-in-disturbance systems. Finally, we presented a
numerical example where controller synthesis is conducted for both finite and
continuous input sets on a nonlinear system with complex temporal logic tasks.

Future works will further explore the relationship between original partitions
and their refined versions to reduce the number of operations performed in the
components search and reachability algorithms after each refinement step and

consequently improve scalability of our technique. An adaptation of these algo-

86

1835

1840

1845

1850

1855

rithms to guarantee a monotone decrease of the suboptimality factor throughout

the synthesis procedure will also be investigated. Obtaining formal convergence

guarantees of the refinement heuristic is another important issue.

References

1]

A. Pnueli, The temporal logic of programs, in: 18th Annual Symposium

on Foundations of Computer Science (sfcs 1977), IEEE, pp. 46-57.

W. Thomas, Automata on infinite objects, in: Formal models and seman-

tics, Elsevier, 1990, pp. 133—-191.

P. Tabuada, G. J. Pappas, Linear time logic control of discrete-time linear
systems, IEEE Transactions on Automatic Control 51 (12) (2006) 1862—
1877.

M. Kloetzer, C. Belta, A fully automated framework for control of linear
systems from temporal logic specifications, IEEE Transactions on Auto-

matic Control 53 (1) (2008) 287-297.

B. Yordanov, J. Tumova, I. Cerna, J. Barnat, C. Belta, Temporal logic
control of discrete-time piecewise affine systems, IEEE Transactions on

Automatic Control 57 (6) (2011) 1491-1504.

M. Rungger, M. Mazo Jr, P. Tabuada, Specification-guided controller syn-
thesis for linear systems and safe linear-time temporal logic, in: Proceedings
of the 16th international conference on Hybrid systems: computation and

control, ACM, 2013, pp. 333-342.

M. Rungger, M. Zamani, Scots: A tool for the synthesis of symbolic con-
trollers, in: Proceedings of the 19th international conference on hybrid

systems: Computation and control, ACM, 2016, pp. 99-104.

J. Liu, N. Ozay, Finite abstractions with robustness margins for tempo-
ral logic-based control synthesis, Nonlinear Analysis: Hybrid Systems 22
(2016) 1-15.

87

1860

1865

1870

1875

1880

1885

[9]

[13]

[14]

[15]

[16]

S. Sadraddini, C. Belta, Formal synthesis of control strategies for positive
monotone systems, IEEE Transactions on Automatic Control 64 (2) (2018)
480-495.

C. Belta, B. Yordanov, E. A. Gol, Formal methods for discrete-time dy-

namical systems, Vol. 89, Springer, 2017.

C. Baier, J.-P. Katoen, K. G. Larsen, Principles of model checking, MIT
press, 2008.

M. L. Bujorianu, J. Lygeros, M. C. Bujorianu, Bisimulation for general
stochastic hybrid systems, in: International Workshop on Hybrid Systems:
Computation and Control, Springer, 2005, pp. 198-214.

A. Abate, A. D’Innocenzo, M. D. Di Benedetto, S. S. Sastry, Markov set-
chains as abstractions of stochastic hybrid systems, in: International Work-
shop on Hybrid Systems: Computation and Control, Springer, 2008, pp.
1-15.

A. Abate, A. D’Innocenzo, M. D. Di Benedetto, Approximate abstractions
of stochastic hybrid systems, IEEE Transactions on Automatic Control
56 (11) (2011) 2688-2694.

M. Kwiatkowska, G. Norman, D. Parker, Prism 4.0: Verification of prob-
abilistic real-time systems, in: International conference on computer aided

verification, Springer, 2011, pp. 585-591.

M. Lahijanian, S. B. Andersson, C. Belta, Formal verification and synthe-
sis for discrete-time stochastic systems, IEEE Transactions on Automatic

Control 60 (8) (2015) 2031-2045.

R. Givan, S. Leach, T. Dean, Bounded-parameter Markov decision pro-

cesses, Artificial Intelligence 122 (1-2) (2000) 71-109.

N. Cauchi, L. Laurenti, M. Lahijanian, A. Abate, M. Kwiatkowska,
L. Cardelli, Efficiency through Uncertainty: Scalable Formal Synthesis for

88

1890

1895

1900

1905

1910

[22]

[23]

[24]

[25]

Stochastic Hybrid Systems, arXiv e-prints (2019) arXiv:1901.01576arXiv:
1901.01576.

N. Cauchi, K. Degiorgio, A. Abate, StocHy: automated verification and
synthesis of stochastic processes, arXiv preprint arXiv:1901.10287 (2019).

K. Y. Rozier, Linear temporal logic symbolic model checking, Computer

Science Review 5 (2) (2011) 163—203.

E. M. Wolff, U. Topcu, R. M. Murray, Robust control of uncertain Markov
decision processes with temporal logic specifications, in: Decision and Con-
trol (CDC), 2012 IEEE 51st Annual Conference on, IEEE, 2012, pp. 3372—
3379.

E. M. Hahn, V. Hashemi, H. Hermanns, M. Lahijanian, A. Turrini, Interval
markov decision processes with multiple objectives: From robust strategies

to pareto curves, ACM Transactions on Modeling and Computer Simulation

(TOMACS) 29 (4) (2019) 1-31.

M. Weininger, T. Meggendorfer, J. Kretinsky, Satisfiability bounds for
w-regular properties in bounded-parameter markov decision processes, in:
2019 TEEE 58th Conference on Decision and Control (CDC), IEEE, 2019,
pp. 2284-2291.

M. Dutreix, S. Coogan, Specification-guided verification and abstraction
refinement of mixed monotone stochastic systems, IEEE Transactions on

Automatic Control (2020).

R. Majumdar, K. Mallik, S. Soudjani, Symbolic Controller Synthesis
for Biichi Specifications on Stochastic Systems, arXiv e-prints (2019)
arXiv:1910.12137arXiv:1910.12137.

O. Hernandez-Lerma, J. B. Lasserre, Discrete-time markov control pro-

cesses, volume 30 of applications of mathematics, Springer 10 (1996) 978-1.

89

http://arxiv.org/abs/1901.01576
http://arxiv.org/abs/1901.01576
http://arxiv.org/abs/1901.01576
http://arxiv.org/abs/1910.12137

1915

1920

1925

1930

1935

[27]

[29]

[30]

[31]

[33]

[34]

M. Dutreix, S. Coogan, Efficient Verification for Stochastic Mixed Mono-
tone Systems, in: International Conference on Cyber-Physical Systems,

2018.

K. Sen, M. Viswanathan, G. Agha, Model-checking Markov chains in the
presence of uncertainties, in: International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, Springer, 2006, pp.
394-410.

S. Haddad, B. Monmege, Interval iteration algorithm for mdps and imdps,
Theoretical Computer Science 735 (2018) 111-131.

J.-P. Katoen, Model checking meets probability: A gentle introduction.

S. Soudjani, C. Gevaerts, A. Abate, Faust 2: Formal abstractions of
uncountable-state stochastic processes, arXiv preprint arXiv:1403.3286

(2014).

S. Coogan, M. Arcak, Efficient finite abstraction of mixed monotone sys-
tems, in: Proceedings of the 18th International Conference on Hybrid Sys-

tems: Computation and Control, ACM, 2015, pp. 58-67.

M. Hirsch, H. Smith, Monotone dynamical systems, Handbook of differen-
tial equations: Ordinary differential equations 2 (2005) 239-357.

D. Wu, X. Koutsoukos, Reachability analysis of uncertain systems us-
ing bounded-parameter Markov decision processes, Artificial Intelligence

172 (8-9) (2008) 945-954.

PACE, Partnership for an Advanced Computing Environment (PACE)
(2017).
URL http://www.pace.gatech.edu

K. Chatterjee, L. De Alfaro, T. A. Henzinger, Trading memory for random-
ness, in: First International Conference on the Quantitative Evaluation of

Systems, 2004. QEST 2004. Proceedings., IEEE, 2004, pp. 206-217.

90

http://www.pace.gatech.edu
http://www.pace.gatech.edu

1940

1945

1950

1955

1960

1965

1970

Proof of Lemma 1

We provide a constructive proof for this lemma. Consider a product BMDP
B® A with set of states) x S, set of policies Z/léf‘ and set of memoryless policies
(UL)mem- We define the greatest permanent accepting BSCC (U)% € @ x S as
the set of all states of B ® A such that, if ¢ € (U)%, then there exists a policy
in L{ét such that ¢ belongs to a permanent accepting BSCC in B ® A.

The first part of the proof consists in showing that there exists a set of mem-
oryless policies U(U)g - (Ugé)mem such that, under all product IMCs induced by
a policy in Uss all states in (U)$ belong to a permanent winning component
simultaneously and, therefore, (U)% C (WC)G.

The second part of the proof shows that, for any other states of B® .4 which
can be made a permanent winning component under some policy in Z/Ig, there
exists a set of memoryless policies in (UZ)mem (which is a subset of Uws),

such that all these states are a permanent winning component simultaneously.

I] Proof of existence of memoryless policies generating the greatest

permanent accepting BSCC as a permanent winning component

First, we constructively show that, if there exists a policy py € Z/{é‘ generat-
ing a permanent accepting BSCC By C @ x S in (B® .A)[u1], and if there exists
another policy s € Uéf‘ generating a permanent accepting BSCC By C @ x S
in (B® A)[us], then there has to exist a set of memoryless policies in (UL)mem
causing the set By U By to be a permanent winning component in B® A. Con-

sider a policy us € (Z/lgg‘)mem constructed as follows:

1) For the states in By, consider the following reasoning: by virtue of B; being
a permanent accepting BSCC for some policy, it has to hold that, for some state
Gace € B1, F; € L'(quee) and E; & L'(q) Vq € By, for some i. Moreover, as By
is a permanent BSCC under u1, for any state ¢ € By, there exists a sequence

of inputs chosen by pq such that the lower bound probability of reaching g4,

91

1975

1980

1985

1990

1995

2000

is 1, that is, ’ﬁ(zg@A)[m](q E Ogace) = 1. Since reachability problems in BMDPs

have memoryless optimal policies [29], it must be true that a memoryless policy

mem

M1
q € B; and guaranteeing 75(B®A)[“Tem] (¢ &= Odace) = 1 for all g € By exists as

choosing no other actions than the ones prescribed by p; at all states
well. For all g € By, set ps(q) = pi**™(q).

2) For all states g € B2 \ (B N By), apply the same reasoning with respect to
the problem of reaching (B; N Bg) instead of ¢uc., that is, there exists a mem-
oryless policy p5*™ choosing no other actions than the ones prescribed by o
such that 7\5(B®A)[Mglem](q E O(B1NBy)) =1 forall g € By \ (By N By). For all

q € By \ (B1N By), set pz(q) = p5'“™ (q)-
3) For all states ¢ € (Q x S) \ (B1 U Bag), choose any action in Act(q) as ps(q).

As Bj is a permanent BSCC under p1, no state of By can transition outside of
Bj under pu3, that is, it holds that 73(3®A)[H3](q E 0(Q xS)\ By) = 0. Moreover,
since 75(B®A)[H3](q E Odacc) = 1 for all ¢ € By, it follows that any trajectory
starting in By will always return to ggc., that is, f(lg@A)[ua](q E O0gace) = 1
for all ¢ € By, and will additionally never reach a state g, _qcc € @ X .S satisfying
E; € L'(¢n—qcc)- Therefore, any trajectory starting in Bj satisfies the Rabin
acceptance condition with lower bound probability 1, and B; is a member of
the permanent winning component of (B ® A)[us]. Furthermore, for all ¢ €
By \ (B1NBy), we have P (5g.4)(us) (0 = OB1) = Pgayus (@ = O(BiNBy)) =1
and thus, By \ (B; N Bs) is a member of the permanent winning component
of (B ® A)[us]. Therefore, By U By is a member of the permanent winning
component of (B ® A)[us].

Tteratively applying this logic with By U By and any other member of (U)%
shows that there exists a set of policies in U(U)Icg C (Ugé)mem such that all states

in (U)g belong to a permanent winning component simultaneously.

92

2005

2010

2015

2020

2025

2030

II] Proof of existence of greatest permanent winning component and

of memoryless policies generating this component

Now, we consider the set R = (Q x S) \ (U)% of all states of B ® A which
do not belong to (U)%.
We define the set U

out
p
of (U)§ and generate (U)$ with an (arbitrary) memoryless policy on the states
in (U)%.

For a policy p € L{(OI%C;, the set of all states C' C R that belong to the perma-
P

nent winning component (WC)p of (B®.A)[u] without being a member of (U)%
— that is, CU(U)& = (WC)p and CN(U)E = (0 — has to satisfy two conditions:

¢ of all policies which are history-dependent outside
P

a) C does not allow a transition outside of C'U (U)% under any adversary of

(B® A)[u], that is, ﬁ(z;@A)[u] <q = Q((Q xS)\ (Cu (U)g))) =0forallqeC,

b) No subset of C' can form a losing component under any adversary of (B&.4)[u],
that is, no state in C' is a member of the largest losing component (LC)p, of the

product IMC (B ® A)[u], or C'N (LC) L = 0.

With these two conditions fulfilled, all states in C either transition to (U)$ or
reach an accepting BSCC formed within C' under all adversaries of (B ® A)[u],
and therefore reach an accepting BSCC with lower bound probability 1.

out

Now, we constructively show that, if there exists a policy ui € Z/{(U)

g induc-
ing a product IMC (B ® A)[p1] with permanent winning component (WC?)p
and with a set of states C; € R satisfying conditions a) and b) such that
CrU ()G = (WCHp and C; N (U)E = 0, and if there exists a policy pa €
U(OI%,‘S inducing a product IMC (B® A)[uz] with permanent winning component
(WC?)p and with a set of states Co € R satisfying conditions a) and b) such
that Cy U (U)G = (WC?)p and Cy N (U)E = 0, then there has to exist a mem-

oryless policy ps € Uyyg inducing a product IMC (B ® A)[u3] with permanent

93

2035

2040

2045

2050

2055

2060

winning component (WC?3)p and with the set of states (C; U Ca) € R satisfy-
ing conditions a) and b) such that (C; U C2) N (U)E = 0. Consider a policy

p3 € Uayg constructed as follows:

1) For all state ¢ € C4, consider the following reasoning inspired by the argu-
ments in the proof of [36, Theorem 8] on the optimality of memoryless policies in
MDPs for Rabin objectives: for any state ¢ € C1, it must be true that any trajec-
tory initiated at ¢ under policy p; reaches with lower bound probability 1 a set
K C (1 such that the continuation of any trajectory that reaches K is confined
to K U (U)$ and either reaches (U)% or visits an unmatched accepting Rabin
state in K infinitely often. Consider the arbitrarily ordered set (K1, Ko, ..., K,)
of all such sets which can by reached by some initial state ¢ € C7 under 1. Due
to the optimality of memoryless policies for reachability problems in BMDPs
and the properties of the K sets, there must exist a memoryless policy ufl
such that, for all ¢ € K, ﬁ(B@A)[ufl](q E o)) U A) = 1, where A is
the set of all unmatched Rabin accepting states in K7, and 73(B® A (q E
0(Q x)\ ((1)§ UKY)) = 0. Set pa(q) = pl*(q) Tor all g € K. Apply the
same procedure recursively to K\ K7 and replacing (U)% with (U)%U K7, then
to K3\ (K2 UKj) etc. For the states ¢ € C outside the K sets, design u3 such
that ﬁ(B@A)[}Lg] (q EOU)SUKU... U Km) = 1, which again can be achieved
with a memoryless choice of actions due to the optimality of memoryless policies

for reachability and the fact that u; satisfies this condition.

2) For all state ¢ € Cy \ (C1 N Cs), choose the actions in pg by following the
same reasoning as in 1) after replacing C7 with ¢ € Cy \ (C1 N Cy) and (U)$

with (U)% U C.

3) For all state ¢ € (Q x S) \ (C1 UCs) (not in (U)E, since actions are already

fixed in this set), choose any action in Act(q) as u3(q).

94

2065

2070

By construction, the set C7 U Cy satisfy condition a) and b), as no subset of
C7 U (5 can form a losing component under the actions prescribed by ps and
no trajectory can leave C; U Cy U (U)g. Therefore, C7; U Cs is a subset of the
permanent winning component (WC?3)p of (B ® A)[us).

Replacing the set (U)$% from the beginning of section II] with C; UCoU(U)%
and applying the same process iteratively proves the existence of a set (WC’)IGD
satisfying the properties enunciated in the lemma and of a set of memoryless

policies Uy oy generating (WS,

95

	Introduction
	Preliminaries
	Problem Formulation
	CONTROLLER SYNTHESIS FOR FINITE MODE SYSTEMS
	BMDP CONTROLLER SYNTHESIS
	WINNING COMPONENTS SEARCH ALGORITHMS
	GREATEST PERMANENT BSCC SEARCH ALGORITHMS
	GREATEST PERMANENT COMPONENTS SEARCH ALGORITHMS

	STATE SPACE REFINEMENT
	QUALITY OF COMPUTED POLICY
	REFINEMENT PROCEDURE
	MONOTONICITY AND CONVERGENCE OF SYNTHESIS PROCEDURE

	CONTROLLER SYNTHESIS FOR CONTINUOUS INPUT SYSTEMS
	COMPONENTS CONSTRUCTION
	REACHABILITY MAXIMIZATION
	STATE SPACE REFINEMENT

	CASE STUDY
	FINITE-MODE SYNTHESIS
	CONTINUOUS INPUT SET SYNTHESIS
	DISCUSSION

	CONCLUSION

