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Abstract

A police lineup is a procedure in which a suspect is surrounded by known-innocent persons (fillers) and presented to the
witness for an identification attempt. The purpose of a lineup is to test the investigator’s hypothesis that the suspect is the
culprit, and the investigator uses the witness’ identification decision and the associated confidence level to inform this
hypothesis. Whereas suspect identifications provide evidence of guilt, filler identifications and rejections provide evidence of
innocence. Despite the capacity of lineups to provide exculpatory information, past research has focused, almost exclusively,
on inculpatory behaviors. We recently developed a method for incorporating all lineup outcomes in a single receiver opera-
tor characteristic (ROC) curve. The area under the full lineup ROC curve reflects the total capacity of a lineup procedure
to discriminate guilty suspects from innocent suspects. Here, we introduce a Comprehensive R Archive Network (CRAN)
package, fullROC, to support eyewitness researchers in using the full ROC approach to analyze lineup data. The fullROC
package provides functions for adjusting identification rates, generating full ROC curves for lineup data, computing the area
under the ROC curves (AUC), and statistically comparing the AUCs of different lineups. Using both simulated and empiri-
cal data, we illustrate the functionality of the fullROC CRAN package. In brief, the fullROC package provides a useful tool
for eyewitness researchers to analyze lineup data using the full ROC method, which incorporates both the inculpatory and
exculpatory information of eyewitness behaviors.
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When police suspect that someone committed a crime, they
often construct a lineup and present it to a witness for an

when a witness identifies a filler, the investigator knows the
witness has made an error and the filler is not at risk of

identification attempt. A lineup is a procedure in which
police surround the person that they suspect committed the
crime (i.e., the suspect) with some number of known-inno-
cent persons called “fillers” (usually five fillers). The ration-
ale for surrounding the suspect with fillers is that the suspect
might be innocent and if so, fillers offer some protection
from mistaken identifications as many witnesses will iden-
tify a known-innocent filler rather than the innocent suspect.
While a filler identification is still a mistaken identification
on the part of the witness, it does not carry the same forensic
implications of an innocent-suspect identification. Indeed,
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arrest and conviction. Conversely, when a witness identifies
an innocent suspect, it provides support for the investigator’s
erroneous hypothesis that the suspect is guilty and puts the
innocent suspect at risk of arrest and conviction. Because
of their protective features, best-practice recommendations
encourage investigators to use lineups rather than present-
ing a lone suspect to a witness for an identification attempt
(Wells et al., 2020).

Implicit in the above description is a lineup’s purpose.
Contrary to intuition, the purpose of a lineup is not to test
a witness’ memory. Rather, the purpose of a lineup is to
test an investigator’s hypothesis that the suspect is the cul-
prit (Smith et al., 2020; Wells & Luus, 1990). Because the
investigator does not know the suspect’s guilt status, she
uses a lineup to obtain evidence—eyewitness outcomes—to
test her hypothesis that the suspect is guilty. Whereas some
eyewitness outcomes support the hypothesis that the suspect
is guilty (e.g., a suspect identification), some support the
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alternative hypothesis that the suspect is innocent (e.g., a
rejection). Hence, investigators can use lineups both to “rule
in” or inculpate guilty suspects and to “rule out” or excul-
pate innocent suspects. The capacity of an investigator to
discriminate guilty suspects from innocent suspects—or the
total informational value of a lineup—depends on a lineup’s
capacity both to “rule in” the guilty and to “rule out” the
innocent (Smith et al., 2020; Smith & Ayala, 2021; Starns
et al., 2021; Wells et al., 2015; Wells & Lindsay, 1980).

In a recently published paper, we introduced a novel
means for measuring the total informational value of a
lineup procedure (or what we have called investigator dis-
criminability) with receiver operating characteristic (ROC)
curves that include all lineup outcomes: suspect identifi-
cations, filler identifications, and rejections (Smith et al.,
2020). Our method can be viewed as a way to extend the
“partial” suspect-only ROC curves. Whereas the “partial”
ROC curves only measure a lineup’s capacity to “rule in” the
guilty, the full ROC curves which incorporate all lineup out-
comes measure a lineup’s total informational value. In the
present work, we introduce a novel R package, fullROC, for
comparing the total informational value (or investigator dis-
criminability) of two lineup procedures. We accompany the
introduction of fullROC with a tutorial demonstrating vari-
ous features and functions of this package. We first elaborate
how full ROC curves measure lineup procedures’ capacities
to both “rule in” and “rule out” suspects. We then use both
simulated and empirical data to show readers step by step
how to create full ROC curves for lineup data.

Signal detection and ROC analysis

According to signal detection theory, two factors influence
how a diagnostic system makes a classification decision:
discriminability, which reflects the system’s capacity to dis-
tinguish signal from noise; and response criterion, which
reflects the amount of evidence the system requires to make
an affirmative response (Green & Swets, 1966; Swets, 1988).
Scientists typically place a premium on maximizing discrim-
inability. This is because, for any given false-positive rate,
a system with better discriminability will result in a higher
true-positive rate than will a system with worse discrimina-
bility. Conversely, variations in response criteria will result
in mere trade-offs, increasing (or decreasing) both the true-
positive rate and the false-positive rate without influencing
discriminability.

In practice, it is not always easy to determine which diag-
nostic system leads to better discriminability. It is often the
case that one system leads to both a higher true-positive
rate and a higher false-positive rate than does a comparison
system (e.g., Clark, 2012). ROC curves were specifically
designed to deal with these trade-offs. ROC curves measure
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discriminability independent of response criterion. This is
accomplished by plotting the true-positive rates against the
false-positive rates for all potential response criteria. Con-
necting these pairs of true- and false-positive rates (also
called operation points) creates the diagnostic system’s ROC
curve. Because the ROC curve runs through each operating
point, it places equal weight on the operating points. Thus,
the area under the ROC curve (AUC) provides a measure of
discriminability independent of response criterion (Macmil-
lan & Creelman, 2005).

ROC curves have become a popular method for eyewit-
ness researchers to handle the trade-offs that are commonly
involved in lineup comparisons (Clark, 2012; Wixted &
Mickes, 2012). Whereas some researchers have separately
considered the incriminating properties of suspect identi-
fications and the exculpating properties of rejections and
filler picks (e.g., Wells & Lindsay, 1980; Wells & Olson,
2002; Wells & Turtle, 1986), the field has focused mainly
on suspect identifications and the capacity of a lineup to
incriminate. This has typically been examined with “par-
tial” suspect-only ROC curves that only include suspect
identifications and thus cover a fraction of the ROC space
(e.g., Mickes et al., 2012; Wetmore et al., 2015). The prob-
lem with “partial” suspect-only ROC analysis, as with any
analysis that focuses only on suspect identifications, is that
it does not consider all information that is relevant to deter-
mining which of two procedures is superior.

The value of a lineup is not limited to its capacity to
“rule in” or incriminate guilty persons. Lineups also have
the capacity to “rule out” or exculpate the innocent. The
total informational value of a lineup procedure is based both
on that procedure’s capacity to “rule in” the guilty and to
“rule out” the innocent (e.g., Smith et al., 2020; Smith &
Ayala, 2021; Starns et al., 2021). Just as being able to dem-
onstrate the absence of disease is an important property of
many diagnostic tests, being able to demonstrate innocence
is an important property of a lineup. Failure to clear inno-
cent persons from police suspicion can completely stymy
police investigations, let alone the consequences uncleared
innocent persons are forced to shoulder. We cannot speak
sensibly about which of two lineups is superior unless we
consider the total informational value of those procedures,
which is based both on their capacities to “rule in” the guilty
and to “rule out” the innocent. Critically, the lineup proce-
dure that does a better at “ruling in” guilty persons is not
necessarily the procedure that has greater total informational
value. In fact, it is often the case that the procedure that does
a better job “ruling in” does a worse job “ruling out” (Smith
et al., 2020; Wells et al., 2015) and often times the procedure
that is worse at “ruling in” is so much better at “ruling out”
that it has greater total informational value (Smith & Ayala,
2021; Starns et al., 2021).
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Below we illustrate how full ROC curves can summarize
a lineup’s capacity to both “rule in” guilty suspects and to
“rule out” innocent suspects. We first propose a model that
describes how investigators use eyewitness evidence to clas-
sify a suspect’s guilt. We then show the connection between
investigators’ signal detection model and full ROC curves
and discuss how full ROC curves can reflect the total infor-
mational value of a lineup procedure.

Investigator signal detection model

When conducting a lineup, investigators obtain eyewitness
evidence to inform their hypothesis that the suspect is guilty
(or the alternative hypothesis that the suspect is innocent).
In other words, investigators rely on eyewitness evidence
to decide whether to arrest the suspect or not (Smith et al.,
2020). Combined with the two possible states of ground
truth, investigators’ responses conform to a 2 (culprit pre-
sent vs. culprit absent) X 2 (arrest vs. not arrest) confusion
matrix. Figure 1 shows a signal detection model of the inves-
tigators’ detection task.

Note that the distributions in Fig. 1 are discrete rather
than continuous. This is because the decision variable on
which investigators’ classification decisions rely—eyewit-
ness evidence—is discrete rather than continuous (Yang
& Moody, 2021). For example, Fig. 1 shows nine possi-
ble discrete eyewitness outcomes, combining both witness’
responses (suspect identifications, filler identifications, or
rejections) and associated confidence levels (high, medium,
or low). Because eyewitness evidence can come from

O Culprit-absent lineups

either culprit-present or culprit-absent lineups, the model
contains two distributions, which represent the probability
mass (i.e., response rate) of the eyewitness outcomes from
either lineup. In Fig. 1, the white and gray bars present the
probability mass distributions of eyewitness outcomes in
culprit-absent and culprit-present lineups, respectively. The
vertical dashed lines present the decision criteria investiga-
tors can use.

In completing the classification task, investigators use the
witness’ response and associated confidence to infer whether
the suspect is guilty or not. As shown in Fig. 1, investigators
have control over how much evidence is needed to make an
arrest decision (or some other investigative decision). For
example, some investigators may decide to arrest a suspect
only when witnesses identify the suspect with high confi-
dence (i.e., when obtaining evidence to the right of the deci-
sion criterion CIDs,, in Fig. 1) and not to arrest the suspect
when witnesses make other responses (i.e., when obtaining
any evidence to the left of c,DSmgh). But others may decide to
arrest a suspect even after a low-confidence identification
(i.e., when obtaining any evidence to the right of ¢ in
Fig. 1) and not to arrest when witnesses identify a filler or
reject the lineup (i.e., when obtaining any evidence to the
left of ¢;pg, ). Investigators could be even more liberal,
deciding to arrest a suspect as long as witnesses do not reject
the lineup with high confidence (i.e., when obtaining any
evidence to the right of CIDF,, in Fig. 1). Therefore, different
combinations of witness responses and associated confi-
dence reflect different decision criteria investigators can use
to make investigative decisions.

O Culprit-present lineups
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Fig. 1 Investigator signal detection model
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Fig.2 Investigator ROC curves

Investigator ROC curves

Based on the investigator signal detection model, a full ROC
curve that spans the entire ROC space can be produced to
include all eyewitness outcomes (i.e., all possible investiga-
tor decision criteria). A full ROC curve is simply a collec-
tion of investigators’ true- and false-positive rates at each
level of the decision criteria, moving from the most con-
servative to the most liberal criterion (i.e., moving from right
to left on the decision variable coordinate). Because of the
discrete nature of investigators’ decision variable (eyewit-
ness evidence), investigator ROC curves are discrete.

Figure 2 displays the ROC curve from the investigator
signal detection model in Fig. 1. The operating points on
ROC curve present investigators’ true- and false-positive
rates when investigators make investigative decisions under
different decision criteria. For example, the origin (0, 0) pre-
sents the situation in which investigators use the most con-
servative criterion, deciding not to arrest the suspect no mat-
ter what responses witnesses make (i.e., using the criterion
¢y in Fig. 1). The termination point (1, 1) presents the situ-
ation in which investigators use the most liberal criterion,
deciding to arrest the suspect no matter what response wit-
nesses make (i.e., using the criterion CREJ,, in Fig. 1). The
points in-between present investigators’ true- and false-pos-
itive rates when investigators use the criteria in-between
these two limits.

Because the full ROC curves include all possible crite-
ria investigators can use for making investigative decisions,
they provide a useful tool for comparing lineup procedures’
total capacity to help investigators distinguish between
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guilty and innocent suspects (or total informational value).
A lineup’s capacity to “rule out” innocent suspects (i.e., to
disconfirm the investigator’s hypothesis) is just as important
as its capacity to “rule in” guilty suspects (i.e., to confirm
the investigator’s hypothesis). Hence, ROC curves should
include all eyewitness outcomes that can inform on suspects’
likely guilt or innocence. When including all eyewitness out-
comes, a lineup’s total informational value is reflected by the
area under the full ROC curves (Smith et al., 2020). When
ROC curves do not cross over, whichever lineup procedure
that produces a larger area under the full ROC curve is the
procedure with better informational value for both “rule in”
guilty suspects and “rule out” innocent suspects. Such a pro-
cedure can help investigators do a better job distinguishing
between guilty and innocent suspects.

Although multiple software packages are available for
creating ROC curves and calculating AUCs, two unique fea-
tures of eyewitness data limit the ability of extant packages
for analyzing eyewitness data. First, eyewitness evidence
is discrete rather than continuous. Therefore, researchers
need to order eyewitness outcomes for creating ROC curves.
However, most extant packages deal with continuous deci-
sion variables, which have a natural order, and thus do not
enable researchers to freely change the order of the decision
variable. Second, when an experiment does not designate
an innocent suspect, researchers need to adjust filler iden-
tifications to estimate innocent suspect identifications. This
adjustment creates fractional data in culprit-absent line-
ups. The extant packages cannot bootstrap samples using
fractional data and thus cannot inferentially compare ROC
curves. To overcome these difficulties, we introduce a pack-
age specifically designed for researchers to analyze eyewit-
ness data and to plot and inferentially compare full ROC
curves of lineups.

Analyze eyewitness data and create full ROC
curves

We introduce fullROC, a Comprehensive R Archive Network
(CRAN) package for generating and statistically comparing
full ROC curves for eyewitness lineups. R is an open-source
programming language which supports data visualization
and statistical analysis (R core team, 2020). In addition to
R, we recommend readers to use RStudio as a convenient
interface to R (RStudio, 2020). We illustrate how to use the
JullROC package to generate ROC figures and to statistically
compare lineup ROC curves.

We display all codes with Consolas font. In addition
to using R base functions, we created functions to calculate
adjusted identification rates, plot full ROC curves, and sta-
tistically compare the area under the ROC curves (AUC).
To use these functions, users can download and install the
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# install from CRAN
install.packages ("fullROC")

library(fullROC)

?id_adj
?roc_plot

# install from github (need to install “devtools” package)
devtools::install_github("yuerany/fullROC")

# Load the "fullROC" package into R global environment

# get help documents for the functions in "fullROC"

Box 1 Install and load the fullROC package

fullROC package from CRAN (for the stable version) or
from GitHub (for the developer version) (see Box 1). Once
installed, users can run the library command to load the
functions into the R environment. We explain how to use
these pre-packed functions in the examples below. Users
can also run the ? function command to retrieve the help
documents for the functions.

We include two examples in this paper. The first example
uses simulated data to show the data cleaning and organizing
process; the second example uses empirical data to compare
performance across various experimental conditions.

Simulation example

We simulated witness responses according to the signal
detection model shown in Fig. 1. In the simulation, each
lineup contained six members (i.e., one guilty suspect and
five fillers in the culprit present lineup; six fillers in the cul-
prit absent lineup). We simulated n = 20,000 responses (n
= 10,000 for each lineup condition) and saved the simulated
responses into an R data frames, simu_data. Box 2 contains
a snapshot of the simulated data.

The data frame simu_data saved simulated responses
in both culprit present and absent conditions. The data frame
contained four variables: lineup indicates the lineup condi-
tion (culprit present or absent), ID indicates the witnesses’
response, confidence indicates the witness’ confidence, and
IDconfidence combines the witness’ response and associ-
ated confidence. Because we did not designate an innocent

suspect, there were no suspect identifications in culprit
absent lineups

Calculate response frequencies and rates

Box 3 contains the R code to calculate the response frequen-
cies and rates in both lineup conditions. In the R code, we
first re-ordered the factor levels of the variables to match
the order of those in the experimental design. We then cal-
culated a frequency table for witness responses using the
table command. We next converted the frequencies into
percentages and saved the both the response frequencies
and rates into a data frame, simu. Table 1 displays the
calculated response rates in both culprit present and absent
lineups.

Adjust response rates in culprit absent lineups

When researchers do not designate an innocent suspect in
eyewitness experiments, the suspect identification rate is
zero in culprit absent lineups (see Table 1). In such situa-
tions, one common method to estimate the suspect identifi-
cation rate is to use the 1/(lineup size) method (e.g., Quig-
ley-McBride & Wells, 2021). The 1/(lineup size) method
adjusts the suspect identification rate to be the 1/(lineup size)
x original filler identification rate and the filler identification
rate to be (lineup size — 1)/(lineup size) X original filler iden-
tification rate for culprit absent lineups (also see Table 1).
Mathematically, let us use m to present the lineup size and
p(IDFICA) to present the original filler identification rate in
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head(simu_data)

tail(simu_data)

it lineup

## 19995 ca IDF
## 19996 ca IDF
## 19997 ca REJ
## 19998 ca IDF
## 19999 ca IDF
## 20000 ca IDF

## lineup 1ID confidence IDconfidence

## 1 cp IDS low IDSlow
#it 2 cp IDS medium IDSmedium
## 3 cp IDS high IDShigh
#it 4 cp IDS medium IDSmedium
## 5 cp IDS medium IDSmedium
## 6 cp IDS high IDShigh

ID confidence IDconfidence

medium IDFmedium
low IDFlow
low REJ1low
medium IDFmedium
medium IDFmedium
low IDFlow

Box 2 Snapshot of simulated responses in both culprit present and culprit absent lineups

Table 1 Witness response rates based on n = 10,000 simulations in each lineup condition

Response Confidence Lineup condition Diagnosticity ratio
Culprit present Culprit absent (n = 10,000)
(n = 10,000) — -
Original Adjusted
Suspect identification High 0.303 0 0.006 = 0.036/6 50.011
Medium 0.268 0 0.030 = 0.180/6 8.910
Low 0.158 0 0.072 = 0.432/6 2.189
Filler identification High 0.023 0.036 0.030 = 0.036x5/6 0.765
Medium 0.079 0.180 0.150 = 0.180x5/6 0.525
Low 0.104 0.432 0.360 = 0.432x5/6 0.289
Rejection High 0 0.0005 0.0005 0
Medium 0.004 0.046 0.046 0.076
Low 0.062 0.305 0.305 0.202

Diagnosticity ratio = Culprit present response rate / Adjusted culprit absent response rate

culprit absent lineups. Then the adjusted suspect identifica-
tion rate will be,

1
PagfIDSICA) = —-p(IDF|CA)
The adjusted filler identification rate will be,
m—1
PagiUIDF|CA) = ——p(IDF|CA)
m
Box 4 contains the R code to adjust the response rates.

Specifically, we created a projection matrix proj to
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calculate the suspect and filler identification rates using the
1/(lineup size) method. Note that the order of the response
rates in the to-be-adjusted variable simu$car must match
the order of the multipliers in the projection matrix.
Alternatively, the fullROC package provides three differ-
ent functions to adjust the response rates (see Box 4). The
id_adj () function uses the projection matrix described
above, and requires that all responses must have the same
number of confidence levels and be pre-ordered by response
type (“IDS”, “IDF”, and “REJ”) and confidence (same con-
fidence order for all response types). When using the id
adj () function, users can easily change the lineup size
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# response frequencies
simu_freq <- table(simu_data$IDconfidence,

# response rates
simu_rate <- proportions(simu_freq, margin

# save both frequency and rate tables into
simu <- data.frame(rownames(simu_rate),

simu_data$lineup)

2)

a data frame

# rename columns

unclass(simu_freq),
unclass(simu_rate))

names(simu) <- c("IDconfidence”

”Cp'F”_, ”CE}‘F”, Hcpr\n, ucar.\u)

Box 3 R Code for Calculating Response Rates

by specifying the 1size argument (default to 6) and the
number of confidence levels by specifying the csize argu-
ment (default to 3).

The id adj pos () andid adj name () functions
are more flexible than id adj (). Users can specify the
positions of filler and suspect identifications in the id
adj pos () function or the confidence levels for filler and
suspect identifications in the id adj name () function.
Box 4 contains the R code using these three functions to
adjust response rates for culprit absent lineups.

As shown in Box 4, we saved the adjusted response rates
for culprit absent lineups into a new variable simu$Scar
adj. Using the adjusted response rates, we also calculated
the diagnosticity ratios, which are ratios between guilty sus-
pect identification rates and innocent suspect identification
rates. Table 1 displays the original and adjusted responses
rates in the culprit absent condition as well as the diagnos-
ticity ratios.

Create ROC curves and calculate AUCs

From the investigator signal detection model, the order of
eyewitness outcomes reflects how diagnostic investigators
consider the outcomes are in their decision process. This
brings about the question of whether eyewitness outcomes
should be ordered a priori or based on the diagnosticity of
the outcomes. Ordering by diagnosticity ratio results in
an upper-bound estimate of the AUC and reflects the best
possible practice. However, this method has one potential
pitfall: The order of diagnosticity ratios may differ across
samples or lineup methods due to sampling errors. Sort-
ing by diagnosticity ratios obtained from sample data then
implies that investigators change how they sort eyewitness

outcomes across samples or lineup methods. To avoid this
problem, an alternative method is to decide the order of eye-
witness outcomes a priori based on theoretical estimates or
empirical meta-analyses (Smith et al., 2020). Such estimates
provide better and more stable information on the diagnostic
values of different eyewitness outcomes.

In this example, we illustrate how to create full ROC
curve using both methods—sorting eyewitness outcomes
by a pre-assigned order or by diagnosticity ratios. When
pre-assigning the order, we use the order of “suspect iden-
tifications high to low confidence”, and then “filler identifi-
cations and rejections alternately low to high confidence.”
We chose this order because theoretically any decision with
low confidence should have less informational value than
decisions made with higher confidence (Wells et al., 2015).
However, other orders are possible. For example, the best-
above model predicts a dissociation between confidence and
the diagnostic values of filler identifications (Smith & Ayala,
2021). According to this model, researcher may collapse
confidence levels of filler identifications and thus consider
the order of “suspect identifications high to low confidence”,
“all filler identifications”, and then “rejections low to high
confidence.”

To create ROC curves and calculate AUCs, users can use
the roc_plot () function in the fullROC package. Box 5
shows how to generate an ROC curve and its AUC from the
response rates saved in simu. As discussed above, users
could sort response rates either by a pre-assigned order of
confidence levels or by the order of diagnosticity ratios. We
created ROC curves for the simulated lineup data with both
mechanisms (see Box 5). To sort response rates by confi-
dence levels, we first re-ordered the levels of the IDcon-
fidence variable and sorted the data accordingly. We then
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# Llineup size
nl <- 6
# number of confidence levels

# compute the projection matrix
proj <- matrix(c(e, 1/nl, o,
@, (nl-1)/nl, o,
9, o, 1)3

simu$car_adj <- proj %*% simu$car

# three different functions to use

simug$car_adj <- id_adj(simu$car, lsize =

simug$car_adj <- id_adj_name(simugcar,

lsize = 6)

# calculate DR
simu$dr <- simu$cpr/simus$car_adj

nc <- length(unique(simu_data$confidence))

byrow = T, nrow = 3) %x% diag(nc)

# adjust the response rates using the projection matrix

# Alternatively, use functions from the ful LROC package

# 1d adj() function provides simple adjustment
# applicable to ordered id rates with the same confidence levels for all responses
6, csize = 3)

# 1d adj pos() function adjusts id rates by positions specified by users
simu$car_adj <- id_adj_pos(simug$car, fid = 4:6, sid = 1:3, lsize = 6)

# 1d adj name() function adjusts id rates by confidence levels specified by users
conf = simu$IDconfidence,

fid = c("IDFhigh", "IDFmedium", "IDFlow"),
sid = ¢("IDShigh", "IDSmedium", "IDSlow"),

Box4 R code for adjusting suspect and filler identification rates in culprit absent lineups

used the roc_plot () function to plot the ROC curve and
calculate the corresponding AUC. To sort response rates
by diagnosticity ratios, we used the argument byDR=TRUE
(default to FALSE) in the roc_plot () function, which
sorts data automatically by diagnosticity ratios before creat-
ing ROC curves. Figure 3 displays the ROC curves gener-
ated by both methods.

In addition to plotting ROC curves, the fullROC package
also provides a function, auc_c1i (), to calculate bootstrap
inferential confidence intervals for AUCs. Because auc__
ci () only takes response frequencies as inputs, we first
adjusted the response frequencies for the culprit absent line-
ups and then calculated the bootstrapping confidence inter-
val for the AUC (see Box 6).
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The bootstrap method used in auc_ci () differs slightly
from the traditional sampling with replacement method. As
mentioned above, researchers need to estimate and adjust
the innocent-suspect identifications and filler identifications
when they do not assign a designated innocent suspect in
culprit-absent lineups. Such adjustments sometimes create
fractions in the estimated identification frequencies. The
traditional sampling with replacement method requires to
sample from integer data (or discrete categories), and thus
cannot work with fractional data.

The auc_ci () function, instead, draws random sam-
ples from a multinomial distribution with the probability
parameters calculated from the frequencies, which is equiva-
lent to sampling from the original data with replacement
(Efron & Tibshirani, 1993). This approach is not influenced
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levels =

# sort data by IDconfidence

# ROC plots

roc_plot(simu$cpr, simu$car_adj)
## AUC = 0.8207991

# sort by diagnosticity ratios

## AUC = 0.8608791

# reorder levels of IDconfidence for plotting purpose
simu$IDconfidence <- factor(simu$IDconfidence,
c("1DsShigh", "IDSmedium", "IDSlow",

simu <- simu[order(simu$IDconfidence), ]

# by a priori order of confidence/response criteria

roc_plot(simu$cpr, simug$car_adj, byDR

"IDFlow", "REJlow", "IDFmedium",
"REJmedium”, "IDFhigh", "REJhigh") )

TRUE)

Box 5 R code for creating ROC curves and calculating AUCs

Sort by a priori order

1.0

— AUC =0.821

Guilty suspect rate

00 02 04 06 038

| I I I I I

00 02 04 06 08 1.0
Innocent suspect rate

Fig. 3 Investigator ROC curves for simulated data

by whether the frequencies involve fractions, therefore can
work with the adjusted frequencies. With these random sam-
ples, auc_ci () calculates their AUCs and then generates
the mean, the percentile confidence interval (CI), and the p
value for the bootstrap AUCs.

As shown in Box 6, we input the frequency data for both
culprit present and absent lineups. Note that the order of the
frequency data determines the order of eyewitness outcomes
when calculating AUCs, and therefore should be sorted
beforehand. Using the frequency data, the auc_ci () func-
tion simulates 10,000 bootstrap samples and calculates the
AUC:s. Based on the bootstrap AUCs, auc_ci () generates

Sort by diagnosticity ratio

1.0

- AUC =0.861

Guilty suspect rate

00 02 04 06 038

| I I I | I

00 02 04 06 08 1.0
Innocent suspect rate

their mean, the 95% bootstrap confidence interval, and the
p value for the null hypothesis test (H,: AUC =0 for a single
AUC or H,: AAUC =0 for the difference between AUCs).
The simulated data present a simple example how to
analyze eyewitness data and create ROC curves using func-
tions from the fullROC package. Next, we show a second
example using experimental data that compare eyewitness
performance across various experimental conditions.
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# Bootstrap CIs for AUC; note auc_ci() only takes frequencies as input
# first, adjust response frequencies for ca
simu$caf_adj <- id_adj_name(simu$caf, conf = simu$IDconfidence,
fid c("IDFhigh", "IDFmedium"”, "IDFlow"),
sid = c¢("IDShigh", "IDSmedium", "IDSlow"))

# then, calculate bootstrapping CI for AUC; must use frequencies
auc_ci(simu$cpf, simu$caf_adj, nboot = 100600)

## Simulating 10000 samples for each group...

#i Mean 2.5% 50% 97.5% p-value
## 0.8207842 0.8145640 0.8207918 0.8269868 ©.0000000

Box 6 R code for calculating bootstrap confidence intervals for AUCs

Table 2 Response frequencies in all experimental conditions from Colloff et al. (2016)

Culprit present Culprit absent
IDS IDF REJ IDS IDF REJ
Replication
0-20 21 45 40 9.5 475 40
3040 36 52 45 16.5 82.5 68
50-60 96 127 124 34.5 172.5 158
70-80 106 93 102 28 140 120
90-100 88 65 85 16 80 127
Pixelation
0-20 29 52 30 14.83 74.17 41
3040 38 56 53 19.83 99.17 56
50-60 92 151 130 32.83 164.17 163
70-80 84 105 106 21.83 109.17 134
90-100 77 47 95 13 65 116
Block
0-20 27 62 41 14.83 74.17 59
3040 51 61 63 17.5 87.5 62
50-60 101 137 132 37 185 158
70-80 71 93 97 22.17 110.83 143
90-100 73 37 81 9 45 112
Do-nothing
0-20 17 32 22 18 29 43
3040 35 36 36 37 50 50
50-60 156 70 88 113 69 122
70-80 155 44 66 74 49 107
90-100 266 24 63 122 22 112
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Experimental data example

Our second example uses the experimental data from Colloff
et al. (2016); also see Table 2). In addition to culprit pres-
ence/absence, Colloff et al. (2016) manipulated the similar-
ity of fillers to a suspect who had a distinctive facial feature
via four conditions. The replication condition replicated the
suspect’s distinctive feature on fillers; the block condition
blocked the suspect’s distinctive feature and fillers’ corre-
sponding facial areas; the pixelation condition pixelated the
suspect’s distinctive feature and fillers’ corresponding facial
areas; and the do-nothing condition did nothing to fillers but
included an innocent suspect with the same distinctive feature
in culprit absent lineups. Table 2 listed response frequencies
in each confidence bin in all experimental conditions from
Colloff et al. (2016). The replication, pixelation, and block
conditions did not have a designated innocent suspect in cul-
prit absent lineups. Thus, the suspect and filler identification
rates were adjusted using the 1/(lineup size) method for these
three conditions in Colloff et al. (2016). The do-nothing con-
dition used a designated innocent suspect in culprit absent
lineups, and the identification rates did not get adjusted.

Before creating the ROC curves and calculating AUCs,
we re-organized the data so that all responses in culprit pre-
sent lineups were saved in one column (variable cpf in the
newly generated data frame d2) and all responses in culprit
absent lineups in another column (variable caf in d2). We
also re-arranged the order of confidence levels to reflect the
pre-assigned criterion order (suspect identifications high to
low confidence, and then filler identifications and rejections
alternately low to high confidence). To show readers how to
process raw lineup data into frequency tables, we also con-
verted Colloff et al. (2016) frequency data (unadjusted) into
raw data in which each row corresponds to a datum from one
participant. We then started from the raw data to conduct all
analyses. The R script for processing raw eyewitness data is
available at osf.io/daq7x.

After re-organizing data, we used the roc _plot ()
function to create ROC curves (see Box 7). The group
argument in roc_plot () takes information about the
grouping variable and enables the function to create sepa-
rate ROC curves for different groups. Users can also change
the ROC curves to grayscale by setting the argument
grayscale=TRUE (default to FALSE). Figure 4 displays
the ROC curves for all four filler similarity conditions.

The ROC curves in Fig. 4 indicate that the replication and
block conditions performed similarly, as their ROC curves
are overlapping to a large extent. The pixelation condition
performed slightly worse than the replication and block
conditions, as the pixelation ROC curve is dominated by
replication and block ROC curves in the middle range of
innocent suspect rates.
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Fig.4 Investigator ROC curves for Colloff et al. (2016) experimental
data

The do-nothing condition, however, performed differ-
ently from the other three conditions. The do-nothing ROC
curve intersected with the other three ROC curves. The
do-nothing ROC curve was dominated by the other three
ROC curves before the intersection, but dominated the other
three ROC curves after the intersection. To compare their
overall performance, we calculated the bootstrap Cls and p
values for the differences in AUCs among the four similar-
ity conditions. Box 8 displays the R code and outputs. From
the bootstrap Cls and p values (H,: AUC =0 for a single
AUC or H,: AAUC =0 for the difference between AUCs),
the do-nothing condition had a slightly higher AUC than the
pixelation condition (95% CI = [0.003, 0.068], p = 0.035,
and the AUCs did not differ for other comparisons (ps >
0.150). To account for multiple comparisons, we also used
the Bonferroni adjustment to adjust the significance level,
at = % = 0.00833. With the adjusted significance level, none
of the AUC differences were statistically significant, ps >
0.035 > 0.00833.

Based on the comparison of ROC curves and AUCs, the
difference between the do-nothing lineups and the unbiased
lineups (replication, pixelation, and block) reflects the
difference in their capacities to “rule in” guilty suspects
and “rule out” innocent suspects. The do-nothing lineups
were more liberal than the other three types of lineups.
Indeed, because the fillers did not match the suspect on
a critical diagnostic facial feature, the suspect tended to
stand out from the other lineup members and was picked
more frequently in the do-nothing lineups compared to the
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# order data by IDconfidence

d2$IDconfidence <- pastee(d2$ID, d2%Confidence)
# reorder factor Llevels

d2$IDconfidence <- factor(d2$IDconfidence,

# order data
d2 <- d2[order(d2$Condition, d2$IDconfidence), ]

# create ROC curves
roc_plot(d2$cpf, d2$caf, group = d2$Condition)

## Replication

## AUC = 0.6143125
## Pixelation

## AUC = 0.590092
## Block

## AUC = 0.6056836
## Do-nothing

## AUC = 0.6258768

levels = c("IDS90-100", "IDS70-8@", "IDS50-60",
"IDS30-40", "IDS@-20", "IDFe-20",
"REJO-20", "IDF30-40", "REJ30-40",
"IDF50-60", "REJ50-60", "IDF70-80",
"REJ70-80", "IDF90-100", "REJ90-100"))

Box 7 R code for creating ROC curves for different conditions

# Bootstrap CIs for AUCs

CIs <- auc_ci(d2$cpf, d2$caf, group = d2$Condition, nboot = 10000)
print(CIs, digits = 3)

## Mean 2.5% 50%
## Replication 0.61447 0©.59150 0.61454
## Pixelation 0.59012 0.56695 0.59010
## Block 0.60571 ©0.58257 0.60559
## Do.nothing 0.62593 0.60233 0.62595
## Replication..Pixelation ©.02436 -0.00894 ©0.02469
## Replication..Block 0.00876 -0.02418 0.00884
## Replication..Do.nothing -0.01146 -0.04473 -0.01134
## Pixelation..Block -0.01559 -0.04904 -0.01558
## Pixelation..Do.nothing -0.03581 -0.06843 -0.03578
## Block..Do.nothing -0.02022 -0.05302 -0.02045

97.5% p-value
0.63754 0.0000
0.61349 0.0000
©.62899 0.0000
0.64915 ©0.0000
0.05694 0.1498
0.04114 ©.6042
0.02134 0.5032
0.01705 ©0.3536
-0.00283 0.0354
0.01291 0.2286

Box 8 R code for calculating bootstrap CIs for AUCs and difference in AUCs
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other three types of lineups (in which the fillers matched the
suspect on the critical diagnostic facial feature). Holding
discriminability constant, suspect identifications become
increasingly diagnostic of guilt as procedures become
increasingly conservative (Macmillan & Creelman,
2005; Wixted & Mickes, 2014). Because the fair lineup
procedures were more conservative than the do-nothing
procedure, suspect identifications were more diagnostic
of guilt from the fair lineups than from the do-nothing
(biased) lineup. Conversely, holding discriminability
constant, filler identifications and rejections become
increasingly diagnostic of innocence as procedures become
increasingly liberal. Because the do-nothing (biased) lineup
is more liberal than the fair lineups, filler identifications and
rejections from the do-nothing lineup were more diagnostic
of innocence than were filler identifications and rejections
from the three fair lineups. Because all lineups had similar
capacities to discriminate guilty suspects and innocent
suspects, and the do-nothing lineup was more liberal than
the three fair lineups, the ROC curves crossed over.

How do investigator practices influence the area
under the ROC curve?

In addition to comparing investigator classification
performance across different lineup methods, full
ROC curves can also be used to compare investigator
classification performance for the same lineup method
under different investigative practices. For example,
investigators may collapse witness confidence and use
fewer confidence bins (e.g., use low, medium, and high
confidence for each witness response) when making
arrest decisions. Similarly, investigator may use all
witness confidence for suspect identifications but collapse
confidence for filler identifications and rejections. In
other words, investigators may take the same action for a
filler identification (or a rejection) regardless of witness
confidence. To examine the influence of different practices
on investigator classification performance, we compared
the ROC curves and the AUCs for the replication lineups
under three different practices: investigators use all
confidence bins, use reduced confidence bins, or use all
confidence bins for suspect identifications but collapse
confidence bins for filler identifications and rejections.

From Fig. 5, the ROC curves under the three different
practices are overlapping to a large extent, indicating inves-
tigator performance would be similar no matter how they
use witness confidence to make arrest decisions. To statisti-
cally compare the AUCs, we calculated the bootstrap Cls
and p values for the difference in AUCs among the three
practices. Box 9 displays the R code and outputs. From the
bootstrap Cls and p values, the AUCs did not differ signifi-
cantly among the three practices (ps > 0.623).
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Fig.5 Investigator ROC curves under different practices. AC stands
for All Confidence, RC stands for Reduced Confidence, and NC
stands for No Confidence (collapse all confidence for filler identifica-
tions and rejections)

Functions in fullROC

As shown in the two examples above, the fullROC pack-
age provides useful functions to create full ROC curves and
statistically compare AUCs for lineup data. Other than the
functions introduced above, the fullROC package provides
additional functions to simulate witness responses, calcu-
late AUCs (without generating ROC curves), etc. Table 3
summarizes the functions provided by fullROC. Readers can
read the help documents for more detail about these func-
tions and their usage.

Discussion

The purpose of a lineup procedure is to provide evidence for
investigators to test their hypothesis that the police suspect
is the culprit. When the investigator presents the lineup to
a witness, in effect, the investigator is using the witness’
recognition memory to shed light on the hypothesis that the
suspect is the culprit. If the witness identifies the suspect
from the lineup, the investigator has confirmatory evidence
towards the hypothesis that the suspect is the culprit (i.e.,
“rule in” guilty suspects). If the witness identifies a known
innocent-filler or rejects the lineup, the investigator has
disconfirmatory evidence towards the hypothesis that the
suspect is the culprit (i.e., “rule out” innocent suspects). In
other words, suspect identifications have inculpatory value
and filler identifications and rejections have exculpatory
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# Bootstrap CIs for AUCS

print(CI2, digits = 3)

CI2 <- auc_ci(d3%$cpf, d3$caf, group = d3%$Condition2, nboot = 10000)

#i Mean 2.5% 50% 97.5% p-value
## ReplicationAC ©.61447 ©.5915 0©.61454 0.6375 0.000
## ReplicationRC 0.60971 0©0.5862 ©.60970 ©.6320 ©.000
## ReplicationNC ©.60655 ©0.5854 0.60644 ©.6283 ©.000
## ReplicationAC..ReplicationRC ©.00477 -0.0279 ©.00471 ©.0371 0.769
## ReplicationAC..ReplicationNC ©.00792 -0.0237 ©.00788 0.0396 0.623
## ReplicationRC..ReplicationNC ©.00316 -0.0280 ©.00337 ©.0337 ©0.835

Box 9 R code for comparing AUCs under different investigative practices

Table 3 Functions in fullROC

Function Usage

auc_boot Bootstrap witness responses from input frequencies and calculate the AUCs.

auc_ci Calculate the means, percentile confidence intervals, and p values for the bootstrap AUCs and their differences.

id_adj Adjust identification rates for culprit absent lineups using the 1/(lineup size) method. All witness responses must have the same

confidence levels and be sorted by confidence levels.

id_adj_name
confidence names.
id_adj_pos
tions.
response_simu
roc_auc Calculate the area under an ROC curve.

roc_plot

Adjust identification rates for culprit absent lineups using the 1/(lineup size) method. Match suspect and filler ids by input
Adjust identification rates for culprit absent lineups using the 1/(lineup size) method. Match suspect and filler ids by input posi-

Simulate witness responses from Gaussian distributions (assuming equal variance) using the BEST decision rule.

Plot an ROC curve for lineup data and calculate the area under the curve.

value. In order to determine which of two lineup procedures
is superior, one must consider not only the relative capaci-
ties of those procedures to incriminate — as has often been
done in the eyewitness identification literature — but must
also consider the relative capacities of those procedures to
exculpate (as has rarely been done in the eyewitness identi-
fication literature).

Smith et al. (2020) recently introduced a method for cre-
ating ROC curves of lineups that include all three lineup
outcomes and inform on the total informational value of
a lineup to facilitate investigators to sort between guilty
suspects and innocent suspects. Only by considering all
outcomes of lineups and the total capacity of a lineup to
sort between culprits and innocent suspects can we make
informed decisions about which of two lineup procedures
is superior. In the present work, we introduced a CRAN
package for implementing the full ROC approach to compar-
ing eyewitness lineups. Among the many functionalities of
this package are the capacities to both plot and inferentially
compare full lineup ROC curves.

@ Springer

This is the first and only package for implementing full
ROC curves of eyewitness lineup procedures. While there
are several packages available for implementing standard
ROC analysis in R, including pROC (Robin et al., 2011)
and ROCR (Sing et al., 2005), none of these packages are
equipped for plotting and inferentially comparing full ROC
curves of eyewitness lineup procedures. As shown in the
above examples, investigator classification tasks and eye-
witness data have several unique features that are not well
accommodated by the extant ROC packages.

First of all, the extant packages are intended for tradi-
tional binary classification paradigms in which the decision
variable distributions are continuous (e.g., signal plus noise
versus noise-only distributions). For investigator classifi-
cation tasks, however, the decision variable distributions
are discrete rather than continuous because investigators
use discrete eyewitness responses (suspect identifications,
filler identifications, and rejections) to make classification
decisions. The discrete nature of eyewitness responses ena-
bles researchers to compare investigator performance when
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assuming investigators would use and sort eyewitness evi-
dence from the same procedure differently. As shown in our
analysis, the fullROC package allows researchers to freely
order or collapse investigator operating points on ROC
curves and thus to easily compare investigator performance
under different assumptions.

In addition, a unique problem in lineup identification
research is that suspect identifications are often estimated by
dividing the total false-positive rate from the culprit-absent
lineup by the total number of lineup members (usually six).
The result is that the estimated number of innocent-suspect
identifications and filler identifications from the culprit-
absent lineup are not round numbers. For example, if a
culprit-absent lineup resulted in 34 false-positive identifi-
cations, the estimated innocent-suspect identification rate
would be 5.67 (34 false positives / 6 lineup members), and
the estimated culprit-absent filler-identification rate would
be 28.33 (34 total false positives — 5.67 estimated innocent-
suspect identifications). This is particularly problematic for
inferential comparison of lineup ROC curves. The bootstrap
methods available in extant ROC packages are designed to
sample whole-number frequencies but cannot deal with frac-
tions. Hence, in order to use existing packages to inferen-
tially compare lineup ROC curves, one would be forced to
round their innocent-suspect and filler identification rates
to whole numbers. In fact, the rounding could be even more
complicated, because the rounding must be done at every
single level of an eyewitness’ expressed level of confidence.
This is both less than optimal and not feasible without
extremely large numbers of observations. By comparison,
JullROC introduces a method for bootstrapping samples
using fractional frequency data generated from adjustments.
This is one prime example of how full[ROC is uniquely situ-
ated for the analysis of eyewitness lineup data.

For decades, those researching eyewitness lineup proce-
dures have made inferences about which of two procedures
is superior based only on their relative capacities to incrimi-
nate (cf. Wells et al., 2015; Wells & Lindsay, 1980; Wells
& Turtle, 1986). But the diagnostic value of a lineup is not
limited to its capacity to incriminate. Lineups also have the
capacity to exculpate. Exculpating the innocent is every bit
as important as inculpating the guilty. The goal of a lineup
is to determine if the suspect is guilty or innocent. When a
witness picks out a filler or rejects a lineup, such a behavior
is informative because it suggests that the suspect might be
innocent. All behaviors that inform on the likely guilt or
innocence of the culprit must be factored into any inference
about which of two lineup procedures is superior. Indeed, the
procedure that is inferior at inculpating is sometimes supe-
rior at exculpating and vice versa (e.g., Smith et al., 2020). If
we want to determine which of two procedures better helps
investigators sort between the presence and absence of the

culprit in a lineup, our analyses and inferences must take all
lineup outcomes into account.

The full ROC approach to analyzing eyewitness lineup
data creates a new standard for those researching lineup pro-
cedures and making applied inferences. As both inculpatory
and exculpatory behaviors inform on whether a suspect is
guilty or innocent, applied inferences about which of two
procedures is superior must be informed by both sets of
behaviors. fullROC provides researchers with a desperately
needed tool for analyzing eyewitness lineup data.
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