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Abstract
A police lineup is a procedure in which a suspect is surrounded by known-innocent persons (fillers) and presented to the 
witness for an identification attempt. The purpose of a lineup is to test the investigator’s hypothesis that the suspect is the 
culprit, and the investigator uses the witness’ identification decision and the associated confidence level to inform this 
hypothesis. Whereas suspect identifications provide evidence of guilt, filler identifications and rejections provide evidence of 
innocence. Despite the capacity of lineups to provide exculpatory information, past research has focused, almost exclusively, 
on inculpatory behaviors. We recently developed a method for incorporating all lineup outcomes in a single receiver opera-
tor characteristic (ROC) curve. The area under the full lineup ROC curve reflects the total capacity of a lineup procedure 
to discriminate guilty suspects from innocent suspects. Here, we introduce a Comprehensive R Archive Network (CRAN) 
package, fullROC, to support eyewitness researchers in using the full ROC approach to analyze lineup data. The fullROC 
package provides functions for adjusting identification rates, generating full ROC curves for lineup data, computing the area 
under the ROC curves (AUC), and statistically comparing the AUCs of different lineups. Using both simulated and empiri-
cal data, we illustrate the functionality of the fullROC CRAN package. In brief, the fullROC package provides a useful tool 
for eyewitness researchers to analyze lineup data using the full ROC method, which incorporates both the inculpatory and 
exculpatory information of eyewitness behaviors.
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When police suspect that someone committed a crime, they 
often construct a lineup and present it to a witness for an 
identification attempt. A lineup is a procedure in which 
police surround the person that they suspect committed the 
crime (i.e., the suspect) with some number of known-inno-
cent persons called “fillers” (usually five fillers). The ration-
ale for surrounding the suspect with fillers is that the suspect 
might be innocent and if so, fillers offer some protection 
from mistaken identifications as many witnesses will iden-
tify a known-innocent filler rather than the innocent suspect. 
While a filler identification is still a mistaken identification 
on the part of the witness, it does not carry the same forensic 
implications of an innocent-suspect identification. Indeed, 

when a witness identifies a filler, the investigator knows the 
witness has made an error and the filler is not at risk of 
arrest and conviction. Conversely, when a witness identifies 
an innocent suspect, it provides support for the investigator’s 
erroneous hypothesis that the suspect is guilty and puts the 
innocent suspect at risk of arrest and conviction. Because 
of their protective features, best-practice recommendations 
encourage investigators to use lineups rather than present-
ing a lone suspect to a witness for an identification attempt 
(Wells et al., 2020).

Implicit in the above description is a lineup’s purpose. 
Contrary to intuition, the purpose of a lineup is not to test 
a witness’ memory. Rather, the purpose of a lineup is to 
test an investigator’s hypothesis that the suspect is the cul-
prit (Smith et al., 2020; Wells & Luus, 1990). Because the 
investigator does not know the suspect’s guilt status, she 
uses a lineup to obtain evidence—eyewitness outcomes—to 
test her hypothesis that the suspect is guilty. Whereas some 
eyewitness outcomes support the hypothesis that the suspect 
is guilty (e.g., a suspect identification), some support the 
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alternative hypothesis that the suspect is innocent (e.g., a 
rejection). Hence, investigators can use lineups both to “rule 
in” or inculpate guilty suspects and to “rule out” or excul-
pate innocent suspects. The capacity of an investigator to 
discriminate guilty suspects from innocent suspects—or the 
total informational value of a lineup—depends on a lineup’s 
capacity both to “rule in” the guilty and to “rule out” the 
innocent (Smith et al., 2020; Smith & Ayala, 2021; Starns 
et al., 2021; Wells et al., 2015; Wells & Lindsay, 1980).

In a recently published paper, we introduced a novel 
means for measuring the total informational value of a 
lineup procedure (or what we have called investigator dis-
criminability) with receiver operating characteristic (ROC) 
curves that include all lineup outcomes: suspect identifi-
cations, filler identifications, and rejections (Smith et al., 
2020). Our method can be viewed as a way to extend the 
“partial” suspect-only ROC curves. Whereas the “partial” 
ROC curves only measure a lineup’s capacity to “rule in” the 
guilty, the full ROC curves which incorporate all lineup out-
comes measure a lineup’s total informational value. In the 
present work, we introduce a novel R package, fullROC, for 
comparing the total informational value (or investigator dis-
criminability) of two lineup procedures. We accompany the 
introduction of fullROC with a tutorial demonstrating vari-
ous features and functions of this package. We first elaborate 
how full ROC curves measure lineup procedures’ capacities 
to both “rule in” and “rule out” suspects. We then use both 
simulated and empirical data to show readers step by step 
how to create full ROC curves for lineup data.

Signal detection and ROC analysis

According to signal detection theory, two factors influence 
how a diagnostic system makes a classification decision: 
discriminability, which reflects the system’s capacity to dis-
tinguish signal from noise; and response criterion, which 
reflects the amount of evidence the system requires to make 
an affirmative response (Green & Swets, 1966; Swets, 1988). 
Scientists typically place a premium on maximizing discrim-
inability. This is because, for any given false-positive rate, 
a system with better discriminability will result in a higher 
true-positive rate than will a system with worse discrimina-
bility. Conversely, variations in response criteria will result 
in mere trade-offs, increasing (or decreasing) both the true-
positive rate and the false-positive rate without influencing 
discriminability.

In practice, it is not always easy to determine which diag-
nostic system leads to better discriminability. It is often the 
case that one system leads to both a higher true-positive 
rate and a higher false-positive rate than does a comparison 
system (e.g., Clark, 2012). ROC curves were specifically 
designed to deal with these trade-offs. ROC curves measure 

discriminability independent of response criterion. This is 
accomplished by plotting the true-positive rates against the 
false-positive rates for all potential response criteria. Con-
necting these pairs of true- and false-positive rates (also 
called operation points) creates the diagnostic system’s ROC 
curve. Because the ROC curve runs through each operating 
point, it places equal weight on the operating points. Thus, 
the area under the ROC curve (AUC) provides a measure of 
discriminability independent of response criterion (Macmil-
lan & Creelman, 2005).

ROC curves have become a popular method for eyewit-
ness researchers to handle the trade-offs that are commonly 
involved in lineup comparisons (Clark, 2012; Wixted & 
Mickes, 2012). Whereas some researchers have separately 
considered the incriminating properties of suspect identi-
fications and the exculpating properties of rejections and 
filler picks (e.g., Wells & Lindsay, 1980; Wells & Olson, 
2002; Wells & Turtle, 1986), the field has focused mainly 
on suspect identifications and the capacity of a lineup to 
incriminate. This has typically been examined with “par-
tial” suspect-only ROC curves that only include suspect 
identifications and thus cover a fraction of the ROC space 
(e.g., Mickes et al., 2012; Wetmore et al., 2015). The prob-
lem with “partial” suspect-only ROC analysis, as with any 
analysis that focuses only on suspect identifications, is that 
it does not consider all information that is relevant to deter-
mining which of two procedures is superior.

The value of a lineup is not limited to its capacity to 
“rule in” or incriminate guilty persons. Lineups also have 
the capacity to “rule out” or exculpate the innocent. The 
total informational value of a lineup procedure is based both 
on that procedure’s capacity to “rule in” the guilty and to 
“rule out” the innocent (e.g., Smith et al., 2020; Smith & 
Ayala, 2021; Starns et al., 2021). Just as being able to dem-
onstrate the absence of disease is an important property of 
many diagnostic tests, being able to demonstrate innocence 
is an important property of a lineup. Failure to clear inno-
cent persons from police suspicion can completely stymy 
police investigations, let alone the consequences uncleared 
innocent persons are forced to shoulder. We cannot speak 
sensibly about which of two lineups is superior unless we 
consider the total informational value of those procedures, 
which is based both on their capacities to “rule in” the guilty 
and to “rule out” the innocent. Critically, the lineup proce-
dure that does a better at “ruling in” guilty persons is not 
necessarily the procedure that has greater total informational 
value. In fact, it is often the case that the procedure that does 
a better job “ruling in” does a worse job “ruling out” (Smith 
et al., 2020; Wells et al., 2015) and often times the procedure 
that is worse at “ruling in” is so much better at “ruling out” 
that it has greater total informational value (Smith & Ayala, 
2021; Starns et al., 2021).
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Below we illustrate how full ROC curves can summarize 
a lineup’s capacity to both “rule in” guilty suspects and to 
“rule out” innocent suspects. We first propose a model that 
describes how investigators use eyewitness evidence to clas-
sify a suspect’s guilt. We then show the connection between 
investigators’ signal detection model and full ROC curves 
and discuss how full ROC curves can reflect the total infor-
mational value of a lineup procedure.

Investigator signal detection model

When conducting a lineup, investigators obtain eyewitness 
evidence to inform their hypothesis that the suspect is guilty 
(or the alternative hypothesis that the suspect is innocent). 
In other words, investigators rely on eyewitness evidence 
to decide whether to arrest the suspect or not (Smith et al., 
2020). Combined with the two possible states of ground 
truth, investigators’ responses conform to a 2 (culprit pre-
sent vs. culprit absent) × 2 (arrest vs. not arrest) confusion 
matrix. Figure 1 shows a signal detection model of the inves-
tigators’ detection task.

Note that the distributions in Fig. 1 are discrete rather 
than continuous. This is because the decision variable on 
which investigators’ classification decisions rely—eyewit-
ness evidence—is discrete rather than continuous (Yang 
& Moody, 2021). For example, Fig. 1 shows nine possi-
ble discrete eyewitness outcomes, combining both witness’ 
responses (suspect identifications, filler identifications, or 
rejections) and associated confidence levels (high, medium, 
or low). Because eyewitness evidence can come from 

either culprit-present or culprit-absent lineups, the model 
contains two distributions, which represent the probability 
mass (i.e., response rate) of the eyewitness outcomes from 
either lineup. In Fig. 1, the white and gray bars present the 
probability mass distributions of eyewitness outcomes in 
culprit-absent and culprit-present lineups, respectively. The 
vertical dashed lines present the decision criteria investiga-
tors can use.

In completing the classification task, investigators use the 
witness’ response and associated confidence to infer whether 
the suspect is guilty or not. As shown in Fig. 1, investigators 
have control over how much evidence is needed to make an 
arrest decision (or some other investigative decision). For 
example, some investigators may decide to arrest a suspect 
only when witnesses identify the suspect with high confi-
dence (i.e., when obtaining evidence to the right of the deci-
sion criterion cIDShigh in Fig. 1) and not to arrest the suspect 
when witnesses make other responses (i.e., when obtaining 
any evidence to the left of cIDShigh ). But others may decide to 
arrest a suspect even after a low-confidence identification 
(i.e., when obtaining any evidence to the right of cIDSlow in 
Fig. 1) and not to arrest when witnesses identify a filler or 
reject the lineup (i.e., when obtaining any evidence to the 
left of cIDSlow ). Investigators could be even more liberal, 
deciding to arrest a suspect as long as witnesses do not reject 
the lineup with high confidence (i.e., when obtaining any 
evidence to the right of cIDFhigh

 in Fig. 1). Therefore, different 
combinations of witness responses and associated confi-
dence reflect different decision criteria investigators can use 
to make investigative decisions.

Fig. 1   Investigator signal detection model
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Investigator ROC curves

Based on the investigator signal detection model, a full ROC 
curve that spans the entire ROC space can be produced to 
include all eyewitness outcomes (i.e., all possible investiga-
tor decision criteria). A full ROC curve is simply a collec-
tion of investigators’ true- and false-positive rates at each 
level of the decision criteria, moving from the most con-
servative to the most liberal criterion (i.e., moving from right 
to left on the decision variable coordinate). Because of the 
discrete nature of investigators’ decision variable (eyewit-
ness evidence), investigator ROC curves are discrete.

Figure 2 displays the ROC curve from the investigator 
signal detection model in Fig. 1. The operating points on 
ROC curve present investigators’ true- and false-positive 
rates when investigators make investigative decisions under 
different decision criteria. For example, the origin (0, 0) pre-
sents the situation in which investigators use the most con-
servative criterion, deciding not to arrest the suspect no mat-
ter what responses witnesses make (i.e., using the criterion 
c0 in Fig. 1). The termination point (1, 1) presents the situ-
ation in which investigators use the most liberal criterion, 
deciding to arrest the suspect no matter what response wit-
nesses make (i.e., using the criterion cREJhigh in Fig. 1). The 
points in-between present investigators’ true- and false-pos-
itive rates when investigators use the criteria in-between 
these two limits.

Because the full ROC curves include all possible crite-
ria investigators can use for making investigative decisions, 
they provide a useful tool for comparing lineup procedures’ 
total capacity to help investigators distinguish between 

guilty and innocent suspects (or total informational value). 
A lineup’s capacity to “rule out” innocent suspects (i.e., to 
disconfirm the investigator’s hypothesis) is just as important 
as its capacity to “rule in” guilty suspects (i.e., to confirm 
the investigator’s hypothesis). Hence, ROC curves should 
include all eyewitness outcomes that can inform on suspects’ 
likely guilt or innocence. When including all eyewitness out-
comes, a lineup’s total informational value is reflected by the 
area under the full ROC curves (Smith et al., 2020). When 
ROC curves do not cross over, whichever lineup procedure 
that produces a larger area under the full ROC curve is the 
procedure with better informational value for both “rule in” 
guilty suspects and “rule out” innocent suspects. Such a pro-
cedure can help investigators do a better job distinguishing 
between guilty and innocent suspects.

Although multiple software packages are available for 
creating ROC curves and calculating AUCs, two unique fea-
tures of eyewitness data limit the ability of extant packages 
for analyzing eyewitness data. First, eyewitness evidence 
is discrete rather than continuous. Therefore, researchers 
need to order eyewitness outcomes for creating ROC curves. 
However, most extant packages deal with continuous deci-
sion variables, which have a natural order, and thus do not 
enable researchers to freely change the order of the decision 
variable. Second, when an experiment does not designate 
an innocent suspect, researchers need to adjust filler iden-
tifications to estimate innocent suspect identifications. This 
adjustment creates fractional data in culprit-absent line-
ups. The extant packages cannot bootstrap samples using 
fractional data and thus cannot inferentially compare ROC 
curves. To overcome these difficulties, we introduce a pack-
age specifically designed for researchers to analyze eyewit-
ness data and to plot and inferentially compare full ROC 
curves of lineups.

Analyze eyewitness data and create full ROC 
curves

We introduce fullROC, a Comprehensive R Archive Network 
(CRAN) package for generating and statistically comparing 
full ROC curves for eyewitness lineups. R is an open-source 
programming language which supports data visualization 
and statistical analysis (R core team, 2020). In addition to 
R, we recommend readers to use RStudio as a convenient 
interface to R (RStudio, 2020). We illustrate how to use the 
fullROC package to generate ROC figures and to statistically 
compare lineup ROC curves.

We display all codes with Consolas font. In addition 
to using R base functions, we created functions to calculate 
adjusted identification rates, plot full ROC curves, and sta-
tistically compare the area under the ROC curves (AUC). 
To use these functions, users can download and install the 

Fig. 2   Investigator ROC curves
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fullROC package from CRAN (for the stable version) or 
from GitHub (for the developer version) (see Box 1). Once 
installed, users can run the library command to load the 
functions into the R environment. We explain how to use 
these pre-packed functions in the examples below. Users 
can also run the ?function command to retrieve the help 
documents for the functions.

We include two examples in this paper. The first example 
uses simulated data to show the data cleaning and organizing 
process; the second example uses empirical data to compare 
performance across various experimental conditions.

Simulation example

We simulated witness responses according to the signal 
detection model shown in Fig. 1. In the simulation, each 
lineup contained six members (i.e., one guilty suspect and 
five fillers in the culprit present lineup; six fillers in the cul-
prit absent lineup). We simulated n = 20,000 responses (n 
= 10,000 for each lineup condition) and saved the simulated 
responses into an R data frames, simu_data. Box 2 contains 
a snapshot of the simulated data.

The data frame simu_data saved simulated responses 
in both culprit present and absent conditions. The data frame 
contained four variables: lineup indicates the lineup condi-
tion (culprit present or absent), ID indicates the witnesses’ 
response, confidence indicates the witness’ confidence, and 
IDconfidence combines the witness’ response and associ-
ated confidence. Because we did not designate an innocent 

suspect, there were no suspect identifications in culprit 
absent lineups

Calculate response frequencies and rates

Box 3 contains the R code to calculate the response frequen-
cies and rates in both lineup conditions. In the R code, we 
first re-ordered the factor levels of the variables to match 
the order of those in the experimental design. We then cal-
culated a frequency table for witness responses using the 
table command. We next converted the frequencies into 
percentages and saved the both the response frequencies 
and rates into a data frame, simu. Table 1 displays the 
calculated response rates in both culprit present and absent 
lineups.

Adjust response rates in culprit absent lineups

When researchers do not designate an innocent suspect in 
eyewitness experiments, the suspect identification rate is 
zero in culprit absent lineups (see Table 1). In such situa-
tions, one common method to estimate the suspect identifi-
cation rate is to use the 1/(lineup size) method (e.g., Quig-
ley-McBride & Wells, 2021). The 1/(lineup size) method 
adjusts the suspect identification rate to be the 1/(lineup size) 
× original filler identification rate and the filler identification 
rate to be (lineup size – 1)/(lineup size) × original filler iden-
tification rate for culprit absent lineups (also see Table 1).

Mathematically, let us use m to present the lineup size and 
p(IDF| CA) to present the original filler identification rate in 

# install from CRAN
install.packages("fullROC")

# install from github (need to install “devtools” package)
devtools::install_github("yuerany/fullROC")

# load the "fullROC" package into R global environment
library(fullROC)

# get help documents for the functions in "fullROC"
?id_adj
?roc_plot

Box 1   Install and load the fullROC package
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culprit absent lineups. Then the adjusted suspect identifica-
tion rate will be,

The adjusted filler identification rate will be,

Box 4 contains the R code to adjust the response rates. 
Specifically, we created a projection matrix proj  to 

padj(IDS|CA) =
1

m
p(IDF|CA)

padj(IDF|CA) =
m − 1

m
p(IDF|CA)

calculate the suspect and filler identification rates using the 
1/(lineup size) method. Note that the order of the response 
rates in the to-be-adjusted variable simu$car must match 
the order of the multipliers in the projection matrix.

Alternatively, the fullROC package provides three differ-
ent functions to adjust the response rates (see Box 4). The 
id_adj() function uses the projection matrix described 
above, and requires that all responses must have the same 
number of confidence levels and be pre-ordered by response 
type (“IDS”, “IDF”, and “REJ”) and confidence (same con-
fidence order for all response types). When using the id_
adj() function, users can easily change the lineup size 

head(simu_data)

##   lineup  ID confidence IDconfidence
## 1     cp IDS        low       IDSlow
## 2     cp IDS     medium    IDSmedium
## 3     cp IDS       high      IDShigh
## 4     cp IDS     medium IDSmedium
## 5     cp IDS     medium    IDSmedium
## 6     cp IDS       high      IDShigh

tail(simu_data)

##       lineup  ID confidence IDconfidence
## 19995     ca IDF     medium    IDFmedium
## 19996     ca IDF        low       IDFlow
## 19997     ca REJ        low       REJlow
## 19998     ca IDF     medium    IDFmedium
## 19999     ca IDF     medium    IDFmedium
## 20000     ca IDF        low       IDFlow

Box 2   Snapshot of simulated responses in both culprit present and culprit absent lineups

Table 1   Witness response rates based on n = 10,000 simulations in each lineup condition

Diagnosticity ratio = Culprit present response rate / Adjusted culprit absent response rate

Response Confidence Lineup condition Diagnosticity ratio

Culprit present
(n = 10,000)

Culprit absent (n = 10,000)

Original Adjusted

Suspect identification High 0.303 0 0.006 = 0.036/6 50.011
Medium 0.268 0 0.030 = 0.180/6 8.910
Low 0.158 0 0.072 = 0.432/6 2.189

Filler identification High 0.023 0.036 0.030 = 0.036×5/6 0.765
Medium 0.079 0.180 0.150 = 0.180×5/6 0.525
Low 0.104 0.432 0.360 = 0.432×5/6 0.289

Rejection High 0 0.0005 0.0005 0
Medium 0.004 0.046 0.046 0.076
Low 0.062 0.305 0.305 0.202
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by specifying the lsize argument (default to 6) and the 
number of confidence levels by specifying the csize argu-
ment (default to 3).

The id_adj_pos() and id_adj_name() functions 
are more flexible than id_adj(). Users can specify the 
positions of filler and suspect identifications in the id_
adj_pos() function or the confidence levels for filler and 
suspect identifications in the id_adj_name() function. 
Box 4 contains the R code using these three functions to 
adjust response rates for culprit absent lineups.

As shown in Box 4, we saved the adjusted response rates 
for culprit absent lineups into a new variable simu$car_
adj. Using the adjusted response rates, we also calculated 
the diagnosticity ratios, which are ratios between guilty sus-
pect identification rates and innocent suspect identification 
rates. Table 1 displays the original and adjusted responses 
rates in the culprit absent condition as well as the diagnos-
ticity ratios.

Create ROC curves and calculate AUCs

From the investigator signal detection model, the order of 
eyewitness outcomes reflects how diagnostic investigators 
consider the outcomes are in their decision process. This 
brings about the question of whether eyewitness outcomes 
should be ordered a priori or based on the diagnosticity of 
the outcomes. Ordering by diagnosticity ratio results in 
an upper-bound estimate of the AUC and reflects the best 
possible practice. However, this method has one potential 
pitfall: The order of diagnosticity ratios may differ across 
samples or lineup methods due to sampling errors. Sort-
ing by diagnosticity ratios obtained from sample data then 
implies that investigators change how they sort eyewitness 

outcomes across samples or lineup methods. To avoid this 
problem, an alternative method is to decide the order of eye-
witness outcomes a priori based on theoretical estimates or 
empirical meta-analyses (Smith et al., 2020). Such estimates 
provide better and more stable information on the diagnostic 
values of different eyewitness outcomes.

In this example, we illustrate how to create full ROC 
curve using both methods—sorting eyewitness outcomes 
by a pre-assigned order or by diagnosticity ratios. When 
pre-assigning the order, we use the order of “suspect iden-
tifications high to low confidence”, and then “filler identifi-
cations and rejections alternately low to high confidence.” 
We chose this order because theoretically any decision with 
low confidence should have less informational value than 
decisions made with higher confidence (Wells et al., 2015). 
However, other orders are possible. For example, the best-
above model predicts a dissociation between confidence and 
the diagnostic values of filler identifications (Smith & Ayala, 
2021). According to this model, researcher may collapse 
confidence levels of filler identifications and thus consider 
the order of “suspect identifications high to low confidence”, 
“all filler identifications”, and then “rejections low to high 
confidence.”

To create ROC curves and calculate AUCs, users can use 
the roc_plot() function in the fullROC package. Box 5 
shows how to generate an ROC curve and its AUC from the 
response rates saved in simu. As discussed above, users 
could sort response rates either by a pre-assigned order of 
confidence levels or by the order of diagnosticity ratios. We 
created ROC curves for the simulated lineup data with both 
mechanisms (see Box 5). To sort response rates by confi-
dence levels, we first re-ordered the levels of the IDcon-
fidence variable and sorted the data accordingly. We then 

Box 3   R Code for Calculating Response Rates
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used the roc_plot() function to plot the ROC curve and 
calculate the corresponding AUC. To sort response rates 
by diagnosticity ratios, we used the argument byDR=TRUE 
(default to FALSE) in the roc_plot() function, which 
sorts data automatically by diagnosticity ratios before creat-
ing ROC curves. Figure 3 displays the ROC curves gener-
ated by both methods.

In addition to plotting ROC curves, the fullROC package 
also provides a function, auc_ci(), to calculate bootstrap 
inferential confidence intervals for AUCs. Because auc_
ci() only takes response frequencies as inputs, we first 
adjusted the response frequencies for the culprit absent line-
ups and then calculated the bootstrapping confidence inter-
val for the AUC (see Box 6).

The bootstrap method used in auc_ci() differs slightly 
from the traditional sampling with replacement method. As 
mentioned above, researchers need to estimate and adjust 
the innocent-suspect identifications and filler identifications 
when they do not assign a designated innocent suspect in 
culprit-absent lineups. Such adjustments sometimes create 
fractions in the estimated identification frequencies. The 
traditional sampling with replacement method requires to 
sample from integer data (or discrete categories), and thus 
cannot work with fractional data.

The auc_ci()function, instead, draws random sam-
ples from a multinomial distribution with the probability 
parameters calculated from the frequencies, which is equiva-
lent to sampling from the original data with replacement 
(Efron & Tibshirani, 1993). This approach is not influenced 

Box 4   R code for adjusting suspect and filler identification rates in culprit absent lineups
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by whether the frequencies involve fractions, therefore can 
work with the adjusted frequencies. With these random sam-
ples, auc_ci() calculates their AUCs and then generates 
the mean, the percentile confidence interval (CI), and the p 
value for the bootstrap AUCs.

As shown in Box 6, we input the frequency data for both 
culprit present and absent lineups. Note that the order of the 
frequency data determines the order of eyewitness outcomes 
when calculating AUCs, and therefore should be sorted 
beforehand. Using the frequency data, the auc_ci() func-
tion simulates 10,000 bootstrap samples and calculates the 
AUCs. Based on the bootstrap AUCs, auc_ci() generates 

their mean, the 95% bootstrap confidence interval, and the 
p value for the null hypothesis test (H0 : AUC​ = 0 for a single 
AUC or H0 : ΔAUC​ = 0 for the difference between AUCs).

The simulated data present a simple example how to 
analyze eyewitness data and create ROC curves using func-
tions from the fullROC package. Next, we show a second 
example using experimental data that compare eyewitness 
performance across various experimental conditions.

Box 5   R code for creating ROC curves and calculating AUCs

Fig. 3   Investigator ROC curves for simulated data
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Box 6   R code for calculating bootstrap confidence intervals for AUCs

Table 2   Response frequencies in all experimental conditions from Colloff et al. (2016)

Culprit present Culprit absent

IDS IDF REJ IDS IDF REJ

Replication
  0–20 21 45 40 9.5 47.5 40
  30–40 36 52 45 16.5 82.5 68
  50–60 96 127 124 34.5 172.5 158
  70–80 106 93 102 28 140 120
  90–100 88 65 85 16 80 127

Pixelation
  0–20 29 52 30 14.83 74.17 41
  30–40 38 56 53 19.83 99.17 56
  50–60 92 151 130 32.83 164.17 163
  70–80 84 105 106 21.83 109.17 134
  90–100 77 47 95 13 65 116

Block
  0–20 27 62 41 14.83 74.17 59
  30–40 51 61 63 17.5 87.5 62
  50–60 101 137 132 37 185 158
  70–80 71 93 97 22.17 110.83 143
  90–100 73 37 81 9 45 112

Do-nothing
  0–20 17 32 22 18 29 43
  30–40 35 36 36 37 50 50
  50–60 156 70 88 113 69 122
  70–80 155 44 66 74 49 107
  90–100 266 24 63 122 22 112
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Experimental data example

Our second example uses the experimental data from Colloff 
et al. (2016); also see Table 2). In addition to culprit pres-
ence/absence, Colloff et al. (2016) manipulated the similar-
ity of fillers to a suspect who had a distinctive facial feature 
via four conditions. The replication condition replicated the 
suspect’s distinctive feature on fillers; the block condition 
blocked the suspect’s distinctive feature and fillers’ corre-
sponding facial areas; the pixelation condition pixelated the 
suspect’s distinctive feature and fillers’ corresponding facial 
areas; and the do-nothing condition did nothing to fillers but 
included an innocent suspect with the same distinctive feature 
in culprit absent lineups. Table 2 listed response frequencies 
in each confidence bin in all experimental conditions from 
Colloff et al. (2016). The replication, pixelation, and block 
conditions did not have a designated innocent suspect in cul-
prit absent lineups. Thus, the suspect and filler identification 
rates were adjusted using the 1/(lineup size) method for these 
three conditions in Colloff et al. (2016). The do-nothing con-
dition used a designated innocent suspect in culprit absent 
lineups, and the identification rates did not get adjusted.

Before creating the ROC curves and calculating AUCs, 
we re-organized the data so that all responses in culprit pre-
sent lineups were saved in one column (variable cpf in the 
newly generated data frame d2) and all responses in culprit 
absent lineups in another column (variable caf in d2). We 
also re-arranged the order of confidence levels to reflect the 
pre-assigned criterion order (suspect identifications high to 
low confidence, and then filler identifications and rejections 
alternately low to high confidence). To show readers how to 
process raw lineup data into frequency tables, we also con-
verted Colloff et al. (2016) frequency data (unadjusted) into 
raw data in which each row corresponds to a datum from one 
participant. We then started from the raw data to conduct all 
analyses. The R script for processing raw eyewitness data is 
available at osf.io/daq7x.

After re-organizing data, we used the roc_plot() 
function to create ROC curves (see Box 7). The group 
argument in roc_plot() takes information about the 
grouping variable and enables the function to create sepa-
rate ROC curves for different groups. Users can also change 
the ROC curves to grayscale by setting the argument 
grayscale=TRUE (default to FALSE). Figure 4 displays 
the ROC curves for all four filler similarity conditions.

The ROC curves in Fig. 4 indicate that the replication and 
block conditions performed similarly, as their ROC curves 
are overlapping to a large extent. The pixelation condition 
performed slightly worse than the replication and block 
conditions, as the pixelation ROC curve is dominated by 
replication and block ROC curves in the middle range of 
innocent suspect rates.

The do-nothing condition, however, performed differ-
ently from the other three conditions. The do-nothing ROC 
curve intersected with the other three ROC curves. The 
do-nothing ROC curve was dominated by the other three 
ROC curves before the intersection, but dominated the other 
three ROC curves after the intersection. To compare their 
overall performance, we calculated the bootstrap CIs and p 
values for the differences in AUCs among the four similar-
ity conditions. Box 8 displays the R code and outputs. From 
the bootstrap CIs and p values (H0 : AUC​ = 0 for a single 
AUC or H0 : ΔAUC​ = 0 for the difference between AUCs), 
the do-nothing condition had a slightly higher AUC than the 
pixelation condition (95% CI = [0.003, 0.068], p = 0.035, 
and the AUCs did not differ for other comparisons (ps ≥ 
0.150). To account for multiple comparisons, we also used 
the Bonferroni adjustment to adjust the significance level, 
�
∗ =

�

6
= 0.00833 . With the adjusted significance level, none 

of the AUC differences were statistically significant, ps ≥ 
0.035 > 0.00833.

Based on the comparison of ROC curves and AUCs, the 
difference between the do-nothing lineups and the unbiased 
lineups (replication, pixelation, and block) reflects the 
difference in their capacities to “rule in” guilty suspects 
and “rule out” innocent suspects. The do-nothing lineups 
were more liberal than the other three types of lineups. 
Indeed, because the fillers did not match the suspect on 
a critical diagnostic facial feature, the suspect tended to 
stand out from the other lineup members and was picked 
more frequently in the do-nothing lineups compared to the 

Fig. 4   Investigator ROC curves for Colloff et al. (2016) experimental 
data
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Box 7   R code for creating ROC curves for different conditions

Box 8   R code for calculating bootstrap CIs for AUCs and difference in AUCs
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other three types of lineups (in which the fillers matched the 
suspect on the critical diagnostic facial feature). Holding 
discriminability constant, suspect identifications become 
increasingly diagnostic of guilt as procedures become 
increasingly conservative (Macmillan & Creelman, 
2005; Wixted & Mickes, 2014). Because the fair lineup 
procedures were more conservative than the do-nothing 
procedure, suspect identifications were more diagnostic 
of guilt from the fair lineups than from the do-nothing 
(biased) lineup. Conversely, holding discriminability 
constant, filler identifications and rejections become 
increasingly diagnostic of innocence as procedures become 
increasingly liberal. Because the do-nothing (biased) lineup 
is more liberal than the fair lineups, filler identifications and 
rejections from the do-nothing lineup were more diagnostic 
of innocence than were filler identifications and rejections 
from the three fair lineups. Because all lineups had similar 
capacities to discriminate guilty suspects and innocent 
suspects, and the do-nothing lineup was more liberal than 
the three fair lineups, the ROC curves crossed over.

How do investigator practices influence the area 
under the ROC curve?

In addition to comparing investigator classification 
performance across different lineup methods, full 
ROC curves can also be used to compare investigator 
classification performance for the same lineup method 
under different investigative practices. For example, 
investigators may collapse witness confidence and use 
fewer confidence bins (e.g., use low, medium, and high 
confidence for each witness response) when making 
arrest decisions. Similarly, investigator may use all 
witness confidence for suspect identifications but collapse 
confidence for filler identifications and rejections. In 
other words, investigators may take the same action for a 
filler identification (or a rejection) regardless of witness 
confidence. To examine the influence of different practices 
on investigator classification performance, we compared 
the ROC curves and the AUCs for the replication lineups 
under three different practices: investigators use all 
confidence bins, use reduced confidence bins, or use all 
confidence bins for suspect identifications but collapse 
confidence bins for filler identifications and rejections.

From Fig. 5, the ROC curves under the three different 
practices are overlapping to a large extent, indicating inves-
tigator performance would be similar no matter how they 
use witness confidence to make arrest decisions. To statisti-
cally compare the AUCs, we calculated the bootstrap CIs 
and p values for the difference in AUCs among the three 
practices. Box 9 displays the R code and outputs. From the 
bootstrap CIs and p values, the AUCs did not differ signifi-
cantly among the three practices (ps ≥ 0.623).

Functions in fullROC

As shown in the two examples above, the fullROC pack-
age provides useful functions to create full ROC curves and 
statistically compare AUCs for lineup data. Other than the 
functions introduced above, the fullROC package provides 
additional functions to simulate witness responses, calcu-
late AUCs (without generating ROC curves), etc. Table 3 
summarizes the functions provided by fullROC. Readers can 
read the help documents for more detail about these func-
tions and their usage.

Discussion

The purpose of a lineup procedure is to provide evidence for 
investigators to test their hypothesis that the police suspect 
is the culprit. When the investigator presents the lineup to 
a witness, in effect, the investigator is using the witness’ 
recognition memory to shed light on the hypothesis that the 
suspect is the culprit. If the witness identifies the suspect 
from the lineup, the investigator has confirmatory evidence 
towards the hypothesis that the suspect is the culprit (i.e., 
“rule in” guilty suspects). If the witness identifies a known 
innocent-filler or rejects the lineup, the investigator has 
disconfirmatory evidence towards the hypothesis that the 
suspect is the culprit (i.e., “rule out” innocent suspects). In 
other words, suspect identifications have inculpatory value 
and filler identifications and rejections have exculpatory 

Fig. 5   Investigator ROC curves under different practices. AC stands 
for  All Confidence, RC stands for  Reduced Confidence, and  NC 
stands for No Confidence (collapse all confidence for filler identifica-
tions and rejections)
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value. In order to determine which of two lineup procedures 
is superior, one must consider not only the relative capaci-
ties of those procedures to incriminate – as has often been 
done in the eyewitness identification literature – but must 
also consider the relative capacities of those procedures to 
exculpate (as has rarely been done in the eyewitness identi-
fication literature).

Smith et al. (2020) recently introduced a method for cre-
ating ROC curves of lineups that include all three lineup 
outcomes and inform on the total informational value of 
a lineup to facilitate investigators to sort between guilty 
suspects and innocent suspects. Only by considering all 
outcomes of lineups and the total capacity of a lineup to 
sort between culprits and innocent suspects can we make 
informed decisions about which of two lineup procedures 
is superior. In the present work, we introduced a CRAN 
package for implementing the full ROC approach to compar-
ing eyewitness lineups. Among the many functionalities of 
this package are the capacities to both plot and inferentially 
compare full lineup ROC curves.

This is the first and only package for implementing full 
ROC curves of eyewitness lineup procedures. While there 
are several packages available for implementing standard 
ROC analysis in R, including pROC (Robin et al., 2011) 
and ROCR (Sing et al., 2005), none of these packages are 
equipped for plotting and inferentially comparing full ROC 
curves of eyewitness lineup procedures. As shown in the 
above examples, investigator classification tasks and eye-
witness data have several unique features that are not well 
accommodated by the extant ROC packages.

First of all, the extant packages are intended for tradi-
tional binary classification paradigms in which the decision 
variable distributions are continuous (e.g., signal plus noise 
versus noise-only distributions). For investigator classifi-
cation tasks, however, the decision variable distributions 
are discrete rather than continuous because investigators 
use discrete eyewitness responses (suspect identifications, 
filler identifications, and rejections) to make classification 
decisions. The discrete nature of eyewitness responses ena-
bles researchers to compare investigator performance when 

Box 9   R code for comparing AUCs under different investigative practices

Table 3   Functions in fullROC 

Function Usage

auc_boot Bootstrap witness responses from input frequencies and calculate the AUCs.
auc_ci Calculate the means, percentile confidence intervals, and p values for the bootstrap AUCs and their differences.
id_adj Adjust identification rates for culprit absent lineups using the 1/(lineup size) method. All witness responses must have the same 

confidence levels and be sorted by confidence levels.
id_adj_name Adjust identification rates for culprit absent lineups using the 1/(lineup size) method. Match suspect and filler ids by input 

confidence names.
id_adj_pos Adjust identification rates for culprit absent lineups using the 1/(lineup size) method. Match suspect and filler ids by input posi-

tions.
response_simu Simulate witness responses from Gaussian distributions (assuming equal variance) using the BEST decision rule.
roc_auc Calculate the area under an ROC curve.
roc_plot Plot an ROC curve for lineup data and calculate the area under the curve.
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assuming investigators would use and sort eyewitness evi-
dence from the same procedure differently. As shown in our 
analysis, the fullROC package allows researchers to freely 
order or collapse investigator operating points on ROC 
curves and thus to easily compare investigator performance 
under different assumptions.

In addition, a unique problem in lineup identification 
research is that suspect identifications are often estimated by 
dividing the total false-positive rate from the culprit-absent 
lineup by the total number of lineup members (usually six). 
The result is that the estimated number of innocent-suspect 
identifications and filler identifications from the culprit-
absent lineup are not round numbers. For example, if a 
culprit-absent lineup resulted in 34 false-positive identifi-
cations, the estimated innocent-suspect identification rate 
would be 5.67 (34 false positives / 6 lineup members), and 
the estimated culprit-absent filler-identification rate would 
be 28.33 (34 total false positives – 5.67 estimated innocent-
suspect identifications). This is particularly problematic for 
inferential comparison of lineup ROC curves. The bootstrap 
methods available in extant ROC packages are designed to 
sample whole-number frequencies but cannot deal with frac-
tions. Hence, in order to use existing packages to inferen-
tially compare lineup ROC curves, one would be forced to 
round their innocent-suspect and filler identification rates 
to whole numbers. In fact, the rounding could be even more 
complicated, because the rounding must be done at every 
single level of an eyewitness’ expressed level of confidence. 
This is both less than optimal and not feasible without 
extremely large numbers of observations. By comparison, 
fullROC introduces a method for bootstrapping samples 
using fractional frequency data generated from adjustments. 
This is one prime example of how fullROC is uniquely situ-
ated for the analysis of eyewitness lineup data.

For decades, those researching eyewitness lineup proce-
dures have made inferences about which of two procedures 
is superior based only on their relative capacities to incrimi-
nate (cf. Wells et al., 2015; Wells & Lindsay, 1980; Wells 
& Turtle, 1986). But the diagnostic value of a lineup is not 
limited to its capacity to incriminate. Lineups also have the 
capacity to exculpate. Exculpating the innocent is every bit 
as important as inculpating the guilty. The goal of a lineup 
is to determine if the suspect is guilty or innocent. When a 
witness picks out a filler or rejects a lineup, such a behavior 
is informative because it suggests that the suspect might be 
innocent. All behaviors that inform on the likely guilt or 
innocence of the culprit must be factored into any inference 
about which of two lineup procedures is superior. Indeed, the 
procedure that is inferior at inculpating is sometimes supe-
rior at exculpating and vice versa (e.g., Smith et al., 2020). If 
we want to determine which of two procedures better helps 
investigators sort between the presence and absence of the 

culprit in a lineup, our analyses and inferences must take all 
lineup outcomes into account.

The full ROC approach to analyzing eyewitness lineup 
data creates a new standard for those researching lineup pro-
cedures and making applied inferences. As both inculpatory 
and exculpatory behaviors inform on whether a suspect is 
guilty or innocent, applied inferences about which of two 
procedures is superior must be informed by both sets of 
behaviors. fullROC provides researchers with a desperately 
needed tool for analyzing eyewitness lineup data.
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