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Abstract: Global-scale surveys of plankton communities using ‘omics’ techniques have 

revolutionized our understanding of the ocean. Lipidomics has demonstrated potential to add 

further essential insights on ocean ecosystem function but has yet to be applied on a global scale. 20 

We analyzed 930 lipid samples across the global ocean using a uniform high-resolution accurate-

mass mass spectrometry analytical workflow, revealing heretofore unknown characteristics of 

ocean planktonic lipidomes. Focusing on ten molecularly diverse glycerolipid classes we 

identified 1,151 distinct lipid species, finding that fatty acid unsaturation (i.e., number of carbon-

carbon double bonds) is fundamentally constrained by temperature. We predict significant 25 

declines in the essential fatty acid eicosapentaenoic acid over the next century, which are likely 

to have serious deleterious effects on economically critical fisheries. 

One-Sentence Summary: The first global ocean lipidome survey predicts a temperature linked 

decrease in the production of essential fatty acids. 
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Main Text: Lipids are a class of biomolecules produced and used by organisms from all 

Domains of life for energy storage, membrane structure, and signaling. Lipids make up 10 – 20 

% of the particulate organic carbon in the surface ocean where lipid production and inventories 

are greatest (1–3). For decades, oceanographers have used lipids as biomarkers of chemical and 

biological ocean processes (4). Despite robust research into their biogeochemistry, the 5 

combination of high-resolution mass spectrometry and downstream analytical tools has only 

recently allowed for comprehensive untargeted assessments of ocean lipids, on scales akin to 

surveys of other molecules such as nucleic acids and proteins (5–8). These new tools allow for 

the examination of hundreds to thousands of lipid species in a sample (the entirety of which is 

referred to as the ‘lipidome’) and presents the opportunity to holistically examine global factors 10 

affecting ocean lipid composition. Critically, marine plankton lipidomes are likely to change as a 

function of water temperature, dissolved nutrient concentration, salinity, community 

composition, and other properties of the surface ocean. Lipid membranes are a core part of 

cellular adaptions to environmental perturbations making lipidomics an important tool for 

understanding how planktonic communities in the surface ocean will shift due to climate change. 15 

(9). 

We present here a global-scale mass spectral dataset of planktonic lipidomes from 146 

locations (Fig. 1A) with concurrent environmental metadata aggregated from seven 

oceanographic research cruises using standardized collection, preservation, and extraction 

methods.  We used high performance liquid chromatography coupled with electrospray 20 

ionization high-resolution accurate-mass mass spectrometry (HPLC-ESI-HRAM-MS) to 

generate spectra from 930 lipid extracts from samples of planktonic particles retained on 0.22 μm 

pore-size membranes. Using the R coding language packages XCMS, CAMERA, and 

LOBSTAHS we searched this spectral dataset for the 10 dominant glycerolipid molecular classes 
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found in surface ocean particulate organic carbon (3,5, 10); our methods are not optimized for 

archaeal ether lipids and, thus, they are not included in our study. We retained 1,151 high-

confidence intact glycerolipid annotations based on a combination of accurate mass, MS/MS 

spectra, adduct hierarchy, retention time, and positive/negative mode ionization characteristics 

(11). Lipids from each class were quantified using external curves of a representative lipid 5 

species. This approach has been validated by our lab for possible matrix effects via isotopically 

labeled internal standards (3). 

 We defined a lipid species’s relative abundance as the mass percent of the total lipidome. 

Within the dataset, annotated glycerolipids displayed a unimodal distribution of abundances in 

log space with a small number of species making up the majority of the annotated lipid mass 10 

(Fig. 1B). We defined a lipid species’s prevalence in the dataset as the percentage of samples in 

which the species was observed. Aside from an abundant subset of species present in >90% of 

the samples, prevalence across the dataset was fairly evenly distributed with a similar numbers of 

lipid species across lower percentages (Fig. 1C). Both these metrics were positively correlated, 

with higher-abundance lipids being more prevalent (Fig. 1D). Due to this relationship, the most 15 

abundant 247 of the 1,151 lipid species represented 90% of the total lipid mass. Of these highly 

abundant species, the majority are present in over 97% of samples. These metrics show that 

while molecular diversity in the ocean is relatively high, a comparably small number of highly 

common lipid species make up an outsized proportion of the mass. In total, this dataset 

represents over 600,000 identified peaks, but numerous other mass spectral features remained to 20 

be conclusively annotated. The raw spectral files are publicly available to serve as a resource for 

continued global ocean investigations in the vein of other large “-omics” based field studies. 

 Planktonic community lipidomes are affected by numerous environmental factors, e.g., 

nutrient availability (12), but here we report on the relationship between lipids and arguably the 
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most fundamental control on their composition: temperature (13). In a process called 

homeoviscous adaptation, organisms adapt to temperature-induced changes in membrane fluidity 

via shifts in the unsaturation level (i.e., number of double bonds) of their fatty acid moieties (13, 

14). Our approach allowed us to examine the unsaturation state of individual glycerolipid classes 

in natural marine microbial communities across the oceans and differentiate class-internal 5 

temperature-induced shifts in unsaturation from shifts between different classes of distinct 

unsaturation (15). Throughout the ocean, the surface mixed layer typically has the highest lipid 

concentrations and the steepest latitudinal temperature gradients (1). Therefore, of the total 930 

samples spanning 0-600 meters depth, we analyzed the 243 samples collected from the surface 

mixed layer (generally <40 m; Supplementary Materials). 10 

In Figure 2, we present the saturation state in the mixed layer for four representative 

glycerolipid classes: 1) sulfoquinovosyl diacylglycerols (SQDG, Fig. 2A), glycolipids found 

almost exclusively in eukaryotic photosynthetic membranes and cyanobacteria (10); 2) 

triacylglycerols (TAG, Fig. 2B), energy storage lipids from eukaryotic plankton, particularly 

those under nutrient stress, and the most abundant glycerolipid we identified (3) ;3) 15 

diacylglyceryl trimethylhomoserines and diacylglyceryl hydroxymethyltrimethyl-β-alanines 

(DGTS/DGTA, Fig. 2C) betaine lipids important for adaption to nutrient stress with broad 

distribution among marine plankton (16); and 4) phosphatidylethanolamines (PE, Fig. 2D) one of 

the major phospholipids found in membranes of heterotrophic bacteria (10). Among these 

glycerolipid classes, we found temperature to be highly influential in structuring the relative 20 

abundance of fatty acid species; there is a clear transition from species with more unsaturated 

fatty acids at colder temperatures to fully saturated species (i.e., with only single bonds) at the 

warmest temperatures (Fig. 2A-D). These trends are also evident in all the other glycerolipid 

classes (Fig. S1) as well as the total aggregated lipidome of all glycerolipid classes(Fig. S2). 
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From this compositional information, we calculated a weighted average unsaturation state 

for each glycerolipid class. For all the glycerolipid classes, this weighted mean unsaturation 

derived from the composition was highly linearly correlated to water temperature (Fig. 2E-H, 

Table S1). All classes showed shifts along this gradient, a finding that is notable given both the 

unique inherent unsaturation states, taxonomic sources, and biochemical roles of each lipid class 5 

(e.g., SQDG in thylakoid membranes, DGTS/A and PE in cellular membranes, and TAGs in 

lipid bodies). There is considerable scatter in the data at low temperatures collected off the 

Antarctic coast, which might be due to mixing between truly planktonic organisms and plankton 

released from melting sea ice. Using a linear fit to the weighted mean unsaturation of all lipid 

classes combined we found the number of unsaturations nearly triples across the temperature 10 

range sampled (1.2 unsaturations per fatty acid at 29℃, versus 3.3 at -2℃; Fig. S2, Table S1). 

Given the tight correlation of unsaturation to temperature within individual lipid classes 

across highly diverse geographic areas we suggest that this trend stems from a universal 

biophysical necessity to control cell membrane fluidity through homeoviscous adaptation. While 

our data are not sufficient to absolutely implicate this mechanism, the consistency of temperature 15 

as a predictor necessitates a fundamental biophysical explanation. Even when accounting for 

other environmental parameters (depth, salinity, nutrients, light, and time of year) in a linear 

multiple regressional analysis, temperature is the most powerful explanatory variable for 

membrane lipid unsaturation (Fig. S3; Supplementary Materials). The genetic ability for 

homeoviscous adaption appears widely distributed; in culture a wide range of marine 20 

phytoplankton taxa have been shown to change their membrane unsaturation with changing 

temperature (17,18, 19). Our study transects numerous ocean biomes and cannot resolve the 

question of whether temperature itself or links between temperature and planktonic community 

composition drive the trends we observe (20), but future ‘omics’ studies could shed light on this; 
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e.g., a metatranscriptomic survey of fatty acid desaturases. Indeed, it is striking that the 

relationship between temperature and unsaturation emerges from our dataset despite spanning 

such diverse and disparate planktonic communities, from the nutrient-depleted subtropical gyres 

to the highly-productive Antarctic coastal shelf.     

Within the compositional changes seen in this dataset, we were interested in how the 5 

abundance of two specific unsaturated fatty acids – eicosapentaenoic acid (EPA 20:5n-3) and 

docosahexaenoic acid (DHA 22:6n-3) – shifted along the temperature gradient. These fatty acids 

are essential for nutrition in zooplankton and other higher trophic level organisms and must be 

obtained largely from their diet (21). Thus, phytoplankton are the primary source of these lipids 

in marine food webs (22). They are often referred to as long-chain essential fatty acids (LCEFA; 10 

along with alpha-linoleic acid 18:3n-3). Using diagnostic MS/MS spectra we were able to 

determine whether a mass feature contained a LCEFA based on characteristic fatty acid 

fragments in the intact polar glycerolipids, and we singled these out for further exploration (11). 

These fragments were difficult to deconvolute in TAGs, limiting definitive LCEFA detection, 

although species containing >5 double bonds are readily identifiable (Fig. S4). We found that the 15 

percent abundance of all polar glycerolipids (i.e., excluding TAGs) containing a LCEFA in the 

mixed layer varied between 3-36% and 6-28% for EPA and DHA, respectively (Fig. 3A, Fig. 

S5). Interestingly, while the percent abundance of EPA species showed a strong relationship to 

temperature, the correlations for lipids with DHA was weaker. In addition to affecting membrane 

fluidity, DHA has also been shown to affect permeability and membrane fusion more than other 20 

unsaturated species (23). Thus, our results may indicate that planktonic organisms use EPA for 

regulating membrane phase transition temperature and DHA for other functions. 

Based on the strong relationship between planktonic EPA abundance and temperature, we 

sought to examine current geospatial patterns of this LCEFA. We fit a quadratic curve (R2 = 
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0.91, p < 0.01, n = 239, Table S2) to %EPA versus temperature in mixed layer samples (Fig. 

3A), and then used sea surface temperature data from the model inter-comparison project 

“CMIP6” to predict EPA abundance in the mixed layer (Fig. 3 B-D, modeled sea-surface 

temperature (SST) data from Kwiatkowski et al. 2020, 24). These temperature values come from 

13 combined earth system models for historical and future temperature scenarios. Using model-5 

mean annual average SST temperatures, we project that high latitude waters contain 

proportionally much more EPA than low latitude areas (Fig. 3B). Based solely on temperature 

we found the mean %EPA between 50°-60° latitude (19.4 ± 3.41% for 50°-60°N, 22.9 ± 

2.61%for 50°-60°S) to be four times the amount between 10°-0°latitude (5.8 ± 0.32% for 10°-

0°N,6.0 ± 0.46% for 10°-0°S). The seasonal range in these %EPA estimates could be even 10 

greater. To see how the upper and lower limits for this composition are likely to shift under 

future warming conditions, we generated %EPA maps using end-of-century SST conditions from 

SSP1-2.6 and SSP5-8.5 scenarios in the same multi-model (Fig. 3C-D, Fig. S6). SSP1-2.6 

represents a high-mitigation scenario with low CO2 emission, while SSP5-8.5 represents a higher 

CO2 emission scenario. Under the SSP5-8.5 scenario, which, admittedly, is a worst-case scenario 15 

(25), the change in mean absolute %EPA (Δ%EPAabs = %EPAfuture - %EPApresent) was about -2% 

globally, but with some areas, particularly at higher latitudes, seeing a more drastic decrease of 

up to -7% Δ%EPAabs (Fig. 3C). Interestingly, the largest relative changes (Δ%EPArel = 

(Δ%EPAabs/%EPApresent) x 100) are more geographically heterogeneous.  For example, locations 

such as the Sea of Japan, Norway Sea, and Grand Banks lose up to a quarter of current EPA 20 

amounts (Fig. 3D). In addition, broad expanses of the western North Atlantic and western North 

Pacific also showed high relative decreases. 

These observations of EPA's correlation to water temperature and future projections of its 

decline in abundance suggest global threats to this LCEFA's availability to higher-trophic levels 
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by the end of the century. Previous research in zooplankton (e.g., copepods) has shown that some 

species experience large swings in their LCEFA content when fed different diets that vary in 

prey fatty acid composition (26). Furthermore, the abundance of other precursor unsaturated fatty 

acids may further exacerbate stress from dietary LCEFA deficiency. Specifically, LCEFA-

starved invertebrates may express desaturases and elongases act to synthesize LCEFAs from 5 

18:3n-3, 18:3n-6 and 18:4n-3 fatty acids; this process is very inefficient compared to dietary 

EPA acquisition, and future decreases in the availability of these precursor fatty acids would 

place an additional  biochemical tax on EPA production (27). In many fish species, diets that are 

poor in EPA lead to deleterious changes in immune function and therefore fitness (28). Thus, it is 

possible that declines in primary producer EPA levels could affect both nutritional value of fish 10 

(e.g., for human consumption) and their overall population stability. Specifically, fisheries in the 

aforementioned Sea of Japan, Norwegian Sea, and Grand Banks, as well as coastal fisheries 

around Alaska, eastern Russia, and the Peruvian upwelling system, all face high projected losses 

in relative EPA levels, adding another layer of stress to already projected shifts in fishery 

baselines (29). Additionally, the influences of projected warming and retreating ice cover on 15 

LCEFA shifts in the Arctic Ocean are unknown, but likely to be even more significant. 

Better understanding of environmental factors and mechanisms affecting the planktonic 

community lipidomes is critical to projecting future changes in ocean ecosystem services. 

Previous studies have shown that rising temperatures are likely to cause poleward shifts in 

planktonic thermal niches (30). The expansion of gyres and permanent changes to phytoplankton 20 

communities may alter the fatty acid composition of a site year-round. However, with fatty acid 

unsaturation tied to rapid adaptation mechanisms, it is possible that marine heat waves could 

immediately affect phytoplankton lipids on much shorter timescales. This raises the possibility of 

transient events of decreased unsaturated lipid production with unknown effects on the life 
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histories of economically significant taxa or their prey. Given that the frequency and intensity of 

short-lived marine heat waves is projected to increase, more research is needed into how this 

may affect fatty acid unsaturation on daily to seasonal timescales (31). 
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Figure 1. Compositional structure of glycerolipid species in the global ocean lipidome. (A) 

A map of dataset sampling locations with sites colored by deployment. (B) Histogram of lipid 

species relative abundance in dataset. Relative abundance for each lipid species is the percent of 

mass from all annotated lipids it makes up. (C) Histogram of lipid species prevalence in dataset. 5 

Prevalence is defined as the percent of samples a lipid species is found in. (D) The relationship 

between prevalence and relative abundance for each lipid species. 
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Figure 2. Mixed layer temperature is highly correlated with suspended fatty acid 

unsaturation. Four representative lipid classes are shown: a glycolipid (SQDG, A, E), an energy 

storage lipid (TAG, B, F ), betaine lipids (DGTS/DGTA, C, G ), and a phospholipid (PE, D, H). 

Identical figures for the other glycerolipids are provided in Supplementary Materials (Fig S1, 5 

S2). (A-D) Stacked bar plots show the relative abundance within each class of lipid species in 

mixed layer samples. Water temperature for each sample is shown with a black line plotted over 

the stacked bar plot (right axis). Samples are sorted from coldest to warmest along the x-axis. 

Lipid species are sorted from least (red) to most (blue) unsaturated along the y-axis and are 

colored to indicate the average number of unsaturations per fatty acid moiety on the  10 

glycerolipid. (E-H) Weighted mean number of unsaturations for each lipid class versus 

temperature among mixed layer samples. Red line shows linear fits; inset shows coefficient of 

determination for linear regression with ordinary least squares and p value from F-test (n = 242). 

Grey range shows 95% confidence interval of fit based on standard error.  

  15 
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Figure 3. Current and future projections of EPA abundance based on water temperature 

shows loss under high-emission (SSP5-8.5) scenario. (A) Percent abundance of all polar 

glycerolipids containing EPA species (% EPA) in mixed layer samples verse temperature. 

Samples colored by deployment. Black line shows quadratic fit, grey area shows 99% confidence 5 

interval using standard error.(B) Current %EPA in mixed layer predicted using CMIP6 multi-

model mean historical SST (1995-2014). (C) Change in absolute %EPA (Δ%EPAabs) at end of 

century from today using SST under SSP5-8.5 scenario in the same models (2080-2099). (D) 

Projected relative loss of EPA (Δ%EPArel). Statistics for polynomial regression fit with ordinary 

least squares are shown in plot (n = 242, p values from F-test) 10 



60°S

40°S

20°S

 0°

20°N

40°N

60°N

160°W 140°W 120°W 100°W  80°W  60°W  40°W  20°W
Longitude

La
tit

ud
e

AE1319

AE1409

KM1709

KN207−1

KN210−4

LMG1810

RR1813A.

0

10

20

30

10−6 10−4 10−2 100

Relative abundance (%)

# 
Sp

ec
ie

s

B.

0

20

40

0 25 50 75 100
Prevalence (%)

# 
Sp

ec
ie

s

C.

0

25

50

75

100

10−6 10−4 10−2 100

Relative abundance (%)
Pr

ev
al

en
ce

 (%
)

D.



0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0

Unsaturation
per FA

0.00

0.25

0.50

0.75

1.00

0

10

20

30A.

0.00

0.25

0.50

0.75

1.00

0

10

20

30B.

0.00

0.25

0.50

0.75

1.00

0

10

20

30

C.

0.00

0.25

0.50

0.75

1.00

0

10

20

30

D.
  Mixed Layer Samples

R
el

at
iv

e 
Ab

un
da

nc
e 

(%
)

R2 = 0.92
p < 0.001

SQDG

1

2

3

0 10 20 30

E.

R2 = 0.80
p < 0.001

TAG

1

2

3

0 10 20 30

F.

R2 = 0.84
p < 0.001

DGTS/A

1

2

3

4

0 10 20 30
G.

R2 = 0.85
p < 0.001

PE

1

2

3

0 10 20 30
H.

      Temperature (°C)

Tem
perature (°C

)

M
ea

n 
U

ns
at

ur
at

io
n 

pe
r F

A



10

20

30

0 10 20 30

Water temperature (°C)

%
EP

A 
co

nt
ai

ni
ng

 s
pe

ci
es

   
   

   
   

 

AE1319
AE1409

KM1709
KN207−1

KN210−4
LMG1810

A.

−50

0

50

90 180 −90

10 15 20 25 30
% EPA

B.

−50

0

50

90 180 −90

−6 −5 −4 −3 −2 −1 0 1
∆%EPA abs

C.

−50

0

50

90 180 −90

−5−10−15−20−25rel

D.

RR1813

∆%EPA

R 2 = 0.91
p < 0.001



 
 

1 
 

 
 

 
Supplementary Materials for 

 
Global ocean lipidomes show a universal relationship between temperature and 

lipid unsaturation. 
 

Henry C. Holm, Helen F. Fredricks, Shavonna M. Bent, Daniel P. Lowenstein, Justin E. 
Ossolinski, Kevin W. Becker, Winifred M. Johnson, Kharis Schrage, Benjamin A. S. Van Mooy 

 
Correspondence to: bvanmooy@whoi.edu 

 
 
This PDF file includes: 
 

Materials and Methods 
Figs. S1 to S11 
Tables S1 to S3, S5 
Captions for Table S4, S6 

 
Other Supplementary Materials for this manuscript include the following:  
 

Table S4 
Table S6



 
 

1 
 

Materials and Methods 1 
 2 
1.1 Sample collection 3 

We collected the lipid fraction from suspended particulate organic matter on seven research 4 
cruises: KN207-1 on the R/V Knorr (April-May 2012), AE1319 on the R/V Atlantic Explorer 5 
(July-August 2013), KN210-04 on the R/V Knorr (March-April 2013), AE1409 on the R/V 6 
Atlantic Explorer (May 2014), KM1709 on the Kilo Moana (June-July 2017), RR1813 on the R/V 7 
Roger Revelle (August-September 2018), and LMG1810 on the R/V L.M. Gould (November 8 
2018). For seawater sampling we used standard Niskin type bottles transferred to polycarbonate 9 
bottles before filtering. No permits are required for field collection of open ocean seawater. 10 
Seawater samples of 1-2 L were filtered at ~10 bar onto 0.22 µm hydrophilic Duropore filters 11 
(MilliporeSigma) immediately after water collection. Filters were folded, wrapped in aluminum 12 
foil, then flash frozen in liquid nitrogen (-196 °C) until extraction. We used processed CTD data 13 
to both measure water samples in-situ temperature at time of collection and assess mix layer depth 14 
with density. For each cast, the mixed layer depth was calculated as the first depth where the 15 
change in density from 5 meters exceeded 0.1 kg/m3. This definition is within the range of widely 16 
used mixed layer depth definitions (32). 17 

From the available compiled CTD metadata we additionally complied concurrent 18 
measurements of chlorophyll-a fluorescence (mg m-3), photosynthetically available radiation 19 
(PAR; μE m-2 s-1), and dissolved nitrogen and phosphate (NO3+NO2, PO4). Not all measurements 20 
were available for every cruise and lipid sample. Chlorophyll-a fluorescence was measured with 21 
an in-situ fluorometer on all deployments accept RR1813 where discrete sampling was performed 22 
on a ship-based Turner brand fluorometer. Due to the aggregate nature of the dataset, variable yet 23 
intercomparable methods were used for determination of dissolved nutrients. Full methods for 24 
each deployment can be found at their online repository (46-52).  25 
 26 
1.2 Lipid Extraction 27 

We performed lipid extraction using a modified Bligh and Dyer method detailed in 28 
Popendorf et al. 2013 (33). First, frozen filters were combined with 0.8 mL of phosphate buffered 29 
saline (PBS, 137 mM sodium chloride, 2.7 mM potassium chloride, 11.9 mM phosphate, pH = 7.4; 30 
Fisher Scientific), 2 mL of methanol, and 1 mL of dichloromethane (DCM) in glass centrifuge 31 
vials. An internal standard 2,4-dinitrophenyl- phosphatidylethanolamine (DNP-PE, Avanti Polar 32 
Lipids, Inc.) in methanol was added to track recovery and retention time movement (20 µL, 33 
concentration 65.6 µM). In addition, each extract received 10 μL of 1.5 mM butylated hydroxy 34 
toluene to each sample to resist sample oxidation. Following this step, samples are placed in a 35 
Fisher Scientific FS110 sonicator bath for 10 minutes. A final 1 mL of DCM and 1 mL of PBS is 36 
added to each sample causing phase separation. To aid this process, samples are centrifuged at 515 37 
×g for 5 minutes in an Eppendorf 5702 centrifuge. After this separation step, we retained the 38 
organic phase on the bottom of the vial in 2 mL HPLC vials. We stored these total lipid extracts 39 
under argon gas and frozen (-20 °C) to limit the possibility of oxidation before analysis. For each 40 
analysis we used 100 μL of this total extract, evaporated the DCM solvent with nitrogen gas, and 41 
resuspended the sample in 100 μL 70:30 acetonitrile:isopropanol by volume. Samples were again 42 
stored under argon gas before HPLC-ESI-HRAM-MS analysis.  43 
 44 
1.3 HPLC-ESI-MS Lipid Analysis 45 
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High performance liquid chromatography (HPLC) analysis was carried out using reverse 46 
phase chromatography on an Agilent 1200 HPLC (Agilent Technologies). The HPLC settings are 47 
identical to the one described in Collins et al. 2016 (5). The HPLC system consisted of an 48 
autosampler, binary pump, column compartment, and diode array detector. This was fed into a 49 
Thermo Q-Exactive Orbitrap high resolution mass spectrometer (ThermoFisher Scientific) for 50 
high resolution/ accurate mass electrospray ionization mass spectral analysis (HRAM-ESI-MS). 51 
Batches of samples were briefly stored at 4 ℃ in the autosampler before analysis. The liquid 52 
chromatography was as follows: The aqueous Eluent ‘A’ consisted of MilliQ water with 1% 1 M 53 
ammonium acetate and 0.1% acetic acid. The organic Eluent ‘B’ consisted of 70% acetonitrile, 54 
30% isopropanol with 1% 1 M ammonium acetate and 0.1% acetic acid. A 20 μL aliquot of the 55 
sample was injected at the start of the 40 minute program. For each run the system is kept at a flow 56 
rate of 0.4 mL per minute first with a gradient of 45% to 35% eluent ‘A’ between minutes 1-4, 25% 57 
to 11% eluent ‘A’ between minutes 4-12, 11% to 1% between minutes 12-15, then holding 1% 58 
eluent ‘A’ from 15-25 minutes. Lastly, eluent ‘A’ is returned to 45% for minutes 30-40 to clear 59 
the column (Table S3). The ESI source was set to 4.5 kV positive / 3.0 kV negative with a capillary 60 
temperature of 200℃ and ESI probe temperature of 350 ℃. Twenty-five samples were found to 61 
be compromised due to an ESI source needle blockage and their spectra were removed from further 62 
analysis as lipid responses were not adequate for compositional determination.  63 

The Q-Exactive method was programmed to acquire data as follows: Positive-ion full-scan 64 
(200-1500 m/z) followed by data-dependent MS/MS (MS2) scans of the top 3 most abundant ions. 65 
Then, negative-ion full-scan (200-1500 m/z) followed by data-dependent MS2 scans of the top 3 66 
most abundant ions. Dynamic exclusion settings were such that an ion was excluded from further 67 
MS2 analysis for 10 seconds, giving a broader depth of MS2 data whilst also giving MS2 spectra at 68 
the start, apex and end of a chromatographic peak. Masses for MS2 were isolated with a 4 m/z 69 
window and fragmented with a stepped (normalized) collision energy of 30, 50 and 80. Common 70 
background ions were added to an exclusion list. Real time mass calibration was enabled with lock 71 
masses of 536.16591 (C14H46NO7Si7

+, cyclodimethylpolysiloxane, [M+NH4
+]) and 297.27990 72 

(C19H37O2
-, n-nonadecanoic acid [M-H-]) were maintained at a low but consistent abundance in 73 

the source by placing a silicone autosampler vial septum and a glass vial of nonadecanoic acid in 74 
the source during analysis.  75 

 76 
1.4 Lipid Identification 77 

We used the R package and pipeline LOBSTAHS to assist in the detection of lipids from 78 
a total ion chromatogram (5). Using multiple criteria, this pipeline allows for high-throughput 79 
screening of the entire sample dataset for thousands of unique lipid species. Samples were run 80 
through this lipid detection pipeline in four batches (Group 1: KN207-1, AE1319, KN210-04, 81 
AE1409, Group 2: KM1709, Group 3: RR1813, Group 4: LMG1810) with identical parameters 82 
based on when they were analyzed via HPLC-ESI-MS. Validated annotations from each of the 83 
four batches were joined after analysis. First, mass features were detected, grouped, and retention 84 
time aligned across samples using the popular R package XCMS. Relevant parameters and settings 85 
used for peak detection, grouping, and retention time alignment can be found in Table S4. The 86 
‘centWave’ algorithm was used for peak detection across samples. Mass features were grouped 87 
with the ‘density’ method and peaks found in less than 2% of samples were not considered for 88 
analysis. Mass features were aligned using the ‘loess’ method using features found in greater than 89 
90% of samples. For each of these features, when a peak was not initially detected in a sample by 90 
the centWave algorithm, the retention time region in the sample was integrated from the raw data. 91 
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This allows the integration of peaks present in a sample but not detected by the peak detection 92 
algorithm.  93 

From here, the package CAMERA was used to group features into compound 94 
“pseudospectra”. Pseudospectra are a group of all mass features, adducts and isotopes, which are 95 
likely to originate from the same compound (34). This allows for isotope peaks and adducts 96 
deriving from the same compound to be annotated as such. Settings for CAMERA analysis can 97 
also be found in Table S4. Finally, we used LOBSTAHS to screen pseudospectra against a 98 
database of lipid species using adduct hierarchy and accurate mass. A 2.5 ppm mass difference 99 
from the assignment was used as a hard threshold to retain any assignment in raw output. Only 100 
unoxidized annotations for the ten glycolipid classes found in Table S1 were considered for further 101 
analysis.  102 

Final annotations were manually confirmed and subset from raw LOBSTAHS output using 103 
accurate mass, MS2 spectra, adduct hierarchy, positive-negative ionization, and retention time 104 
patterning. For 301 of these annotations representing 67% of the total quantified mass, a MS2 scan 105 
with diagnostic fragments confirming the annotation was seen giving the annotation high 106 
confidence. See Fig. S7 for lipid class specific diagnostic spectra. Additionally, 300 annotations 107 
representing 52% of the mass were designated “C2a'' by LOBSTAHS adduct hierarchy screening 108 
in at least one of the four batches. This highest designation means that the pseudospectrum for the 109 
compound contained all possible adducts in the database and contained them in the theoretical 110 
order of abundance. We compared the ionization of the major adduct in positive and negative mode 111 
for each annotation to verify similar peak shapes. Since triglycerides did not ionize in negative 112 
mode this metric was not used to assist triglyceride identification. However, for 432 membrane 113 
lipid annotations representing 95% of the membrane lipid mass, the theoretically highest abundant 114 
adduct of the compound was matched between the two modes in a representative sample. All 1051 115 
annotated features have an accurate mass less than or equal to 2.5 ppm of their theoretical m/z and 116 
fit within the expected fatty acid unsaturations/carbon retention time series of higher confidence 117 
annotations. 118 

Annotated features were identified as a LCEFA (EPA and/or DHA) containing feature 119 
based on diagnostic MS2 spectra. Since some mass features presented a mix of fatty acid fragments, 120 
any mass feature with a positive or negative MS2 scan that contained a LCEFA fragment in at least 121 
one representative sample was designated an EPA or DHA containing feature. A diagnostic MS2 122 
was not available for every lipid species. On average, 6.2 ± 3.4 % of possible EPA containing 123 
annotations and 5.3 ± 3.0 % of possible DHA annotations by mass had no diagnostic MS2 scan 124 
(Fig. S8). Intact TAG species presented a particular obstacle for fatty acid moiety detection; fully 125 
saturated and monounsaturated TAG species yielded good diagnostic fragments while more 126 
unsaturated (and especially polyunsaturated species) yielded no diagnostic fatty acid fragments 127 
(Fig. S7 M-N). This likely resulted from polyunsaturated species being more sensitive to 128 
fragmentation at the same collision energies. However, the lack of diagnostic fragments in this 129 
case limited our determination of which TAG species with >5 and 6 total unsaturations contained 130 
a LCEFA moiety. Thus, TAG species were excluded from the LCEFA analysis and our %EPA 131 
and %DHA values reflect only the mass percent of LCEFA species from the intact membrane lipid 132 
pool. 133 
 134 
1.5 Quantification and Correction 135 

Lipid peak areas were quantified to picograms on-column using representative linear 136 
standard curves run with identical LC-MS conditions on the same system. Table S5 details the 137 
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standards used to quantify each class. Quantification of feature peaks areas is necessary to correct 138 
for large differences in ionization response between lipid classes. Using curves based on a single 139 
representative lipid species for each class, we assumed that all lipid species from that class had the 140 
same response factor. This has been validated by previous work in our lab that shows saturated 141 
and unsaturated species vary less than 20% (33). While a relatively small change in ionization 142 
response has been observed between saturated and fully saturated membrane lipids of the same 143 
class, triglycerides have been shown to have a variable response based on their saturation and size 144 
(, 35). Due to this, TAG species were corrected with individual response factors based on their 145 
equivalent carbon number (ECN, Fig. S9). ECN is defined as the number of carbons (C) in the 146 
fatty acid chains minus two times the number of unsaturations (U) giving the equation: 147 
 148 

𝐸𝐸𝐸𝐸𝐸𝐸 = 𝐶𝐶 − 2 ∗ 𝑈𝑈 149 
 150 

Two fourth-order polynomial functions were fit to this plot in order to predict the response 151 
factor of any TAG from its ECN. Fit 1 uses TAG standards with ECN of 24-42 and Fit 2 uses TAG 152 
standards with ECN of 42-57. TAGs with ECN < 42 were corrected with Fit 1, and those with 153 
ECN ≥ 42 with Fit 2. Final totals in each sample were subtracted with field blanks from each cruise 154 
with the following exceptions where field blanks were not available: samples from KN207-1 were 155 
blank corrected with field blanks from KN210-4 and samples from KM1709 used solvent 156 
extraction blanks processed with these samples in the lab. In subsequent analysis, the relative 157 
abundance of each lipid compound was used; that is the quantified picograms of a lipid species 158 
divided by the total mass of lipids in the sample. 159 
 160 
1.6 Weighted Mean Calculations 161 

A weighted arithmetic mean using the percent abundance of each lipid species was used to 162 
calculate the mean unsaturation per fatty acid on a lipid species within a sample (Fig. 2 F-I). When 163 
calculating the weighted mean unsaturation of a lipid class, percent abundance was calculated only 164 
using the lipids from that class. We calculated the weighted mean for each sample as: 165 
 166 

𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑢𝑢0𝑤𝑤0 + 𝑢𝑢1𝑤𝑤1 + 𝑢𝑢2𝑤𝑤2 …𝑢𝑢𝑛𝑛𝑤𝑤𝑛𝑛 167 
 168 
where WMU is the weighted mean unsaturation per fatty acid, "un" is the amount of unsaturations 169 
on a given lipid species per fatty acid, and weight "wn" is the percent abundance of all lipid species 170 
with "un" amount of unsaturations. Since "wn" are percent abundances, all the weights in the 171 
calculation sum to 1. A simple linear regression (𝑦𝑦 = 𝑏𝑏2𝑥𝑥 + 𝑏𝑏1) fit with ordinary least squares was 172 
used to compare the change in weighted mean unsaturation within each lipid class to temperature 173 
(Fig.2, Fig. S1), among all membrane lipid classes grouped together, and all lipid classes grouped 174 
together including TAGs (Fig. S2, Table S1). Linear regression was selected for effective 175 
comparison between classes and generally explained the observed trends well (all R2 > 0.7), 176 
however, it is worth noting that to our knowledge there is no biochemical necessity for this 177 
response to strictly be linear. 178 
 179 
1.7 Fatty Acid Abundance Projections 180 

We evaluated the future abundances of EPA and DHA in membrane lipids by fitting an 181 
ordinary least squared model to the abundance of species containing these fatty acids 182 
(%EPA/%DHA, see section 1.4) with in situ temperature at the time of collection. A quadratic 183 
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function (𝑦𝑦 = 𝑏𝑏3𝑥𝑥2 + 𝑏𝑏2𝑥𝑥 + 𝑏𝑏1) was chosen to fit the data due to the residuals of a linear fit verses 184 
the fitted values for %EPA showing a convex shape. We then transformed three 1°x1° gridded 185 
maps of sea surface temperature generated by CMIP6 multi-model means to LCEFA percent 186 
abundances by applying the fitted quadratic function (Table S2). For full methods on generation 187 
of the modeled sea surface temperature values see Kwiatkowski et al. 2020 (24). In brief, 13 188 
CMIP6 models with one ensemble member per model were averaged with equal weight given to 189 
each model. All historical simulations were made over 1850-2014 with mean values of 1995-2014 190 
serving as the baseline period against which change is expressed. These models use emissions and 191 
land-use scenarios called 'Shared Socioeconomic Pathways' deriving from the Scenario Model 192 
Intercomparison Project. We used modeled mean historical sea surface temperature (SST) from 193 
1995-2014 as our current ocean SST. We used scenarios SSP-2.6 and SSP5-8.5 as low and high 194 
emission scenarios respectively (Fig. 3, Fig. S6). Complete information about the assumptions and 195 
emissions in both scenarios can be found in O'Neill et al. 2016 (36). The absolute change for future 196 
scenarios in percent EPA (Δ%EPAabs) and change in EPA relative to current conditions 197 
(Δ%EPArel) was calculated as: 198 

 199 
∆%𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓%𝐸𝐸𝐸𝐸𝐸𝐸 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝%𝐸𝐸𝐸𝐸𝐸𝐸 200 

 201 

∆%𝐸𝐸𝐸𝐸𝐸𝐸𝑟𝑟𝑟𝑟𝑟𝑟 = �
∆%𝐸𝐸𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝%𝐸𝐸𝐸𝐸𝐸𝐸
� ∗ 100 202 

 203 
where ‘present %EPA’ is the percent EPA at a location as predicted by mean historical SST from 204 
1995-2014 and ‘future %EPA’ is the percent EPA at a location as predicted by mean future SST 205 
from 2080-2099 in both scenarios respectively. 206 
 207 
1.8 Multiple Linear Regression Model 208 
 We employed a multiple linear regression (MLR) model to examine the explanatory effects 209 
of other environmental variables on unsaturation along with temperature. Additionally, this 210 
approach allowed us to examine the significance of temperature as a predictor while accounting 211 
for the effects of other variables. From the available CTD metadata we used temperature, Chl-a 212 
fluorescence, depth, salinity, photosynthetically available radiation (PAR), and dissolved nitrogen 213 
(NO3+NO2) as independent variables. Additionally, we included the number of days since the 214 
summer solstice as a proxy for seasonality. Using these variables, we ran three MLR models to 215 
predict the weighted mean unsaturation of all membrane lipids combined, %EPA containing lipids, 216 
and %DHA containing lipids. Complete metadata was not available for every variable for every 217 
deployment. Therefore, the models were run using samples with complete observations within the 218 
mixed layer (n=112). Dissolved phosphate was excluded from the multiple linear regression as it 219 
displayed high collinearity with dissolved nitrogen leading to variable inflation factors (VIF) 220 
greater than 10. In cases where NO3+NO2 was below the detection limit the value was substituted 221 
for half the limit of detection for the analysis (2-10 nM). Both dissolved NO3+NO2 and 222 
fluorescence were square root transformed to improve linearity. Lastly, all variables, including 223 
dependent variables, were standardized by subtracting the mean and dividing by the standard 224 
deviation of the variable (z-score) to compare standardized coefficients. VIF were less than 10 for 225 
are variables in the final model 226 
 227 
 228 
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1.9 Additional Software Employed 229 
 All statistical analysis and visualization were performed in R (37) with the following 230 
packages: ggplot2, cowplot, and ggpubr (38-40) for figure plotting, oceanmap and rnaturalearth 231 
(41-42) for generating ocean maps, ncdf4 (43) for reading of ocean temperature data, tidyr and 232 
dplyr (44-45) for data formatting. 233 
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Figure S1. 
Trends in unsaturation verses temperature for glycerolipid classes. Temperature trends for 
remaining lipid classes not plotted in the main text are shown above: DGCC (A, G), PC (B, H), 
PG (C,I), MGDG (D, J), DGDG (E,K) GlcADG (F, L). Stacked bar plots (A-F) show the relative 
abundance within each class of lipid species in mixed layer samples. Samples are sorted from 
coldest to warmest along the x-axis. Lipid species are sorted from least (red) to most (blue) 
unsaturated along the y-axis and are colored to indicate the average number of unsaturations per 
fatty acid moiety on the glycerolipid. Water temperature for each sample is shown with a black 
line plotted over the stacked bar plot (right axis). (G-L) Weighted unsaturation for each lipid 
class versus temperature among mixed layer samples. Red line shows linear fits; inset shows 
coefficient of determination for linear regression fit with ordinary least squares and p value from 
F-test (n = 242). Grey range shows 95% confidence interval of fit based on standard error. 
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Figure S2. 
Trends in unsaturation verses temperature for combined glycerolipid classes. Temperature 
trends are shown for all membrane glycerolipids combined (A, C) and all lipids including TAGs 
(B, D). Stacked bar plots (A-B) show the relative abundance within each class of lipid species in 
mixed layer samples. Samples are sorted from coldest to warmest along the x-axis. Lipid species 
are sorted from least (red) to most (blue) unsaturated along the y-axis and are colored to indicate 
the average number of unsaturations per fatty acid moiety on the glycerolipid. Water temperature 
for each sample is shown with a black line plotted over the stacked bar plot (right axis). (G-L) 
Weighted mean unsaturation for each lipid class versus temperature among mixed layer samples. 
Red line shows linear fits; inset shows coefficient of determination for linear regression fit with 
ordinary least squares and p value from F-test (n = 242). Grey range shows 95% confidence 
interval of fit based on standard error. 
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Figure. S3. 
Effects plots showing standardized coefficients of multiple linear regression analysis. Coefficients for environmental CTD 
predictor variables modeling (A) weighted mean unsaturation of all membrane lipids (adjusted R2 = 0.93, p < 0.01, n=114) (B) percent 
EPA containing lipids (%EPA, adjusted R2 = 0. 89, p < 0.01, n=114) and (C) percent DHA containing lipids (%DHA, adjusted R2 = 
0.58, p < 0.01, n=114). Effect is measured as the change in standard deviations of the dependent variable given a one standard 
deviation change in the predictor variable. Holding all other variables constant, all three dependent variables were most sensitive to 
changes in temperature. All models fit with ordinary least squares; p value indicates F-test for the overall model. See Table S6 for full 
model output. 
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Figure. S4. 
Abundance of TAG species ≥ 5 unsaturations verses temperature in mixed layer samples. 
The y-axis shows the combined abundance of all TAG species that have annotations with at least 
five unsaturations across their three fatty acid moieties. Seawater temperature at the time of 
sample collection is shown on the x-axis. Color denotes the deployment on which the sample 
was collected; Black line shows fitted values. Statistics for polynomial regression fit with 
ordinary least squares are shown in plot (n = 242, p values from F-test). (See Table S2 for full fit 
parameters). 

R2 = 0.82 
p < 0.01 
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Figure. S5. 
Abundance of DHA containing membrane lipids versus temperature in mixed layer. 
Percent abundance of all membrane lipids containing a DHA fatty acid in mixed layer samples 
versus temperature. Seawater temperature at the time of sample collection is shown on the x-
axis. Color denotes the deployment on which the sample was collected. Black line shows fitted 
values. Statistics for polynomial regression fit with ordinary least squares are shown in plot (n = 
242, p values from F-test). (See Table S2 for full fit parameters). 
  

R2 = 0.20 
p < 0.01 
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Figure. S6.  
Change in %EPA under SSP1-2.6 scenario. (A) Change in absolute %EPA (Δ%EPAabs) at end 
of century from today using SST under SSP1-2.6 scenario (2080-2099) in the same model means 
at the SSP5-8.5 senario. (B) Change in relative %EPA (Δ%EPArel) as a ratio of Δ%EPAabs to 
present day composition (1995-2014 %EPA). 
  



 
 

3 
 

 
  



 
 

4 
 

 



 
 

5 
 

 
 
  



 
 

6 
 

 
  



 
 

7 
 

Figure. S7.  
Diagnostic MS2 Scans. MS2 spectra illustrating diagnostic fragments and neutral losses for each 
lipid class examined are shown here from samples within the dataset. Each subfigure lists the 
assignment for the feature (using the format of lipid class followed by fatty acid carbon number 
and number of fatty acid unsaturations separated by a colon), the chemical formula for the 
assignment, and the exact mass of the assignment. These are shown for each relevant fragment 
with the mass error (ppm) between the observed fragment and expected fragment in each scan. 
The abbreviation “NL” is used to designate a fragment resulting from a consistent neutral loss 
for a lipid class. Diagnostic fragments from lipid head groups are labeled with the nominal mass. 
A representative feature for each class is shown: (A) DGDG, (B) MGDG, (C) SQDG, (D, E) PC, 
(F, G) PG, (H, I) PE, (J) GlcADG, (K, L) DGCC, (M, N) TAG, and (O) DGTS/A. Negative 
mode MS2 scans are also shown for species in which negative mode is used to identify fatty acid 
fragments. Positive mode scans from both a monosaturated and polyunsaturated TAG are shown 
to illustrate differences in fragmentation.  
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Figure. S8. 
Stacked bar graph of the percent abundance of membrane lipid species sorted by FA 
identification. Lipid species are sorted into four categories based on FA identification level for 
(A) EPA and (B) DHA. The percent abundance of lipid species annotations with fewer total 
unsaturations (< 5 or 6 unsaturations) than the LCEFA in question are shown in purple. The 
abundance of species for which a MS2 scan was observed but no LCEFA fragment was seen are 
shown in blue. The abundance of species for which a LCEFA MS2 fragment was observed are 
shown in green. The abundance of species with > 5 or 6 total unsaturations and no corresponding 
MS2 scan are shown in red. Samples are grouped along the x-axis by cruise. Only samples from 
within the mixed layer are shown for each cruise. 
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 Figure. S9. 
Triglyceride response factor calibration. (A) The response factor (Peak Area / pg on-column) 
of different triglyceride (TAG) standards plotted against the standard’s equivalent carbon 
number (ECN). ECN is defined as the number of carbons in the fatty acid chains minus two 
times the number of unsaturations (ECN = C – 2*U). Two quadratic functions were fit to this 
plot in order to predict the response factor of any TAG from its ECN. Fit 1 uses TAG standards 
with ECN of 2442 and Fit 2 uses TAG standards with ECN of 4257. TAGs with ECN < 42 were 
corrected with Fit 1, those with ECN ≥ 42 with Fit 2. (B) A histogram showing the ECN of 
detected lipid species versus their average peak area in the dataset.
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Figure. S10. 
Mean unsaturation and LCEFA content verses salinity and dissolved NO3+NO2.   
Mean unsaturation of all membrane lipids (A, B), %EPA (C, D), and %DHA (E, F) are plotted 
against salinity (n = 242) and dissolved NO3+NO2 (n = 115) respectively. Red line shows linear 
fit; inset shows coefficient of determination for linear regression with ordinary least squares and 
p value from F-test. Grey range shows 95% confidence interval of fit based on standard error.   
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Figure. S11. 
%EPA content of (A) DGDG and (B) MGDG verses water temperature. The y-axis shows 
the percent of DGDG or MGDG species that contained an EPA moiety. The x-axis shows water 
temperature. Only mixed layer samples are shown.  
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Table S1. 
Linear regressions for weighted mean unsaturation per FA to temperature for each lipid 
class. For each lipid class, linear least squares regression was used calculate the linear fit 
between the weighted mean unsaturation of each sample (see methods 1.6,Fig. 2, Fig. S1, and 
Fig. S2) and the seawater temperature at time of collection. For each class, the adjusted R2, 
coefficients, and p-value (F-test) are reported along with the number of species for each class in 
the dataset.  

  
  

Lipid Class Adjusted 
R2 

Slope (m) y-intercept p-value # of 
Species 

SQDG 0.92 -0.0649 2.274 1.20E-133 96 
DGDG 0.93 -0.0685 3.698 1.50E-143 67 
MGDG 0.93 -0.1033 3.997 1.57E-141 85 
GlcADG 0.72 -0.0183 1.089 3.21E-68 17 
PE 0.85 -0.0674 2.796 2.00E-101 108 
PC 0.92 -0.0489 4.524 1.57E-134 89 
PG 0.91 -0.0280 1.478 2.99E-127 85 
DGCC 0.85 -0.0527 4.516 3.02E-99 84 
DGTS_DGTA 0.84 -0.0632 3.757 7.08E-98 167 
TAG 0.80 -0.0596 3.026 2.28E-86 352 
All Membrane 
Lipids 

0.93 -0.0768 3.420 2.75E-138 798 

All Lipids 0.89 -0.0667 3.175 3.34E-117 1150 
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Table S2. 
Quadratic model fits for %EPA and %DHA in membrane lipids to temperature as well as 
%TAG species with ≥5 unsaturations to temperature. The adjusted R2, coefficients, and p-
value (F-test overall model) are reported. Both %EPA and %DHA of a sample were calculated as 
the combined abundance of membrane lipids with a positive or negative MS2 scan that contained 
a LCEFA fragment in at least one representative MS/MS scan (see Methods 1.4, Fig. S8). 

  

Fatty Acid Adjusted R2 Coefficient 1 
(x2) 

Coefficient 2 
(x) 

Coefficient 3 
(b) 

p-
value 

EPA 0.91 0.0183   -1.3001 28.0233 < 0.01 
DHA 0.20 -0.0171 0.3510 14.4180 < 0.01 
TAG species ≥5 
Unsaturations 

0.82 -0.0414 -0.5985 79.6627 < 0.01 
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Table S3. 
Eluant gradient settings for HPLC analysis. 

 
  

Time (min) Flow (mL / min) A (%) B (%) 
0.00 0.4 45 55 
1.00 0.4 45 55 
4.00 0.4 35 65 
4.01 0.4 25 75 

12.00 0.4 11 89 
15.00 0.4 1 99 
30.00 0.4 1 99 
30.01 0.4 45 55 
40.00 0.4 45 55 
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(See separate file.) 

 
Table S4. 
XCMS, CAMERA, and LOBSTAH settings for the peak detection, grouping, retention time 
correction, and annotation. Parameters are listed along with their settings, corresponding 
methods (Method), R software package (package), and reason for employing it (purpose). 
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Table S5. 
Lipid standards used in curves for quantification of lipid classes. The ‘Used to Quantify’ 
column contains all classes quantified with a given standard. The slope of the linear curve (Peak 
Area/pgOC) as well as the ratio of that slope to the DNP-PE reference standard (Response 
Relative to DNP-PE curve) is also reported. A range of response factors was used for TAGs (see 
Methods 1.5) 
 

 
  

Standard Supplier Used to Quantify Peak Area/pgOC Response 
Relative 
to DNP-
PE curve 

DNPPE Avanti Polar 
Lipids 

NA 48,975 1.000 

DGTS-d9 Avanti Polar 
Lipids 

DGCC (diacylglyceryl-3-O-
carboxyhydroxymethylcholine) 

257,151 5.251 

DGTS (diacylglyceryl 
trimethylhomoserines) 
DGTA (diacylglyceryl 
hydroxymethyl- trimethyl-β-
alanine) 

15:0-18:1 
PE-d7 

Avanti Polar 
Lipids 

Phosphatidylethanolamine 
(PE) 

71,517 1.460 

15:0-18:1 
PC-d7 

Avanti Polar 
Lipids 

Phosphatidylcholine (PC) 131,852 2.692 

16:0-18:1 
PG-d5 

Avanti Polar 
Lipids 

Phosphatidylglycerol (PG) 61,195 1.250 

MGDG 
36:0 

Avanti Polar 
Lipids 

Monogalactosyldiacylglycerol 
(MGDG) 

99,125 2.024 

Glucuronic acid diacylglycerol 
(GlcADG) 

SQDG 
34:3 

Avanti Polar 
Lipids 

Sulfoquinovosyl diacylglycerol 
(SQDG) 

31,193 0.637 

DGDG 
36:4 

Avanti Polar 
Lipids 

Digalactosyldiacylglycerols 
(DGDG) 

16,232 0.331 

TAG Mix Avanti Polar 
Lipids 

Triacylglycerides (TAG) 362 to 60,412 0.007 to 
1.234 
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(See separate file.) 
 

Table S6. 
Model output and statistics for environmental CTD predictor variables modeling weighted mean 
unsaturation of all membrane lipids, percent EPA containing lipids (%EPA), and percent DHA 
containing lipids (%DHA) within mixed layer samples.  
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