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A B S T R A C T

A comprehensive experimental study performed under a combination of electro-mechanical loads on a particle-
filled silicone as a representative of dielectric elastomers is presented in the Part I of this work (Mehnert
et al., submitted, 2021). The constitutive modeling and numerical simulation of electro-active polymers are
essential fields of research in order to increase the acceptance of this group of soft smart materials in real-
life applications. However, only few contributions containing constitutive modeling approaches are combined
with experimental data obtained from electro-mechanically coupled loading conditions due to the complexity
of corresponding experiments. In this contribution, we aim to develop an electro-mechanically coupled model,
which closely replicates the response of a silicone polymer filled with a high dielectric permittivity filler
of varying fractions that are characterized under a combination of electric and mechanical loads. Once the
model is calibrated with the experimental data described in Part I of this contribution, it is used for a simple
illustrative application example showcasing the capability of the model and the influence of the different
material characteristics.
1. Introduction

The term electro-active polymers (EAPs), defines a wide range of
soft materials that have the ability of undergoing large deformations
under excitation by an electric field (Carpi, 2010). This subclass of
mart materials shows great potential as soft artificial muscles (Bar-
ohen, 2004) thanks to their inherent mechanical properties. Fur-
hermore, in various other potential applications such as stretchable
ensors, flexible generators or flexible optics (O’Halloran et al., 2008;
ar-Cohen, 2002; Collins et al., 2021; Vertechy et al., 2014; Böse and
uß, 2014; Koh et al., 2011), the use of EAPs shows great promise.
Prominent examples of EAPs are the so-called dielectric elastomers
(DEs) that are especially popular as they are relatively easy to man-
ufacture and simple to handle. These can be used for the design of
soft actuators by the addition of flexible electrodes on both sides of
a thin polymeric layer. Upon the application of an electric potential
difference between the electrodes, the sample contracts in the thickness
direction while simultaneously expanding in the lateral directions due
to the attractive forces between the oppositely charged electrodes.
The extent to which an actuator will deform is determined by the
mechanical and dielectric properties of the underlying soft polymer.
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While classical polymeric materials such as silicones or acrylates dis-
play necessary soft mechanical properties, these materials usually do
not inherit specifically high dielectric constants and thus do not have
favorable dielectric properties that are needed to induce the required
forces from an externally applied electric field. A well-known concept
for optimizing the dielectric properties is the addition of filler particles
with high dielectric constant, such as Barium-Titanate, Titanium Ox-
ides, carbon nanotubes, etc that enhance the overall electro-mechanical
performances of the composites as demonstrated in Part I of this
publication series.

In order to widen the applications and acceptance of EAP-based
compounds, computational modeling approaches become indispensable
tools in predicting the material response under a combined electro-
mechanical loading. For predicting the purely mechanical response
of particle filled polymeric materials, mathematical models used in
computer-based simulations have been developed over the past years
that were initially restricted to small deformations (Guth, 1945) and
later extended accounting for large deformations based on finite strain
theories, see Bergstrom and Boyce (1999). Furthermore, in an effort
vailable online 4 June 2022
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to incorporate the rate-dependent behavior of particle filled polymers,
various phenomenological models were developed using the concept
of so-called stress-like internal variables for which suited evolution
equations are required (Kaliske and Rothert, 1997; Holzapfel and Simo,
996; Wang and Chester, 2018). While these models considered the
ffective material as homogeneous, multiscale models such as (Zeng
t al., 2008) approached the topic by also investigating the behavior on
he microscale, in which the particles and the polymeric base material
an clearly be distinguished.
For developing mathematical models that can replicate electro-

esponsive material behavior, electro-mechanically coupled constitu-
ive approaches were developed based on the interplay between a
eforming body and an electric field, see the seminal works, e.g., by
ringen (1963) or Toupin (1956). These ground-laying works have
een expanded over the last decades especially sparked by the grow-
ng interests in electro-active soft polymeric materials (Kovetz, 2000;
ricksen, 2007; Dorfmann and Ogden, 2005; Ask et al., 2012). These
concepts were also extended to so-called multiscale homogenization
approaches, e.g. in the works by Schröder and Keip (2012) and Keip
et al. (2014) where two-scale homogenization methods are used for
the solution of the electro-mechanical problem. Similarly, in a series of
papers Lopez-Pamies et al. derived a homogenization method for dielec-
tric composites capable of replicating the purely mechanical response of
filled polymers and their electro-mechanical behavior (Lopez-Pamies,
2014; Lefèvre and Lopez-Pamies, 2017a,b; Lefevre and Lopez-Pamies,
2017; Francfort et al., 2021; Ghosh et al., 2019) validated by experi-
mental data presented in Huang et al. (2005). In these works, special
attention was put on the influence of particle interphases and the role
of space charges on the material response.

Within the scope of the current work, we combine these concepts
for the simulation of the electro-mechanical behavior of a particle filled
silicone. To this end, a number of experiments were performed under
electro-mechanical loads in order to characterize the material response
of the silicone Elastosil P 7670TM filled with Barium-Titanate particles,
see Part I of this publication series. Based on the obtained results, the
material parameters of the presented model are identified resulting in
a comprehensive constitutive model of the composite material under
combined mechanical and electric loading.

This contribution is structured as follows. In Section 2 the gen-
eral modeling approach is introduced. In the following Section, the
experimental results and the modeling approach are combined in order
to identify the necessary mechanical and electro-mechanical material
parameters. In order to illustrate the material characteristics, a sim-
ple numerical application example is presented in Section 4. Finally,
Section 5 presents a brief summary of this contribution and an outlook.

2. Constitutive modeling

In this section, an electro-mechanical modeling approach is pre-
sented and specified with suitable terms from the literature. The model
is developed in such a way that the material behavior of both unfilled
and particle filled silicones can be replicated as closely as possible
with the experimental data produced in Part I of this contribution. Our
prime aim is to reduce the number of material parameters appearing
in the model to a minimum. However, the complexity of the observed
responses results in an extensive format of the final expressions. As
typical for other polymers, we assume that the underlying response
of the unfilled silicone studied here is viscoelastic. However, by com-
paring the data obtained from the multistep relaxation tests and the
cyclic loading tests with a very slow stretch rate (𝜆̇ = 0.01 s−1), we
observe that there is a rate-independent difference between the loading
and the unloading curves. Furthermore, we can clearly identify a
residual strain at the end of the deformation cycle. As the material
samples were preconditioned, we do not consider this phenomenon as
a consequence of the so-called Mullins effect, describing a unique and
permanent softening of the material after the first deformation. Instead,
2
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we conjecture that in order to describe the observed material response,
the classical elastic behavior has to be augmented to a pseudo-elastic
material response as introduced in Ogden and Roxburgh (1999) , which
has been used for the modeling of residual strains in different soft
materials (Fung et al., 1979; Ogden, 2003). Therefore, this formulation
is subsequently extended to viscoelasticity which captures the behavior
of the base material. Such an approach is similar to the combination of
viscoelasticity and stress-softening as presented by Wang and Chester
(2018). The addition of filler particles alters both the elastic and viscous
behavior, thus both energy contributions will be modified accordingly.
Finally, the energy function has to be extended by electro-mechanical
coupling terms that reflect the capability of the dielectric to deform
under the application of an electric field. This combination of different
material characteristics is summarized in Fig. 1, showcasing the corre-
sponding curves from the conducted experiments that characterize the
specific material behavior.

Generally, we distinguish in our modeling approach between the
response of the unfilled silicone (upper plots of Fig. 1) and the particle
filled compound (lower plots of Fig. 1) where we assume that the
unfilled material is the foundation that is subsequently extended. The
underlying elastic material response of a pure silicone is modified to
pseudo-elasticity in order to replicate the rate-independent hysteresis,
visible in the upper central plot in Fig. 1. Additionally, a rate-dependent
response of the material is visible at increased strain rates as shown
in the upper right plot. Consequently, the model is further extended
to pseudo-viscoelasticity. Upon the addition of the stiffer particles, the
material behavior noticeably changes. As shown in the plot on the
lower left side, the underlying elasticity stiffens with the increasing
particle concentration. This is accounted for by the modification of
the elastic material model. Furthermore, the filler particles lead to an
increase in the dissipated energy. Thus, the viscoelastic description of
the material is modified. At this point, the mechanical response of
the material is completed and this filler-content dependent pseudo-
viscoelastic material model is extended to an electro-mechanically
coupled form.

We assume the existence of an energy function 𝑊 that can be
used to derive the mechanical and electric quantities describing the
material behavior. This energy function can be decomposed into a
volumetric contribution 𝑊𝑣𝑜𝑙 and an isochoric contribution 𝑊𝑖𝑠𝑜. The
former describes the volume changing deformation whereas the latter
describes the volume preserving part of the deformation. As we assume
that the material under consideration shows incompressible response,
the volumetric energy contribution vanishes and will not be addressed
further in the following. Therefore, we can state that 𝑊 = 𝑊𝑖𝑠𝑜. Fol-
lowing the structure of the conducted experiments, we will extend and
modify the expression stepwise to describe the material characteristics.

2.1. Constitutive modeling of the mechanical response of unfilled silicone

Initially, it is assumed that the energy function 𝑊 consists of an
elastic contribution 𝑊 𝑒𝑙 and a viscous contribution 𝑊 𝑣. For model-
ing purely elastic response of a polymeric material, a wide range of
well established energy functions can be found in the literature (Hos-
sain and Steinmann, 2013). However, in the current case, a rate-
independent hysteresis can be observed that would not be replicated by
a strictly elastic approach. Consequently, a pseudo-elastic description
is adopted from (Ogden and Roxburgh, 1999) resulting in an elastic
energy contribution that reads as

𝑊 𝑒𝑙(𝑪) = 𝜂1𝑊
𝑒𝑙
0 (𝑪) + [1 − 𝜂2]𝑁(𝑪). (1)

Here we introduce an elastic base function 𝑊 𝑒𝑙
0 (𝑪) that is formulated in

terms of the isochoric part of the right Cauchy–Green tensor defined as
𝑪 = 𝐽−2∕3𝑭 𝑇 ⋅ 𝑭 with the deformation gradient 𝑭 and its Jacobian

= det 𝑭 . In the current study, a Yeoh-type energy formulation is
elected that reads
𝑒𝑙 𝑒𝑙[ ] 𝑒𝑙[ ]2 𝑒𝑙[ ]3 (2)

0 (𝑪) = 𝑐1 𝐼1 − dim + 𝑐2 𝐼1 − dim + 𝑐3 𝐼1 − dim
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Fig. 1. A summary of the key structure of the different material characteristics under consideration.
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or identifying the elastic material parameters 𝑐𝑒𝑙𝑖 (𝑖 = 1, 2, 3), ex-
erimental data obtained from the multistep relaxation tests of pure
lastosil will be used. Note that the first invariant of the right Cauchy–
reen tensor is defined as 𝐼1 = 𝑪 ∶ 𝑰 , where 𝑰 is the identity tensor.
his base function is extended by the two parameters 𝜂1 and 𝜂2 as well
s the function 𝑁(𝑪) that captures the rate-independent hysteresis and
he residual strain. These parameters will be either active or inactive
epending on the course of the deformations. While a sample material
s loaded, it is assumed that 𝜂1 = 1 and 𝜂2 = 1, whereas they can
take different values during unloading. We follow the notion given
in Dorfmann and Ogden (2004) and define 𝑁(𝑪) as

𝑁(𝑪) = 1
2

[

𝑣1
[

𝜆
2
1 − 1

]

+ 𝑣2
[

𝜆
2
2 − 1

]

+ 𝑣3
[

𝜆
2
3 − 1

]

]

(3)

hich corresponds to a modified Neo-Hookean formulation with the
aterial parameters 𝜈𝑖 (𝑖 = 1, 2, 3) and the principal isochoric stretches

𝜆𝑖. By the definition of the material parameters as

𝑣1 = 𝜇
[

1 − 1
3.5

tanh(10[𝜆𝑚 − 1])
]

,

2 = 𝑣3 = 𝜇
(4)

he effect of a residual strain is introduced. The formulations contain a
aterial parameter 𝜇 with a further dependency on the maximum strain
𝑚 in the loading direction. The parameters 𝜂1 and 𝜂2 from Eq. (1) are
efined as

1 = 1 − 1
𝑟
tanh

(

𝑊 𝑒𝑙
𝑚 (𝑪𝑚) −𝑊 𝑒𝑙

0 (𝑪)
𝜇𝑚

)

,

𝜂2 = tanh

(

[

𝑊 𝑒𝑙
0 (𝑪)∕𝑊 𝑒𝑙

𝑚 (𝑪𝑚)
]𝛼
(

𝑊 𝑒𝑙
𝑚 (𝑪𝑚)

))

∕ tanh(1),

𝛼 = 𝑎 + 𝑏𝑊 𝑒𝑙
𝑚 (𝑪𝑚)∕𝜇,

(5)

here 𝑊 𝑒𝑙
𝑚 (𝑪𝑚) is the elastic energy at the maximum applied deforma-

ion 𝑪 and the parameters 𝑟, 𝑚, 𝑎 and 𝑏 have to be identified using
3

𝑚

the results of the cyclic loading experiments performed at the slowest
stretch rate.

On the top of this, apparent changes in the stress–strain curve in
response to a change in the deformation rate are attributed to a viscous
contribution to the response of the unfilled material. Thus, the viscous
contribution 𝑊 𝑣 is added to the energy function initially depending on
the deformation described by the right Cauchy–Green tensor and a set
of internal variables 𝑨𝑖, i.e.,

𝑊 𝑣(𝑪 ,𝑨𝑖) =
∑

𝑖
𝑊 𝑣

𝑖 (𝑪 ,𝑨𝑖). (6)

In order to describe the complex time-dependent behavior of the mate-
rial, the viscous energy consists of a number of functions 𝑊 𝑣

𝑖 (𝑪 ,𝑨𝑖) (𝑖 =
1, 2, 3...), each of which represents a viscous Maxwell element. For the
description of the response of pure Elastosil, we assume three viscous
functions, the first two of which are defined as a Neo-Hookean type. In
combination with the evolution equations that determine the internal
variables, these read

𝑊 𝑣
𝑖
(

𝑪 ,𝑨𝑖
)

= 1
2
∑

𝑖
𝜇𝑣
𝑖
[

𝐼
𝑣
1,𝑖 − dim

]

,

𝑨̇𝑖 =
1
𝜏𝑖

[

𝑪 − 1
dim 𝐼

𝑣
1,𝑖𝑨𝑖

]

,
(7)

ith 𝑖 = 1, 2. Here, the viscous shear moduli 𝜇𝑣
𝑖 are introduced while the

iscous invariants are defined as 𝐼
𝑣
1,𝑖 = 𝑨−1

𝑖 ∶ 𝑪 . The final contribution
nd its corresponding evolution law are formulated as a Yeoh-type
unction that reads

𝑣
3
(

𝑪 ,𝑨3
)

= 𝑐𝑣1
[

𝐼
𝑣
1,3 − dim

]

+ 𝑐𝑣2
[

𝐼
𝑣
1,3 − dim

]2 + 𝑐𝑣3
[

𝐼
𝑣
1,3 − dim

]3,

̇ 3 =
⎡

⎢

⎢

⎣

1
𝜏3,1

+
2
[

𝐼
𝑣
1,3 − dim

]

𝜏3,2
+

3
[

𝐼
𝑣
1,3 − dim

]2

𝜏3,3

⎤

⎥

⎥

⎦

[

𝑪 − 1
3
𝐼
𝑣
1,3𝑨3

]

.
(8)

It should be noted that the relaxation times 𝜏3,𝑖 (𝑖 = 1, 2, 3) are defined
as 𝜏 = 𝜏 ∕𝑐𝑣. These expressions are derived in a thermodynamically
3,𝑖 3 𝑖
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consistent way following the approach outlined in Koprowski-Theiss
et al. (2011). The viscous material parameters 𝜇𝑖, 𝑐𝑣𝑖 and 𝜏𝑖 (𝑖 = 1, 2, 3)
ave to be identified using the cyclic loading data obtained from tests
erformed at higher deformation rates.

.2. Constitutive modeling of the mechanical response of particle filled
ilicone

As observed in the experimental data, the addition of filler particles
eads to modifications of both the elastic and the viscous responses of
he dielectric elastomers. In the case of the elastic energy contribution

𝑒𝑙(𝑪), these changes can be incorporated by introducing a modified
nvariant 𝐼𝑒1 following the approach presented in Bergstrom and Boyce
1999), which reads
𝑒̃
1 =

[

1 + 𝑔𝑒𝑙1 𝑣𝑓 +
[

𝑔𝑒𝑙2 𝑣𝑓
]2][𝐼1 − dim

]

+ dim = 𝑋𝑒𝑙
[

𝐼1 − dim
]

+ dim, (9)

where 𝑣𝑓 describes the filler content of the material and 𝑔𝑒1 and 𝑔𝑒2
re material parameters. The modified form of the elastic base energy
rom Eq. (2) is labeled as 𝑊 𝑒𝑙

0 (𝑪) and reads

𝑊 𝑒𝑙
0 (𝑪) = 𝑐𝑒𝑙1

[

𝐼1 − dim
]

+ 𝑐𝑒𝑙2
[

𝐼1 − dim
]2 + 𝑐𝑒𝑙3

[

𝐼1 − dim
]3. (10)

imilar to the elastic part of the energy, the viscous contributions need
odifications in order to capture the influence of the filler particles.
he results of the cyclic loading tests show an increase in the stiffness
f the material and a change in the form of the hysteresis curves
riginating from the addition of the fillers. Consequently, in addition
o the introduction of a modified first invariant 𝐼𝑣1,𝑖 (𝑖 = 1, 2, 3) and
aterial parameters 𝑔𝑣1 and 𝑔𝑣2 , a modification for each of the relaxation
imes 𝜏𝑖 (𝑖 = 1, 2, 3) with a quadratic scaling function is introduced, i.e.,

𝐼𝑣1,𝑖 =
[

1 + 𝑔𝑣1𝑣𝑓 +
[

𝑔𝑣2𝑣𝑓
]2][𝐼

𝑣
1,𝑖 − dim

]

+ dim = 𝑋𝑣
[

𝐼
𝑣
1,𝑖 − dim

]

+ dim,

𝜏𝑖 =
[

1 + 𝑔𝜏1,𝑖𝑣𝑓 +
[

𝑔𝜏2,𝑖𝑣𝑓
]2]𝜏𝑖 = 𝑋𝜏,𝑖𝜏𝑖.

(11)

It should be noted that the model parameters introduced here are re-
sponsible for the increase in the magnitude of the combined viscoelastic
stress response and the amount of the energy dissipation. However, due
to the complex interplay of the different Maxwell elements, a direct
relation of each parameter to the form of the hysteresis is not possible.
When these modifications are implemented into Eqs. (7) and (8), the
irst two member functions take the form
̃𝑣

𝑖
(

𝑪 ,𝑨𝑖
)

= 0.5
∑

𝑖
𝜇𝑣
𝑖
[

𝐼𝑣1,𝑖 − dim
]

,

𝑨̇𝑖 =
1
𝜏𝑖

[

𝑪 − 1
dim 𝐼𝑣1,𝑖𝑨𝑖

]

,
(12)

whereas the final contribution reads

𝑊 𝑣
3
(

𝑪 ,𝑨3
)

= 𝑐𝑣1
[

𝐼𝑣1,3 − dim
]

+ 𝑐𝑣2
[

𝐼𝑣1,3 − dim
]2 + 𝑐𝑣3

[

𝐼𝑣1,3 − dim
]3,

̇ 3 =
⎡

⎢

⎢

⎣

1
𝜏3,1

+
2
[

𝐼𝑣1,3 − dim
]

𝜏3,2
+

3
[

𝐼𝑣1,3 − dim
]2

𝜏3,3

⎤

⎥

⎥

⎦

[

𝑪 − 1
3
𝐼𝑣1,3𝑨3

]

.
(13)

n summary, the effect of the addition of filler particles on the mechan-
cal response is modeled by eight modified parameters that have to be
dentified using the experimental results.

.3. Constitutive modeling of the electro-mechanical response of particle
illed silicone

Finally, coupling of the electric field with the mechanical response
eeds to be established. Within the data available in the current study,
t is difficult to distinguish between the effects of the electric field on
he elastic and the viscous parts of the material response. Hence, it
4

s assumed that only the elastic energy contribution is dependent on
he electric field. Such a simplification brings extra advantage as ev-
ry additional electro-mechanical coupling parameter introduced here
esults in a considerable increase in the runtime of the optimization
outine later on. Therefore, in order to keep the material parameters
t a minimum, the electric coupling in the elastic energy contribution
s introduced by modifications of the coupling invariant 𝐼5 and the
dominating first material parameter 𝑐𝑒1. Note that the viscous energy
contributions are kept unchanged which renders the respective energy
functions into the format

𝑊 𝑒𝑙
0
(

𝑪EM,E
)

=

𝑐𝑒𝑙1 (𝐼4)
[

𝐼1 − dim
]

+ 𝑐𝑒𝑙2
[

𝐼1 − dim
]2 + 𝑐𝑒𝑙3

[

𝐼1 − dim
]3 + 𝛾2𝐼5.

(14)

Here we have introduced the fifth invariant 𝐼5 = [E ⊗ E] ∶ 𝑪 that
depends on the electric field that is defined as the material gradient of
an electric potential 𝜑 as E = −Grad𝜑. For a more detailed introduction
of the electro-mechanical basics, reader is referred to Mehnert et al.
(2016), Steinmann (2011), Mehnert et al. (2016) and Dorfmann and
Ogden (2006). As is observed from the experimental data, the inclusion
of filler particles increases the electro-mechanical coupling, hence,
the field sensitive coupling parameters are modified via the particle
concentration 𝑣𝑓 in the form

𝑐𝑒𝑙1 (𝐼4) = 𝑐𝑒𝑙1 − [1 + 𝑘𝑣𝑓 ]𝛽𝑒𝐼4, 𝛾 = [1 + 𝑘𝑣𝑓 ]𝛾̂ , (15)

where a fourth invariant 𝐼4 = [E ⊗ E] ∶ 𝑰 is introduced. The above
equations convey the notion that the material has a zero field ground
state captured by the parameter 𝑐1. This parameter is further influenced
y the application of an electric field that can be scaled by the coupling
arameters 𝛽𝑒 and a factor 𝑘 incorporating the concentration of the
iller particles. Similarly, the coupling parameter 𝛾2 is also scaled by
𝑣𝑓 in order to take into account the influence of increasing filler
oncentrations. Finally, in order to incorporate a field sensitivity of
he elastic contribution, the pseudo-elasticity function 𝑁(𝑪) is also
modified into a field sensitive form. This is achieved by changing the
material parameter 𝜇 introduced in Eq. (4) into an expression 𝜇(𝐼4) that
eads

̃(𝐼4) = 𝜇̂ − [1 + 5𝑘𝑣𝑓 ]𝛽𝑒𝐼4. (16)

Thus, three additional material parameters have to be identified using
the results of the electro-mechanically coupled experiments in order
to characterize the coupling behavior of the particle-filled silicone.
Table 1 presents a summary of all 29 necessary material parameters
appearing in the electro-mechanical modeling framework.

3. Parameter identification

In the following section, a material parameter identification process
using the data obtained from the electro-mechanical experiments is
described. This is done by calculating the resulting force over the course
of a specific experiment and fitting this solution to the experimental
results. We follow the same logic as in the previous chapter that pro-
poses a modular structure of the constitutive framework. Consequently,
the identification process starts by first finding the elastic, pseudo-
elastic, and viscous material parameters of unfilled silicone, followed
by the identification of the parameters describing the influence of the
filler particles on the elastic and viscous material responses. In these
cases, an analytical solution to the experiments can be calculated due
to the selected sample geometry. Finally, the electro-mechanical cou-
pling parameters are identified. However, due to the non-homogeneous
sample deformation in these coupled experiments, the tests cannot be
assumed to be uniaxial and therefore, no analytical solution can be
calculated. Thus, a numerical solution is obtained using a finite element
implementation of the derived modeling approach which is fitted to the
experimental data.

For the identification of the mechanical parameters, the stress state

during the conducted experiments can be calculated analytically. For
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Table 1
A summary of the 29 material parameters of the modeling approach for Elastosil
P 7670TM filled with BaTiO3 particles. Parameters 𝑐𝑖, 𝜇𝑣

𝑖 in N/mm2, 𝜏𝑖 in s, 𝛽𝑒 in
N/(Vmm)2, 𝛾̂2 in N/V2.
Elastosil P 7670TM filled with BaTiO3 particles

Mechanical Base Parameters

Elastic Parameters

𝑐𝑒𝑙1 𝑐𝑒𝑙2 𝑐𝑒𝑙3

Pseudo-Elastic Parameters

𝜇̂ 𝑟 𝑚 𝑎 𝑏

Viscous Parameters

𝜇𝑣
1 𝜇𝑣

2 𝑐𝑣1 𝑐𝑣2 𝑐𝑣3
𝜏1 𝜏2 𝜏3

Particle Scaling Parameters

Elastic Scaling Parameters

𝑔𝑒1 𝑔𝑒2

Viscous Scaling Parameters

𝑔𝑣1 𝑔𝑣2 𝑔𝜏1,1 𝑔𝜏2,1 𝑔𝜏1,2 𝑔𝜏2,2 𝑔𝜏1,3 𝑔𝜏2,3

Electro-Mechanical Coupling Parameters

𝛽𝑒 𝛾̂2 𝑘

this, we introduce the Piola–Kirchhoff stress tensor 𝑺 as the derivative
of the energy function with respect to the right Cauchy–Green tensor,
i.e.,

𝑺 = 2
𝜕𝑊 (𝑪 ,𝑨𝑖,E)

𝜕𝑪
. (17)

Here, the most general case is assumed considering that a particle
filled silicone may be put under both mechanical and electric loads. In
this context, it is usually convenient to introduce the isochoric version
of the Piola–Kirchhoff tensor as 𝑺 = 2𝜕𝑊 (𝑪 ,𝑨𝑖,E)∕𝜕𝑪 that we can
transform into the conventional Piola–Kirchhoff stress 𝑺 with the help
f P = 𝜕𝑪∕𝜕𝑪 , the fourth-order projection tensor. We can decompose
his stress tensor further into an elastic part 𝑺

𝑒𝑙
and a viscous part

𝑺
𝑣
. In order to compare these stresses to the obtained data curves, we

introduce the Piola stress tensor 𝑷 which is linked to 𝑺 via

𝑷 = 𝑭 ⋅ [𝑺
𝑒𝑙
+ 𝑺

𝑣
] ∶ P = 𝑭 ⋅ [𝑺𝑒𝑙 + 𝑺𝑣]. (18)

ollowing the classical assumption, the polymer studied here is con-
idered as an incompressible material. Furthermore, for the case of
urely mechanical experiments, the stress state inside a sample is ho-
ogeneous due to the selected sample geometry. Thus, the deformation
radient 𝑭 and the corresponding right Cauchy–Green tensor 𝑪 for the
ase of uniaxial stretching read

=
⎡

⎢

⎢

⎣

𝜆 0 0
0 𝜆−1∕2 0
0 0 𝜆−1∕2

⎤

⎥

⎥

⎦

, 𝑪 =
⎡

⎢

⎢

⎣

𝜆2 0 0
0 𝜆−1 0
0 0 𝜆−1

⎤

⎥

⎥

⎦

. (19)

ere, we define 𝜆 as 𝜆 = [𝐿0 + 𝛥𝐿]∕𝐿0, the ratio between the extended
ength 𝐿0+𝛥𝐿 and the initial length of the sample 𝐿0. Consequently, the
tretch rate is defined as 𝜆̇ = ̇𝛥𝐿∕𝐿0. The stretch-like internal variables
𝑖 take a form resembling 𝑪 , i.e.,

𝑖 =
⎡

⎢

⎢

⎣

𝐴2
𝑖 0 0
0 𝐴−1

𝑖 0
0 0 𝐴−1

𝑖

⎤

⎥

⎥

⎦

. (20)

n the following sections, this form of the deformation gradient is
nserted into the definition of the stress in order to compare the
xperiments with the analytical solution.
5

a

Fig. 2. Calibration of the analytical solution (dashed line) to the experimental results
(solid line) of the resulting equilibrium force values obtained from a multi-step
relaxation test of unfilled Elastosil P 7670TM.

Fig. 3. Comparison between the experimental results (solid line) and the analytical
solution (dashed) of cyclic loading–unloading tests performed with unfilled Elastosil P
7670TM with 𝜆̇ = 0.01 s−1. (Pseudo-elastic material behavior).

3.1. Identification of the mechanical parameters of unfilled silicone

At first, the elastic base parameters 𝑐𝑒𝑙𝑖 from Eq. (2) are identified
y fitting the analytical solution of the equilibrium curve to the corre-
ponding experimental data. In this case, we assume that the recorded
ata can be attributed to the purely elastic material response. Thus, the
nalytical solution that is fitted to the experimental results reads

𝑒𝑙 = 4
3
[

𝑐𝑒𝑙1 + 2𝑐𝑒𝑙2
[

𝜆2 + 2𝜆−1 − 3
]

+ 3𝑐𝑒𝑙3
[

𝜆2 + 2𝜆−1 − 3
]2][𝜆 − 𝜆−2

]

. (21)

ote that in the aforementioned equation, the first elastic parameter is
abeled as 𝑐𝑒𝑙1 . In the electro-mechanical case, where this term is scaled
ith the electric field, parameter 𝑐𝑒𝑙1 corresponds to the base parameter

̂𝑒𝑙1 . For the purely mechanical case at present, however, the additional
ircumflex accent is omitted for the sake of readability. The fit of the

nalytical solution to the equilibrium curve is shown in Fig. 2, with
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Fig. 4. Comparison between the experimental results (solid lines) and the analytical solution (dashed lines) of cyclic loading–unloading tests performed with unfilled Elastosil P
7670TM.
v
s

𝑃

𝐴

T
m
m

the identified material parameters 𝑐𝑒𝑙1 = 0.0458 N/mm2, 𝑐𝑒𝑙2 = −0.0012
/mm2 and 𝑐𝑒𝑙3 = 9.9 ⋅ 10−5 N/mm2.
As was pointed out previously, the equilibrium curve corresponds

o the loading path of the cyclic loading test with the slowest stretch
ate (𝜆̇ = 0.01 s−1). Thus, the unloading curve at this stretch rate is
escribed by the additional terms in Eq. (1), i.e., the parameters 𝜇, 𝑟
nd 𝑚 from Eqs. (4) and (5). Consequently, the analytical solution that
s fitted to the experimental results is modified to

𝑒𝑙 = 4
3
𝜂1
[

𝑐𝑒𝑙1 + 2𝑐𝑒𝑙2
[

𝜆2 + 2𝜆−1 − dim
]

+ 3𝑐𝑒𝑙3
[

𝜆2 + 2𝜆−1 − dim
]2][𝜆 − 𝜆−2

]

+ [1 − 𝜂2][𝑣1𝜆 − 0.5[𝑣2 + 𝑣3]𝜆−2].

(22)

he optimization of this solution to the respective cyclic loading data
eads to the fit as presented in Fig. 3 with the identified values 𝜇 = 1.5,
= 1.14, and 𝑚 = 0.3427.
We can now use the already identified pseudo-elastic parameters

s a basis for the identification of the viscous parameters. Thus, the
6

iscous stress 𝑃 𝑣 originating from a Neo-Hookean type model in the
tretch direction can be calculated as
𝑣
𝑖 = 4

3
𝜇𝑣
𝑖
[

𝜆𝐴2
𝑖 − 𝜆−2𝐴−1

𝑖
]

,

𝐴̇𝑖 =
1
3𝜏𝑖

[

𝜆2𝐴−1
𝑖 − 𝐴2

𝑖 𝜆
−1] with 𝑖 = 1, 2.

(23)

However, Yeoh-type contribution takes the form

𝑃 𝑣
3 = 4

3

[

𝑐𝑣1 + 2𝑐𝑣2
[

𝐼
𝑣
1,3 − 3

]

+ 3𝑐𝑣3
[

𝐼
𝑣
1,3 − 3

]2
]

[

𝜆𝐴−2
3 − 𝜆−2𝐴3

]

,

̇ 3 =
[ 1
3𝜏3,1

+ 2
3𝜏3,2

[𝐼
𝑣
1,3 − dim] + 1

𝜏3,3
[𝐼

𝑣
1,3 − dim]2

][

𝜆2𝐴−1
3 − 𝐴2

3𝜆
−1],

with 𝐼
𝑣
1,3 = 𝜆2𝐴−2

3 + 2𝜆−1𝐴3,

(24)

he combination of the elastic and the viscous stresses can be fitted to
ultiple experimental data sets at the same time using a simultaneous
inimization technique (Hossain et al., 2012; Linder et al., 2011; Amin
et al., 2002) in order to identify the viscous material parameters of the
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Fig. 5. Analytical solutions compared to experiments for the equilibrium values of the resulting force of multi-step relaxation tests for various filler concentrations. (Left) Analytical
solution (dashed lines) and experimental values (solid lines) over the applied stretch, (right) simulation (o-marks and dashed trend line) and experimental values (x marks and
solid line) of the resulting force for the maximum applied stretch over the range of tested filler concentrations.

Fig. 6. Comparison between the experimental results (x-marks) and the simulation (dashed lines) of cyclic loading–unloading experiments for Elastosil P 7670TM with various filler
contents at a stretch rate of 0.1 s−1.
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Fig. 7. Comparison between the experimental results (x-marks) and the simulation (dashed lines) of cyclic loading–unloading experiments for Elastosil P 7670TM with various filler
content at a stretch rate of 0.2 s−1.
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Table 2
Identified viscous material parameter sets for pure Elastosil P 7670TM. 𝜇𝑣

𝑖 , 𝑐𝑣𝑗 in N/mm2

nd 𝜏𝑖 in s. Relaxation times 𝜏1 and 𝜏2 correspond to the Maxwell element modeled
ith a Neo-Hookean type formulation and the parameters 𝜇𝑣

1 and 𝜇𝑣
2 . Relaxation time

3 corresponds to the Maxwell element modeled with a Yeoh-type formulation and the
arameters 𝑐𝑣𝑖 .

𝜇𝑣
1 𝜇𝑣

2 𝑐𝑣1 𝑐𝑣2 𝑐𝑣3
4.14 ⋅ 10−3 2.57 ⋅ 10−3 6.51 ⋅ 10−3 2.22 ⋅ 10−14 4.04 ⋅ 10−6

𝜏1 𝜏2 𝜏3
4.39 ⋅ 10−3 0.685 0.266

unfilled silicone. For this, the results of the experiments conducted with
𝜆̇ = 0.4 s−1 and 𝜆̇ = 0.6 s−1 are used as inputs for the optimization
rocess, while the experimental data with the remaining stretch rates
re used for the validation of the calibrated material parameters. Fig. 4
shows the comparison between the experimental results and the model
predictions with the identified material parameters summarized in
Table 2.

The combination of viscous and pseudo-elastic material behav-
ior captures the material response of the unfilled Elastosil silicone
satisfyingly well.
8

3.2. Identification of the mechanical parameters of particle filled silicone

So far the material parameters for the unfilled silicone are identified
as described step by step in the previous sections. Now, the parameters
taking into account for the influences of the filler particles will be
identified. For this, we derive the Piola stress in the stretching direction
from Eq. (10), which reads

𝑃 𝑒𝑙 = 4
3
[

𝑋𝑒𝑙𝑐
𝑒𝑙
1 + 2𝑋2

𝑒𝑙𝑐
𝑒𝑙
2
[

𝜆2 + 2𝜆−1 − dim
]

+ 3𝑋3
𝑒𝑙𝑐

𝑒𝑙
3
[

𝜆2 + 2𝜆−1 − dim
]2 ] [𝜆 − 𝜆−2

]

.

with 𝑋𝑒𝑙 = 1 + 𝑔𝑒𝑙1 𝑣𝑓 +
[

𝑔𝑒𝑙1 𝑣𝑓
]2

(25)

ith this, the material parameters 𝑔𝑒𝑙1 and 𝑔𝑒𝑙2 are next identified by
itting the analytical solution to the equilibrium curves obtained from
he multistep relaxation tests with different filler concentrations. The
omparisons between the model predictions and the experimental data
re depicted in Figs. 5 to 8 for values 𝑔𝑒𝑙1 = 2.81 ⋅ 10−2 and 𝑔𝑒𝑙2 = −1.323.

In order to fully characterize the mechanical response of the filled
ilicone, we will now identify the remaining parameters that were
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Fig. 8. Comparisons between the experimental results (x-marks) and the simulation (dashed lines) of cyclic loading–unloading experiments for Elastosil P 7670TM with various
iller contents at a stretch rate of 0.4 s−1.
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ntroduced in Eq. (11). To this end, the Neo-Hookean type viscous con-
ributions of the Piola stress in the deformation direction are calculated
s

𝑃 𝑣
𝑖 = 4

3
𝑋𝑣𝜇

𝑣
𝑖
[

𝜆𝐴2
𝑖 − 𝜆−2𝐴−1

𝑖
]

,

𝐴̇𝑖 =
1

3𝑋𝜏,𝑖𝜏𝑖

[

𝜆2𝐴−1
𝑖 − 𝐴2

𝑖 𝜆
−1] with 𝑖 = 1, 2,

𝑋𝑣 = 1 + 𝑔𝑣1𝑣𝑓 +
[

𝑔𝑣2𝑣𝑓
]2,

𝜏,𝑖 = 1 + 𝑔𝜏𝑖,1𝑣𝑓 +
[

𝑔𝜏𝑖,2𝑣𝑓
]2

(26)

hile the Yeoh-type contributions take the form

𝑣
3 = 4

3

[

𝑋𝑣𝑐
𝑣
1 + 2𝑋2

𝑣𝑐
𝑣
2
[

𝐼
𝑣
1,3 − 3

]

+ 3𝑋3
𝑣𝑐

𝑣
3
[

𝐼
𝑣
1,3 − 3

]2
]

[

𝜆𝐴−2
3 − 𝜆−2𝐴3

]

,

̇ 3 =
[ 1
3𝑋𝜏,3𝜏3,1

+ 2
3𝑋𝜏,3𝜏3,2

[𝐼
𝑣
1,3 − dim]

+ 1
𝑋𝜏,3𝜏3,3

[𝐼
𝑣
1,3 − dim]2

] [

𝜆2𝐴−1
3 − 𝐴2

3𝜆
−1],

with 𝐼
𝑣
1,3 = 𝜆2𝐴−2

3 + 2𝜆−1𝐴3,

(27)

n combination with the previously derived stress contributions and the
dentified material parameters, this expression can be fit to multiple
9

Table 3
Identified viscous material parameters for filled Elastosil P 7670TM.
𝑔𝑣1 𝑔𝑣2 𝑔𝜏1,1 𝑔𝜏2,1 𝑔𝜏1,2 𝑔𝜏2,2 𝑔𝜏1,3 𝑔𝜏2,3
4.267 0.405 −4.105 6.804 −4.105 6.804 6.794 1.081

data sets of the cyclic loading experiments performed with various filler
concentrations. Once again, a simultaneous minimization technique is
sed and the results of the experiments with 8.3 vol.% and 5.5 vol.%
illers at a stretch rate of 0.2 s−1 and 0.6 s−1 are used as input data
for the optimization. This leads to a fit of the analytical solution to
the experiments as presented in the Figs. 6 to 9 while the identified
material parameters as given in Table 3

3.3. Identification of the electro-mechanical coupling parameters of particle
filled silicone

The identified mechanical parameters are now used as the basis for
the characterization of the electro-mechanical coupling parameters. For
electro-mechanical tests, the dimensions of the material samples have
to be increased for the application of sufficient amount of electric field.

Hence, it is not possible to find an analytical solution to the cyclic tests
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Fig. 9. Comparisons between the experimental results (x-marks) and the simulation (dashed lines) of cyclic loading–unloading experiments for Elastosil P 7670TM with various
iller contents at a stretch rate of 0.6 s−1.
nder an electro-mechanical load. Thus, the derived material model is
mplemented into a finite element code (Mehnert et al., 2017, 2018,
021). This numerical solution is then fitted to the experimental results
n order to obtain the electro-mechanical coupling parameters 𝛾, 𝛽𝑒 and
. The resulting fit is shown in Fig. 10 for the unfilled silicone and
ig. 11 for the particle filled material. The identified parameters are
= 4.41 ⋅ 10−14, 𝛽𝑒 = 4.375 ⋅ 10−13 and 𝑘 = 200.
The Figures show that the material model is capable of simulating

the general material response of both pure silicone and the particle
filled polymers. It should be emphasized that the response of this
non-homogeneous experiment in the case that no electric potential
difference is applied, relies solely on the material parameters identified
earlier. Due to the increased complexity during the fabrication and
the conduction of the experiments the simulation does not fit the
experimental results as closely as in the uniaxial case presented in the
previous sections. However, the quality of the fit is still satisfying and
can therefore be considered as a validation of the purely mechanical
material response. Considering the case that an electric field is applied
during the experiments, it can be seen that the simulation still replicates
the response of the material well. The identified values of the material
10

parameters are summarized in Table 4.
Fig. 10. Comparison between the experimental results (solid lines) and the simulation
(dashed lines) of cyclic loading–unloading experiments with unfilled Elastosil and a
stretch rate of 0.1s−1 with an applied electric voltage differences of 0 kV and 6 kV.
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Fig. 11. Comparisons between the experimental results (solid lines) and the simulation (dashed lines) with Elastosil filled with (left) 5.5 vol.% BaTiO3 and (right) 8.3 vol.% BaTiO3
at a stretch rate of 0.1 s−1 for electric voltage differences of 0 kV and 6 kV.
Table 4
Summary of the identified material parameters of the modeling approach for Elastosil
P 7670TM filled with BaTiO3 particles. Parameters 𝑐𝑖, 𝜇𝑣

𝑖 in N/mm2, 𝜏𝑖 in s, 𝛽𝑒 in
N/(Vmm)2, 𝛾 in N/V2.
Elastosil P 7670TM filled with BaTiO3 particles

Mechanical Base Parameters

Elastic Parameters

𝑐𝑒𝑙1 𝑐𝑒𝑙2 𝑐𝑒𝑙3
0.0458 −0.0012 9.9 ⋅ 10−5

Pseudo-Elastic Parameters

𝜇̂ 𝑟 𝑚 𝑎 𝑏
0.45 1.14 0.3427 0.42 4.564

Viscous Parameters

𝜇𝑣
1 𝜇𝑣

2 𝑐𝑣1 𝑐𝑣2 𝑐𝑣3
4.14 ⋅ 10−3 2.57 ⋅ 10−3 6.51 ⋅ 10−3 2.22 ⋅ 10−14 4.04 ⋅ 10−6

𝜏1 𝜏2 𝜏3
4.39 ⋅ 10−3 0.685 0.266

Particle Scaling Parameters

Elastic Scaling Parameters

𝑔𝑒𝑙1 𝑔𝑒𝑙2
2.81 ⋅ 10−2 −1.323

Viscous Scaling Parameters

𝑔𝑣1 𝑔𝑣2 𝑔𝜏1,1 𝑔𝜏2,1 𝑔𝜏1,2 𝑔𝜏2,2 𝑔𝜏1,3 𝑔𝜏2,3
4.267 0.405 −4.105 6.804 −4.105 6.804 6.794 1.081

Electro-Mechanical Coupling Parameters

𝛽𝑒 𝛾 𝑘
4.375 ⋅ 10−13 4.41 ⋅ 10−14 200

4. Deformation of a cylinder under thermo-electric loading

As a simple yet illustrative numerical example, we present the defor-
mation of a cylinder that is fixed in normal direction on one of its plane
faces and loaded by an electric potential difference between the fixed
and the opposing face, which results in a homogeneous deformation of
the geometry. The purpose of this numerical investigation is to present
the effects of the electric field on the mechanical response of the viscous
material. In contrast to the experiments presented in the preceding
sections where the material response was dominated by the imposed
mechanical deformation, the deformation of the cylinder is directly
induced by the application of an electric field. These calculations
11

are performed using the presented material model and the material
parameters identified in the previous sections. In order to link this
example to the experiments, the height of the investigated cylinder is
0.3 mm, as an approximation of the thickness of a material sample
of Elastosil at the maximum deformation of 200%. Furthermore, the
potential difference applied between the plane faces of the cylinder is
prescribed as 6 kV, which is the maximum potential difference applied
in the experimental investigations. The potential difference is linearly
increased over a specific ramp-up time 𝑡ramp and is reduced back to zero
over the same time to illustrate the viscous response of the material.
The results are computed using the finite element implementation of
the presented modeling approach.We assume that the geometry and
the boundary conditions of the example are symmetric in relation to
the center axis of the cylinder and the resulting deformation does
not lead to a displacement of the material perpendicular to the cross
section. Thus, the finite element model can be reduced to a quarter of
the cross section of the cylinder in form of a two-dimensional mesh.
This cross-section is a square with a side length of 0.15 mm and is
discretized with 64 four-node elements. A sketch of the geometry with
the prescribed boundary conditions and a plot of the simulated cross
section of the cylinder in the deformed state is presented in Fig. 12.
It should be noted that as the resulting deformation is comparatively
small, the result presented in the right plot is scaled by a factor of 2 and
the initial geometry of the cylinder is depicted with reduced opacity
for the sake of visibility. Now, a periodic loading of the cylinder is
assumed such that in each cycle the magnitude of the electric potential
difference is increased to the maximum value and then decreased to
zero. The resulting normal displacement of the center of the top surface
of the cylinder is depicted in Fig. 13 for five cycles and various loading
conditions.

The response of the cylinder illustrates both the effects of the
addition of particles and the characteristics of the selected material
model. Initially we will focus on the response of the unfilled silicone
presented in the left plot of Fig. 13. It can be seen that the cylinder
does not return to its initial configuration after the first cycle due to
the viscous stress contributions. However, in the following cycles the
cylinder returns almost exactly to the state at the beginning of the
respective cycle, showing that the viscous characteristics of the unfilled
material influence the overall response only slightly. This is emphasized
even further by the fact that the ramp-up time has only a meager effect
on the maximum displacement of the cylinder. When compared to the
displacement of the filled material as shown in the right plot of Fig. 13,
it is clearly visible that the addition of particles with a high dielectric
constant leads to a distinctly more pronounced displacement. As before,

the cylinder does not return to its initial configuration after the end of
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Fig. 12. (left) A sketch of the model geometry with prescribed boundary conditions. (right) Resulting deformation of the cross section under thermo-electric loading for a ramp-up
ime of 103 s at reference temperature, deformation scaled by a factor of 2.
Fig. 13. Displacement of the center of the top surface of a cylinder of (left) pure Elastosil and (right) Elastosil filled with 8.3 vol.% BaTiO3 particles for different ramp-up times
f the electric field.
c
p
p
t
t
s

he first cycle due to the viscous stress. However, now it can be seen
hat the viscous characteristics of the compound have a very distinct
nfluence on the material response. First, the response is much more
ronounced when the electric field is increased over a longer period
f time as the elastic contributions are dominating the response. When
he ramp-up time is reduced on the other hand, the displacement is
educed significantly as the viscous contributions start to dominate the
aterial response. Second, a close analysis of the displacement of the
ylinder at the end of each cycle shows that this deformation increases
ith each cycle adding a viscous contribution to the deformation.
Taken together, for the application of this type of silicone, it is

rucial to consider the desired rate of deformation. Even though the
ddition of BaTiO3 particles leads to an increase of the effect of the
lectric field on the material, the resulting deformation is markedly
ominated by the deformation rate and can drastically impact the
ealized deformation.

. Conclusion and outlook

In this contribution, a numerical modeling approach for the simu-
ation of particle filled dielectric elastomers under combined electro-
echanical loading was presented. The proposed model was specified
or the viscoelastic silicone Elastosil P 7670TM filled with Barium-
itanate particles. In combination with the experimental results pre-
ented in Part I of this sequel, all relevant material parameters ap-
earing in the constitutive model were identified here. For the replica-
ion of the mechanical experiments, analytical solutions were derived
hereas in the case of an electro-mechanical load, the solution was
12
alculated using an electro-mechanically coupled finite-element im-
lementation.In our future work, we plan to combine the approach
roposed herein with homogenization techniques in order to reduce
he number of fitting parameters and analyze the interactions between
he silicone and the filler particles in more detail similar to the recent
tudies shown in Ghosh et al. (2021).
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