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1. Introduction

We study conformal immersions f: M — S from a Riemann surface M into the 3-sphere that are critical
points of the Willmore energy

W(f) = /(H2 +1)dA

M

under conformal variations. Here we denote by H is the mean curvature and dA is the induced area form of
f. Geometrically speaking W measures the roundness of a surface, physically the degree of bending, and in
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Fig. 1. The vertical stalk represents the family of homogenous tori, starting with the Clifford torus at the bottom. Along this
stalk are bifurcation points at which the embedded Delaunay tori appear along the horizontal lines. The rectangles indicate the
conformal types. Images by Nicholas Schmitt.

biology W appears as a special instance of the Helfrich energy for cell membranes. The conformal constraint
augments the Euler-Lagrange equation by a holomorphic quadratic differential w € H°(K3,) paired with
the trace-free second fundamental form A of the immersion

AH42HH? +1-K)=<w,A >,

see [3]. The first examples of constrained Willmore surfaces are given by surfaces of constant mean curvature
in a 3-dimensional space form. In this case the critical surface is isothermic: the holomorphic quadratic
differential is no longer uniquely determined by the immersion leading to a singularity of the moduli space.
Since there are no holomorphic quadratic differentials on a genus zero Riemann surface, constrained Willmore
spheres are the same as Willmore spheres. For genus g > 1 surfaces this is no longer the case: constant
mean curvature (CMC) surfaces (and their Mobius transforms) are constrained Willmore, as one can see
by choosing w = A to be the holomorphic Hopf differential, but not Willmore unless the surface is totally
umbilic. In the case of M = T? being a torus Bohle [2], partially motivated by the manuscript of Schmidt
[20], showed that all constrained Willmore tori arise from linear flows on Jacobians of finite genus spectral
curves. Starting at the Clifford torus, which has mean curvature H = 0 and a square conformal structure,
these surfaces in the 3-sphere limit with monotone and unbounded mean curvature to a circle and thereby
sweeping out all rectangular conformal structures. Less trivial examples come from the Delaunay tori of
various lobe counts in the 3-sphere whose spectral curves have genus 1 (see Fig. 1). By the solution of
the Lawson and the Pinkall-Sterling conjecture, due to Brendle [4] and Andrews & Li [1] using Brendle’s
approach, those are the only embedded CMC tori in the 3-sphere.

Existence and regularity of a minimizer f: T2 — S3 in a given conformal class for any genus was shown
by Kuwert and Schétzle [12] under the provision that the infimum Willmore energy W(f) is below 8. This
restriction is used to rule out minimizers with branch points. Similar results were proven by Riviere [19]
using the divergence form of the Euler-Lagrange equation. Parallel to the solution of the Willmore conjecture
Ndiaye and Schétzle [16,15] showed that for rectangular conformal classes (0,b) in a neighborhood of the
square conformal class (0,1) the homogenous tori ffi, (whose spectral curves have genus 0) are the unique
minimizers for the constrained Willmore problem. In [7,8] minimizers of the Willmore energy with conformal
class lying in a suitable neighborhood (of the Teichmiiller space) of the square class have been identified
to be equivariant. As a corollary we obtain the real analyticity of the minimal Willmore energy w(a,b) for
b~1b+#1and a ~ 0". Furthermore, we obtain in this region that the minimal energy is C° but not
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C! at rectangular conformal classes. In particular, using the same arguments as in [16] together with [14,
Corollary 6], the homogenous tori f¢ with b ~ 1 uniquely minimize the penalized Willmore energy

W, =W — oll!

1
2
from the space of immersions to the Teichmiiller space, which we identify with the upper half plane, and

among immersions of conformal class (a,b), with a < =, if @ > 0 is small enough. Here II is the projection
IT' denotes its first component.

The homogeneous tori of revolution eventually have to fail to be minimizing since their Willmore energy
can be made arbitrarily large. Calculating the 2nd variation of the Willmore energy W along tori of revolution
with circular profiles Kuwert and Lorenz [11] showed that negative eigenvalues appear at those conformal
classes (0, by—2) whose rectangles have side length ratio vk2 — 1 for k > 2. These are exactly the rectangular
conformal classes from which the k-lobed Delaunay tori (of spectral genus 1) bifurcate and the corresponding
homogenous torus is of Index 2(k — 2). Any of the families f? starting from the Clifford torus, following
homogenous tori to the k-th bifurcation point, and branching to the k-lobed Delaunay tori which limit to
a neckless of spheres, sweep out all rectangular conformal classes (see Fig. 1). The Willmore energy varies
strictly monotonically along the family between 272 < W < 4rk as b varies from 1 to oo, see [10,9]. For k = 2
we obtain an immersion with Willmore energy below 87 for every rectangular conformal class satisfying
the energy bound in [12] showing the existence of an embedded minimizer in all these conformal classes.
Thus it is conjectured that f¢ minimizes the Willmore energy for rectangular conformal classes (0, b) in all
codimensions.

In this paper we prove the necessary condition for the conjecture to hold in 3-space:

Theorem 1. The family of 2-lobed Delaunay tori f° are constrained- Willmore-stable for all b € R>q. More-
over, the kernel dimension of the stability operator is at most 1 (up to invariance) for b > by and reduces
to a variation ¢ of the underlying curve. In particular,

S (f*) (0, ) = 0.

Remark 1. This theorem guarantees that variants of the implicit function theorem, as carried out in [16]
and [7], can be applied to show that all solutions of the Euler-Lagrange equation W42-close to f* with
II'-Lagrange multiplier 0 < a < o, coincides with the f°, if f° is stable for W,s.

The strategy to prove Theorem 1 is as follows. By construction the (2-lobed) Delaunay tori f* are
rotational symmetric, i.e., given by the rotation of a closed curve in the upper half plane. In this case the
surface being constrained Willmore is equivalent to its profile curve being a critical point of the elastic
energy £ in the upper half plane equipped with the hyperbolic metric. Therefore, the second variation of f°
splits into two components, one obtained from an infinitesimal deformation of the profile curve 7*(z) and
the other from the deformation of the (orthogonal) equivariance direction y, i.e.,

S Wan (f°) = 62Eg + Q,

where 52551, is “tensorial” in the equivariance direction. Due to the M&bius invariance of the Willmore
functional, normal variations arising from the deformation of the surface by a family M&bius transformations
lie in the kernel of its stability operator. For Delaunay tori in S® the space of these Mdbius variations is
9-dimensional, as the (tangential) equivariance direction is given by a family of M&bius transformations.
We first show the stability of the profile curve 4° in section 2.1. This is due to the fact that +* minimizes
the elastic curve energy with prescribed length. The kernel is hereby 3-dimensional which corresponds to
infinitesimal isometries of the hyperbolic plane. The second component Q is computed in Lemma 2 and we
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show that the space of directions for which Q is not strictly positive is 6-dimensional. Putting everything
together, the space for which (52W5b is not strictly positive is at most 9-dimensional and hence it must
coincide with the space of Mbius variations. Therefore, this shows that f? is strictly stable up to invariance.

Acknowledgments. The first author is supported by the DFG within the SPP 2026 Geometry at Infinity,
and the second author is supported by RT'G 1670 Mathematics inspired by string theory and quantum field
theory funded by the DFG. The third author was partially supported by NSF grant DMS-2000164.

2. Constrained Willmore stability of the 2-lobe family

We show that the 2-lobed Delaunay tori f* (b # by) are stable as constrained Willmore surfaces. For
b < by the surface f° is strictly stable [11]. At b = by the stability operator has a 2-dimensional kernel
spanned by

=cos(2z)ii*® and @ = sin(2z)A%, 2.1
4 4

where z is the parameter of the profile curve and 7% is the normal of f%0. Thus in order to prove Theorem 1,
it suffices to show the stability (up to invariance) of the second variation of W at f° for b > by.

For b > by the surface f° arises by rotating its profile curve — an arc length parametrized elastic curve
~? in the upper half plane H? given by

H? = {(u,v) € R? | v > 0}

— considered as the hyperbolic plane — around the u-axis. The arc length parametrized closed curve ~4? is
given by

7P x € R/27DZ — (u(x),v(x)),
with L = 27b being its length. It satisfies
o' (2)? + 0/ (2)? = v(x)>

The oriented unit normal in #H? is given by

_ o) 0
Mg = —v'(m)% + u'(m)%

Instead of the Euclidean 3-space R?, we consider f® mapping into the subspace H? x S' ¢ R? C S3 with
conformally equivalent metric

9= H(du®du+dv®dv)+de® de,

with singularities for v = 0. In these coordinates the corresponding conformally parametrized torus of
revolution has a particularly simple form

P M =R/2mbZ x R/27Z — H? x SY; (x,y) — (u(z),v(x),y)

with v(z) > 0 for all z. This defines a conformal immersion into R?* C $3. The fibers of the surface, i.e., the
curves given by
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y = f(zo,y)

for a fixed zo € R/27b, are geodesics with respect to g.
The Willmore functional as specified in [5] is given by

W) = [ - Gaa

M

where H is the mean curvature, G is the determinant of the second fundamental form (both with respect to
the induced metric), and dA is the induced area form. With this definition W is invariant under conformal
changes of the ambient metric. We use g to compute the Willmore functional and its derivatives.

Since f° is an isometric immersion and the fibers are geodesics we obtain

H:%n, G=0, and dA=dzAdy,

with x = x(z) being the geodesic curvature of 4* in the hyperbolic plane. Thus the conformal invariance of
the Willmore functional gives:

2mb

W) = [ M = dn [ was = dneo),
T2 0

and & is the elastic energy functional of curves in H2.
2.1. Variation of the profile curve

Consider normal variations

(z,y) = p(z,y)i,y (2, y),

where 7, is the unit length normal field of the surface with respect to g. For every fixed yo we have that
7330 = f%(z,yo) is an arc length parametrized elastic curve in #2, and ®(x, o) is a normal variation of the
curve 750.

Since the Willmore functional of the surface W(f?) is the energy functional £ of the curve 'ygo and the
conformal constraint corresponds to the length constraint on curves [17], we have that the second variation
satisfies for every yo € R/27Z

3 W (f*) (o (, y0)iig (2, 9)) = 6°E (1) (2(, 90)) — B°82L(7")(®(x, o))

(2.2)
=: (525517 ('Yyo)(q)(mv yO))7

where (° is the Lagrange multiplier of f° (in the non-degenerate direction I12), and £ is the length functional

of curves in H?2.

Lemma 1. Let f° be the 2-lobed Delaunay torus with conformal class (0,b) and v° the corresponding elastic
curve in H?. Then

52Ep0 (19, )(®(2,90), ®(2,90)) > 0

for normal variations ® preserving the length constraint. Moreover, for b > by the kernel of (52551, s at most
1-dimensional modulo the isometries of H2.
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Proof. For L = 27wb > 0 fixed, consider the minimization problem
inf {€(7) | v is a closed curve in H? with length L }.

The minimum is attained by an elastic curve i, [13] for which

525ﬁb (’Ymin)(q)(x7 yO)v (I)(.’E, yO)) > 0.

Rotating Ymin We obtain an embedded and isothermic constrained Willmore torus f™ in $2. The Will-
more energy of f™" must be below 87, by using f° (or 7°) as competitor. Thus by [6, Theorem 1] and [18],
fminis CMC in S2. The classification of embedded CMC tori [4,1] and [10] shows that f™* = £ for the
respective b > 1 up to invariance. Therefore, we have Yyin = 7 up to isometry.

Since 6285b > 0, kernel elements consists of eigenvectors with respect to eigenvalue 0 of 525Bb. This gives
rise to a 4th order linear ODE, see [13], which has at most 4-dimension worth of solutions, three of which
corresponds to the 3-dimensional space of isometries of 2. Thus up to invariance of the equation the kernel
is at most one-dimensional. O

Remark 2. The Willmore energy of £ is shown to be monotonically increasing [10]. The Lagrange multiplier
of f* (which corresponds to its constant mean curvature in S%) is shown to be strictly increasing for b < b
and strictly decreasing for b > by [10].

2.2. General variations

In order to compute the full second variation 52W5b, we first explicitly parametrize a normal variation
F} of fb compute the first and second fundamental form and then determine the Taylor expansion of the
Willmore energy at ¢ = 0 to the second order. The second order term is then

d 2
(45) 1eoW(FD) = DW)0: P2, 0, )+ DWIER, FY).

A short computation shows that the following holds for a variation F} of a constrained Willmore torus:
2 b b H2772 b b (4 ’ 2/ b
DW (9, FY) = =" DI (0, I 01 ) + B dt |e=o(II°(£7)).
A constrained Willmore torus is stable for W if

d\2
— ) Je=oW(EP) >0

(&) teowiet) >

for all variations F? preserving the conformal type. Therefore,

(%)2 oo (2 (F2) = 0,

where II? is the second component of the projection map II from the space immersions to the Teichmiiller
space. To determine whether a surface is stable we will show that

(%) o W(F) — 6" (%) o (T2 (FD)) > 0 (23)
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for all variations Ftb.
Similar arguments as in Section 2.1 show that (52W5b = §2W + 262112 can be decomposed into

5 Weo (f°) = 620 + Q,
where (526’5b is tensorial in y, i.e., for normal variations of the form
@(z,y) = p(x)q(y)ii
we have
32Egn (f*)(@(x,y), ®(w,y)) = 8*Egn (f°) (p(2)7Tg, p()7i5)d” (y)-

The term Q in this decomposition has no Oth order term in y. We want to show that Q is strictly
positive unless the normal variation given by ¢ is a Md&bius variation. Together with Lemma 1 this implies
Theorem 1. We further split Q with respect to (2.3)

Q=091+
where Q; corresponds to (%)2 li—oW(F?) and Qs corresponds to (%)2 le=o(II2(FY)).
2.3. Explicit formulas
For the 2-lobed Delaunay torus f consider normal variations determined by
O(z,y) = p(z,y)iy,
for a function ¢: T? = R, i.e.,
t T2 = HP x S (2,y) = (u(@) — to' (2)p(, y), v(z) + tu' (2)¢(2, ), ).

F} is an immersion for every t ~ 0, although F} is generally not conformal for ¢ # 0.
For t ~ 0 the induced family of metrics g; of F{’ on the torus

T? =R/(2nbZ) x R/(277Z)
are given by:
gt = dz @ dy + dy @ dy + t(adr @ dx) + t*(Bdr @ dz + y(dr @ dy + dy ® dz) + ddy @ dy) + ...,
where
a = —2Kp

v'2 2
B=¢i + 10"+ 0"+ — (' + ' 0p,)
(2.4)

/

Y= E‘Pyﬁo + Pz py
(52(,03.

The volume forms are dA; = y/det(g;), and the second fundamental form at ¢t = 0 is given by
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1, = <g 8) . (2.5)

The equation for the geodesic curvature x of 4° gives
and v’ (z) = u/(z)k(z) —

2.8.1. The second derivative of W(F?)
We expand the real function ¢ +— W (F?) at t = 0 up to second order. For convenience, the dependencies of

the involved functions are suppressed, and @, := g—‘;, .... Then a lengthy but straightforward computation
shows that
1
DWy(p) := \t 0o W(F}) = 71/ (26" + K* — 2K) o dx A dy
M

and the second derivative splits into

d\2

( ) li=oW(F, /A+Q1 )@ dx A dy,
M

where A tensorial in y (in the above sense) and Q; is given by
Qi(p) = (%’{2 +3) Pyy + 1Pyuyy T 3Prayy- (2.6)

2.8.2. Second derivative of the conformal type
We compute the change of the induced conformal structure for normal variations. The Teichmiiller space
of Riemann surfaces of genus 1 is parametrized by the modulus 7

w
aq

fazw

for a non-zero holomorphic 1-form w and an appropriate choice a1, as of generators of the first fundamental

T =

group such that Im7 > 0. In the following, we choose ay, a such that
1
TE{CG(C——<Rec< Imc>Occ>1} (2.7)

Consider a family of 1-forms with respect to the metric g; (given by (2.4))

wy =dz + idy + t ((9

B + p) dx + ipdy)

1 1 1.1
+ 2 (<—§a2+§ﬁ+iv—§5+ §ozp+q> dl‘+iqdy> (2.8)

1
=(1+tp+t3q)dz+ t%dw + 2 (——

1 1 1
8a2 + 56—1—2’7— 554— iap> dx

for arbitrary functions p,q: 7% — C. Let J; be the rotation by 5 of g¢, then

wat = iwt + O(tB)
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Hence, w; is a (1,0)-form up to second order in ¢. We want to determine the functions p and ¢ such that w;
is closed (hence holomorphic) up to second order in ¢.
In first order we obtain the equation

d(p dz) = —d % Adz = —z% dz A dz.
The change of conformal type is given by the change of the ratio of the periods of w; along the generators
(27b,0) and (0, 27)

of 71 (T?). Tt is most convenient to choose a function p such that the integral of w; along (0,27) € 71 (T?)
is independent of ¢. This can be achieved to first order by choosing a solution p of the equation

ap = 4% dz (2.9)

that is perpendicular (with respect to the L? inner product of the area form %dz A dZ) to the constant
functions. In this case there exists a unique solution of (2.9) by Serre-duality since

/ay dzNdz=0
by Stokes. In fact, we then obtain
/ pdz =1 / pdy = L/pd;v/\dyzo,
2mh
(0,27) (0,27) T2

where the second to last equality is due to Fubini and the fact that
pdz+ % dx

is closed. Hence, due to (2.7) the change of conformal type of g; is given by

g b @ 2
me=bitio / (2 d:z:+pdz)+0(t ).
(27b,0)

Note that
« i « B ) « _ 1
/ (gdx—kpdz)—ﬂ/(§+p)dz/\dZ—%/gdz/\dz'—%/adz/\dy
(2mb,0) T2 T2 T2

is real as « is real. Also note that we are only interested in normal variations which do not change the
conformal type in first order, i.e. we impose that

1 1

O:—/adx/\dyz——/mgadx/\dy. (2.10)

27 s
T? T2

To compute the change of the conformal type to second order, we proceed as for the first order variation
and take the unique solution ¢: T? — C of
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= 0 1 _
0q = — o? + ﬁ+7——5+ Zap dz
oy 8

perpendicular to the constant functions. Analogously to the first order computations, and under the con-
formal constraint (2.10), the conformal type of the induced metric g; changes in second order as

A i 1, 1. 1. 1
(dt) |t:07—t*; / (804 +25+Z’Y25+204P>d$7

(27b,0)

which gives us (using the first order constraint and (2.4))

T —bz+t2—/(——a + ﬁ+m——5+1ap> dx A dy + O(t%)

/2

145 1,
5 ¥ — 5Pyt PPs T e | duAdy (2.11)

—bz+t2i/( Reap—s-—mp + 5

1 v

2 3

—t 12 <2Imap+ v<p<py+4pxg0y) dx ANdy + O(t”).
T2

Note that only the real part is relevant for us as we are only interested in the imaginary part of the
change of the modulus 7, and that the functions w, v, k, ¢ are real-valued. We still need to analyze

/ %ap dx A dy.

Recall that p is the unique solution of dp = fz'%ydé perpendicular to the constants.
Hence, for
a=—2kp = Z (a’fl cos Iz cos ky + ab' cos la sin ky + a’§l sin Iz cos ky + ak! sin Iz sin k:y)
k,%eN
we have
i
i §Vy
where
ik
V= Z <—]€2—+12(a1fl coslz sin ky — ak' coslax cos ky + a’gl sin [z sin ky — a4 sin l2 cos ky)> .
k,l-beN;E>0

Using Fubini and integration by parts together with
/0052 Iz cos® kydx A dy = /sin2 Iz sin? kydz A dy = 72b
T2 T2
(independently of k € N,1/b € N), we obtain
R 1 de Ady | = _7r_2b k_z ki Kl Kl kl\2
e QP dr Ady | = Z k2+l2((a1)+(a’2) +(a3)? + (af')?) . (2.12)

4

2 k,%eN;k>0
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Putting all terms together we have

<jt>2|t oII*(Fy) = /(B—i— Qa(p)) ¢ dx N dy,

T2
for some B tensorial in y and with
Qa(yp) = %‘Pyy + %Ka

where

< K(p), g >1o= / Re(ap(p)) = —2 / ko Re(p()).

T2 T2

a = —2kp, and p = p(yp) is determined by (2.9).
Remark 3. Note that
§°Eg = A+ B.
2.4. Final estimates
Lemma 2. Let f° be the 2-lobed Delaunay torus of conformal type (0,b) and

Q:(%HQ"" )82 +483yyy+%8iwyy —p° (%“pyy+%K)’

where k = k(x) is the geodesic curvature of the profile curve v°. Then we have for ¢ : T? — R

(Qlp), @)z > 0

if p(xo,y) L2 sin(y), cos(y) for all xg € R/27bZ.
Proof. Since (K (p),¢)z2 <0 and 3° > 0, it suffices to show the positivity of

O=(3s2+4-1pY02, +10,,,, +10;

4 7 Yyyyy TTYY *

We expand ¢ with respect to the Fourier basis along the imaginary period of T2, i.e

*

p = @i(x)cos(ly) + @i(x) sin(ly)
leZ

for periodic real-valued functions ¢; and ;. In gy, the Fourier basis elements are perpendicular with respect
to (Q(.),.) 2, therefore it suffices to show positivity for elements of the form

¢ = pi(z)sin(ly),

for which we compute:

(O(¢), @) = / (- (A2 41— PP 4 1 2de + 12 / (05 o1(2))2ds. (2.13)
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In order to show positivity, we first need a point-wise estimate on x2. The profile curve 4° is an orbit-like
elastic curve, i.e., it satisfies the ODE

K+ 3+ (= 1)k =0
with p = —3°, and the 4th order polynomial
Pyi=1k"+ (- 1)r*+v
has 4 real roots. For u fixed the value of x is bounded by the biggest of the 4 roots of P;. This gives
K2 <4 —4p.
Therefore, we obtain for [ > 2 positivity of Q. O

Lemma 3. Let f be the 2-lobed Delaunay torus of conformal type (0,b), then the pseudo differential operator
Q has a 4-dimensional kernel.

Proof. Without loss of generality we restrict to the space of functions
{0 = f(z)cos(y) + g()sin(y) | f,9 € WH*(R/27b)}.
Define
Q' =~ (4 ) +} - 30— (14 K).
For ¢ = f(x) cos(y) + g(x) sin(y)
p € Ker@Q
is equivalent to
f,g € KerQ!,
and it remains to show that KerQ' is 2-dimensional. We consider the equation
Q'(f) =0, with f=f(x)e W"(R/2nD).
Since x > 0 for orbit-like curves, we can divide by k and consider the equation
0= & (bt = 3+ 308, —35") S+ PPP(-21).

with

P Z ajcos(lz) + by sin(lz) | = — Z H%(al cos(lz) + by sin(lx))
I, 1-beN I, 1-beN

instead.
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The operator

2
he Wh2(S1) — (d—

dx?

“1)newrs)

is injective and surjective (by the Fredholm alternative). Therefore, for f € KerQ! there exists a unique

h € W42 such that
d2

Then,

1
0=— (—ir* =14+ 102, —1p%) f+ B°P(—2kf)
1 1,2 1 1 92 10b) 1 d2 b d2 (214)

A short computation shows that

d? )
Po (@ — 1) = ld.
Therefore, (2.14) is a 4th order ordinary differential equation (on the function h). Thus, when ignoring

periodicity, its solution space is 4-dimensional. Two of which are given by non-periodic solutions and spanned
by

h =sinh(z) h = cosh(x).

Hence, at most a 2-dimensional subspace of solution is well-defined on R/27b. By considering the in-
finitesimal Moebius transformations we obtain that the space of global solutions is exactly 2-dimensional,
proving the lemma. O

Proof of Theorem 1. Due to Lemma 2 and the actual form of the second variation operator it remains to
consider the case [ = 1. The space of infinitesimal Mébius variations normal to f° is 9-dimensional for
b > by, consisting of a 3-dimensional subspace of 0 Fourier mode in y, and a 6-dimensional subspace of
Fourier mode 1 in y. This 6-dimensional space corresponds to the non-positive directions of Q as can be
seen as follows: For b < by a straightforward computation shows that the kernel of Q is 4 dimensional and
it has 2 negative directions, all of which giving rise to M&bius variations. Because the kernel dimension of
Q remains 4-dimensional for all f* by the previous lemma (and because of the spectral properties of Q)
the space of non-positive directions of Q remains 6 dimensional for all f°, which corresponds exactly to the
Mébius variations. O
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