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1. Introduction

We study conformal immersions f : M → S3 from a Riemann surface M into the 3-sphere that are critical 

points of the Willmore energy

W(f) =

∫

M

(H2 + 1)dA

under conformal variations. Here we denote by H is the mean curvature and dA is the induced area form of 

f . Geometrically speaking W measures the roundness of a surface, physically the degree of bending, and in 
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Fig. 1. The vertical stalk represents the family of homogenous tori, starting with the Clifford torus at the bottom. Along this 
stalk are bifurcation points at which the embedded Delaunay tori appear along the horizontal lines. The rectangles indicate the 
conformal types. Images by Nicholas Schmitt.

biology W appears as a special instance of the Helfrich energy for cell membranes. The conformal constraint 

augments the Euler-Lagrange equation by a holomorphic quadratic differential ω ∈ H0(K2
M ) paired with 

the trace-free second fundamental form Å of the immersion

�H + 2H(H2 + 1 − K) = < ω, Å >,

see [3]. The first examples of constrained Willmore surfaces are given by surfaces of constant mean curvature 

in a 3-dimensional space form. In this case the critical surface is isothermic: the holomorphic quadratic 

differential is no longer uniquely determined by the immersion leading to a singularity of the moduli space. 

Since there are no holomorphic quadratic differentials on a genus zero Riemann surface, constrained Willmore 

spheres are the same as Willmore spheres. For genus g ≥ 1 surfaces this is no longer the case: constant 

mean curvature (CMC) surfaces (and their Möbius transforms) are constrained Willmore, as one can see 

by choosing ω = Å to be the holomorphic Hopf differential, but not Willmore unless the surface is totally 

umbilic. In the case of M = T 2 being a torus Bohle [2], partially motivated by the manuscript of Schmidt 

[20], showed that all constrained Willmore tori arise from linear flows on Jacobians of finite genus spectral 

curves. Starting at the Clifford torus, which has mean curvature H = 0 and a square conformal structure, 

these surfaces in the 3-sphere limit with monotone and unbounded mean curvature to a circle and thereby 

sweeping out all rectangular conformal structures. Less trivial examples come from the Delaunay tori of 

various lobe counts in the 3-sphere whose spectral curves have genus 1 (see Fig. 1). By the solution of 

the Lawson and the Pinkall-Sterling conjecture, due to Brendle [4] and Andrews & Li [1] using Brendle’s 

approach, those are the only embedded CMC tori in the 3-sphere.

Existence and regularity of a minimizer f : T 2 −→ S3 in a given conformal class for any genus was shown 

by Kuwert and Schätzle [12] under the provision that the infimum Willmore energy W(f) is below 8π. This 

restriction is used to rule out minimizers with branch points. Similar results were proven by Riviere [19]

using the divergence form of the Euler-Lagrange equation. Parallel to the solution of the Willmore conjecture 

Ndiaye and Schätzle [16,15] showed that for rectangular conformal classes (0, b) in a neighborhood of the 

square conformal class (0, 1) the homogenous tori f b
H (whose spectral curves have genus 0) are the unique 

minimizers for the constrained Willmore problem. In [7,8] minimizers of the Willmore energy with conformal 

class lying in a suitable neighborhood (of the Teichmüller space) of the square class have been identified 

to be equivariant. As a corollary we obtain the real analyticity of the minimal Willmore energy ω(a, b) for 

b ∼ 1, b �= 1 and a ∼ 0+. Furthermore, we obtain in this region that the minimal energy is C0 but not 
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C1 at rectangular conformal classes. In particular, using the same arguments as in [16] together with [14, 

Corollary 6], the homogenous tori f b
H with b ∼ 1 uniquely minimize the penalized Willmore energy

Wα := W − αΠ1

among immersions of conformal class (a, b), with a ≤ 1
2 , if α > 0 is small enough. Here Π is the projection 

from the space of immersions to the Teichmüller space, which we identify with the upper half plane, and 

Π1 denotes its first component.

The homogeneous tori of revolution eventually have to fail to be minimizing since their Willmore energy 

can be made arbitrarily large. Calculating the 2nd variation of the Willmore energy W along tori of revolution 

with circular profiles Kuwert and Lorenz [11] showed that negative eigenvalues appear at those conformal 

classes (0, bk−2) whose rectangles have side length ratio 
√

k2 − 1 for k ≥ 2. These are exactly the rectangular 

conformal classes from which the k-lobed Delaunay tori (of spectral genus 1) bifurcate and the corresponding 

homogenous torus is of Index 2(k − 2). Any of the families f b
k starting from the Clifford torus, following 

homogenous tori to the k-th bifurcation point, and branching to the k-lobed Delaunay tori which limit to 

a neckless of spheres, sweep out all rectangular conformal classes (see Fig. 1). The Willmore energy varies 

strictly monotonically along the family between 2π2 ≤ W < 4πk as b varies from 1 to ∞, see [10,9]. For k = 2

we obtain an immersion with Willmore energy below 8π for every rectangular conformal class satisfying 

the energy bound in [12] showing the existence of an embedded minimizer in all these conformal classes. 

Thus it is conjectured that f b
2 minimizes the Willmore energy for rectangular conformal classes (0, b) in all 

codimensions.

In this paper we prove the necessary condition for the conjecture to hold in 3-space:

Theorem 1. The family of 2-lobed Delaunay tori f b are constrained-Willmore-stable for all b ∈ R≥1. More-

over, the kernel dimension of the stability operator is at most 1 (up to invariance) for b > b0 and reduces 

to a variation ϕ of the underlying curve. In particular,

δ2Π1(f b)(ϕ, ϕ) = 0.

Remark 1. This theorem guarantees that variants of the implicit function theorem, as carried out in [16]

and [7], can be applied to show that all solutions of the Euler-Lagrange equation W 4,2-close to f b̄ with 

Π1-Lagrange multiplier 0 ≤ α < αb, coincides with the f b, if f b̄ is stable for Wαb .

The strategy to prove Theorem 1 is as follows. By construction the (2-lobed) Delaunay tori f b are 

rotational symmetric, i.e., given by the rotation of a closed curve in the upper half plane. In this case the 

surface being constrained Willmore is equivalent to its profile curve being a critical point of the elastic 

energy E in the upper half plane equipped with the hyperbolic metric. Therefore, the second variation of f b

splits into two components, one obtained from an infinitesimal deformation of the profile curve γb(x) and 

the other from the deformation of the (orthogonal) equivariance direction y, i.e.,

δ2Wβb(f b) = δ2Eβb + Q,

where δ2Eβb is “tensorial” in the equivariance direction. Due to the Möbius invariance of the Willmore 

functional, normal variations arising from the deformation of the surface by a family Möbius transformations 

lie in the kernel of its stability operator. For Delaunay tori in S3 the space of these Möbius variations is 

9-dimensional, as the (tangential) equivariance direction is given by a family of Möbius transformations.

We first show the stability of the profile curve γb in section 2.1. This is due to the fact that γb minimizes 

the elastic curve energy with prescribed length. The kernel is hereby 3-dimensional which corresponds to 

infinitesimal isometries of the hyperbolic plane. The second component Q is computed in Lemma 2 and we 
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show that the space of directions for which Q is not strictly positive is 6-dimensional. Putting everything 

together, the space for which δ2Wβb is not strictly positive is at most 9-dimensional and hence it must 

coincide with the space of Möbius variations. Therefore, this shows that f b is strictly stable up to invariance.

Acknowledgments. The first author is supported by the DFG within the SPP 2026 Geometry at Infinity, 

and the second author is supported by RTG 1670 Mathematics inspired by string theory and quantum field 

theory funded by the DFG. The third author was partially supported by NSF grant DMS–2000164.

2. Constrained Willmore stability of the 2-lobe family

We show that the 2-lobed Delaunay tori f b (b �= b0) are stable as constrained Willmore surfaces. For 

b < b0 the surface f b is strictly stable [11]. At b = b0 the stability operator has a 2-dimensional kernel 

spanned by

ϕ = cos(2x)�nb0 and ϕ̃ = sin(2x)�nb0 , (2.1)

where x is the parameter of the profile curve and �nb0 is the normal of f b0 . Thus in order to prove Theorem 1, 

it suffices to show the stability (up to invariance) of the second variation of W at f b for b > b0.

For b > b0 the surface f b arises by rotating its profile curve – an arc length parametrized elastic curve 

γb in the upper half plane H2 given by

H2 = {(u, v) ∈ R
2 | v > 0}

– considered as the hyperbolic plane – around the u-axis. The arc length parametrized closed curve γb is 

given by

γb : x ∈ R/2πbZ �→ (u(x), v(x)),

with L = 2πb being its length. It satisfies

u′(x)2 + v′(x)2 = v(x)2.

The oriented unit normal in H2 is given by

�ng = −v′(x)
∂

∂u
+ u′(x)

∂

∂v
.

Instead of the Euclidean 3-space R3, we consider f b mapping into the subspace H2 × S1 ⊂ R
3 ⊂ S3 with 

conformally equivalent metric

g = 1
v2 (du ⊗ du + dv ⊗ dv) + dϕ ⊗ dϕ,

with singularities for v = 0. In these coordinates the corresponding conformally parametrized torus of 

revolution has a particularly simple form

f b : M = R/2πbZ × R/2πZ −→ H2 × S1; (x, y) �−→ (u(x), v(x), y)

with v(x) > 0 for all x. This defines a conformal immersion into R3 ⊂ S3. The fibers of the surface, i.e., the 

curves given by
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y �→ f(x0, y)

for a fixed x0 ∈ R/2πb, are geodesics with respect to g.

The Willmore functional as specified in [5] is given by

W(f) =

∫

M

(H2 − G)dA

where H is the mean curvature, G is the determinant of the second fundamental form (both with respect to 

the induced metric), and dA is the induced area form. With this definition W is invariant under conformal 

changes of the ambient metric. We use g to compute the Willmore functional and its derivatives.

Since f b is an isometric immersion and the fibers are geodesics we obtain

H = 1
2κ, G = 0, and dA = dx ∧ dy,

with κ = κ(x) being the geodesic curvature of γb in the hyperbolic plane. Thus the conformal invariance of 

the Willmore functional gives:

W(f b) =

∫

T 2

H2
R3dAR3 = 1

4π

2πb
∫

0

κ2ds = 1
4πE(γ),

and E is the elastic energy functional of curves in H2.

2.1. Variation of the profile curve

Consider normal variations

Φ(x, y) = ϕ(x, y)�ng(x, y),

where �ng is the unit length normal field of the surface with respect to g. For every fixed y0 we have that 

γb
y0

= f b(x, y0) is an arc length parametrized elastic curve in H2, and Φ(x, y0) is a normal variation of the 

curve γb
y0

.

Since the Willmore functional of the surface W(f b) is the energy functional E of the curve γb
y0

and the 

conformal constraint corresponds to the length constraint on curves [17], we have that the second variation 

satisfies for every y0 ∈ R/2πZ

δ2Wβb(f b)(ϕ(x, y0)�ng(x, y)) = δ2E(γy0
)(Φ(x, y0)) − βbδ2L(γb)(Φ(x, y0))

=: δ2Eβb(γy0
)(Φ(x, y0)),

(2.2)

where βb is the Lagrange multiplier of f b (in the non-degenerate direction Π2), and L is the length functional 

of curves in H2.

Lemma 1. Let f b be the 2-lobed Delaunay torus with conformal class (0, b) and γb the corresponding elastic 

curve in H2. Then

δ2Eβb(γb
y0

)(Φ(x, y0), Φ(x, y0)) ≥ 0

for normal variations Φ preserving the length constraint. Moreover, for b > b0 the kernel of δ2Eβb is at most 

1-dimensional modulo the isometries of H2.
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Proof. For L = 2πb > 0 fixed, consider the minimization problem

inf {E(γ) | γ is a closed curve in H2 with length L }.

The minimum is attained by an elastic curve γmin [13] for which

δ2Eβb(γmin)(Φ(x, y0), Φ(x, y0)) ≥ 0.

Rotating γmin we obtain an embedded and isothermic constrained Willmore torus fmin in S3. The Will-

more energy of fmin must be below 8π, by using f b (or γb) as competitor. Thus by [6, Theorem 1] and [18], 

fmin is CMC in S3. The classification of embedded CMC tori [4,1] and [10] shows that fmin = f b for the 

respective b > 1 up to invariance. Therefore, we have γmin = γb up to isometry.

Since δ2Eβb ≥ 0, kernel elements consists of eigenvectors with respect to eigenvalue 0 of δ2Eβb . This gives 

rise to a 4th order linear ODE, see [13], which has at most 4-dimension worth of solutions, three of which 

corresponds to the 3-dimensional space of isometries of H2. Thus up to invariance of the equation the kernel 

is at most one-dimensional. �

Remark 2. The Willmore energy of f b is shown to be monotonically increasing [10]. The Lagrange multiplier 

of f b (which corresponds to its constant mean curvature in S3) is shown to be strictly increasing for b < b0

and strictly decreasing for b > b0 [10].

2.2. General variations

In order to compute the full second variation δ2Wβb , we first explicitly parametrize a normal variation 

F b
t of f b, compute the first and second fundamental form and then determine the Taylor expansion of the 

Willmore energy at t = 0 to the second order. The second order term is then

(

d

dt

)2

|t=0W(F b
t ) = D2W(f b)(∂t F b

t , ∂t F b
t ) + DW(∂2

tt F b
t ).

A short computation shows that the following holds for a variation F b
t of a constrained Willmore torus:

DW (∂2
tt F b

t ) = −βbD2Π2(∂t F b
t ∂t F b

t ) + βb

(

d

dt

)2

|t=0(Π2(F b
t )).

A constrained Willmore torus is stable for W if

(

d

dt

)2

|t=0W(F b
t ) ≥ 0

for all variations F b
t preserving the conformal type. Therefore,

(

d

dt

)2

|t=0(Π2(F b
t )) ≡ 0,

where Π2 is the second component of the projection map Π from the space immersions to the Teichmüller 

space. To determine whether a surface is stable we will show that

(

d

dt

)2

|t=0W(F b
t ) − βb

(

d

dt

)2

|t=0(Π2(F b
t )) ≥ 0 (2.3)
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for all variations F b
t .

Similar arguments as in Section 2.1 show that δ2Wβb = δ2W + βbδ2Π2 can be decomposed into

δ2Wβb(f b) = δ2Eβb + Q,

where δ2Eβb is tensorial in y, i.e., for normal variations of the form

Φ(x, y) = p(x)q(y)�ng̃

we have

δ2Eβb(f b)(Φ(x, y), Φ(x, y)) = δ2Eβb(f b)(p(x)�ng̃, p(x)�ng̃)q2(y).

The term Q in this decomposition has no 0th order term in y. We want to show that Q is strictly 

positive unless the normal variation given by ϕ is a Möbius variation. Together with Lemma 1 this implies 

Theorem 1. We further split Q with respect to (2.3)

Q = Q1 + Q2

where Q1 corresponds to 
(

d
dt

)2 |t=0W(F b
t ) and Q2 corresponds to 

(

d
dt

)2 |t=0(Π2(F b
t )).

2.3. Explicit formulas

For the 2-lobed Delaunay torus f b consider normal variations determined by

Φ(x, y) = ϕ(x, y)�ng,

for a function ϕ : T 2 → R, i.e.,

t �→ F b
t : T 2 → H

2 × S1; (x, y) �→ (u(x) − tv′(x)ϕ(x, y), v(x) + tu′(x)ϕ(x, y), y).

F b
t is an immersion for every t ∼ 0, although F b

t is generally not conformal for t �= 0.

For t ∼ 0 the induced family of metrics gt of F b
t on the torus

T 2
b = R/(2πbZ) × R/(2πZ)

are given by:

gt = dx ⊗ dy + dy ⊗ dy + t(αdx ⊗ dx) + t2(βdx ⊗ dx + γ(dx ⊗ dy + dy ⊗ dx) + δdy ⊗ dy) + . . . ,

where

α = −2κϕ

β = ϕ2
x + κ2ϕ2 +

v′ 2

v2
ϕ2 +

2

v
(κu′ϕ2 + v′ϕϕx)

γ =
v′

v
ϕyϕ + ϕxϕy

δ = ϕ2
y.

(2.4)

The volume forms are dAt =
√

det(gt), and the second fundamental form at t = 0 is given by
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II0 =

(

κ 0
0 0

)

. (2.5)

The equation for the geodesic curvature κ of γb gives

u′′(x) = −v′(x)κ(x) +
2u′(x)v′(x)

v(x)
and v′′(x) = u′(x)κ(x) − u′(x)2 − v′(x)2

v(x)
.

2.3.1. The second derivative of W(F b
t )

We expand the real function t �→ W (F b
t ) at t = 0 up to second order. For convenience, the dependencies of 

the involved functions are suppressed, and ϕx := ∂ϕ
∂x

, . . . . Then a lengthy but straightforward computation 

shows that

DWf (ϕ) :=
d

dt
|t=0 W(F b

t ) = −1

4

∫

M

(

2κ′′ + κ3 − 2κ
)

ϕ dx ∧ dy

and the second derivative splits into

(

d

dt

)2

|t=0W(F b
t ) =

∫

M

(A + Q1(ϕ)) ϕ dx ∧ dy,

where A tensorial in y (in the above sense) and Q1 is given by

Q1(ϕ) =
(

1
8κ2 + 1

2

)

ϕyy + 1
4ϕyyyy + 1

2ϕxxyy. (2.6)

2.3.2. Second derivative of the conformal type

We compute the change of the induced conformal structure for normal variations. The Teichmüller space 

of Riemann surfaces of genus 1 is parametrized by the modulus τ

τ =

∫

α1

ω
∫

α2

ω

for a non-zero holomorphic 1-form ω and an appropriate choice α1, α2 of generators of the first fundamental 

group such that Im τ > 0. In the following, we choose α1, α2 such that

τ ∈
{

c ∈ C | −1

2
< Re c ≤ 1

2
; Im c > 0, cc̄ ≥ 1

}

. (2.7)

Consider a family of 1-forms with respect to the metric gt (given by (2.4))

ωt =dx + idy + t
((α

2
+ p

)

dx + ipdy
)

+ t2

((

−1

8
α2 +

1

2
β + iγ − 1

2
δ +

1

2
αp + q

)

dx + iqdy

)

=
(

1 + tp + t2q
)

dz + t
α

2
dx + t2

(

−1

8
α2 +

1

2
β + iγ − 1

2
δ +

1

2
αp

)

dx

(2.8)

for arbitrary functions p, q : T 2 → C. Let Jt be the rotation by π
2 of gt, then

J∗
t ωt = iωt + O(t3).
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Hence, ωt is a (1, 0)-form up to second order in t. We want to determine the functions p and q such that ωt

is closed (hence holomorphic) up to second order in t.

In first order we obtain the equation

d(p dz) = −d
α

2
∧ dx = −i

αy

4
dz̄ ∧ dz.

The change of conformal type is given by the change of the ratio of the periods of ωt along the generators

(2πb, 0) and (0, 2π)

of π1(T 2). It is most convenient to choose a function p such that the integral of ωt along (0, 2π) ∈ π1(T 2)

is independent of t. This can be achieved to first order by choosing a solution p of the equation

∂̄p = −i
αy

4
dz̄ (2.9)

that is perpendicular (with respect to the L2 inner product of the area form i
2dz ∧ dz̄) to the constant 

functions. In this case there exists a unique solution of (2.9) by Serre-duality since

∫

αy dz̄ ∧ dz = 0

by Stokes. In fact, we then obtain

∫

(0,2π)

p dz = i

∫

(0,2π)

p dy =
i

2πb

∫

T 2

p dx ∧ dy = 0,

where the second to last equality is due to Fubini and the fact that

p dz +
α

2
dx

is closed. Hence, due to (2.7) the change of conformal type of gt is given by

τt = b i + t
i

2π

∫

(2πb,0)

(α

2
dx + p dz

)

+ O(t2).

Note that

∫

(2πb,0)

(α

2
dx + p dz

)

=
i

2π

∫

T 2

(α

2
+ p

)

dz ∧ dz̄ =
i

2π

∫

T 2

α

2
dz ∧ dz̄ =

1

2π

∫

T 2

α dx ∧ dy

is real as α is real. Also note that we are only interested in normal variations which do not change the 

conformal type in first order, i.e. we impose that

0 =
1

2π

∫

T 2

α dx ∧ dy = − 1

π

∫

T 2

κϕ dx ∧ dy. (2.10)

To compute the change of the conformal type to second order, we proceed as for the first order variation 

and take the unique solution q : T 2 → C of
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∂̄q =
∂

∂y

(

−1

8
α2 +

1

2
β + iγ − 1

2
δ +

1

2
αp

)

dz̄

perpendicular to the constant functions. Analogously to the first order computations, and under the con-

formal constraint (2.10), the conformal type of the induced metric gt changes in second order as

(

d

dt

)2

|t=0 τt =
i

π

∫

(2πb,0)

(

−1

8
α2 +

1

2
β + iγ − 1

2
δ +

1

2
αp

)

dx,

which gives us (using the first order constraint and (2.4))

τt =bi + t2 i

4π2

∫

T 2

(

−1

8
α2 +

1

2
β + iγ − 1

2
δ +

1

2
αp

)

dx ∧ dy + O(t3)

=bi + t2 i

4π2

∫

T 2

(

1

2
Re αp +

u′

v
κϕ2 +

v′ 2

2v2
ϕ2 − 1

2
ϕ2

y +
v′

v
ϕϕx +

1

2
ϕ2

x

)

dx ∧ dy

− t2 1

4π2

∫

T 2

(

1

2
Im αp +

v′

v
ϕϕy + ϕxϕy

)

dx ∧ dy + O(t3).

(2.11)

Note that only the real part is relevant for us as we are only interested in the imaginary part of the 

change of the modulus τ , and that the functions u, v, κ, ϕ are real-valued. We still need to analyze

∫

1
2αp dx ∧ dy.

Recall that p is the unique solution of ∂̄p = −i
αy

4 dz̄ perpendicular to the constants.

Hence, for

α = −2κϕ =
∑

k,
l
b

∈N

(

akl
1 cos lx cos ky + akl

2 cos lx sin ky + akl
3 sin lx cos ky + akl

4 sin lx sin ky
)

we have

p =
1

2
νx − i

2
νy

where

ν =
∑

k,l·b∈N;k>0

(

− ik

k2 + l2
(akl

1 cos lx sin ky − akl
2 cos lx cos ky + akl

3 sin lx sin ky − akl
4 sin lx cos ky)

)

.

Using Fubini and integration by parts together with

∫

T 2

cos2 lx cos2 kydx ∧ dy =

∫

T 2

sin2 lx sin2 kydx ∧ dy = π2b

(independently of k ∈ N, l/b ∈ N), we obtain

Re

⎛

⎝

∫

T 2

1

2
αp dx ∧ dy

⎞

⎠ = −π2b

4

∑

k,
l
b

∈N;k>0

k2

k2 + l2

(

(akl
1 )2 + (akl

2 )2 + (akl
3 )2 + (akl

4 )2
)

. (2.12)
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Putting all terms together we have

(

d

dt

)2

|t=0Π2(Ft) =

∫

T 2

(B + Q2(ϕ)) ϕ dx ∧ dy,

for some B tensorial in y and with

Q2(ϕ) = 1
2ϕyy + 1

2K,

where

< K(ϕ), ϕ >L2=

∫

T 2

Re(αp(ϕ)) = −2

∫

T 2

κϕ Re(p(ϕ)),

α = −2κϕ, and p = p(ϕ) is determined by (2.9).

Remark 3. Note that

δ2Eβb = A + B.

2.4. Final estimates

Lemma 2. Let f b be the 2-lobed Delaunay torus of conformal type (0, b) and

Q =
(

1
8κ2 + 1

2

)

∂2
yy +1

4 ∂4
yyyy +1

2 ∂4
xxyy −βb

(

1
2ϕyy + 1

2K
)

,

where κ = κ(x) is the geodesic curvature of the profile curve γb. Then we have for ϕ : T 2 → R

〈Q(ϕ), ϕ〉L2 > 0

if ϕ(x0, y) ⊥L2 sin(y), cos(y) for all x0 ∈ R/2πbZ.

Proof. Since 〈K(ϕ), ϕ〉L2 ≤ 0 and βb > 0, it suffices to show the positivity of

Q̃ =
(

1
8κ2 + 1

2 − 1
2βb

)

∂2
yy +1

4 ∂4
yyyy +1

2 ∂4
xxyy .

We expand ϕ with respect to the Fourier basis along the imaginary period of T 2, i.e.,

ϕ =
∑

l∈Z

ϕl(x) cos(ly) + ϕ̃l(x) sin(ly)

for periodic real-valued functions ϕl and ϕ̃l. In y, the Fourier basis elements are perpendicular with respect 

to 〈Q̃(.), .〉L2 , therefore it suffices to show positivity for elements of the form

ϕ = ϕl(x) sin(ly),

for which we compute:

〈Q̃(ϕ), ϕ〉 =

L
∫

0

(−
(

1
8κ2 + 1

2 − βb 1
2

)

l2 + 1
4 l4)ϕ2

l dx + 1
2 l2

L
∫

0

(∂x ϕl(x))2dx. (2.13)
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In order to show positivity, we first need a point-wise estimate on κ2. The profile curve γb is an orbit-like 

elastic curve, i.e., it satisfies the ODE

κ′′ + 1
2κ3 + (μ − 1)κ = 0

with μ = −βb, and the 4th order polynomial

P4 := 1
4κ4 + (μ − 1)κ2 + ν

has 4 real roots. For μ fixed the value of κ is bounded by the biggest of the 4 roots of P4. This gives

κ2 < 4 − 4μ.

Therefore, we obtain for l ≥ 2 positivity of Q̃. �

Lemma 3. Let f b be the 2-lobed Delaunay torus of conformal type (0, b), then the pseudo differential operator 

Q has a 4-dimensional kernel.

Proof. Without loss of generality we restrict to the space of functions

{ϕ = f(x) cos(y) + g(x) sin(y) | f, g ∈ W 4,2(R/2πb)}.

Define

Q1 := −
(

1
8κ2 + 1

2

)

+ 1
4 − 1

2 ∂2
xx −βb

(

−1
2 + K

)

.

For ϕ = f(x) cos(y) + g(x) sin(y)

ϕ ∈ KerQ

is equivalent to

f, g ∈ KerQ1,

and it remains to show that KerQ1 is 2-dimensional. We consider the equation

Q1(f) = 0, with f = f(x) ∈ W 4,2(R/2πb).

Since κ > 0 for orbit-like curves, we can divide by κ and consider the equation

0 =
1

κ

(

−1
8κ2 − 1

4 + 1
2 ∂2

xx −1
2βb

)

f + βbP (−2κf),

with

P

⎛

⎝

∑

l, l·b∈N

al cos(lx) + bl sin(lx)

⎞

⎠ = −
∑

l, l·b∈N

1
1+l2 (al cos(lx) + bl sin(lx))

instead.
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The operator

h ∈ W 4,2(S1) �−→
(

d2

dx2
− 1

)

h ∈ W 2,2(S1)

is injective and surjective (by the Fredholm alternative). Therefore, for f ∈ KerQ1 there exists a unique 

h ∈ W 4,2 such that

(

d2

dx2
− 1

)

h = −2κf.

Then,

0 =
1

κ

(

−1
8κ2 − 1

4 + 1
2 ∂2

xx −1
2βb

)

f + βbP (−2κf)

= − 1

κ

(

(−1
8κ2 − 1

4 + 1
2 ∂2

xx −1
2βb

)

1
2κ

) ◦
(

d2

dx2
− 1

)

h + βbP ◦
(

d2

dx2
− 1

)

h.

(2.14)

A short computation shows that

P ◦
(

d2

dx2
− 1

)

= id.

Therefore, (2.14) is a 4th order ordinary differential equation (on the function h). Thus, when ignoring 

periodicity, its solution space is 4-dimensional. Two of which are given by non-periodic solutions and spanned 

by

h = sinh(x) h = cosh(x).

Hence, at most a 2-dimensional subspace of solution is well-defined on R/2πb. By considering the in-

finitesimal Moebius transformations we obtain that the space of global solutions is exactly 2-dimensional, 

proving the lemma. �

Proof of Theorem 1. Due to Lemma 2 and the actual form of the second variation operator it remains to 

consider the case l = 1. The space of infinitesimal Möbius variations normal to f b is 9-dimensional for 

b > b0, consisting of a 3-dimensional subspace of 0 Fourier mode in y, and a 6-dimensional subspace of 

Fourier mode 1 in y. This 6-dimensional space corresponds to the non-positive directions of Q as can be 

seen as follows: For b < b0 a straightforward computation shows that the kernel of Q is 4 dimensional and 

it has 2 negative directions, all of which giving rise to Möbius variations. Because the kernel dimension of 

Q remains 4-dimensional for all f b by the previous lemma (and because of the spectral properties of Q) 

the space of non-positive directions of Q remains 6 dimensional for all f b, which corresponds exactly to the 

Möbius variations. �
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