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This paper is devoted to several existence results for a generalized version
of the Yamabe problem. First, we prove the remaining global cases for the
range of powers y € (0, 1) for the generalized Yamabe problem introduced
by Gonzalez and Qing. Second, building on a new approach by Case and
Chang for this problem, we prove that this Yamabe problem is solvable in
the Poincaré-Einstein case for y € (1, min{2, 4}) provided the associated
fractional GJMS operator satisfies the strong maximum principle.
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1. Introduction

The resolution of the Yamabe conjecture, i.e., the problem of finding a constant
scalar curvature metric in a given conformal class on closed manifolds, has been a
landmark in geometric analysis after the work of Yamabe [1960], Trudinger [1968],
Schoen [1984] and Aubin [1998]. Several generalizations to different ambient
manifolds appeared after this series of works, e.g., [Gamara 2001; Gamara and
Yacoub 2001; Ahmedou 2004; Gonzéilez and Qing 2013].

We consider here some rather recent development whose foundation can be
found in a seminal paper by Graham and Zworksi [2003] about a new and fruitful
approach to the realization of the GIMS operators. Suppose that X"*! is a smooth
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manifold with smooth boundary M" for n > 3. A function p is a defining function
of the boundary M" in X"*! if

p>0in X" p=0onM", dp+#0onM".

We say that g, is conformally compact if, for some defining function p, the
metric § = p?g, extends to X"*! so that (X"*!, g) is a compact Riemannian
manifold. This induces a conformal class of metrics 7 = glraym on M" when
defining functions vary. The conformal manifold (M", [fz]) is called the conformal
infinity of (X"*!, g,). A metric g, is said to be asymptotically hyperbolic (AH)
if it is conformally compact and the sectional curvature approaches —1 at infinity.
(X"+1, g is called a Poincaré—Einstein (P-E) manifold, if Ric(gy) = —ng.
Graham and Zworski [2003] introduced the meromorphic family of scattering
operators S(s), which is a family of pseudodifferential operators, for a given
asymptotlcally hyperbolic manifold (X"*!, g, ) and a choice of the representative
h of the conformal infinity (M", [h]) Instead one often considers the normalized

Scattenng operators
r
F(=y) \2

The normalized scattering operators PZ are conformally covariant
Py (uf) = u IO PY(f)

where /1 = u* /(n — 2y)h. Then one can define the so called QY-curvature as
QZ = P{ (1). These operators P}Z/ appear to be the higher-order generalizations (for
y > 1) of the conformal Laplacian (including the Paneitz operator for y = 2). They
coincide with the GJMS operators [Graham et al. 1992] for suitable integer values
of y. Specifically, QZ is just the scalar curvature for y = 1, and the Q-curvature
for y = 2. This new notion of curvature has been investigated in [Qing and Raske
2006; Chang and Gonzdlez 2011; Gonzélez et al. 2012; Gonzélez and Qing 2013;
Kim et al. 2018]. When y = %, QZ is just the mean curvature of (M, h) in (X, g).

Keeping in mind the purpose of the Yamabe conjecture, one aims at finding a
conformal metric % € [A] such that QZ is constant. Since the parameter y ranges
from O to 73, this provides a 1-parameter family of metrics and sheds some new
light on classical constant curvature prescription problems. Following [Gonzdlez
and Qing 2013], solving the problem is equivalent to find a critical point of the
following Euler—Lagrange functional

$ry uP) udpy
(ggM u2n/(n=2y) do_h)(n—z)/)/"

(1-1) & ul = for u € W_{’Z(M, h)\ {0},
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where W"-2(M, h) denotes the usual fractional Sobolev space on M with respect
to Riemannian metric %, and WI’Z(M, h) = W"2(M, h) N {u > 0}. The infimum
is called the y-Yamabe constant

Y(M,[h)= inf  &'[ul.
W-2(M 1)\ (0}

The critical points of 6’,}: satisfy
(1-2) P}:/” — Cu(n+2}/)/(n—2}’)’ u>0

for some constant c. If Phy satisfies the strong maximum principle, or its Green’s
function is positive, then u is strictly positive and satisfy the above equality. Hence,
u*"=2¥) 1 is a conformal metric whose fractional curvature is constant. Gonzélez
and Qing [2013] proved that P{ has a strong maximum principle when y € (0, 1).
For higher y, in the setting of Poincaré-Einstein (X"+!, g.) with conformal infinity
(M", [h]), Case and Chang [2016] proved that if (M, [A]) has scalar curvature
R, >0 and QZ >0 and QZ # 0 for 1 <y < min{2, n/2}, then P,f has a strong
maximum principle.

The present paper is two-fold. First, we complete the work started in [Gonzélez
and Qing 2013; Mayer and Ndiaye 2017b; Gonzdlez and Wang 2018; Kim et al.
2018] providing existence results in some range of dimensions depending on y €
(0, 1). Our arguments also apply to the general asymptotically hyperbolic (AH)
manifolds. Second, for the higher order 1 < y < min{ 2, %}, when X is a Poincaré—
Einstein manifold, we completely solve the fractional Yamabe problem under the
assumption of the strong maximum principle.

In the present contribution, we consider two types of situations, denoted below
Type I and Type II.

First, we consider Type I; that is y € (0, 1). Assume that (X"*!, g,)is a P-E
manifold with conformal infinity (M, [#]). Kim et al. [2018] and Kim [2017]
showed that if n > 4 42y and M is nonlocally conformally flat then y-Yamabe
problem is solvable. Mayer and Ndiaye [2017b] proved the solvability for M being
locally conformally flat. Hence, the remaining case of Type I in P-E setting is the
low dimensional case.

Case (I-1): (X"*!, g.) is P-E with (M, [h]) and n < 2y +4.

That is, n = 3,4 when y € (0,1) and n =5 when y € (0, 3). If (X1, g,) is
just AH, the second fundamental form of (M, k) will come into play. One needs
consider whether (M, k) is umbilic or not, which induce many different cases.
Readers are directed to [Kim et al. 2018] with additional assumptions. Nevertheless,
our method also apply to the lower dimensional case in AH setting.

Case (I-2): (X"*+!, g.)is AH with (M, [h]) and n < 2+ 2y.
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Second, we consider Type II; that is y € (1, min{2, %}). The main contribution of
the present paper is to deal with the higher order fractional Yamabe type problems.
Assume that (X!, g+) is a P-E manifold with conformal infinity (M, [k]) for the
following cases:

Case (II-1): Low dimension, n < 2y + 4.

Case (II-2): (M, [h]) is locally conformally flat.

Case (II-3): n > 2y +4 and (M, [h]) is nonlocally conformally flat.
Case (II-4): n =2y +4 and (M, [h]) is nonlocally conformally flat.

To attack the above cases, we need to notice the distinctive nature of them: (I-1),
(I-2), (I-1), (II-2) are “global” cases and (II-3) and (II-4) are “local” cases. Let us
recall what is commonly called local and global cases in the geometric analysis
community. Take the classical Yamabe problem for example, that is, y = 1. With
this agreement in mind and recalling that the functional is 8,1 and the standard
bubble is U, . (see (3-2) and (4-11), we omit é for simplicity), then by a standard
Taylor expansion, and using the explicit form (decay) of U, ., one has the following
formula:

n—3
(1-3) &(Uae) =V =) _ Li(@e' ~La-2(@)e" > Ine—Mu_2(@)e" > +o(e" ).

i=1

Here £;(a) and M,,_»(a) are some coefficients in the expansion of 6}1 (U,,¢) around
a, which are related to the derivatives of the Weyl tensor and the ADM mass. The
case is called local if 3a € M,i € {1,...,n—2}: L;(a) # 0 and it is referred
to global if Va e M, Vi € {1,...,n—2}: L;(a) = 0. The coefficient M,,_; is
associated to the “mass” at a. The global case means the terms higher than mass
should all vanish. When y # 1, the mass term should have order £"~2¥ in (1-3).
Roughly speaking, in P-E setting, since the first term in the above expansion is
e* with coefficient the norm square of the Weyl tensor (up to a nonzero factor),
and that when the Weyl tensor is identically zero automatically all the coefficients
in the above expansion until the logarithmic term vanish, then one can see how
the property of being locally conformally flat and the competition between &2
and &* describe fully the local and global cases. However, in AH setting, on top
of the latter considerations one has additional terms starting at > with coefficient
the norm of the trace free part of the second fundamental form of (M, k) C (X, g)
up to a nonzero factor. If M is umbilical, then the expansion is the same as in the
case of P-E. Hence, in AH, the umbilicity, the locally conformally flatness, the size
g2, &%, and £"~2 describe the global and local cases.

To solve the local cases, it is enough, in most of the arguments, to use the local
U,.¢; see (4-11). For the global cases, besides the work of Schoen [1984], there
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is also an indirect method through algebraic topological arguments by Bahri and
Coron [1988] (also called the barycenter technique). Later Bahri [1989] developed
the theory of critical points at infinity for Yamabe problems on Euclidean domains.
We refer the reader to its applications in the locally conformally flat case in [Bahri
1993] and in the low dimensional case in [Bahri and Brezis 1996]. Adapting the
barycenter technique to the fractional Yamabe problem, we achieve the following
theorem:

Theorem 1.1. Suppose that y € (0, 1) and n > 2. Assume (X"*', g,) is a Poincaré-
Einstein manifold with conformal infinity (M", [h]) with 1 (=Ag,) > }an —y2If
VY (M, [h]) > 0, then there exists h € [h] such that QZ is a constant.

The previous theorem solves completely the Yamabe problem for the QY-
curvature, complementing the works [Gonzélez and Qing 2013; Mayer and Ndiaye
2017b; Gonzdlez and Wang 2018; Kim et al. 2018] in the Poincaré—Einstein setting.
We will provide an additional result on the more general framework of AH manifolds
in the last section.

Theorem 1.2. Suppose that 1 <y < min{2, '2—1} and n > 3. Assume (X", g) is
a Poincaré-Einstein manifold with conformal infinity (M", [h]) with A1 (=Ag,) >
%nz —2—=9y)% IfR, > 0and QZ > 0 and QZ =% 0 for some h € [h], then there

exists some h € [h] such that QE is a constant.

To prove our results in the local cases we employ the minimizing technique
of Aubin [1998] and Schoen [1984]. In the global cases, we use the algebraic
topological argument of Bahri and Coron [1988]. Since most of this work is
concerned with Global cases, and moreover to find excellent exposition of the
Aubin and Schoen minimizing technique seems not to be difficult (see for example
[Lee and Parker 1987]), then we decide to discuss how the barycenter technique
of Bahri and Coron works in finding a critical point. We point out that in our
application of the minimizing technique of Aubin [1998] and Schoen [1984], we
took a short-cut by bringing into play the Eckeland variational principle. We
chose this approach not only to shorten the exposition, but to also emphasize the
common point between the Aubin and Schoen minimizing technique and algebraic
topological argument to Bahri and Coron.

The algebraic topological argument of Bahri and Coron [1988] is based on two
fundamental facts: the quantization of (€] )"/*”) (see Lemma 5.1) and the strong
interaction phenomenon (see Lemma 5.9). Readers can find a detailed explanation
of barycenter technique in [Mayer and Ndiaye 2017a]. Here we just sketch the
main idea behind it.

On one hand, the argument needs a starting point, which is the existence of a
topological class X which is nonzero in the Z;-homology of some lower sublevel
set L¢ :={u : (§] [u])” ") < c}. Here one starts with ¢ = (V%,)"/®") + ¢ for some



120 CHEIKH BIRAHIM NDIAYE, YANNICK SIRE AND LIMING SUN

&1 > 0, and the existence of X is ensured by H, (M, Z;) # 0 and bubbling; see
Lemma 6.4. This is obtained by embedding M into L. via the bubbles v, ; and
by using the quantization phenomenon that 5}; enjoys, via the deformation lemma
(Lemma 6.1), to get that M survives topologically in L..

Then, the next step is to start piling up masses v, ¢ s (see its definition (5-1)) over
X1, thereby moving from the level (ygn )/ 2Y) 4 g to the level 2(ygn)"/ @) 4g,
from the level 2(yg,,)"/ 2¥) + ¢, to the level 3(3)%,1)”/ @) 4 ¢, ..., from the level
p(yg,,)"/@V) + &1 to the level (p + 1)(3%”)”/(2)’) + €1, so on. At each step, as
one moves from the level p(yg,, YY) 4 g to the level (p + 1)(32%,, YY) gy,
one constructs a nonzero topological class X, which reads (1 —t)u +tv, ¢, u €
X,,t €0, 1]; see Lemma 6.5. This is done by realizing B, (M) as a cone over
B,(M) with top M and using the quantization phenomenon that 5}: enjoys, via
the deformation lemma (Lemma 6.1), to get that by embedding B,,(M) as a
cone over B, (M) with top M into L, via (p + 1)-convex combination of the
bubbles v, j, it survives as a nontrivial cone in (L 41, L) with L, = {(5;}:)”/(23’) <
pQEM ) 41}

However, because of the strong interaction phenomenon, for pg large, we are
passing from the level po(V%,)"/@") + ¢ to the level (po + 1)(VE,)" ") — & for
some &1 > 0. Then, assuming that there is no solution, we reach a contradiction to
the fact that X, is nontrivial in (I: po+1, L py) since, as a result of the quantization
phenomenon, (P S), holds V¢ such that

PoVLIM ) ey < < (po+ DL —&y.

This implies that X 41 is trivial in (L py11, Lp,) with L, = {(£])"/Q2y) <
pENYEY) — ).

We were assuming R;, > 0 and QZ > (0 and QZ = () in the Theorem 1.2, because
we need that phV satisfies the strong maximum principle, which is proved by Case
and Chang [2016] under these assumptions. We conjecture that our results hold for
all y (O, %) provided PZ satisfies the strong maximum principle.

This article is organized as follows. In Section 2, we recall some basic notions
of smooth metric measure spaces and the fractional GIMS operators, which are
contained in [Case 2017]. We define the standard bubbles for y € (0, 1) and
y € (1, min{2, 4}) respectively and list their properties need for the remaining
sections. In Sections 3 and 4, we define some test function U, . s and calculate
their energy E’Z [U, ¢.s] for different cases respectively. In Section 5, we state the
profile decomposition for the Palais—Smale sequences of 5}: and proved all the local
cases. The crucial interaction estimate between bubbles are also established in this
section. In Section 6, the algebraic topological argument is applied to all global
cases. Section 7 illustrate the adaption to asymptotically hyperbolic case. Some
necessary estimates are established in the Appendix at the end.
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2. Preliminaries

In this section, we shall first describe the notions of smooth metric measure spaces
and the fractional GJIMS operators. After that we will define the standard bubbles
and state their properties.

2A. Smooth metric measure spaces and fractional GJMS operators. A triple
(X", M", g,) is a Poincaré—Einstein manifold if:

(1) X"+ is (diffeomorphic to) the interior of a compact manifold X"+ with
boundary 0X = M".

(2) (X"*1, g,) is complete with Ric(gy) = —ng..

(3) There exists a nonnegative p € C*(X) such that p~'(0) = M", dp # 0 along
M, and the metric g := p”g, extends to a smooth metric on X" 1.

A function p satisfying these properties is called a defining function. Since p
is only determined up to multiplication by a positive smooth function on X, it
is clear that only the conformal class [/] := [g|ra] on M is well-defined for a
Poincaré—Finstein manifold. We call the pair (M", [h]) the conformal boundary
of the Poincaré—Einstein manifold (X"t!, M", g+), and we call a metric & € [h]
a representative of the conformal boundary. To each such representative there is
a defining function p, unique in a neighborhood of M and called the geodesic
defining function. Moreover, g, has normal form g, = p~2(dp> + h p) near M,
where h, is a one-parameter family of metrics on M satisfying ho = h. There is
an asymptotic expansion of /1, which contains only even powers of p, at least up
to degree n. For a more intrinsic discussion of these topics, we refer the reader to
[Graham and Zworski 2003].

A smooth metric measure space (SMMS) is a four-tuple (X!, g, p, m) formed
from a smooth manifold X"*! with (possibly empty) boundary M" = 3 X, a Rie-
mannian metric g on X, a nonnegative function p € C % (X) with p~1(0) = M, and
a dimensional constant m € (1 — n, co). Formally, the interior of X, denoted as X,
represents the base of a warped product

(2-1) (X" x S™, g @ p*db?)

where (S™, d6?) the m-sphere with the metric of constant sectional curvature one.
The geometric invariants defined on a SMMS are obtained by considering their
Riemannian counterparts on (2-1) while restricting to the base X, and then extend
the definition to general m € (1 —n, 0o) by treating m as a formal variable. The
weighted Laplacian A7 : C*°(X) — C*(X) is defined as

AU =AU +mp~ (Vp, VU),, U eCP(X)
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which is a formally self-adjoint operator with respect to the measure p™d .. Here
dig is the volume element of g. The weighted Schouten scalar Jj and weighted
Schouten tensor P;" are

= L (R—2mp Ap = mm — 1)p (Vo = 1)),
© 2(m +n)
1 : 192

We shall confine ourselves to a special type of SMMS,

Definition 2.1. A geodesic SMMS (X, g :=p? g+, p, m) is generated by a Poincaré—
Einstein manifold (X"*!, M", g.) and a geodesic defining function p near M, that
is [Vplg =1 near M.

For a geodesic SMMS, the weighted Schouten scalar and tensor take simpler
forms. By [Case and Chang 2016, Lemma 3.2], we have J;* = J the Schouten
scalar of (X, g) and P;)" = P the Schouten tensor of (X, g). On a geodesic SMMS,
the weighted conformal Laplacian LY , and weighted Paneitz operator Ly , are
defined as

LY, U:==A3U +5(m+n—1)J U,
Ly, U = (=AU +8,((4P — (m+n—1)J)(VU)) + 5(m +n—3) QI U,

where §,X =tr, VX + mp~ (X, Vp) is the negative of the formal adjoint of the
gradient with respect to p"'d i,

m+n—1

J?
2

m.,__ 2
Q) :==—A)J =2|P|"+
is the weighted Q-curvature. If two SMMS (X, g, p, m) and (X, g, p, m) are
pointwise conformally equivalent, that is § = ¢2?g and p = ¢° p for some o, it
holds

Lgfﬁ(U) — ef(m+n+3)/20errtp(em+nfl/(2)o U),

(2-2) -
Lzl’ﬁ(U) — ef(m+n+5)/20errfp(em+n*3/(2)6 U)

for all U € C*°(X).

The point of working with SMMS is that there are weighted GIMS operators
defined on it, which incorporate the fractional GIMS operators on M as the Dirichlet-
to-Neumann maps.

Suppose y € (0,1). Set my =1 —2y. Denoted by C¥ be the set of all U €
C>®(X) N C%X), asymptotically near M,

(2-3) U= f+yp? +o(p?)
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for some f, ¥ € C°°(M). We shall also use Cy ={U €CY :U|py = f}. The Sobolev
spaces W12(X, p™odu ¢) are completion of C ¥ with respect to the norm

WU o= f (VU +U*p™ du,.
X

Define

2-4) Q, (U, V)=/((VU,VV)+%(n—2y)JUV),0m°d/,Lg.
X

Proposition 2.2 [Case 2017]. Suppose that y € (0, 1) and (X, g, p,mo) is a geo-
desic SMMS. For any U,V €CY?,

(2-5) / VLZ";)U,O’”O dig +?§ V(lim p"™(=0,U))do, = Q, (U, V).
X ’ M p=0
If A (—Ag,) > }an — yz, then Q,, (U, U) is bounded below in C;. It holds that

(2—6) Ky Qy(U’ U) > % fPhydeh
M
for all U € Wh2(X, p"™dug) with TrU = f. Equality holds if and only if
L;‘;}U =0.
According to [Mayer and Ndiaye 2017b, Corollary 4.6], there exists a Green’s
function Gy (x, &) of L3 satisfying

-7 L;’"})Gg( £)=0, andforallé e M, —«, lim pmoapGg(x, ) = 8 (x).
p—0

Here 6¢ (x) is the Dirac function at &. The following estimates hold for G,

|G(};(x, S) _dg(x’ g)ZV—nl < Cmax{l, dg(x, E)Zy—n-l—]}’

(2-8) 2y 2y—
V(G (x,§) = dg (x, £) )|y < Cdy (x, )7 7.

Moreover, if VY (M, [h]) > 0, then G; > 0 by [Gonzédlez and Qing 2013].
Suppose y € (1,2). Set m; =3 —2y. Denoted by C¥ be the set of all U €
C®(X) N CY(X), asymptotically near M,

(2-9) U= f+v10>+ 0% +0(p*)

for some f, Y1, Y» € C°(M). We shall also use CV ={U e€C”:U|y = f}. The
Sobolev space W>2(X, p™'d M) is the completion of CY with respect to the norm

U522 = / (IV2U +mip~' 0,U)* dp @ dp|> + |VU > + U?)p" d .
X
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Define
(2-10) Q, (U, V):f[(AZ“U)(A’Z}‘V)—(4P—(n—2y +2)Jg)(VU, VV)
X
+3(m =20 UV]p™d .

Proposition 2.3 [Case 2017]. Suppose that y € (1,2) and (X, g, p,my) is a geo-
desic SMMS. For any U,V €C?,

(2-11) / VLZ“pU,om1 dig +¢ V(lim o™ 9, AT U) doy, = Q, (U, V).
X ’ M p=0

If M (=Ag,) > %nz — (2 — )2, then Q, (U, U) is bounded below in C;. It holds
that

2-12) QU V)= § FP] fdoy

M
for all U € W*2(X, p"dpg) with TrU = f. Equality holds if and only if
LT’:OU =0.

Similarly, for y € (1, 2), one can mimic the approach in [Mayer and Ndiaye
2017b, Corollary 4.6] to get a Green’s function of LZ:O satisfying

Ly Gy () =0 in X, forall & e M,
(2-13) lim, 9 p™9,Gy (-, &) =0 on M\ {£},
iy lim, 0 " AT Gy (x, §) =8¢ (x) on M.
The Green’s function has the following estimates
G (x, &) —dg(x, £)” 7" < Cmax({l, dy(x, §) "},
V(G (x, &) —dg(x, €7 ")g < Cdg (x, €)',
V(G (x, &) — dy (x, §) ™)|g < Cdg(x, §) "7,
V(G (x, &) —dg(x, ) )|y < Cdy(x, ) "2

(2-14)

Moreover, if R, > 0 and QZ > (0 and QZ # 0 for some h € [h], then G}é > 0 by
[Case and Chang 2016].

2B. Energy and bubble for Type I. Suppose that y € (0, 1) and (X"*!, g, p, m()
is a geodesic SMMS, where p is the geodesic defining function for a representative
metric 4. Define a Yamabe energy on X as

Ky Qy U, U)
(§§M|U|2n/(n—27/) dgh)("_zy)/n

for any U € wh2(x, p™d ) such that U # 0 on M. See the precise value of «,
in Section 2D. Then & [ f] < &, [U] for any U having the expansion (2-3). Denote

(2-15) Erul=
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N=n+1and RY = {x = (X, xy) | ¥ € R*, xy > 0}. Recall the Sobolev trace
inequality on Rﬁ (see [Lieb 1983; Cotsiolis and Tavoularis 2004])

(n—=2y)/n
(2-16) ( |U (x, 02"/ =27) df)
R)l

o
ssn,y/ /x}VZVWU(f,xN)Pdfde
O n

where S, ,, denotes the optimal constant; for instance, see [Gonzilez and Qing
2013, Corollary 5.3]. Check our notations, Section 2D, for precise value.

It is known that the above equality is attained by U =cW, , foranyc e R, ¢ > 0
and 0 € R" = 9RY, where W, , are the bubbles defined as

2y

_ Xy o
(2-17) We o (X, XN) = Pn,y m (|5 — 92 +x12v)(”+2y)/2 W0 (y)dy

with

e (n—2y)/2
Weo(X) =0y y| 5= =W (x,0).

8,0'( ) n,y(82+|x_0_|2> S,G( )
Here p, , is some constant such that

2y
XN

re (JX — ¥)? +x12v)("+2y)/

Dy 2d y=1.

We choose «,, ,, such that the fractional curvature of w?/é”_zy”dxlz is 1. The
precise values p, , and «, , can be found in (2-26) in the following. We know that
W, o satisfies

ApmgWe.s =0 in RY,

. 1-2y (n+2y)/(n—2y)
—iey limyy oy Xy 2 ONWes = (—A) e o = wl's " on R".

(2-18) {

Here A,y = A+ mox;laN is the weighted Laplacian on Rﬁ and «,, is a harmless
constant; see (2-26). For simplicity, let us denote W, = W, ¢ and w, = w; o. Then

it is easy to see
we(eX) =&~ "7 Pwi (), We(eX, exy) = "W (E, an).

Using Lemma A.1 in the Appendix, for any nonnegative integer £ > 0, one can
calculate

(2-19) Xy VxRV WP 4 x [FW2 ] dx
BY(0,8)
gk+? ifn—2y—k—-2>0,
<Cp,p {2 10g(8/e) ifn—2y—k—-2=0,

ekt2(8/e)2r 2k ifp—2y —k—2 <0,

forany 0 <2¢ <48 < 1.
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2C. Energy and bubble for Type I1. Suppose that y € (1, min{2, 4}) and that
(X"t g, p, my) is a geodesic SMMS, where p is the geodesic defining function
for a representative metric /. Define a Yamabe energy on X as

Ky Qy (U, U)
(§5M|U|2n/(n—2y) dah)(n—Zy)/n

(2-20) ENuUl=

for any U € W>2(X, p™di,) such that U # 0 on M. Then & [f] < E/[U] for
any U has the expansion (2-9).

We also have the Sobolev trace inequality for y € (1, min{2, 5}); see [Chang
and Gonzalez 2011; Case 2017]:

(n—=2y)/n
(2-21) < / |U (x, 0))>"/=27) df)
Rn

= Sﬂ,V /N x13v_2y|Am1U(f, xN)|2d)?de
R

+

where S, ,, is the optimal constant. It is also known that the equality is achieved by
the bubbles (2-17). In this case, however, W, , satisfies

Ay Weo=0 in RY,
Weo = We o R,
2-22) 1. po = Wee o
imyy 04 Xy ONWe o =0 on R",

(=AY W o =iy limyy 01 X0 AN A, Weo=wilar /72 on R,

Here A, = A+ mlxl;laN is the weighted Laplacian on Rﬁ and k,, can be seen in
(2-26). Moreover it also satisfies A, W, » =0, which is

(2-23) Ay We o =2x3 0y We,  in RY.

Using Lemma A.1, for any integer k > 0 and 0 < 2¢ < < 1, one has

(2-24) Xy VW2 4 xR IV W2+ x40, We Pl dx
BY(0,8)
gh+4 ifn—2y —k—4>0,
< Cp.y {6 1og(8/¢) ifn—2y —k—4=0,

ekt4(§ /) Atk it —2y —k—4 < 0.
2D. Notations. The following notations are used throughout this paper:

(1) Let N=n+1. Forx € RY :={(x1, ..., x,, xy) € RN : xy > 0}, we write
Xx=(x1,...,x,,0) € B[Rﬂ ~ R" and r = |x|. The indices i, j, k run from 1 to n.

2) Bﬁ’ (0, 8) is an open ball in Rﬁ and D(0, §) is an open ball in R”.
B) mo=1-2y and m; =3 —2y.
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(4) Some positive constants for 0 < 2y < n (see [Chang and Gonzilez 2011])

C'(y) Ty -y D+,

- == 2}/
(2-25) G=20 0y T T D 2E())

here |y | is the greatest integer less than or equal to . One can see that

dV
8y(y — D

The following positive constant are also used for 0 <2y <n

P =20/ o T 420)/2)
T2y OO P =)

4 1\ =20/ @)
Uy = [S(l’l, y)—le](n—Zy)/(4y) (Zn—ln,—(n-i-l)/ZF(_)) .

if y € (1, min{2, ﬂ})

d, .
Kyz—ﬁlfye(o,l) and K, = 4

S(n,y) =k
(2-26)

2

(5) The fractional Yamabe constant for sphere

2y/n
(2-27) yé’n =YV (S", [g.]) = Sn_,}/"V = </n wéi’f)/(”—zy) di) )

Equivalently,

/ WO g = (9,
(6) x is a cut-off function has support in Biv (0,28)and x =1 1in Biv (0, 8) and

(2-28) xs = x(Ix*/8)

(7) Volume element on X is d, and on M is doy,.

3. Energy estimates for the Case (I-1)

In this section, we will derive the energy estimates for (I-1). This type of estimates
will be used in Lemma 5.5 in the following.

Assume that (X"*!, g, p, mg) is a geodesic SMMS, where p is the geodesic
defining function for a representative metric 4. Given any a € M, there exists a
Fermi coordinates W, : O(a) — Bf (0, 28) on some neighborhood O(a) C X. One
can identify O(a) and Biv (0, 28) through ¥, = (x, xu). It follows from [Kim et al.
2018, Lemma 2.2 and 2.4] that the following expansion of metric holds near 0:

g7 (x) =8+ %Rikjl[hlxkxz + Rinjnlglxy + O(Ix ).

(3-1) _
VIgle) =1+ 0(xP) in BY(0,28).
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Here R;ij;[h] is a component of the Riemannian curvature tensor on M, R;y;n[g]
is that of the Riemannian curvature tensor in X. Every tensor in the expansions is
computed at ¢ = 0. Here we implicitly use the fact that (M, h) C (X, g) is totally
geodesic. Let Cpe < § < g < 1. Denote

(3-2) Ua.e.s(x) = xs We (Wa () + (1 — x5 (Wa (x)))e" 2G,
where y;s is defined in (2-28), Gg is the Green’s function.
Proposition 3.1. Suppose that y € (0,1) and n <4+ 2y. For U, s defined in

(3-2), if 89 small enough and Cy large enough, there exists a constant C; > 0 such
that

g}}:[Ua,s,(S] S EZ[UE,S,(S] 5 ygn + Enizycl (nv V’ g’ 8) + O(EH*Z)/)‘
Proof. The first inequality follows from the fact that U, . s has the right expansion
(2-3). Therefore we just need to justify the second inequality. Notice the above
inequality echos the fact that this is a global case.

We adopt the notation Q(U : 2) is (2-4) meaning the integration over some set
Q C X. Then

Q) (Uyes) = Qy (W, : BY(0,8)) + Q, (Uae.s : BY(0,28)\ BY (0, 8))
+Q, (" TRGY 1 X\ O,).

Using the estimates in (2-8), one obtains

Q, (" IRGY 1 X\ O,) =" f

n—2y
(lVGZ e+ TJ(GZ>2) pd g
X\O,

< C8n72y62y7n )
Here C = C(n, y, g). Similarly, by the estimates of W, in Lemma A.1, we also get
Qy (Ua,es  BY(0,28)\ BY(0,8)) < Ce" 282",

For the first term in Q, (U), applying (2-19)

_ n—2
(3-3)  Q,(W.:BY0,9) :f Xy 2y(|VW£|§+—yJW€2> dug
BY(0,8) 2

< / xy TV IVW,|2dx + Ce" 2§,
BY(0,8)
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The first term in the last inequality can be estimated by (3-1) and (2-19)
1-2y 2
(3-4) Xy IVngg dx
BY(0,8)

1-2 3-2
=/ xy T IVWe|Pdx +&*Rinjnlg] Xy ;W19 Wy dx
BY(0,8) BY(0,8/¢)

4 0(83(5/8)2y+3—n)

< / Xy TV IVW P dx + C8¥H2ngn=2r
BY(0,8)

where n < 2y + 2 is used. It follows from (2-18) and x - VW <0 for x € Rﬁ that
/ xy VWP dx <k / w@/ (=2 g5
BY(0,8) D(0,8)

(n=2y)/n
< Sn)l/(/ wEZn)/(nﬂV) d.f)
' D(0,5)

where the last inequality follows from (2-27). On the other hand,

(3-5) jg yenIe=20) g / wCn 02 4o
M D(0.5)

a.e,8

> / w2 g% — Ce"sTm,
D(0,6)

Putting all estimates back to the expression of (2-15), one could get the conclusion
by taking & small enough. ([

4. Energy estimates for Type I1

. . . . . n .
In this section, we will study the energy estimates for y € (1, m1n{2, 5 }) Again,
we need the expansion of metric.

Lemma 4.1. Suppose (X"T!, M", g.) is a Poincaré—Einstein manifold with con-
formal infinity (M, [h]). For a fixed point a € M, there exist a representative h = h,
of the class [h], and the geodesic defining function p, near M such that the metric
g= pgng in terms of Fermi coordinates around a has the following expansions

@-1) liglx,xy)=1~- %Ric[g]NN;ixlzvxi - %Ric[g]NN;ijszvxixj

— LRiclglnn:nixyxi + O(Ix )
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and

4-2) g(x,xn) = 8ij + S RIM iwjixexs + § RIALikjismixixm + RIgLinjN:kX 3 Xk
+ (55 R[Aikjizmg + 15 RIAikst RTA) jimsq ) XeX1XmXg
+ %R[g]iNjN;klx%vxkxl + %R[g]iNjN;NNX?V +0(|x]%)

near a. Here all tensors are computed at a and the indices i, j, k, m, q, s run from
1 to n. Moreover, one has the following relations of the curvature:

(1) Ric[hlij;x(a) + Ric[h] ;i (@) + Ric[h]i; j (@) = 0.

(2) 7 =00n M, Sym, (Riclhlij i + 2 R mig; RUALukgt) (@) = O.

(3) Ric[g]nn;n(a) =Ric[glan (y) =Ric[glnn;nn(a) = R[g]nn(a) =0.
4) Rlglinjn(a) =Ric[g];j(a) =0.

(5) RIglii(a) = —n|W[h]|?/(6(n — 1)), Ric[glnn:i(a) = R[glinjn:ij(@) =
—IW[A]I?/(12(n — 1)).

Here ||W[h]|| is the norm of the Weyl tensor of (M, h) at a.

Proof. The expansion (4-1) and (4-2) were first found by Marques [2005] in the
boundary Yamabe problem. Gonzdlez and Wang [2018] and Kim et al. [2018]
adapted them to the fractional case. Here we are just simplifying their expansion
by using the fact that (X"+!, M", g,) is a P-E manifold. 0O

The expansion of Ricci tensor in Fermi coordinates:

Lemma 4.2. Suppose that (M", h) C (X", g) is a totally geodesic. In the Fermi
coordinates around a € M, the Ricci tensor Ric[g];; has the following expansion,

Ric[g];j (x, xn)
= Ric[g];; + (Ric[A];j.x +Rm[gl;n;n.)xx +Riclglij;nxn
+ Ric[glij:vixexn + (5 Riclglij:nn — 2 Sym;; (Ric[g]j; Rm[glinin))xy,
+ (3Riclglij:ut — 5 Sym;;(Rm[h]ixg Rmlglonjn))xex; + O (1x])

where the tensor on the right hand side are all evaluated at O and 1 <i, j, k,l, s <n.
For the other component of Ric[g], we have Ric[gl;y (x, x5) = 0 and

Ric[g]nn (X, xy) =Ric[g]nn +Ric[g]lnn;ixi +RiC[g]NN;NXN+% Ric[g]nn;ijxix;
+Riclglvn:nixixy + sRiclglvy.nnxy + O (x[)
Proof. 1t follows from the Taylor expansion that

Ric[g];; (x, xn)
= Riclglij (¥, 0) 4 dw Riclgli; (¥, 0)xn + 505y Riclglij (X, 0)xy + O(Ix[)



UNIFORMIZATION THEOREMS: BETWEEN YAMABE AND PANEITZ 131

For the first term, we have Ric[g];; (x, 0) = Ric[A];;(x, 0) + R[g];n;n (X, 0). Since
(x,0) is a geodesic normal coordinates of a on M, then Ric[A];;(0) = 0 and
[Marques 2005, Lemma 2.1] imply

Ric[h];; (%, 0) = Ric[Al;j: (0)x + 5 Ric[hl;j.u (0)xex; + O (15 ]).
Thanks to the fact that M is totally geodesic
Rm[g]injn(x, 0) =Rm[g]in;n(0) +Rm[glin;n:k (0)xk
+ (ARIglinj Nkt — % Sym;; Rm([/]ixss Rm[glsnjn ) xix;
+0(5P),
dn Ric[gli;(x, 0) = Ric[glij,n (¥, 0)
= Riclglij:n (0) + Riclglij: i (0)xi + O(1F ).
For the same reason that M is totally geodesic,
3% yRiclglij (%, 0)
= Ric[glij;nn (¥, 0) —2 Sym;; (Ric[g]jx Rm[g]inkn (X, 0)) + O (Ix]).

Collecting all the above expansion, one can get the expansion of Ric[g];;. It follows
from Codazzi equation that

Ric[gliy = 7jj.i — 7ij,; = 0.
For Ric[g]yn, one can do the expansion as Ric[g];;. u

4A. Case (II-1): Low dimension and Case (1I-2): Locally conformally flat. Sup-
pose Coe <8 < §y < 1. Define

(4-3) Ua,e.5 () = X5 We (Wa () + (1 = x5 (Wa ()))e" 2 G
where ys is defined in (2-28) and G, = G;fu is defined in (2-13).

Proposition 4.3. Suppose y € (1, min{2, %}) andn <4+ 2y. If § small enough
and Cq large enough, then there exist a constant Cy > 0 such that

@4 EUaes] <E)Uacs]l S VL +€7Coln, v, 8,8) +0(e" ).
Proof. Suppose p is the geodesic defining function for £, then

;l_r)% pml a,o Ua,e,(S =0.

Then U, . s satisfies (2-9). It follows from Proposition 2.3 that EZ[Ua,s,S] <
EZ[UQ,E,(;]. Therefore we just need to prove the second inequality. Using the
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n—2y

estimates of W, in Lemma A.1 and G}, in (2-14), one can get
@5 QWaw= [ apwrar+ 12 [ gmwigax
BY0.5) BY0.5)
—/ 4P —(n—=2y +2)Jg)(VW,, VW,)xy' dx
BY(0,)
+ Ce 2 g2
similar to the argument in Proposition 3.1. Noticing that
AMWe = AgWe +mixy dyWe = Ay We + (Mg — Agr) W,
and it follows from the expansion of metric (4-2) that
(4-6) (Ag — Age) We = O(1x )| VEW, | + O(1x]) [V We .
From the estimates in Lemmas A.1, A.5 and (2-24)
/ Xy (AR We) dx < f Xy (B We)? + Clx PV W [P dx
BY(0,8) BY(0,)
< / XN (A, We)? dx + Ce" =2y 27 H4-n
BY(0,9)

where n < 2y + 4 is used. It follows from (2-22) and integration by parts that

/ x%l(AWHWS)Z = / lim xxl[(aNAmIWs)Ws - Am|VVsaNVV£]
BY (0.8) D(0,8) XN
_/ xxl(auAmle)Ws
atBY(0,8)

+/ x%lAmlWSBVWE
atBY(0,5)

where v is the outer unit normal of 8+Bf(0, 8) = 8Bi’(0, &N Rf. One can get
from (2-17) that 9, W, < 0 and 9, A,,, W, > 0. Then the above equality implies

4-7) / Xy (A, W) dx <kt / w2/(=2) g
BY(0.9) D(0.5)

(n=2y)/n
e[ wmma) "
' D(0,5)

The following fact of scalar curvature at O can be derived from Lemma 4.1

n|WIh]II?

(4-8) R[g] = RIgl.i = R[gl.n = Rlgl.nn =0, R[g].;i = — 61 —1)
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then

(4-9) / Xy RIgIIV W2 dx < Ce" 27821+,
BY(0,8)
Using the symmetry of W, and (4-8) and Ric[g]yn.n(0) =0, and Lemma 4.2

/ xy' Ric[gl(VW,, VW) dx :/ Xy O(x PV W [?) dx
BY(0,) BY(0,8)
< C8n72y62y+47n‘
Notice
1 1 .
Jlgl= %R[g] and Plg]= nTl(RIC[g] —JIgD.
We obtain

f 4(P - (n - 2)/ + 2)Jg)(VW5, VWS)_X]’GI dx < an—2y82y+4_n.
BY(0,8)
It is easy to see that

/ XN QMWidx <C / X' W2dx < Ce"mr g,
BY(0,8) BY(0,8)

Putting everything back to (2-20) and using (3-5) obtains
EnUaes] <y Sy ), — Ce" 287" - o(e" %)

=YL, + € C(n, y, 8,8) +o(€ ). a

Now suppose (M", [h]) is locally conformally flat. Then pick any pointa € M,
there exists a neighborhood of a in M that can be identify with a Euclidean ball
D(0, ), that is h;; = §;; in D(0, §). Then in a neighborhood of a in X, identified
with Biv (0, 8), the metric reads (see [Mayer and Ndiaye 2017b; Kim et al. 2018])

(4-10) gij(x¥,xy) =68+ 0(xy) and [gl=14+0(x}y)
for (x, xn) € BY (0, 8).

Proposition 4.4. Suppose that (M", [h]) is locally conformally flat and y €
(1, min{2, %}) If 8¢9 small enough and Cy large enough, then there exists some
C3 > 0 such that

ENWae51 <€) Uae5] < V2, +e"C3(n, v, g, 8) +o(e" ).

where U, . s is defined in (4-3) for 0 < Cope <8 < §p < 1.
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Proof. The proof is similar to the one of Proposition 4.3, but the calculation is much
more simpler because g;; is almost Euclidean. We just highlight some differences.
For the same reason we can obtain (4-5). However, (4-6) will be replaced by

(Ag — Agus)We = O(Ix ")V W]+ O([x ") VW,

since (4-10). This implies,

XN (A™ W) dx < (A, We)? + Clx | 2|V W, 2] dx
N P N
BY(0,8) B (0,8)

</ )C%'(A,,,,Wg)2 dx + Ce" 2§~
BY(0,8)

Here we have used (2-24). The rest of the proof will be the same. U

4B. Case (I11-3): Nonlocally conformally flat and n > 2y + 4. We are going to
use a local test function

(4-11) Ua,e,é(x) = xs We (W, (x)).
where x; is defined in (2-28) and W, is the Fermi coordinates.

Theorem 4.5. Suppose that y € (1, min{2, 5}) and n > 4 +2y. If the Weyl tensor
WIh] at a does not vanish, then there exist C4 > 0 such that

ENUae5] < E)Waes] < VL —*Caln, v, g, HIWIRII +o(e*)
provided Coe < § < &g < 1 for &g small enough and Cy large enough.

Proof. For the same reason as before, we just need to show the second inequality.
Adopting the notation Q, (U : 2) in (2-10), one has

Q) (Ua,e.5) = @y (We : BY (0,8)) + Qy (Ua,e.5 : BY (0,28)\ BY (0, 8)).
To make our proof more clear, we use the following notation:

Q,(We:BY(©0,8)=Ti — T+ T,
where

Ti = / Xy (ADWe) dpug,
BY(0,)

7§=/ (4P —(n =2y +2)J[gle)(VWe, VW) d g,
BY(0,8)

n—2 m
H=t [ ewan,
BY(0.5)
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Step 1: Consider 7;. Noticing (4-1), one gets
/ Xy (AW) d g
BY(0,8)
- f B AP
BY(0,8)

= / Xy (AT W) dx
BY(0,8)

1 _.
— — Ric[glnn:ii / X2 (A, We)? dx + o(eh).
4n BY(0.9)

Since 4+2y <n

/ X2 (A We) dx = 4/ X2 Oy We)? dx
BY(0,8) BY(0,8)

= 4¢* /N X2 @y W) dx +o(e%).
R

+

Introduce the notation (see [Kim et al. 2018, Lemma B.6])

(4-12) ]-'5=/ X' r VW, * dx, fﬁzf X', We) dx.
R RY

N
+ +

Thus
4
— my m 2 € . 4

“4-13) T —/ Xy (AL We)*dx — —Riclglnn:ii (F5s — Fe) +o(e7).

BY(0,8) n
To handle the first term on the RHS, straightforward computation shows
/ Xy (AT W) dx = f XN (A We + (Mg — Agy) We)* dx

BY(0,8) BY(0,9)

< [ WP 4 2080, W By = AW,
BY(0,8)

+((Dg = Agy)We)’1dx

:f XN (A, We)2dx + 1) + .
BY(0,8)

Applying (4-2), one can notice

(Ag = Agy)We = (8" = 8u5)33 We + 0ug™ 3y We + "84 log /12135 W
= [3RMikjixix ]85 We + O(1x ) VEW,| + O (1x ) [V W, |
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Notice the following fact:

73

8 s
(4-14) 32 W, = 32 W1 + 0, Wl( — m)

Using the symmetry of 82 W, and the properties in Lemma 4.1, R[h];xjixrx; 8 WE_O.
Consequently

L= f XAy — Ay ) Wel* dx = o(e?).
BY(0,5) *
Now consider I,. Let (g/)® be the fourth-order terms in the expansion (4-2) of g'/.

I =2/ XN A, We(gY — 87)07 W, dx
BY(0,8)
=4g4/ X oy Wi (g o7 W dx + o(e®)
RY

= 284R[8]iNjN;kl /N X%I—H)Ckxla}vwl 3,-21- Wi dx
R

+

4
+ S RIgliNinN:NN /Nxx1+33NW1AW1 dx 4 o(e*).
R+

It follows from Bianchi identity and R[g]yn.nyn(a) = 0 that R[glinin.nn(a) =0.
Therefore the second term in /; is equal to 0. Using (4-14) and [Brendle 2008,
Corollary 29], one could simplify I} as

n(n +2)(R[g]thN jj+2R[g]zNlej)(~A3 A])+_Rlc[g]lNzN ]1A1+0(8 ),

where we have used the notation of Lemma A.2 in the Appendix. Moreover,
Lemma 4.1 implies R[g];nin;j; = Ric[g]yn;j;j. Therefore

4
I = 2% Ricyy.iilglAl + Ricyy.iilg](As — Ap) 4 o(e?).

6e*
n(n+2)

Collecting the computation of /; and I, and inserting to (4-13), we obtain

415 T = XN (A, We)? dx
BY(0,8)
¢* Ric i 6(A; —A
+ % |:—]-"5 + Fo+2A + %} +o(e".
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Step 2: Let us deal with 7; and 73 in Q,, (W, : Biv (0, 8)). Using Lemma 4.2, we
get

/ xy' Ric[gl(VW;, VW) dx
BY(0,8)
= /N Xxl Ric[g],-j(x)ain 3]'W1 dx
BY(0,8)

+f xy' Ric[glyn (x)dy W10y Wi dx
BY(0,)
4

= m[RiC[h]kk;ii +2Ric[h]ik.ik] fzv Xxlrz(ar W) dx

RY

LY . mi 2 2 4
+ Rlc[g]NN;n Xy T (OnW1) dx +o(g").
2n RY

Since Lemma 4.1 implies

Ric[hlkk;ii = R[h].ii = 2(n — 1) Ric[glnnii
and by the contracted Bianchi identity 2 Ric[4]ik.ix = R[h].kk, one can simplify the
above equation to

f x}(}' Ric[g](VW, VW) dx
BY(0,8)

— 222 m L s — Fo et Riclglwan +oleh)
g" Ric i Ho(e).
2n(n+2) 6 2n 5 6 ElNnii

We also have

[ swatev i du,
BY(0.6)

1
T BY(0,8)
1
T dn BY(0,)

Rlgl.:;e4
:—[g]’”g / x%‘r2|VW1|2dx+0(84)
RY

XN R[NV W |* dx + o(e*)

XNU(RIG)ijxixj + RIGLNNYI)IVWeI* dx + o(e%)

4n?

Rgl; ie*
— —4n’2’ Fs+o(eh)

Ric et
_ [g]NN,zz f5+0(84).
2n
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Since the Schouten tensor P = n%](Ric —-Jg),

3-16) T2 = f xy' Ric[gl(VW, VW) dx
4 . )
_ +n-2y+2 Xy TGNV Welg dpug
n—1 BY(0.)
2 n—73 l’l—2)/—|—2 4o A
= Fo— Fs|e*R "
|:n —1n(n+2) 6 m 5]8 ic[glnn.ii +o(g")

Also
4-17)

n—2
3= 2 - / lelwzd“g

Bi“(o,a)
n—2y
-~ / Xy (= A, J[81(0) W] dx +o(e™)
BY(0,8)
—(1’1—2)/)84 B
- T /N xxl(R[g];ii +R[g];NN +m1XN18NR[g])W12 dx +0(84)
RJr
(Vl—2)/)g4
_4—R[g];ii]'—1 +o0(sh
n
—2y o4

= — 5 " Riclglnn:ii F1 —|—0(8 ).

Here F| = fRN xN'W2dx; see the notation in [Kim et al. 2018, Lemma B.6].
Inserting (4- 15) (4-16), and (4-17) together back into (2-10),

(4-18) Qy (W; : BY(0,8)) = / AN (A We)? dx + e  RIgINN:iiCa + 0(e)
BY(0,5)

where

1 6(A; — A
4-19) Cy=- |:—.7'—5 + Fe+2A; + M}
n n+2

2 -3 —2y+2 ~2
_[ n-3 p n-2r+ ]_.5}_" Y

6— Fi.

n—1lnn+2) 2n

It can be checked that C > 0 when y € (1,2) and n > 4+ 2y. See Lemma A.3 in
the Appendix.

Step 3: It is standard to get

Q, (xsWe : BY(0,28)\ BY (0, 8)) = o(e™).
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Combining Step 1-3 and (4-7), we obtain

1 2 2 (=2r)/m 4 4
Q) (Uaes) <8, ), ( / wg/ =) df) +&* RIglnn:iiCa+o(e?).
D(0,6)

Since we always have (3-5) and R[glyn:ii = — || W[h]||>/[12(n—1)] by Lemma 4.1,
EVUy e 5] < VL, —e*Can, v, g, O IWIAII? + o(e*). O

4C. Case (II-4): Nonlocally conformally flat and n = 2y + 4. In this case we
will have n =4 4-2y. Since y € (1, 2), then it means y = % and n = 7. The bubble
has the following explicit form [Sun and Xiong 2016]

2 3
) )
4-20) Weo =« — +4x —
( ) Weo 7’3/2[<(e+xN)2+|x—0|2) N<(s+xN)2+|x—a|2)]

where a7 3,2 is defined in (2-26). We also have m| = 0 in this case.

Theorem 4.6. Suppose that y = % and n ="1. If the Weyl tensor at a does not
vanish, define

Ua,e,5(x) = x5 We (Wa (X))
for 0 < Coe <8 <89 < 1. Then there exists Cs > 0 such that
&} Wa,e8] < &} [Uae.5] < V5, — e*10g(8/e)Cs(n, v, 8. $)IW[R]I* + O (e*)
provided 8y small enough and Cq large enough.

Proof. Using the explicit form of W, , one can calculate as in the previous section.

Step 1: Consider the leading term in Q, (W, : Bf 0, 8)).

(4-21) (A" W) dpug
BY(0,8)

- / AW Tl dig

BY(0,)
4

= / (A" W,)? dx — & Riclglwni / xyrt @y W) dx +o(e*)
BY 0.5 n BY(0.5/¢)

= f (AT We)* dx — =07 35 S%le* 10g<§) Ric[glyn:ii + O (e%).
B_}X(O,ﬁ) 32~ &

where we have used the formula of Lemma A.4 in the Appendix. Similarly

/ (AT'W,)* dx = / (A, We) dx + 1) + L.
BY(0,8) BY(0,8)
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It is easy to see I, = o(¢%) and
(422) 1y =T o 3,/S"e* log(2 ) Riclglyiis + O (6.

4-23) T = (AR W dx = i 3 [S0)e? 10g< )Ric[g]NN;ii+0(£4).
B 0,8)

Step 2: We have
/ Riclgl(VWi, VW) dx = Za3 5 || 10g< )Rlc[g]NN i 0.

and

5
/I;N(O 5 J|VW€|§ dpg = 3ZOl% 3/2|§6|8 ]0g< ) Ric[glyn:ii + 0(84)

Hence
_ 43 6 4
It is not hard to see that
T3= 5 /BN(O , Op'Widpg vl 3215 et log Ric[glnn:ii+O(e").

Putting 7; back into Q, (W, : BiV(O, 3)), one gets

Q, (W, : BY (0, 8))

19 3\ p:
= / (A Wo2dx + 2203 3 [S%e* log(2) Riclglwwii + 0 ().
BY(0,8) €

The rest of proof will be the same as the last part of the proof of Theorem 4.5. We
shall omit it here. ]

5. Interaction estimates on bubbles

In this section, we will state the asymptotic analysis of the Palais—Smale sequence
of 5,’; . The local cases then follow from the Ekeland variational principle. Next
we shall derive interaction estimates of bubbles which is crucial for the algebraic
topological argument in the next section.

5A. Asymptotic analysis and local cases. Suppose (X"T!, M", g¥) is a P-E man-
ifold with conformal infinity (M, [h]). Assume p is the unique geodesic defining
function for a representative metric /. Then (X"*!, g = p?g,, p, m)) is a geodesic
SMMS. Given any point a € M, there is a “good” conformal Fermi coordinates by
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Lemma 4.1. More precisely, there exists a conformal metric s, € [h] and p, the
associated unique geodesic definition function such that

8a=0u8+: 8alu=ha, 8a=dp;~+hp, near M

Since h, € [h], one may assume 4, =¢3/(n_zy)h. One can see that ga=(pa/,0)2,02g+.
Letting p — 0, we get
2
he = lim (ﬁ) h on M.
p—0\ o

So we may naturally extend ¢, = (p4/p)"~2"/? onto X. It is known that the map
a— ¢, and g, is CV. By the expansion of metric (4-2) near a, one knows ¢, (a) = 1.
Therefore |p,/p — 1| < Cé near a.

Suppose VY, : O(a) — Biv (0, 26) is the Fermi coordinates map, where O(a) is a
open neighborhood of a in X. Recall the definition of U, ¢ s in (4-3). Define
)(n—2y)/ 2

G ttaes=Uaneslu. Voo = (%

By the works of Palatucci and Pisante [2015] and Fang and Gonzdlez [2015], it is
not hard to see the following profile decomposition:

a,eds Vaes = Va,s,SIM-

Lemma 5.1. Suppose {u,} C WI’Z(M, h) is a Palais—Smale sequence for 5}:, that
is dgzl/ [u,] = 0 and 8,? [u] = ¢, as v — oo. After some normalization, we may
assume

7§ W22 o 1),
M

Then after passing to subsequence if necessary, there exists a U, € WI’Z(M ,h),
an integer m > 0 and a sequence (a;,, ;) for 1 < j < m with the following
propetrties:

(1) uo satisfies P}Z”uoo _ u(oré—2)/)/(n+2y).

(i) As v — o0,

m
Uy —Uoo — E Ua_/,,,,gj,v,é
j=1

(&) Tuy D™ — (] )™ @) +m(YE )@,

— 0,
Wr-2(M,h)

(iii) Fori # j
2
& £ di(a; ,,a;
(5_2) i,v + j.v + h( i,v j,U) - o0,
Ejv Eiv EivEjy
where dj, is the distance function on (M, h).

It follows from the Ekeland variational principle [Ekeland 1974] that:
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Lemma 5.2. There exists a Palais—Smale sequence at level YV (M, [h]).

After the existence of Palais—Smale sequence at level )Y (M, [k]), the next
ingredient in this approach is the same one as in the subcritical approximations.
Precisely it is the existence of a variational barrier at infinity due to the presence
of local information and is the content of the following proposition.

Proposition 5.3 (local information helps). Under the assumption of case (I1I-3) and
(II-4), we have that there exists a € M, € and § small enough such that

&l (Va,e.8) < V.
Proof. 1t follows directly from Theorem 4.5 and 4.6. ([

Proof of Local case (1I-3) and (1I-4). By a contradiction argument, it follows directly
from Lemma 5.2, and Proposition 5.3. U

Remark 5.4. As in the case of the subcritical approximation technique, here also
the solution obtained is a minimizer.

5B. Estimates for global cases. For the rest of this paper, we focus on the global

cases, which are (I-1), (II-1) and (II-2). For every p € N* and A := (ay, ..., a,) €
MP =M x---x M, ¢g;, ¢j, we define the following quantities
(5-3) gij = (_’ + 4 u) ,
Ej & Ei€j
(5_4) e[,j =KyQy(Va,~,s,8» Vaj,ej,é)a
(5-5) 6= f (Ve )TN0y,
M
fori, j =1,..., p. Here and the following we always assume that § and g( are

fixed numbers which will be chosen later, and &; < gy are small comparable to §.

Lemma 5.5 (self-action). Under the assumptions of Propositions 3.1, 4.3 and 4.4,
there exist gg small enough and C > 0 such that for any v, ¢ s with € < g:
() & (Vay.e.5) < V&u + €82 1=

(ii) fyy vl S~ doy, = (VL)) + 0(e"57).

a,&,d

Proof. These are just the results of the corresponding propositions. U

Lemma 5.6 (higher exponent interaction estimates). There exists (o > 0 small
enough so that the following estimates hold provided ¢; ; < o fori # j:

6) fM Ug,-,s,-,avfj,ej,adgh = 0(8fj)fora + 8= nz’;y and a > # > B >0.

(ii) SﬁM U(n)/(n—Zy)v(n)/n—Zy do, = O(El(ftj)/(n—2y) Ing; ;).

a;,&;,8 aj,ej,8
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Proof. These are just local estimates which does not involve any fractional derivative
of v. One can borrow the proof in [Mayer and Ndiaye 2017b, Lemma 5.4]. ([
Lemma 5.7. Suppose that y € (0, 1)U (1, min{2, §}) and U, ;s is defined in (4-3)
for Coe < 8§ < 8. If g small enough and Cy large enough, there exist C > 0 such
that the following hold.:

L5 (Ua.es)| < Cdg, (x,a) x5 We (W) +Ce" 2287 = s 0y (v ay<asy-

lim p]"9,, (Uge.5) = —K;1X5w£"+2y)/("_2y).
Pa; =0

Where 1g, is the characteristic function for a set Q.

Proof. Using the map ¥,, we can consider the problem on Bﬁrv (0, 26) with metric
gq having expansions (4-1) and (4-2). Under this coordinates we have p, = xy. It
is easy to see

llmo 'Ozlnoapa(Ua,E,ls) = _K;1X8w§n+zy)/(n_2y)
Pa—>

For the one of L'Z'f%u U,.¢.5), similar type of estimates were derived in [Brendle
2005, Proposition B.1], [Almaraz 2015, Proposition 3.13], and [Almaraz and Sun
2016, Proposition 3.14]. By the definition in (4-3) and (2-7), we have
(5-6) L5° (Uaes) = xsL5", We+2(Vys, V(W — " 2GY)),,
+ (A7) (W, — 212 GY)
=L+ 5L+
To handle the first term in the above equality, notice

m0+n—lJ
2

We only need to calculate the above in Biv (0,26). Since W, = W.(|x|, xy) =
We(r, xy), where r? = xl2 4+ + x,%, we have (write g, as g for short temporarily)

L;n»%a W€ = A;naO(WS) + [ga]W{;‘-

1 X 1
AT (We) = ——8;(v/|g18V =L 8, We) + ——dn (v/Ig |0y We) +moxy ' an W,
Pa & «/E 4 ’ r¥e \/@ 3 N 3

gijx_x_ - X gijx.
:%f’rers+[g”3iln Igl7’+8,-< rj):|arWs

+ 3y In/|glon We + 3§ We +moxy' 3y We.

Using A,,, W, =0, the above equality leads to

gxix;
AT (W) =( e l)afrws

, X Ux; n—1
+|:gl]3i1n |g|7]+3i(gr])— " :|arWs+8Nln\/|g|aNWs-
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Using the expansion of g, in (4-1) and (4-2), in Biv (0, 26), we have

(5-7) AL (We) = O(I1x1))87, We + O(1x1*) (3, W + By W)

= O(jx|e" (&% + [x )~

= O(|x|Wy),
where in the second and last equality, Lemma A.1 is used. Consequently |/;| <
Clxlxs We.

For I, and I5 in (5-6), we only need to bound them in BY (0, 28) \ BY (0, §). In
this region, one can use (2-8), (2-14) and [Mayer and Ndiaye 2017b, Corollary 5.3]

|W, — 8('1—2}/)/2(;31/' +|x - V(W — 8('1—2}/)/2621/” < Ce=2r)/252y —n+1

Therefore

||+ 13| < Ce 2282 ==l 5 1 <og),

where 1 is the characteristic function for a set 2. Taking § < &g small enough
such that |x| and d, (x, a) are comparable, one can get the conclusion. ([

Remark 5.8. Since (X, 8a;» Pa;» Mo) and (X, g, p, mg) are two geodesic SMMS
which are conformal to each other, then by the conformal change property (2-2)

N\ (n+4=2y)/2
L (Vo 0) = () LY (Uayer)

= O(dg (x,) xs We, (W, CONHO (" 7282 50 g (2 ay<asy)-

It follows from [Case 2017, Theorem 3.2] that lim,_.¢ p"°d,, is also conformally
covariant. Then

lim p™03,V,, o5 = VT2 =20 Him pmog (U, .. 5)
p—0 ! Pa;—0" i
—1 2 -2 2 -2
=k, d)l(ll’1+ y)/(n V)Xswgl-i- y)/(n V)(\pa’_)'

Lemma 5.9 (interaction). For y € (0, 1) U (1, min{2, 4}), and Co max{e;, &;} <
8 < 8¢ for some sufficiently small 6o and large Co. Assume &; j < Lo for some small

o, then:
@) ej,j= 1+ 0(5))6,”' + O (max{g;, 8]'}2)/8_27/))8,',]'.
(i) € ;= (ygn)%(l + 0(8) + O(max{e;, &} 8§72))e; ;.

Proof. For (ii), there is no fractional derivative involved. One can use the proof from
[Mayer and Ndiaye 2017b, Lemma 5.5]. Now consider (i). Let us use abbreviation
‘/i == Va,-,e,-,ﬁ’ (pl == §0a,-,s,-,8 and Wl == WS,‘ (qja,- (x))
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Suppose y € (0, 1). It follows from (2-5) that

eij :Ky/ L';%(V,-)Vj,o’"“dug —Ky?{ lim p™9,(V;)V; doy,.
X Mp—)O

Here by symmetry, we can assume ¢; < ¢;. Since Remark 5.8 and Lemma A.5,

/}(Lgf()p(Vi)Vjp'"O ding = 00)s ;.
For the other term, one can apply Remark 5.8 and Lemma A.7 to get

—/cyf lim p™°9,(V;)V; doy,
M P—0
= (14 0(5)) ?g xiw" Py ),
M

=(1+0@®)e;; — (1+0()) f (N2 MOy d
M
=(1+0@)ej+ 075 )e ;.

Combing the above two estimates, one gets (i) when y € (0, 1).
Suppose y € (1, min{2, 5}). It follows from (2-11) that

(5-8) e,-,‘,=Ky/XLZf;)(V,-)Vjpmldug+xyﬁlg%pmlapAg”(w)vj doy
=L+ 1.
Claim 1. I = 0(5)8,',]‘.

Proof. 1t follows from [Case and Chang 2016, Theorem 3.1] that LZf’p has the
decomposition

L)

_ ym+2 my __ ymi+2 mo
4,,0_L2,p OLz,p—Lz,p oL

2,p°

where by definition one has

LY =LY —2p7 "9, + J[gl.

Since

L3}, Waes) = 0oL, We k(1= X)L, G
+2(Vxs, V(W — "= 2GYy), + AL xs(We — g WRGY),
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using the estimates in (2-14) and Lemma A.1, we arrive at the following estimates
in BY (0, 28) which are

Ly (Uae.s)
_Lm1+2(X L W+(1 Xs)L GV)JF0(8("_2’/)/252’/_"_31{35|x|§28})
—XsLm'+2(L'"° We) +2(Vxs, VLY, (We — G]))g,
+(A'"'+2X1)L (Ws GV)+0(8(n 2y)/282y— n—31{5§|x|§25})
= xo L3 (5" W)+0(8(" RT3 51w <2))-

By (2-2), we have

Ly, (V)
= (pa /)" TTIRLYL (U))
= (pa/ )" T s L’"l“(L’;f(;ui Wi) + 0" 225 g (vap=)]

- XaLmlJFZ(LZT(LVi) + O(g(”*ZV)/232V7n731{8/2§dg(x’ai)§48})‘
Here V; = (p4,/0)"~2"/>W;. Then by Lemma A.6
I =Ky /X X(SLml+2(Lgf%‘7[)Vj,0mldMg
—2y)/2 —n—
X
B / XLy LYV Vip™ d g + O (B)ei

=i, / XsLy L (L5 V)V, o™ djug
X

~ 2%, /X x50~ 0, (LY VO V™ djug + O (S)ei,
=i, /X Xs Ly L (LY V) Vo™ djig + O (8)ei. ;.
It follows from integration by parts that
[ as L WE VoV i~ [ L2 0L s V)™ i

= _7§ hm p"19, (LY VI-)deah +7§ lim p™19, (x5 V;) L5 V; doy,
M P> M p—0 o

=0.
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Then
I =k, /X(LZT‘;,\Z)LZ',,(x(st)p”“dug +0@)ei ;= 0()ei ;- O
To deal with I, in (5-8), we have

gl_r)% pmlapA’;’ll (Vi) = ¢gl+27)/(n727) hmo p‘fxlapai AZ: (W)

Pa; =

- - +2 -2
:Kyl¢g1+2y)/(n 2y)X8wi(n y)/(n 125

Hence
A zyg ¢L<lz_1+2y)/<n72y)Xawl_(n+2y)/(n—2y)vj doy,
M 1
=1+ 06N § xoul7O; doy
M

_ . 27 s=2¥\\p. .

=1+ 0@0))e,;+0("67)e ;.
Inserting the estimates of I; and I, into (5-8), we get the desired result. O

6. Algebraic topological argument

In this section, we will outline the algebraic topological argument by [Bahri and
Coron 1988]. We omit some standard proofs. Readers are encouraged to find them
in [Mayer and Ndiaye 2017a].

To introduce the neighborhood of potential critical points at infinity of £/, we
first choose some vy > 1 and vy = 1, and some g > 0 and o =~ 0. With the
later quantities fixed, for p € N*, and 0 < u < g, we define V(p, n) the (p, u)-
neighborhood of potential critical points at infinity of 8}: by the following formula

Vip, n) = {uGWI’Z(M):Elal,...,apeM,ozl,...,ap>O,

P
O<er,...,ep =, |M—Zaivai,€iﬁn =6
i=1

=

a-<wande; <p.i#j=1.....p}

where ||-|| denotes the standard W?>2-norm.

Next, we introduce the sublevels of our Euler—Lagrange functional corresponding
to the quantized values due to the involved bubbling phenomena. They are the sets
L, (p € N) defined as follows

L,:={ueW/*(M): €l <(p+1¥/"YLY forp=>1,
and
Ly :=2.
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As in classical calculus of variations and classical critical points theory where
Ekeland variational principle and deformation lemma play dual role in producing
Palais—Smale sequences, here also for the Ekeland variational principle in the calcu-
lus of variations at infinity underlying the Aubin—Schoen’s minimizing technique,
we have the following deformation lemma which plays the corresponding role in
the critical point theory at infinity behind the barycenter technique that we are going
to use. It follows from the profile decomposition (Lemma 5.1) and same arguments
as in others applications of the algebraic topological argument of Bahri and Coron
[1988].

Lemma 6.1 (deformation lemma). Assuming that S}; has no critical points, then
for every p € N*, there exists 0 < 1, < jLo such that, for every 0 < u < [p,
it holds that (L, L,_y) retracts by deformation onto (L,_1 U A, L,_1) with
V(p,t) CA, CV(p, n) where 0 < i < % is a very small positive real number
which depends on (.

On the other hand, since we are in the global case, and no variant of the positive
mass theorem is known to hold, then clearly there is no variational barrier available.
However, as the mass there is another global invariant of the variational problem
which is the interaction. Using the later information we will establish a multiple
variational barrier estimate (see Proposition 6.3) which will play dual role in the
application of the algebraic topological argument for existence.

Now we present some topological properties of the space of formal barycenter
of M, that we need for our barycenter technique for existence. To do that we recall
that for p € N* the set of formal barycenters of M of order p is defined as

B,(M) = {Xp:aiéai caq;eEM,o; >0,i = 1,...,p,2p:ai = 1}, Bo(M) = &,
i=1 i=1
where §, for a € M is the Dirac measure at a. Moreover we have the existence of
Z, orientation classes
(6-1) wp € Hut1)p—1(Bp(M), Bp—1(M))
and that the cap product acts as follows
(6-2) H'(M”/0,)) x Hi(By(M), Bp_1(M)) —> Hx_i(B,(M), B,_1(M)).
On the other hand, since M is a closed n-dimensional manifold, we have
an orientation class 0 # O}, € H"(M),

and there is a natural way to see Oy, € H"(M) as a nontrivial element of
H"(M? /op); see [Mayer and Ndiaye 2017a, pages 532-533], namely

(6-3) Oy =~ 0; with 0 # 0; e H'"(M?)/op).
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Recalling (6-2), and identifying O}, and O} via (6-3), we have the following
well-known formula.

Lemma 6.2. There holds

H"((M")/op) x Hnt1)p—1(Bp(M), Bp—1(M))
> Hpt1)p—m+1)(Bp(M), B,_1(M))
> Hugyp-n-2(Bp-1 (M), By 2(M)),
and
wp1 =030 —~w)).
Next we define for p e N* and ¢ > 0

P P
2
fp€) 1 By(M) > WY (M) 10 =" a;de, € Bp(M) —> f()(0) =Y ivg e
i=1 i=1
Using the f,(¢), we express the multiple variational barrier in the following propo-
sition:
Proposition 6.3. There exists vy > 1 such that for every p € N*, p > 2 and every

0 < u < o, there exists &), := £,() such that for every 0 < ¢ < ¢, and for every
o =" aid; € Bp(M), we have:

M If Zi#j &i,j > | or there exist iy # jo such that ;%0 > Vg, then
J0

Efp(e)(0)] < pP/"YL,.

(2) If 3.4 €i.j < i and for everyi # j we have Z—; < v, then

E Lfp(e)(0)] < /" VL, (1 +Cee" 12 — C7(p — e =2/,
where Cg, C7 > 0 depend onn, y, g, 6.

Proof. Notice that in the definition of f,(¢) we are taking all &; the same. The
proof is the same as the one of Proposition 3.1 in [Mayer and Ndiaye 2017a] using
Propositions 2.2, 2.3 and Lemmas 5.5, 5.6, 5.9 and Propositions 3.1, 4.3, 4.4. [J

Now we start transporting the topology of the manifold M into the sublevels
of the Euler-Lagrange functional 5;: by bubbling via v, . 5. But before that, we
first recall the definition of the selection map defined inside the neighborhood of
potential critical points at infinity. For every p € N*, there exists 0 < i, < o such
that for every 0 < u < ), there holds:

Yu € V(p, n) the minimization problem, minBlfz ||u — Zle Vg, 6.8 || has

6-4 : . .
©-4) a solution, which is unique up to permutations,
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where B}, is defined as

Bﬁ::{(&,A,X):E,-fp,,izl,...,p,ﬂfvoandg,-,j§M,i;ﬁj=1,...,p}

@j

where (@, A, A) € R} x MP x (0, +00)” and vy is as in Proposition 6.3. Furthermore
we define the selection map via

sp:Vip, )= (M) /o, :u—s,(u)=A and A is given by (6-4).
Recalling (6-1) we have:

Lemma 6.4. Assuming that 5}; has no critical points and 0 < pu < w1, then up to
taking w smaller and €| smaller too, we have that for every 0 < € < &1, there holds

fi(e) : (Bi(M), Bo(M)) — (L1, Lo)
is well defined and satisfies

(f/1(e)«(w1) #0 in  H,(L1, Lo).

Proof. The proof follows from the same arguments as the ones used in the proof of
Lemma 4.2 in [Mayer and Ndiaye 2017a] by using the selection map s;, Lemma 6.1
and Proposition 3.1, 4.3, 4.4, ([

Next we use the previous lemma and pile up masses by bubbling via v, . s in a
recursive way. Still recalling (6-1) we have:

Lemma 6.5. Assuming that 82: has no critical points and 0 < 1 < ppy1, then
up to taking 1 smaller, and ¢, and &, smaller too, we have that for every
0 <& <min{e,, £,41}, there holds

Jp+1(8) 1 (Bpy1 (M), Bp(M)) — (Lp41, Lp)
and
fp(g) : (Bp(M)a Bp—l(M)) - (Lp» Lp—l)

are well defined and satisfy

(fpENs(wp) #0 in Hyp—1(Lp, Lp—1)
implies

(fp+1(E))s(wpy1) #0  in Hypyiy—1(Lpy1, Lp).

Proof. The proof follows from the same arguments as the ones used in the proof of
Lemma 4.3 in [Mayer and Ndiaye 2017a], by using the selection map s, Lemma 6.1
and Proposition 6.3. O

Finally we use the strength of Proposition 6.3 —namely point (ii) —to give a
criterion ensuring that the recursive process of piling up masses via Lemma 6.5
will lead to a topological contradiction after a very large number of steps.
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Lemma 6.6. Setting
C
n=[1 S
P [ tolt
we have thatV 0 < & < g« there holds

fp* (8)[Bp*(M)] C Lp*—l-
Proof. The proof is a direct application of Proposition 6.3 . ]

Proof of Theorems 1.1 and 1.2. It follows by a contradiction argument from
Lemmas 6.4-6.6. (]

7. Case (I-2): low dimension in AH

In this section, we want to show that our method could also apply to some asymp-
totically hyperbolic case. Suppose (X"*!, g.) is an asymptotically hyperbolic
manifold with conformal infinity (M", [h]). Assume also p is the geodesic defining
function of a representative metric 4. Furthermore we require

(7-1) Rlgt]+n(n+1)=o0(p) as p — 0 uniformly on M.

Then it follows from [Kim et al. 2018, Lemma 2.3] that the mean curvature H = 0.
According to [Kim et al. 2018, Lemma 2.2 and 2.4], for any point a € M, there
exist h, € [h] (write h, as h for short) and the geodesic defining function p, near
M such that the metric g = pfl g+ has the following expansion

(7-2)  gY(x)=8;; +2mijxy + %Rika[h]xkxl + gf{\lkxka
+ By + Rinjn[g)xy + 0 (1x]?)

Vlgl(x) = 1 — L Ric[h];jxix; — (317 lI* + Riclglvw)xy + O (x|
in BY (0, 8).

In terms of Fermi coordinates around a. Here 7 is the second fundamental form of
(M, h) C (X, g). Every tensor in the expansion is computed at a = 0.
As in (3-2), we define

Une,s(X) = s We(Wa (X)) + (1 — x5(Wa (x)))e "™ 2/2GY (x)

for Cpe < § <8y < 1. We shall consider the case n <2+ 2y and y € (0, 1), which
is a global case, notice this implies n =3 and y € (3, 1).

Proposition 7.1. Suppose thatn < 2+ 2y and y € (0, 1). If (7-1) holds and 5,
small enough and Cq large enough, then there exists a constant Cg > 0 such that

(7-3) S;)I/[Ua,s,a] =< EZ[Ua,e,S] = ygn +€n_2yC8(l’l, VY, &,0) +0(6n—2y)'
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Proof. The proof is similar to the one of Proposition 3.1. The energy inequality of
(2-6) in [Case 2017] goes through verbatim in AH setting for y € (0, 1). One just
needs to use the expansion of the metric in (7-2) instead of (3-1). [l

Once the above proposition is established, then we have the corresponding self-
action estimates in Lemma 5.5. Although (5-7) will be changed to O(W,), the
interaction estimates Lemma 5.9 still holds in this case. Therefore, one can also
run the critical points at infinity approach.

Appendix: Some estimates

In this appendix, we will provide some details for the estimates used in the previous
sections.

Lemma A.l. Suppose n > 2y. W, = W, is defined in (2-17). Denote |x| =
|x|2 +x12\, on [F\Rﬂ\r’, then:

(1) We(@, xn) = O ("2 (2 4 |x )~ =210/,

(2) NWe(E, xy) = 022 @2 4 [x ) ~/2).

(3) VeW,(x,xy) = O/ + |x|H)~ (=2 +D/2),

(4) VEW (X, xy) = O ("2 (2 4 |x|1)~(1=2r+2)/2),

(5) O VEW.(E, xx) = O (" 22 71 (2 4 [x )= +D/2), fory > 1,
Proof. These estimates follow from [Mayer and Ndiaye 2017b, Corollary 5.2]. One

of crucial observation in [Mayer and Ndiaye 2017b, (47)] is that W, » in (2-17) can
be interpreted as the interaction of standard bubbles on R”. U

Let us use the notation
W =W (x|,xy) and r=|x]|.
We have the following list of formulae. Here we borrow the notations F; from [Kim
et al. 2018, Lemma B.6].
Lemma A.2. Ifn > 2y + 4, then

A= /N Xy Tranwa,wdx = 2R+ (2 —1)F+F),
R

+

Ay = /N X T radyWo, Wdx = —(5—2y) A + 2(F — F3),

+

As = /Nx;‘ZVrzanaErde =—(n+ DA — Fo.

+
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Proof. Integration by parts gives

A2=/ T oy W, W dx
RN

:—(5—2)/)/ xj‘VZVrana,de—/ X T roy Wty W dx
RY RY

:—(5—2)/),41—%/ > r ooy WP dx
RY

+

= —(5-2p) A +1 /N X oy W dx
R

y
=—-0-2y)A +5(F2—F3).
Using (2-23), one obtains

—(1—2;/),41:/ W AW, W dx

RY

=F+n—1DF +/ X oy Wo, W dx
R+

=Fr+n—1DF;— 5 -2p)A + 5(F2— F3).

One can combine the above two equalities to get .A; and A;. Similarly
,43=/ Xy o WL W dx
RN
——(n+ 1)/ T roNWo, W dx —/ Xy P20, Waly W dx
RN
=—(n+ DA — Fo. O

Lemma A.3. Supposen >2y+4andy € (1, min{2, %}), then Cy4 defined in (4-19)
is positive.

Proof. Inserting the expressions of .A; and .43 into the previous lemma into (4-19)
gives

nn—2y) n n n—2y
Co=——"""F—=F—[=—-1
nCy > Fi 2}"2 (2 ).7'"34- 7 Fs
n>—n+4 F_F 7
n—Dn+2) ¢ 7 a2’
n?—n+4
=h+bh+—7———F%F

(n—1(n+2)
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where
h=—2FR-(2-1)F 0
S M ) : n+2""°
22-y)(12p(y +2)+5n2—8(y+2)n)A B
S—dn—4—29)n—4+2y) 0%
nn—2y) n—2y
L=— F F:
2 5 1+ 5 5
n(n —2y)(—4y? +3n% — 18n +28)
332.

T2+ D —AH(n—4—2y)(n—4+2y)

Here we were using the expression of F; in [Kim et al. 2018, Lemma B.6]. Now it is
not hard to show I; + I, > 0 for n > 442y and y € (1, min{2, 4}). Consequently,
C4 > 0. O

Lemma A.4. Suppose that 0 <2e <§ <1,n=2y +4 =7 and W is defined in
(4-20), then

St S
W2dx = 222 . ,1S% 1o (-)+0(1),
/BN(oa/a) 32 e
r2(ayW)*d so1 o(l
— 7,3/2
B0/ (OvW)“dx = a 2l IOg +0(),

/ r2(8,W)? dx
BY(0.5/¢)

/ xyroyWo, W dx =23 1 ,18% 1og(2) + 0(1),
BN (0,8/¢)

_ 63
a3 IS log(2) + 01,

_ 63

/ sy W LW =~ Wy dx = =a ) |6°) 1og( )+0),
BY(0,8/¢)

where a7 32 is defined in (2-26) and |S®| is the volume of a 6 dimensional sphere.

Proof. We show how to get the second estimate, the others follow from this similarly:
X[(xy + 8xy 4+ 14 1x]?)
[(14xn)? +[%]2]*
xN(xlz\, +8xy +7+1%%)
[(1+x3)% + X2
|[%1* (g + 10xy + 1 +[5]%)
[(1+xn)? + X1

B,W = —40[7,3/2

INW = —4a73)

BrZrW — r_larW = 24a73)2
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Then

/ r2(OyW)? dx
BY(0,8/¢)
r xN(xN +8xy +7+1x1)?

= 1602 /
T Javopyzsey L +xn)2+I[5P8

dxdxy + O(1)

/e XN+Z+ )2
x +
= 1603 3/2/ [n a +XN)3 = s®dsdxy +0(1)

(1452)8
5/e 2 8
— 2 N
Tn
=2 3/210g( )+oq. O

Suppose xs is defined in (2-28) and W, , is defined in (2-17). Let ¥, : O(a) —
B f (0, 28) be the Fermi coordinate map. Let us use the short notation V; =V, ¢, s
in (5_1)’ Xl = XB(\IJa,-L Wl = WE,‘ (\IJLII')‘

Lemma A.5. Suppose y € (0, 1) and Coe; < Cog; <8 < 8¢ is small enough, then
(1) [y P xiWiV;dug < C8% j,

2) fX pmogf”‘z”)/zaz”—"_l1{1/255%,[ (ran<as)Vidug < Cdg; j,

where ¢; ; is defined in (5-3).

Proof. We use the techniques in [Brendle 2005, Lemma B.4].

(1) Assume that §g is small enough such that the support of y; is contained in
{x € X :dg(x, a;) <48}. Denote

={xe€X:2d,(a;,x) <& +dg(ai,aj)} N{de(x,a;) <45},
={x e€X:2dy(a;,x)>¢& +dy(a;,a;)} N {dg(x,a;) <45}

Then it follows from Lemma A.1 that

/ P xiWiVidug
X

= f P xiWiVidug
AUA¢

N (=212 ‘, (=292
([ L)) Grabar) @
( A c <9l.2—{—cig(x,a,-)2 Si—f—dg(x,aj)z §

=1+ 1.
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For I, we have

. (n=2y)/2 . (n=2y)/2
I < c/ pmo(8—1> (8—1) i
T Mg (vaan<as) e} +dg(x,a;)? e} +dg(a;,a;)? ¢

(n72y)/28(n727)/2
2 i J

(2 +dg(a;i, aj)?) =272
< C8%; ,
where in the last inequality we used &; <¢;. To deal with /1, notice that on .4, one has
& +dg(x, ;) > & +dg(a;, aj) —dg(a;, x) > 5(&; +dg(a;, aj)).
Consequently dgy(a;, a;) <6 +2dg(x,a;) <96 and A C {dg(x,aj) < 58}. Then

Py (n=2y)/2 P (n—2y)/2
vsef (et )T,
{dg(r.a)<58) \E +dg (i, a;)? £ +dg(x.a))?

8.(n—2y)/28(-n—2y)/2

< 852 i J <82 .
= g appyen =

Combining the estimates of /; and I, we can prove (1).

(2) Taking §p small enough such that

—29)/2 2y —n—
/p’""af" V)/2g2y—n 11{1/255dga,(x,a,)545}deMg
X 1

(n—2y)/2
.
< C%/ pm0(2—12>
{1/26<d, (x.a;)<88) & +dg(x, a;)

.. (n=27)/2
< (—f> di,.
8? +dy(x,aj)?

One can use the proof of (1) without significant change to conclude (2). O
Similarly we have:
Lemma A.6. Suppose that y € (1, min{2, %}) and Coe; < Cog; < 8 < 8 small
enough, then:
(1) [y p™xiWiVidug < Cé%; ;.
@) [y PS5y, canzan Viding < Cei .
Now let us prove some interaction estimates on the boundary.
Lemma A.7. Suppose that y € (0, 1)U (1, min{2, %}), and Coe; < Cog; <8 < b,
Vi = Vg, ,5;,8 15 defined in (5-1). Then
2y

_ _ o
7§ |vi(n+2y)/n 2y_Xiwi(n+2y)/n 2y|vj doy < C5i_
M

527 Eij-

here w; and v; are defined in (2-17) and (5-1).
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Proof. Since M and X are smooth compact manifolds, the metric dg(x, a) and
dy(x, a) for x, a € M are comparable. Notice that by Lemma A.1, (2-8) and (2-14)

(n42y)/(1=2y) (n+2)/(n=2y) & ez
v; = xiw; N <Cd=x)| 55— )
v Kt =c Xl)<8i2+dh(X,fli)2)
Define
A={x €M :2dy(a;,x) < ¢ +dy(ai,a)}N{dp(x,a;) >
A°={x e M :2dy(a;, x) > & +dp(a;,a;)} N {a’h(x, a;) >

IS NS
——

Then

7§ @II=) o G002y o
M

e, (n+2y)/2 e (n—2y)/2
! J
< C/ (—2 2) <—2 2) doy,
AuAc \ & +dp(x, a;) &5 +dn(x, aj)
8_(n+2y)/2 £ (n—2y)/2
=< C/ 5 ! 5 dO’h
A 8% (e +dp(ai, ap))"/? \ e} +dp(x, a;)?

N (n+2)/2 .. (n=2)/2
+C / (—’ ) (—’ ) do
2 2 2 2 h
{dn(x.a)>8/2) \ & +dp(x, a;) & +dp(a;, aj)

&2 8l(n—2y)/28;n—ly)/2

cli_
T (&2 +dy(ag, a0
2y

cli
< — & .
= 827/ i,j

In the last inequality we used ¢; < ¢;. (]
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