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This paper is devoted to several existence results for a generalized version

of the Yamabe problem. First, we prove the remaining global cases for the

range of powers γ ∈ (0, 1) for the generalized Yamabe problem introduced

by Gonzalez and Qing. Second, building on a new approach by Case and

Chang for this problem, we prove that this Yamabe problem is solvable in

the Poincaré-Einstein case for γ ∈
(

1, min
{

2, n
2

})

provided the associated

fractional GJMS operator satisfies the strong maximum principle.
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1. Introduction

The resolution of the Yamabe conjecture, i.e., the problem of finding a constant

scalar curvature metric in a given conformal class on closed manifolds, has been a

landmark in geometric analysis after the work of Yamabe [1960], Trudinger [1968],

Schoen [1984] and Aubin [1998]. Several generalizations to different ambient

manifolds appeared after this series of works, e.g., [Gamara 2001; Gamara and

Yacoub 2001; Ahmedou 2004; González and Qing 2013].

We consider here some rather recent development whose foundation can be

found in a seminal paper by Graham and Zworksi [2003] about a new and fruitful

approach to the realization of the GJMS operators. Suppose that Xn+1 is a smooth
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manifold with smooth boundary Mn for n ≥ 3. A function ρ is a defining function

of the boundary Mn in Xn+1 if

ρ > 0 in Xn+1, ρ = 0 on Mn, dρ 6= 0 on Mn.

We say that g+ is conformally compact if, for some defining function ρ, the

metric g = ρ2g+ extends to Xn+1 so that (Xn+1, g) is a compact Riemannian

manifold. This induces a conformal class of metrics ĥ = g|T Mn on Mn when

defining functions vary. The conformal manifold (Mn, [ĥ]) is called the conformal

infinity of (Xn+1, g+). A metric g+ is said to be asymptotically hyperbolic (AH)

if it is conformally compact and the sectional curvature approaches −1 at infinity.

(Xn+1, g+) is called a Poincaré–Einstein (P-E) manifold, if Ric(g+)= −ng+.

Graham and Zworski [2003] introduced the meromorphic family of scattering

operators S(s), which is a family of pseudodifferential operators, for a given

asymptotically hyperbolic manifold (Xn+1, g+) and a choice of the representative

ĥ of the conformal infinity (Mn, [ĥ]). Instead one often considers the normalized

scattering operators

P
γ

h = 22γ 0(γ )

0(−γ ) S

(
n

2
+ γ

)

The normalized scattering operators P
γ

h are conformally covariant

P
γ

h (u f )= u(n+2γ )/(n−2γ )P
γ

h̃
( f )

where h̃ = u4/(n − 2γ )h. Then one can define the so called Qγ -curvature as

Q
γ

h = P
γ

h (1). These operators P
γ

h appear to be the higher-order generalizations (for

γ > 1) of the conformal Laplacian (including the Paneitz operator for γ = 2). They

coincide with the GJMS operators [Graham et al. 1992] for suitable integer values

of γ . Specifically, Q
γ

h is just the scalar curvature for γ = 1, and the Q-curvature

for γ = 2. This new notion of curvature has been investigated in [Qing and Raske

2006; Chang and González 2011; González et al. 2012; González and Qing 2013;

Kim et al. 2018]. When γ = 1
2
, Q

γ

h is just the mean curvature of (M, h) in (X, g).

Keeping in mind the purpose of the Yamabe conjecture, one aims at finding a

conformal metric h ∈ [h] such that Q
γ

h is constant. Since the parameter γ ranges

from 0 to n
2
, this provides a 1-parameter family of metrics and sheds some new

light on classical constant curvature prescription problems. Following [González

and Qing 2013], solving the problem is equivalent to find a critical point of the

following Euler–Lagrange functional

(1-1) E
γ

h [u] =
∮

M
u P

γ

h udµh
(∮

M
u2n/(n−2γ ) dσh

)(n−2γ )/n
for u ∈ W

γ,2
+ (M, h) \ {0},
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where W γ,2(M, h) denotes the usual fractional Sobolev space on M with respect

to Riemannian metric h, and W
γ,2
+ (M, h)= W γ,2(M, h)∩ {u ≥ 0}. The infimum

is called the γ -Yamabe constant

Y
γ (M, [h])= inf

W γ,2(M,h)\{0}
E
γ

h [u].

The critical points of E
γ

h satisfy

(1-2) P
γ

h u = cu(n+2γ )/(n−2γ ), u ≥ 0

for some constant c. If P
γ

h satisfies the strong maximum principle, or its Green’s

function is positive, then u is strictly positive and satisfy the above equality. Hence,

u4/(n−2γ )h is a conformal metric whose fractional curvature is constant. González

and Qing [2013] proved that P
γ

h has a strong maximum principle when γ ∈ (0, 1).

For higher γ , in the setting of Poincaré-Einstein (Xn+1, g+) with conformal infinity

(Mn, [h]), Case and Chang [2016] proved that if (M, [h]) has scalar curvature

Rh ≥ 0 and Q
γ

h ≥ 0 and Q
γ

h 6≡ 0 for 1 < γ < min{2, n/2}, then P
γ

h has a strong

maximum principle.

The present paper is two-fold. First, we complete the work started in [González

and Qing 2013; Mayer and Ndiaye 2017b; González and Wang 2018; Kim et al.

2018] providing existence results in some range of dimensions depending on γ ∈
(0, 1). Our arguments also apply to the general asymptotically hyperbolic (AH)

manifolds. Second, for the higher order 1< γ <min
{
2, n

2

}
, when X is a Poincaré–

Einstein manifold, we completely solve the fractional Yamabe problem under the

assumption of the strong maximum principle.

In the present contribution, we consider two types of situations, denoted below

Type I and Type II.

First, we consider Type I; that is γ ∈ (0, 1). Assume that (Xn+1, g+) is a P-E

manifold with conformal infinity (M, [h]). Kim et al. [2018] and Kim [2017]

showed that if n ≥ 4 + 2γ and M is nonlocally conformally flat then γ -Yamabe

problem is solvable. Mayer and Ndiaye [2017b] proved the solvability for M being

locally conformally flat. Hence, the remaining case of Type I in P-E setting is the

low dimensional case.

Case (I-1): (Xn+1, g+) is P-E with (M, [h]) and n < 2γ + 4.

That is, n = 3, 4 when γ ∈ (0, 1) and n = 5 when γ ∈
(
0, 1

2

)
. If (Xn+1, g+) is

just AH, the second fundamental form of (M, h) will come into play. One needs

consider whether (M, h) is umbilic or not, which induce many different cases.

Readers are directed to [Kim et al. 2018] with additional assumptions. Nevertheless,

our method also apply to the lower dimensional case in AH setting.

Case (I-2): (Xn+1, g+) is AH with (M, [h]) and n < 2 + 2γ .
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Second, we consider Type II; that is γ ∈
(
1,min

{
2, n

2

})
. The main contribution of

the present paper is to deal with the higher order fractional Yamabe type problems.

Assume that (Xn+1, g+) is a P-E manifold with conformal infinity (M, [h]) for the

following cases:

Case (II-1): Low dimension, n < 2γ + 4.

Case (II-2): (M, [h]) is locally conformally flat.

Case (II-3): n > 2γ + 4 and (M, [h]) is nonlocally conformally flat.

Case (II-4): n = 2γ + 4 and (M, [h]) is nonlocally conformally flat.

To attack the above cases, we need to notice the distinctive nature of them: (I-1),

(I-2), (II-1), (II-2) are “global” cases and (II-3) and (II-4) are “local” cases. Let us

recall what is commonly called local and global cases in the geometric analysis

community. Take the classical Yamabe problem for example, that is, γ = 1. With

this agreement in mind and recalling that the functional is E1
h and the standard

bubble is Ua,ε (see (3-2) and (4-11), we omit δ for simplicity), then by a standard

Taylor expansion, and using the explicit form (decay) of Ua,ε, one has the following

formula:

(1-3) E
1
h (Ua,ε)=Y

1
Sn −

n−3∑

i=1

Li (a)ε
i −Ln−2(a)ε

n−2 ln ε−Mn−2(a)ε
n−2+o(εn−2).

Here Li (a) and Mn−2(a) are some coefficients in the expansion of E1
h (Ua,ε) around

a, which are related to the derivatives of the Weyl tensor and the ADM mass. The

case is called local if ∃a ∈ M, i ∈ {1, . . . , n − 2} : Li (a) 6= 0 and it is referred

to global if ∀a ∈ M , ∀ i ∈ {1, . . . , n − 2} : Li (a) = 0. The coefficient Mn−2 is

associated to the “mass” at a. The global case means the terms higher than mass

should all vanish. When γ 6= 1, the mass term should have order εn−2γ in (1-3).

Roughly speaking, in P-E setting, since the first term in the above expansion is

ε4 with coefficient the norm square of the Weyl tensor (up to a nonzero factor),

and that when the Weyl tensor is identically zero automatically all the coefficients

in the above expansion until the logarithmic term vanish, then one can see how

the property of being locally conformally flat and the competition between εn−2γ

and ε4 describe fully the local and global cases. However, in AH setting, on top

of the latter considerations one has additional terms starting at ε2 with coefficient

the norm of the trace free part of the second fundamental form of (M, h)⊂ (X, g)

up to a nonzero factor. If M is umbilical, then the expansion is the same as in the

case of P-E. Hence, in AH, the umbilicity, the locally conformally flatness, the size

ε2, ε4, and εn−2γ describe the global and local cases.

To solve the local cases, it is enough, in most of the arguments, to use the local

Ua,ε; see (4-11). For the global cases, besides the work of Schoen [1984], there
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is also an indirect method through algebraic topological arguments by Bahri and

Coron [1988] (also called the barycenter technique). Later Bahri [1989] developed

the theory of critical points at infinity for Yamabe problems on Euclidean domains.

We refer the reader to its applications in the locally conformally flat case in [Bahri

1993] and in the low dimensional case in [Bahri and Brezis 1996]. Adapting the

barycenter technique to the fractional Yamabe problem, we achieve the following

theorem:

Theorem 1.1. Suppose that γ ∈ (0, 1) and n ≥ 2. Assume (Xn+1, g+) is a Poincaré-

Einstein manifold with conformal infinity (Mn, [h]) with λ1(−1g+) >
1
4
n2 − γ 2. If

Yγ (M, [h]) > 0, then there exists h ∈ [h] such that Q
γ

h is a constant.

The previous theorem solves completely the Yamabe problem for the Qγ -

curvature, complementing the works [González and Qing 2013; Mayer and Ndiaye

2017b; González and Wang 2018; Kim et al. 2018] in the Poincaré–Einstein setting.

We will provide an additional result on the more general framework of AH manifolds

in the last section.

Theorem 1.2. Suppose that 1< γ <min
{
2, n

2

}
and n ≥ 3. Assume (Xn+1, g+) is

a Poincaré-Einstein manifold with conformal infinity (Mn, [h]) with λ1(−1g+) >
1
4
n2 − (2 − γ )2. If Rh ≥ 0 and Q

γ

h ≥ 0 and Q
γ

h 6≡ 0 for some h ∈ [h], then there

exists some h̃ ∈ [h] such that Q
γ

h̃
is a constant.

To prove our results in the local cases we employ the minimizing technique

of Aubin [1998] and Schoen [1984]. In the global cases, we use the algebraic

topological argument of Bahri and Coron [1988]. Since most of this work is

concerned with Global cases, and moreover to find excellent exposition of the

Aubin and Schoen minimizing technique seems not to be difficult (see for example

[Lee and Parker 1987]), then we decide to discuss how the barycenter technique

of Bahri and Coron works in finding a critical point. We point out that in our

application of the minimizing technique of Aubin [1998] and Schoen [1984], we

took a short-cut by bringing into play the Eckeland variational principle. We

chose this approach not only to shorten the exposition, but to also emphasize the

common point between the Aubin and Schoen minimizing technique and algebraic

topological argument to Bahri and Coron.

The algebraic topological argument of Bahri and Coron [1988] is based on two

fundamental facts: the quantization of (E
γ

h )
n/(2γ ) (see Lemma 5.1) and the strong

interaction phenomenon (see Lemma 5.9). Readers can find a detailed explanation

of barycenter technique in [Mayer and Ndiaye 2017a]. Here we just sketch the

main idea behind it.

On one hand, the argument needs a starting point, which is the existence of a

topological class X1 which is nonzero in the Z2-homology of some lower sublevel

set Lc := {u : (Eγh [u])n/(2γ ) ≤ c}. Here one starts with c = (Yγ
Sn )

n/(2γ )+ε1 for some
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ε1 > 0, and the existence of X1 is ensured by Hn(M,Z2) 6= 0 and bubbling; see

Lemma 6.4. This is obtained by embedding M into Lc via the bubbles va,λ and

by using the quantization phenomenon that E
γ

h enjoys, via the deformation lemma

(Lemma 6.1), to get that M survives topologically in Lc.

Then, the next step is to start piling up masses va,ε,δ (see its definition (5-1)) over

X1, thereby moving from the level (Y
γ

Sn )
n/(2γ )+ ε1 to the level 2(Y

γ

Sn )
n/(2γ )+ ε1,

from the level 2(Y
γ

Sn )
n/(2γ ) + ε1 to the level 3(Y

γ

Sn )
n/(2γ ) + ε1, . . ., from the level

p(Y
γ

Sn )
n/(2γ ) + ε1 to the level (p + 1)(Y

γ

Sn )
n/(2γ ) + ε1, so on. At each step, as

one moves from the level p(Y
γ

Sn )
n/(2γ ) + ε1 to the level (p + 1)(Y

γ

Sn )
n/(2γ ) + ε1,

one constructs a nonzero topological class X p+1 which reads (1 − t)u + tva,ε, u ∈
X p, t ∈ [0, 1]; see Lemma 6.5. This is done by realizing Bp+1(M) as a cone over

Bp(M) with top M and using the quantization phenomenon that E
γ

h enjoys, via

the deformation lemma (Lemma 6.1), to get that by embedding Bp+1(M) as a

cone over Bp(M) with top M into L p+1 via (p + 1)-convex combination of the

bubbles va,λ, it survives as a nontrivial cone in (L p+1, L p) with L p = {(Eγh )n/(2γ ) ≤
p(Y

γ

Sn )
n/(2γ ) + ε1}.

However, because of the strong interaction phenomenon, for p0 large, we are

passing from the level p0(Y
γ

Sn )
n/(2γ ) + ε1 to the level (p0 + 1)(Y

γ

Sn )
n/(2γ ) − ε1 for

some ε1 > 0. Then, assuming that there is no solution, we reach a contradiction to

the fact that X p0+1 is nontrivial in (L̂ p0+1, L p0
) since, as a result of the quantization

phenomenon, (P S)c holds ∀c such that

p0(Y
γ

Sn )
n/(2γ ) + ε1 ≤ c ≤ (p0 + 1)(Y

γ

Sn )
n/(2γ ) − ε1.

This implies that X p0+1 is trivial in (L̂ p0+1, L p0
) with L̂ p = {(Eγh )n/(2γ ) ≤

p(Y
γ

Sn )
n/(2γ ) − ε1}.

We were assuming Rh ≥ 0 and Q
γ

h ≥ 0 and Q
γ

h 6≡ 0 in the Theorem 1.2, because

we need that P
γ

h satisfies the strong maximum principle, which is proved by Case

and Chang [2016] under these assumptions. We conjecture that our results hold for

all γ ∈
(
0, n

2

)
provided P

γ

h satisfies the strong maximum principle.

This article is organized as follows. In Section 2, we recall some basic notions

of smooth metric measure spaces and the fractional GJMS operators, which are

contained in [Case 2017]. We define the standard bubbles for γ ∈ (0, 1) and

γ ∈
(
1,min

{
2, n

2

})
respectively and list their properties need for the remaining

sections. In Sections 3 and 4, we define some test function Ua,ε,δ and calculate

their energy E
γ

h [Ua,ε,δ] for different cases respectively. In Section 5, we state the

profile decomposition for the Palais–Smale sequences of E
γ

h and proved all the local

cases. The crucial interaction estimate between bubbles are also established in this

section. In Section 6, the algebraic topological argument is applied to all global

cases. Section 7 illustrate the adaption to asymptotically hyperbolic case. Some

necessary estimates are established in the Appendix at the end.
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2. Preliminaries

In this section, we shall first describe the notions of smooth metric measure spaces

and the fractional GJMS operators. After that we will define the standard bubbles

and state their properties.

2A. Smooth metric measure spaces and fractional GJMS operators. A triple

(Xn+1,Mn, g+) is a Poincaré–Einstein manifold if:

(1) Xn+1 is (diffeomorphic to) the interior of a compact manifold Xn+1 with

boundary ∂X = Mn .

(2) (Xn+1, g+) is complete with Ric(g+)= −ng+.

(3) There exists a nonnegative ρ ∈ C∞(X) such that ρ−1(0)= Mn , dρ 6= 0 along

M , and the metric g := ρ2g+ extends to a smooth metric on Xn+1.

A function ρ satisfying these properties is called a defining function. Since ρ

is only determined up to multiplication by a positive smooth function on X , it

is clear that only the conformal class [h] := [g|T M ] on M is well-defined for a

Poincaré–Einstein manifold. We call the pair (Mn, [h]) the conformal boundary

of the Poincaré–Einstein manifold (Xn+1,Mn, g+), and we call a metric h ∈ [h]
a representative of the conformal boundary. To each such representative there is

a defining function ρ, unique in a neighborhood of M and called the geodesic

defining function. Moreover, g+ has normal form g+ = ρ−2(dρ2 + hρ) near M ,

where hρ is a one-parameter family of metrics on M satisfying h0 = h. There is

an asymptotic expansion of hρ which contains only even powers of ρ, at least up

to degree n. For a more intrinsic discussion of these topics, we refer the reader to

[Graham and Zworski 2003].

A smooth metric measure space (SMMS) is a four-tuple (Xn+1, g, ρ,m) formed

from a smooth manifold Xn+1 with (possibly empty) boundary Mn = ∂X , a Rie-

mannian metric g on X , a nonnegative function ρ ∈ C∞(X) with ρ−1(0)= M , and

a dimensional constant m ∈ (1 − n,∞). Formally, the interior of X , denoted as X ,

represents the base of a warped product

(2-1) (Xn+1 × S
m, g ⊕ ρ2dθ2)

where (Sm, dθ2) the m-sphere with the metric of constant sectional curvature one.

The geometric invariants defined on a SMMS are obtained by considering their

Riemannian counterparts on (2-1) while restricting to the base X , and then extend

the definition to general m ∈ (1 − n,∞) by treating m as a formal variable. The

weighted Laplacian 1m
ρ : C∞(X)→ C∞(X) is defined as

1m
ρ U :=1gU + mρ−1〈∇ρ,∇U 〉g, U ∈ C∞(X)
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which is a formally self-adjoint operator with respect to the measure ρmdµg. Here

dµg is the volume element of g. The weighted Schouten scalar J m
ρ and weighted

Schouten tensor Pm
ρ are

J m
ρ := 1

2(m + n)
(R − 2mρ−11ρ− m(m − 1)ρ−2(|∇ρ|2 − 1)),

Pm
ρ := 1

m + n − 1
(Ric −mρ−1∇2ρ− J m

ρ ).

We shall confine ourselves to a special type of SMMS,

Definition 2.1. A geodesic SMMS (X , g :=ρ2g+, ρ,m) is generated by a Poincaré–

Einstein manifold (Xn+1,Mn, g+) and a geodesic defining function ρ near M , that

is |∇ρ|g = 1 near M .

For a geodesic SMMS, the weighted Schouten scalar and tensor take simpler

forms. By [Case and Chang 2016, Lemma 3.2], we have J m
ρ = J the Schouten

scalar of (X , g) and Pm
ρ = P the Schouten tensor of (X , g). On a geodesic SMMS,

the weighted conformal Laplacian Lm
2,ρ and weighted Paneitz operator Lm

4,ρ are

defined as

Lm
2,ρU := −1m

ρ U + 1
2
(m + n − 1)J · U,

Lm
4,ρU := (−1m

ρ )
2U + δρ((4P − (m + n − 1)Jg)(∇U ))+ 1

2
(m + n − 3)Qm

ρ U,

where δρX = trg ∇ X + mρ−1〈X,∇ρ〉 is the negative of the formal adjoint of the

gradient with respect to ρmdµg,

Qm
ρ := −1m

ρ J − 2|P|2 + m + n − 1

2
J 2

is the weighted Q-curvature. If two SMMS (X , g, ρ,m) and (X , ĝ, ρ̂,m) are

pointwise conformally equivalent, that is ĝ = e2σ g and ρ̂ = eσρ for some σ , it

holds

(2-2)
L̂m

2,ρ̂
(U )= e−(m+n+3)/2σ Lm

2,ρ(e
m+n−1/(2)σU ),

L̂m
4,ρ̂
(U )= e−(m+n+5)/2σ Lm

2,ρ(e
m+n−3/(2)σU ).

for all U ∈ C∞(X).
The point of working with SMMS is that there are weighted GJMS operators

defined on it, which incorporate the fractional GJMS operators on M as the Dirichlet-

to-Neumann maps.

Suppose γ ∈ (0, 1). Set m0 = 1 − 2γ . Denoted by Cγ be the set of all U ∈
C∞(X)∩ C0(X), asymptotically near M ,

(2-3) U = f +ψρ2γ + o(ρ2γ )
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for some f, ψ ∈ C∞(M). We shall also use C
γ

f = {U ∈ Cγ : U |M = f }. The Sobolev

spaces W 1,2(X , ρm0dµg) are completion of Cγ with respect to the norm

‖U‖2
W 1,2 :=

∫

X

(|∇U |2 + U 2)ρm0 dµg.

Define

(2-4) Qγ (U, V )=
∫

X

(
〈∇U,∇V 〉 + 1

2
(n − 2γ )JU V

)
ρm0 dµg.

Proposition 2.2 [Case 2017]. Suppose that γ ∈ (0, 1) and (X , g, ρ,m0) is a geo-

desic SMMS. For any U, V ∈ Cγ ,

(2-5)

∫

X

V L
m0

2,ρUρm0 dµg +
∮

M

V ( lim
ρ→0

ρm0(−∂ρU )) dσh = Qγ (U, V ).

If λ1(−1g+) >
1
4
n2 − γ 2, then Qγ (U,U ) is bounded below in C

γ

f . It holds that

(2-6) κγQγ (U,U )≥
∮

M

f P
γ

h f dσh

for all U ∈ W 1,2(X , ρm0dµg) with Tr U = f . Equality holds if and only if

L
m0

2,ρU = 0.

According to [Mayer and Ndiaye 2017b, Corollary 4.6], there exists a Green’s

function G
γ
g (x, ξ) of L

m0

2,ρ satisfying

(2-7) L
m0

2,ρGγ
g (·, ξ)= 0, and for all ξ ∈ M, −κγ lim

ρ→0
ρm0∂ρGγ

g (x, ξ)= δξ (x).

Here δξ (x) is the Dirac function at ξ . The following estimates hold for G
γ
g ,

(2-8)
|Gγ

g (x, ξ)− dg(x, ξ)
2γ−n| ≤ C max{1, dg(x, ξ)

2γ−n+1},
|∇(Gγ

g (x, ξ)− dg(x, ξ)
2γ−n)|g ≤ Cdg(x, ξ)

2γ−n.

Moreover, if Yγ (M, [h]) > 0, then G
γ
g > 0 by [González and Qing 2013].

Suppose γ ∈ (1, 2). Set m1 = 3 − 2γ . Denoted by Cγ be the set of all U ∈
C∞(X)∩ C0(X), asymptotically near M ,

(2-9) U = f +ψ1ρ
2 +ψ2ρ

2γ + o(ρ2γ )

for some f, ψ1, ψ2 ∈ C∞(M). We shall also use C
γ

f = {U ∈ Cγ : U |M = f }. The

Sobolev space W 2,2(X , ρm1dµg) is the completion of Cγ with respect to the norm

‖U‖2
W 2,2 :=

∫

X

(|∇2U + m1ρ
−1(∂ρU )2 dρ⊗ dρ|2 + |∇U |2 + U 2)ρm1 dµg.
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Define

(2-10) Qγ (U, V )=
∫

X

[
(1m1

ρ U )(1m1
ρ V )− (4P − (n − 2γ + 2)Jg)(∇U,∇V )

+ 1
2
(n − 2γ )Qm1

ρ U V
]
ρm1dµg.

Proposition 2.3 [Case 2017]. Suppose that γ ∈ (1, 2) and (X , g, ρ,m1) is a geo-

desic SMMS. For any U, V ∈ Cγ ,

(2-11)

∫

X

V L
m1

4,ρUρm1 dµg +
∮

M

V ( lim
ρ→0

ρm1∂ρ1
m1
ρ U ) dσh = Qγ (U, V ).

If λ1(−1g+) >
1
4
n2 − (2 − γ )2, then Qγ (U,U ) is bounded below in C

γ

f . It holds

that

(2-12) κγQγ (U,U )≥
∮

M

f P
γ

h f dσh

for all U ∈ W 2,2(X , ρm1dµg) with Tr U = f . Equality holds if and only if

L
m1

4,ρU = 0.

Similarly, for γ ∈ (1, 2), one can mimic the approach in [Mayer and Ndiaye

2017b, Corollary 4.6] to get a Green’s function of L
m1

4,ρ satisfying

(2-13)





L
m1

4,ρG
γ
g (·, ξ)= 0 in X, for all ξ ∈ M,

limρ→0 ρ
m1∂ρG

γ
g (·, ξ)= 0 on M \ {ξ},

κγ limρ→0 ρ
m11m1

ρ G
γ
g (x, ξ)= δξ (x) on M.

The Green’s function has the following estimates

(2-14)

|Gγ
g (x, ξ)− dg(x, ξ)

2γ−n| ≤ C max{1, dg(x, ξ)
2γ−n+1},

|∇(Gγ
g (x, ξ)− dg(x, ξ)

2γ−n)|g ≤ Cdg(x, ξ)
2γ−n,

|∇2(Gγ
g (x, ξ)− dg(x, ξ)

2γ−n)|g ≤ Cdg(x, ξ)
2γ−n−1,

|∇3(Gγ
g (x, ξ)− dg(x, ξ)

2γ−n)|g ≤ Cdg(x, ξ)
2γ−n−2.

Moreover, if Rh ≥ 0 and Q
γ

h ≥ 0 and Q
γ

h 6≡ 0 for some h ∈ [h], then G
γ
g > 0 by

[Case and Chang 2016].

2B. Energy and bubble for Type I. Suppose that γ ∈ (0, 1) and (Xn+1, g, ρ,m0)

is a geodesic SMMS, where ρ is the geodesic defining function for a representative

metric h. Define a Yamabe energy on X as

(2-15) E
γ

h [U ] = κγQγ (U,U )(∮
M

|U |2n/(n−2γ ) dσh

)(n−2γ )/n

for any U ∈ W 1,2(X, ρm0dµg) such that U 6≡ 0 on M . See the precise value of κγ
in Section 2D. Then E

γ

h [ f ] ≤ E
γ

h [U ] for any U having the expansion (2-3). Denote



UNIFORMIZATION THEOREMS: BETWEEN YAMABE AND PANEITZ 125

N = n + 1 and R
N
+ = {x = (x, xN ) | x ∈ R

n, xN > 0}. Recall the Sobolev trace

inequality on R
N
+ (see [Lieb 1983; Cotsiolis and Tavoularis 2004])

(2-16)

(∫

Rn

|U (x, 0)|2n/(n−2γ ) dx

)(n−2γ )/n

≤ Sn,γ

∫ ∞

0

∫

Rn

x
1−2γ
N |∇U (x, xN )|2 dxdxN

where Sn,γ denotes the optimal constant; for instance, see [González and Qing

2013, Corollary 5.3]. Check our notations, Section 2D, for precise value.

It is known that the above equality is attained by U = cWε,σ for any c ∈ R, ε > 0

and σ ∈ R
n = ∂R

N
+ , where Wε,σ are the bubbles defined as

(2-17) Wε,σ (x, xN )= pn,γ

∫

Rn

x
2γ
N

(|x − y|2 + x2
N )
(n+2γ )/2

wε,σ (y) d y

with

wε,σ (x) := αn,γ

(
ε

ε2 + |x − σ |2
)(n−2γ )/2

= Wε,σ (x, 0).

Here pn,γ is some constant such that

pn,γ

∫

Rn

x
2γ
N

(|x − y|2 + x2
N )
(n+2γ )/2

d y = 1.

We choose αn,γ such that the fractional curvature of w
4/(n−2γ )
ε,σ |dx |2 is 1. The

precise values pn,γ and αn,γ can be found in (2-26) in the following. We know that

Wε,σ satisfies

(2-18)

{
1m0

Wε,σ = 0 in R
N
+,

−κγ limxN →0+ x
1−2γ
N ∂N Wε,σ = (−1)γwε,σ = w

(n+2γ )/(n−2γ )
ε,σ on R

n.

Here 1m0
=1+ m0x−1

N ∂N is the weighted Laplacian on R
N
+ and κγ is a harmless

constant; see (2-26). For simplicity, let us denote Wε = Wε,0 and wε = wε,0. Then

it is easy to see

wε(εx)= ε−(n−2γ )/2w1(x), Wε(εx, εxN )= ε−(n−2γ )/2W1(x, xN ).

Using Lemma A.1 in the Appendix, for any nonnegative integer k ≥ 0, one can

calculate

(2-19)

∫

B N
+ (0,δ)

x
1−2γ
N [|x |k+2|∇Wε|2 + |x |k W 2

ε ] dx

≤ Cn,γ





εk+2 if n − 2γ − k − 2> 0,

εk+2 log(δ/ε) if n − 2γ − k − 2 = 0,

εk+2(δ/ε)2γ+2+k−n if n − 2γ − k − 2< 0,

for any 0< 2ε ≤ δ < 1.
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2C. Energy and bubble for Type II. Suppose that γ ∈
(
1,min

{
2, n

2

})
and that

(Xn+1, g, ρ,m1) is a geodesic SMMS, where ρ is the geodesic defining function

for a representative metric h. Define a Yamabe energy on X as

(2-20) E
γ

h [U ] = κγQγ (U,U )(∮
M

|U |2n/(n−2γ ) dσh

)(n−2γ )/n
.

for any U ∈ W 2,2(X, ρm1dµg) such that U 6≡ 0 on M . Then E
γ

h [ f ] ≤ E
γ

h [U ] for

any U has the expansion (2-9).

We also have the Sobolev trace inequality for γ ∈
(
1,min

{
2, n

2

})
; see [Chang

and González 2011; Case 2017]:

(2-21)

(∫

Rn

|U (x, 0)|2n/(n−2γ ) dx

)(n−2γ )/n

≤ Sn,γ

∫

R
N
+

x
3−2γ
N |1m1

U (x, xN )|2 dxdxN

where Sn,γ is the optimal constant. It is also known that the equality is achieved by

the bubbles (2-17). In this case, however, Wε,σ satisfies

(2-22)





12
m1

Wε,σ = 0 in R
N
+,

Wε,σ = wε,σ on R
n,

limxN →0+ x
m1

N ∂N Wε,σ = 0 on R
n,

(−1)γwε,σ = κγ limxN →0+ x
m1

N ∂N1m1
Wε,σ= w

(n+2γ )/(n−2γ )
ε,σ on R

n.

Here 1m1
=1+ m1x−1

N ∂N is the weighted Laplacian on R
N
+ and κγ can be seen in

(2-26). Moreover it also satisfies 1m0
Wε,σ = 0, which is

(2-23) 1m1
Wε,σ = 2x−1

N ∂N Wε,σ in R
N
+ .

Using Lemma A.1, for any integer k ≥ 0 and 0< 2ε ≤ δ < 1, one has

(2-24)

∫

B N
+ (0,δ)

x
3−2γ
N [|x |k W 2

ε + |x |k+2|∇Wε|2 + |x |k+4|∂i j Wε|2] dx

≤ Cn,γ





εk+4 if n − 2γ − k − 4> 0,

εk+4 log(δ/ε) if n − 2γ − k − 4 = 0,

εk+4(δ/ε)2γ+4+k−n if n − 2γ − k − 4< 0.

2D. Notations. The following notations are used throughout this paper:

(1) Let N = n + 1. For x ∈ R
N
+ := {(x1, . . . , xn, xN ) ∈ R

N : xN > 0}, we write

x = (x1, . . . , xn, 0) ∈ ∂R
N
+ ' R

n and r = |x |. The indices i, j, k run from 1 to n.

(2) B N
+ (0, δ) is an open ball in R

N
+ and D(0, δ) is an open ball in R

n .

(3) m0 = 1 − 2γ and m1 = 3 − 2γ .
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(4) Some positive constants for 0< 2γ < n (see [Chang and González 2011])

(2-25) dγ = 22γ 0(γ )

0(−γ ), κγ = 0(γ − bγ c)
0(γ + 1)

(−1)bγ c+1dγ

22bγ c+1(bγ c)! > 0.

here bγ c is the greatest integer less than or equal to γ . One can see that

κγ = − dγ

2γ
if γ ∈ (0, 1) and κγ = dγ

8γ (γ − 1)
if γ ∈

(
1,min

{
2, n

2

})
.

The following positive constant are also used for 0< 2γ < n

(2-26)

S(n, γ )= κγ
0((n − 2γ )/2)

0((n + 2γ )/2)
|vol(Sn)|−2γ /n, pn,γ = 0((n + 2γ )/2)

πn/20(γ )

αn,γ = [S(n, γ )−1κγ ](n−2γ )/(4γ )

(
2n−1π−(n+1)/20

(
n + 1

2

))(n−2γ )/(2n)

.

(5) The fractional Yamabe constant for sphere

(2-27) Y
γ

Sn = Y
γ (Sn, [gc])= S−1

n,γ κγ =
(∫

Rn

w(2n)/(n−2γ )
ε,σ dx

)2γ /n

.

Equivalently, ∫

Rn

w2n/(n−2γ )
ε,σ dx = (Y

γ

Sn )
n/(2γ ).

(6) χ is a cut-off function has support in B N
+ (0, 2δ) and χ = 1 in B N

+ (0, δ) and

(2-28) χδ = χ(|x |2/δ)

(7) Volume element on X is dµg and on M is dσh .

3. Energy estimates for the Case (I-1)

In this section, we will derive the energy estimates for (I-1). This type of estimates

will be used in Lemma 5.5 in the following.

Assume that (Xn+1, g, ρ,m0) is a geodesic SMMS, where ρ is the geodesic

defining function for a representative metric h. Given any a ∈ M , there exists a

Fermi coordinates 9a : O(a)→ B N
+ (0, 2δ) on some neighborhood O(a)⊂ X . One

can identify O(a) and B N
+ (0, 2δ) through 9a = (x, xN ). It follows from [Kim et al.

2018, Lemma 2.2 and 2.4] that the following expansion of metric holds near 0:

(3-1)
gi j (x)= δi j + 1

3
Rik jl[h]xk xl + Ri N j N [g]x2

N + O(|x |3).
√

|g|(x)= 1 + O(|x |3) in B N
+ (0, 2δ).
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Here Rik jl[h] is a component of the Riemannian curvature tensor on M , Ri N j N [g]
is that of the Riemannian curvature tensor in X . Every tensor in the expansions is

computed at a = 0. Here we implicitly use the fact that (M, h)⊂ (X , g) is totally

geodesic. Let C0ε < δ ≤ δ0 ≤ 1. Denote

(3-2) Ua,ε,δ(x)= χδWε(9a(x))+ (1 −χδ(9a(x)))ε
(n−2γ )/2Gγ

g ,

where χδ is defined in (2-28), G
γ
g is the Green’s function.

Proposition 3.1. Suppose that γ ∈ (0, 1) and n < 4 + 2γ . For Ua,ε,δ defined in

(3-2), if δ0 small enough and C0 large enough, there exists a constant C1 > 0 such

that

E
γ

h [Ua,ε,δ] ≤ E
γ

h [Ua,ε,δ] ≤ Y
γ

Sn + εn−2γ
C1(n, γ, g, δ)+ o(εn−2γ ).

Proof. The first inequality follows from the fact that Ua,ε,δ has the right expansion

(2-3). Therefore we just need to justify the second inequality. Notice the above

inequality echos the fact that this is a global case.

We adopt the notation Q(U :�) is (2-4) meaning the integration over some set

�⊂ X . Then

Qγ (Ua,ε,δ)= Qγ (Wε : B N
+ (0, δ))+Qγ (Ua,ε,δ : B N

+ (0, 2δ) \ B N
+ (0, δ))

+Qγ (ε
(n−2γ )/2Gγ

g : X \Oa).

Using the estimates in (2-8), one obtains

Qγ (ε
(n−2γ )/2Gγ

a : X \Oa)= εn−2γ

∫

X\Oa

(
|∇Gγ

a |2g + n − 2γ

2
J (Gγ

a )
2

)
ρm0dµg

≤ Cεn−2γ δ2γ−n.

Here C = C(n, γ, g). Similarly, by the estimates of Wε in Lemma A.1, we also get

Qγ (Ua,ε,δ : B N
+ (0, 2δ) \ B N

+ (0, δ))≤ Cεn−2γ δ2γ−n.

For the first term in Qγ (U ), applying (2-19)

(3-3) Qγ (Wε : B N
+ (0, δ))=

∫

B N
+ (0,δ)

x
1−2γ
N

(
|∇Wε|2g + n − 2γ

2
J W 2

ε

)
dµg

≤
∫

B N
+ (0,δ)

x
1−2γ
N |∇Wε|2g dx + Cεn−2γ δ2γ−n.
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The first term in the last inequality can be estimated by (3-1) and (2-19)

(3-4)

∫

B N
+ (0,δ)

x
1−2γ
N |∇Wε|2g dx

=
∫

B N
+ (0,δ)

x
1−2γ
N |∇Wε|2dx +ε2 Ri N j N [g]

∫

B N
+ (0,δ/ε)

x
3−2γ
N ∂i W1∂ j W1 dx

+ O(ε3(δ/ε)2γ+3−n)

≤
∫

B N
+ (0,δ)

x
1−2γ
N |∇Wε |2 dx + Cδ2γ+2−nεn−2γ ,

where n < 2γ + 2 is used. It follows from (2-18) and x · ∇W1 ≤ 0 for x ∈ R
N
+ that

∫

B N
+ (0,δ)

x
1−2γ
N |∇Wε |2 dx ≤ k−1

γ

∫

D(0,δ)

w(2n)/(n−2γ )
ε dx

≤ S−1
n,γ

(∫

D(0,δ)

w(2n)/(n−2γ )
ε dx

)(n−2γ )/n

where the last inequality follows from (2-27). On the other hand,

(3-5)

∮

M

U
(2n)/(n−2γ )
a.ε,δ dσh ≥

∫

D(0,δ)

w(2n)/(n−2γ )
ε dσh

≥
∫

D(0,δ)

w(2n)/(n−2γ )
ε dx − Cεnδ−n.

Putting all estimates back to the expression of (2-15), one could get the conclusion

by taking ε small enough. �

4. Energy estimates for Type II

In this section, we will study the energy estimates for γ ∈
(
1,min

{
2, n

2

})
. Again,

we need the expansion of metric.

Lemma 4.1. Suppose (Xn+1,Mn, g+) is a Poincaré–Einstein manifold with con-

formal infinity (M, [h]). For a fixed point a ∈ M , there exist a representative h = ha

of the class [h], and the geodesic defining function ρa near M such that the metric

g = ρ2
a g+ in terms of Fermi coordinates around a has the following expansions

(4-1)
√

|g|(x, xN )= 1 − 1
2

Ric[g]N N ;i x
2
N xi − 1

4
Ric[g]N N ;i j x

2
N xi x j

− 1
6

Ric[g]N N ;Ni x
3
N xi + O(|x |5)
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and

(4-2) gi j (x, xN )= δi j + 1
3

R[h]ik jl xk xl + 1
6

R[h]ik jl;m xk xl xm + R[g]i N j N ;k x2
N xk

+
(

1
20

R[h]ik jl;mq + 1
15

R[h]iksl R[h] jmsq

)
xk xl xm xq

+ 1
2

R[g]i N j N ;kl x
2
N xk xl + 1

12
R[g]i N j N ;N N x4

N + O(|x |5)

near a. Here all tensors are computed at a and the indices i, j, k,m, q, s run from

1 to n. Moreover, one has the following relations of the curvature:

(1) Ric[h]i j;k(a)+ Ric[h] jk;i (a)+ Ric[h]ki; j (a)= 0.

(2) π = 0 on M , Symi jkl

(
Ric[h]i j;kl + 2

9
R[h]miq j R[h]mkql

)
(a)= 0.

(3) Ric[g]N N ;N (a)= Ric[g]aN (y)= Ric[g]N N ;N N (a)= R[g];N N (a)= 0.

(4) R[g]i N j N (a)= Ric[g]i j (a)= 0.

(5) R[g];i i (a) = −n‖W [h]‖2/(6(n − 1)), Ric[g]N N ;i i (a) = R[g]i N j N ;i j (a) =
−‖W [h]‖2/(12(n − 1)).

Here ‖W [h]‖ is the norm of the Weyl tensor of (M, h) at a.

Proof. The expansion (4-1) and (4-2) were first found by Marques [2005] in the

boundary Yamabe problem. González and Wang [2018] and Kim et al. [2018]

adapted them to the fractional case. Here we are just simplifying their expansion

by using the fact that (Xn+1,Mn, g+) is a P-E manifold. �

The expansion of Ricci tensor in Fermi coordinates:

Lemma 4.2. Suppose that (Mn, h)⊂ (Xn+1, g) is a totally geodesic. In the Fermi

coordinates around a ∈ M , the Ricci tensor Ric[g]i j has the following expansion,

Ric[g]i j (x, xN )

= Ric[g]i j + (Ric[h]i j;k + Rm[g]i N j N ;k)xk + Ric[g]i j;N xN

+ Ric[g]i j;Nk xk xN +
(

1
2

Ric[g]i j;N N − 2 Symi j (Ric[g] jl Rm[g]i Nl N )
)
x2

N

+
(

1
2

Ric[g]i j;kl − 1
3

Symi j (Rm[h]iksl Rm[g]s N j N )
)
xk xl + O(|x |3)

where the tensor on the right hand side are all evaluated at 0 and 1 ≤ i, j, k, l, s ≤ n.

For the other component of Ric[g], we have Ric[g]i N (x, xN )= 0 and

Ric[g]N N (x, xN )=Ric[g]N N +Ric[g]N N ;i xi +Ric[g]N N ;N xN + 1
2

Ric[g]N N ;i j xi x j

+ Ric[g]N N ;Ni xi xN + 1
2

Ric[g]N N ;N N x2
N + O(|x |3)

Proof. It follows from the Taylor expansion that

Ric[g]i j (x, xN )

= Ric[g]i j (x, 0)+ ∂N Ric[g]i j (x, 0)xN + 1
2
∂2

N N Ric[g]i j (x, 0)x2
N + O(|x |3)
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For the first term, we have Ric[g]i j (x, 0)= Ric[h]i j (x, 0)+ R[g]i N j N (x, 0). Since

(x, 0) is a geodesic normal coordinates of a on M , then Ric[h]i j (0) = 0 and

[Marques 2005, Lemma 2.1] imply

Ric[h]i j (x, 0)= Ric[h]i j;k(0)xk + 1
2

Ric[h]i j;kl(0)xk xl + O(|x |3).

Thanks to the fact that M is totally geodesic

Rm[g]i N j N (x, 0)= Rm[g]i N j N (0)+ Rm[g]i N j N ;k(0)xk

+
(

1
2

R[g]i N j N ;kl − 1
3

Symi j Rm[h]iksl Rm[g]s N j N

)
xk xl

+ O(|x |3),
∂N Ric[g]i j (x, 0)= Ric[g]i j,N (x, 0)

= Ric[g]i j;N (0)+ Ric[g]i j;Nk(0)xk + O(|x |2).

For the same reason that M is totally geodesic,

∂2
N N Ric[g]i j (x, 0)

= Ric[g]i j;N N (x, 0)− 2 Symi j (Ric[g] jk Rm[g]i Nk N (x, 0))+ O(|x |).

Collecting all the above expansion, one can get the expansion of Ric[g]i j . It follows

from Codazzi equation that

Ric[g]i N = π j j;i −πi j; j = 0.

For Ric[g]N N , one can do the expansion as Ric[g]i j . �

4A. Case (II-1): Low dimension and Case (II-2): Locally conformally flat. Sup-

pose C0ε ≤ δ < δ0 ≤ 1. Define

(4-3) Ua,ε,δ(x)= χδWε(9a(x))+ (1 −χδ(9a(x)))ε
(n−2γ )/2Gγ

a

where χδ is defined in (2-28) and G
γ
a = G

γ
ga

is defined in (2-13).

Proposition 4.3. Suppose γ ∈
(
1,min

{
2, n

2

})
and n < 4 + 2γ . If δ0 small enough

and C0 large enough, then there exist a constant C2 > 0 such that

(4-4) E
γ

h [Ua,ε,δ] ≤ E
γ

h [Ua,ε,δ] ≤ Y
γ

Sn + εn−2γ
C2(n, γ, g, δ)+ o(εn−2γ ).

Proof. Suppose ρ is the geodesic defining function for h, then

lim
ρ→0

ρm1∂ρUa,ε,δ = 0.

Then Ua,ε,δ satisfies (2-9). It follows from Proposition 2.3 that E
γ

h [Ua,ε,δ] ≤
E
γ

h [Ua,ε,δ]. Therefore we just need to prove the second inequality. Using the
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estimates of Wε in Lemma A.1 and G
γ
a in (2-14), one can get

(4-5) Qγ (Ua,ε,δ)≤
∫

B N
+ (0,δ)

(1m1
ρ Wε)

2x
m1
N dx + n−2γ

2

∫

B N
+ (0,δ)

Qm1
ρ W 2

ε x
m1
N dx

−
∫

B N
+ (0,δ)

4(P − (n − 2γ + 2)Jg)(∇Wε,∇Wε)x
m1

N dx

+ Cεn−2γ δ2γ−n

similar to the argument in Proposition 3.1. Noticing that

1m1
ρ Wε =1gWε + m1x−1

N ∂N Wε =1m1
Wε + (1g −1Rn+1)Wε

and it follows from the expansion of metric (4-2) that

(4-6) (1g −1Rn+1)Wε = O(|x |2)|∇2
x Wε| + O(|x |)|∇Wε|.

From the estimates in Lemmas A.1, A.5 and (2-24)

∫

B N
+ (0,δ)

x
m1

N (1m1
ρ Wε)

2 dx ≤
∫

B N
+ (0,δ)

x
m1

N [(1m1
Wε)

2 + C |x |2|∇Wε|2] dx

≤
∫

B N
+ (0,δ)

x
m1

N (1m1
Wε)

2 dx + Cεn−2γ δ2γ+4−n

where n < 2γ + 4 is used. It follows from (2-22) and integration by parts that

∫

B N
+ (0,δ)

x
m1

N (1m1
Wε)

2 =
∫

D(0,δ)

lim
xN →0

x
m1

N [(∂N1m1
Wε)Wε −1m1

Wε∂N Wε]

−
∫

∂+ B N
+ (0,δ)

x
m1

N (∂ν1m1
Wε)Wε

+
∫

∂+ B N
+ (0,δ)

x
m1

N 1m1
Wε∂νWε

where ν is the outer unit normal of ∂+B N
+ (0, δ) = ∂B N

+ (0, δ)∩ R
N
+ . One can get

from (2-17) that ∂νWε < 0 and ∂ν1m1
Wε > 0. Then the above equality implies

(4-7)

∫

B N
+ (0,δ)

x
m1

N (1m1
Wε)

2 dx ≤ κ−1
γ

∫

D(0,δ)

w(n+2γ )/(n−2γ )
ε dx

≤ S−1
n,γ

(∫

D(0,δ)

w2n/(n−2γ )
ε dx

)(n−2γ )/n

.

The following fact of scalar curvature at 0 can be derived from Lemma 4.1

(4-8) R[g] = R[g];i = R[g];N = R[g];N N = 0, R[g];i i = −n‖W [h]‖2

6(n − 1)
,



UNIFORMIZATION THEOREMS: BETWEEN YAMABE AND PANEITZ 133

then

(4-9)

∫

B N
+ (0,δ)

x
m1

N R[g]|∇Wε|2g dx ≤ Cεn−2γ δ2γ+6−n.

Using the symmetry of Wε and (4-8) and Ric[g]N N ;N (0)= 0, and Lemma 4.2

∫

B N
+ (0,δ)

x
m1

N Ric[g](∇Wε,∇Wε) dx =
∫

B N
+ (0,δ)

x
m1

N O(|x |2|∇Wε|2) dx

≤ Cεn−2γ δ2γ+4−n.

Notice

J [g] = 1

2n
R[g] and P[g] = 1

n − 1
(Ric[g] − J [g]).

We obtain
∫

B N
+ (0,δ)

4(P − (n − 2γ + 2)Jg)(∇Wε,∇Wε)x
m1

N dx ≤ Cεn−2γ δ2γ+4−n.

It is easy to see that

∫

B N
+ (0,δ)

x
m1

N Qm1
ρ W 2

ε dx ≤ C

∫

B N
+ (0,δ)

x
m1

N W 2
ε dx ≤ Cεn−2γ δ2γ+4−n.

Putting everything back to (2-20) and using (3-5) obtains

E
γ

h [Ua,ε,δ] ≤ κγ S−1
n,γ − Cεn−2γ δ2γ−n + o(εn−2γ )

= Y
γ

Sn + εn−2γ
C2(n, γ, g, δ)+ o(εn−2γ ). �

Now suppose (Mn, [h]) is locally conformally flat. Then pick any point a ∈ M ,

there exists a neighborhood of a in M that can be identify with a Euclidean ball

D(0, δ), that is hi j = δi j in D(0, δ). Then in a neighborhood of a in X , identified

with B N
+ (0, δ), the metric reads (see [Mayer and Ndiaye 2017b; Kim et al. 2018])

(4-10) gi j (x, xN )= δi j + O(xn
N ) and |g| = 1 + O(xn

N )

for (x, xN ) ∈ B N
+ (0, δ).

Proposition 4.4. Suppose that (Mn, [h]) is locally conformally flat and γ ∈(
1,min

{
2, n

2

})
. If δ0 small enough and C0 large enough, then there exists some

C3 > 0 such that

E
γ

h [Ua,ε,δ] ≤ E
γ

h [Ua,ε,δ] ≤ Y
γ

Sn + εn−2γ
C3(n, γ, g, δ)+ o(εn−2γ ).

where Ua,ε,δ is defined in (4-3) for 0< C0ε ≤ δ ≤ δ0 ≤ 1.
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Proof. The proof is similar to the one of Proposition 4.3, but the calculation is much

more simpler because gi j is almost Euclidean. We just highlight some differences.

For the same reason we can obtain (4-5). However, (4-6) will be replaced by

(1g −1Rn+1)Wε = O(|x |n)|∇2W | + O(|x |n−1)|∇Wε|,

since (4-10). This implies,

∫

B N
+ (0,δ)

x
m1

N (1m1
ρ Wε)

2 dx ≤
∫

B N
+ (0,δ)

x
m1

N [(1m1
Wε)

2 + C |x |2n−2|∇Wε|2] dx

≤
∫

B N
+ (0,δ)

x
m1

N (1m1
Wε)

2 dx + Cεn−2γ δ−2γ−n.

Here we have used (2-24). The rest of the proof will be the same. �

4B. Case (II-3): Nonlocally conformally flat and n > 2γ + 4. We are going to

use a local test function

(4-11) Ua,ε,δ(x)= χδWε(9a(x)).

where χδ is defined in (2-28) and 9a is the Fermi coordinates.

Theorem 4.5. Suppose that γ ∈ (1,min{2, n
2
}) and n > 4 + 2γ . If the Weyl tensor

W [h] at a does not vanish, then there exist C4 > 0 such that

E
γ

h [Ua,ε,δ] ≤ E
γ

h [Ua,ε,δ] ≤ Y
γ

Sn − ε4
C4(n, γ, g, δ)‖W [h]‖2 + o(ε4)

provided C0ε ≤ δ ≤ δ0 ≤ 1 for δ0 small enough and C0 large enough.

Proof. For the same reason as before, we just need to show the second inequality.

Adopting the notation Qγ (U :�) in (2-10), one has

Qγ (Ua,ε,δ)= Qγ (Wε : B N
+ (0, δ))+Qγ (Ua,ε,δ : B N

+ (0, 2δ) \ B N
+ (0, δ)).

To make our proof more clear, we use the following notation:

Qγ (Wε : B N
+ (0, δ))= T1 − T2 + T3,

where

T1 =
∫

B N
+ (0,δ)

x
m1

N (1m1
ρ Wε)

2 dµg,

T2 =
∫

B N
+ (0,δ)

(4P − (n − 2γ + 2)J [g]g)(∇Wε,∇Wε) dµg,

T3 = n−2γ

2

∫

B N
+ (0,δ)

Qm1
ρ W 2

ε dµg.
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Step 1: Consider T1. Noticing (4-1), one gets

∫

B N
+ (0,δ)

x
m1

N (1m1
ρ Wε)

2 dµg

=
∫

B N
+ (0,δ)

x
m1

N (1m1
ρ Wε)

2
√

|g| dµg

=
∫

B N
+ (0,δ)

x
m1

N (1m1
ρ Wε)

2 dx

− 1

4n
Ric[g]N N ;i i

∫

B N
+ (0,δ)

x
m1+2
N r2(1m1

Wε)
2 dx + o(ε4).

Since 4 + 2γ < n

∫

B N
+ (0,δ)

x
m1+2
N r2(1m1

Wε)
2 dx = 4

∫

B N
+ (0,δ)

x
m1

N r2(∂N Wε)
2 dx

= 4ε4

∫

R
N
+

x
m1

N r2(∂N W1)
2 dx + o(ε4).

Introduce the notation (see [Kim et al. 2018, Lemma B.6])

(4-12) F5 =
∫

R
N
+

x
m1

N r2|∇Wε|2 dx, F6 =
∫

R
N
+

x
m1

N r2(∂r Wε)
2 dx .

Thus

(4-13) T1 =
∫

B N
+ (0,δ)

x
m1

N (1m1
ρ Wε)

2 dx − ε4

n
Ric[g]N N ;i i (F5 −F6)+ o(ε4).

To handle the first term on the RHS, straightforward computation shows

∫

B N
+ (0,δ)

x
m1

N (1m1
ρ Wε)

2 dx =
∫

B N
+ (0,δ)

x
m1

N (1m1
Wε + (1g −1

R
N
+
)Wε)

2 dx

≤
∫

B N
+ (0,δ)

x
m1

N [(1m1
Wε)

2 + 21m1
Wε(1g −1

R
N
+
)Wε

+ ((1g −1
R

N
+
)Wε)

2] dx

=
∫

B N
+ (0,δ)

x
m1

N (1m1
Wε)

2dx + I1 + I2.

Applying (4-2), one can notice

(1g −1
R

N
+
)Wε = (gab − δab)∂

2
abWε + ∂agab∂bWε + gab∂a log

√
|g|∂bWε

=
[

1
3

R[h]ik jl xk xl

]
∂2

i j Wε + O(|x |3)|∇2
x Wε| + O(|x |2)|∇Wε|



136 CHEIKH BIRAHIM NDIAYE, YANNICK SIRE AND LIMING SUN

Notice the following fact:

(4-14) ∂2
i j W1 = ∂2

rr W1

xi x j

r2
+ ∂r W1

(
δi j

r
− xi x j

r3

)
.

Using the symmetry of ∂2
i jWε and the properties in Lemma 4.1, R[h]ik jl xk xl∂

2
i j Wε=0.

Consequently

I2 =
∫

B N
+ (0,δ)

x
m1

N [(1g −1
R

N
+
)Wε]2 dx = o(ε4).

Now consider I2. Let (gi j )(4) be the fourth-order terms in the expansion (4-2) of gi j .

I1 = 2

∫

B N
+ (0,δ)

x
m1

N 1m1
Wε(g

i j − δi j )∂2
i j Wε dx

= 4ε4

∫

R
N
+

x
m1−1
N ∂N W1(g

i j )(4)∂2
i j W1 dx + o(ε4)

= 2ε4 R[g]i N j N ;kl

∫

R
N
+

x
m1+1
N xk xl∂N W1∂

2
i j W1 dx

+ ε4

3
R[g]i Ni N ;N N

∫

R
N
+

x
m1+3
N ∂N W11W1 dx + o(ε4).

It follows from Bianchi identity and R[g]N N ;N N (a)= 0 that R[g]i Ni N ;N N (a)= 0.

Therefore the second term in I1 is equal to 0. Using (4-14) and [Brendle 2008,

Corollary 29], one could simplify I1 as

I1 = 2ε4

n(n+2)
(R[g]i Ni N ; j j +2R[g]i N j N ;i j )(A3−A1)+2ε4

n
Ric[g]i Ni N ; j jA1+o(ε4),

where we have used the notation of Lemma A.2 in the Appendix. Moreover,

Lemma 4.1 implies R[g]i Ni N ; j j = Ric[g]N N ; j j . Therefore

I1 = 2ε4

n
RicN N ;i i [g]A1 + 6ε4

n(n+2)
RicN N ;i i [g](A3 −A1)+ o(ε4).

Collecting the computation of I1 and I2 and inserting to (4-13), we obtain

(4-15) T1 =
∫

B N
+ (0,δ)

x
m1

N (1m1
Wε)

2 dx

+ ε4 Ric[g]N N ;i i
n

[
−F5 +F6 + 2A1 + 6(A3 −A1)

n + 2

]
+ o(ε4).
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Step 2: Let us deal with T2 and T3 in Qγ (Wε : B N
+ (0, δ)). Using Lemma 4.2, we

get

∫

B N
+ (0,δ)

x
m1

N Ric[g](∇W1,∇W1) dx

=
∫

B N
+ (0,δ)

x
m1

N Ric[g]i j (x)∂i W1∂ j W1 dx

+
∫

B N
+ (0,δ)

x
m1

N Ric[g]N N (x)∂N W1∂N W1 dx

= ε4

2n(n + 2)
[Ric[h]kk;i i + 2Ric[h]ik;ik]

∫

R
N
+

x
m1

N r2(∂r W1)
2 dx

+ 1

2n
Ric[g]N N ;i i

∫

R
N
+

x
m1

N r2(∂N W1)
2 dx + o(ε4).

Since Lemma 4.1 implies

Ric[h]kk;i i = R[h];i i = 2(n − 1)Ric[g]N N ;i i

and by the contracted Bianchi identity 2 Ric[h]ik;ik = R[h];kk , one can simplify the

above equation to

∫

B N
+ (0,δ)

x
m1

N Ric[g](∇W1,∇W1) dx

=
[

2n − 1

2n(n + 2)
F6 + 1

2n
(F5 −F6)

]
ε4 Ric[g]N N ;i i + o(ε4).

We also have
∫

B N
+ (0,δ)

x
m1

N J [g]|∇Wε|2g dµg

= 1

2n

∫

B N
+ (0,δ)

x
m1

N R[g]|∇Wε|2 dx + o(ε4)

= 1

4n

∫

B N
+ (0,δ)

x
m1

N (R[g];i j xi x j + R[g];N N x2
N )|∇Wε|2 dx + o(ε4)

= R[g];i iε4

4n2

∫

R
N
+

x
m1

N r2|∇W1|2dx + o(ε4)

= R[g];i iε4

4n2
F5 + o(ε4)

= Ric[g]N N ;i iε4

2n
F5 + o(ε4).
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Since the Schouten tensor P = 1
n−1

(Ric −Jg),

(4-16) T2 = 4

n − 1

∫

B N
+ (0,δ)

x
m1

N Ric[g](∇W1,∇W1) dx

−
(

4

n − 1
+ n − 2γ + 2

) ∫

B N
+ (0,δ)

x
m1

N J [g]|∇Wε|2g dµg

=
[

2

n − 1

n − 3

n(n + 2)
F6 − n − 2γ + 2

2n
F5

]
ε4 Ric[g]N N ;i i + o(ε4)

Also

(4-17)

T3 = n − 2γ

2

∫

B N
+ (0,δ)

x
m1

N Qm1
ρ1

W 2
ε dµg

= n − 2γ

2

∫

B N
+ (0,δ)

x
m1

N (−1m1
J [g](0))W 2

ε dx + o(ε4)

= −(n − 2γ )ε4

4n

∫

R
N
+

x
m1

N (R[g];i i + R[g];N N + m1x−1
N ∂N R[g])W 2

1 dx + o(ε4)

= −(n − 2γ )ε4

4n
R[g];i iF1 + o(ε4)

= −n − 2γ

2
ε4 Ric[g]N N ;i iF1 + o(ε4).

Here F1 =
∫

R
N
+

x
m1

N W 2
1 dx ; see the notation in [Kim et al. 2018, Lemma B.6].

Inserting (4-15), (4-16), and (4-17) together back into (2-10),

(4-18) Qγ (Wε : B N
+ (0, δ))=

∫

B N
+ (0,δ)

x
m1

N (1m1
Wε)

2 dx + ε4 R[g]N N ;i iC4 + o(ε4)

where

(4-19) C4 = 1

n

[
−F5 +F6 + 2A1 + 6(A3 −A1)

n + 2

]

−
[

2

n − 1

n − 3

n(n + 2)
F6 − n − 2γ + 2

2n
F5

]
− n − 2γ

2
F1.

It can be checked that C > 0 when γ ∈ (1, 2) and n > 4 + 2γ . See Lemma A.3 in

the Appendix.

Step 3: It is standard to get

Qγ (χδWε : B N
+ (0, 2δ) \ B N

+ (0, δ))= o(ε4).
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Combining Step 1–3 and (4-7), we obtain

Qγ (Ua,ε,δ)≤ S−1
n,γ

(∫

D(0,δ)

w2n/(n−2γ )
ε dx

)(n−2γ )/n

+ ε4 R[g]N N ;i iC4 + o(ε4).

Since we always have (3-5) and R[g]N N ;i i =−‖W [h]‖2/[12(n−1)] by Lemma 4.1,

E
γ

h [Ua,ε,δ] ≤ Y
γ

Sn − ε4
C4(n, γ, g, δ)‖W [h]‖2 + o(ε4). �

4C. Case (II-4): Nonlocally conformally flat and n = 2γ + 4. In this case we

will have n = 4 + 2γ . Since γ ∈ (1, 2), then it means γ = 3
2

and n = 7. The bubble

has the following explicit form [Sun and Xiong 2016]

(4-20) Wε,σ =α7,3/2

[(
ε

(ε+ xN )2 +|x −σ |2
)2

+4xN

(
ε

(ε+ xN )2 +|x −σ |2
)3 ]

where α7,3/2 is defined in (2-26). We also have m1 = 0 in this case.

Theorem 4.6. Suppose that γ = 3
2

and n = 7. If the Weyl tensor at a does not

vanish, define

Ua,ε,δ(x)= χδWε(9a(x))

for 0< C0ε ≤ δ ≤ δ0 ≤ 1. Then there exists C5 > 0 such that

E
γ

h [Ua,ε,δ] ≤ E
γ

h [Ua,ε,δ] ≤ Y
γ

Sn − ε4 log(δ/ε)C5(n, γ, g, δ)‖W [h]‖2 + O(ε4)

provided δ0 small enough and C0 large enough.

Proof. Using the explicit form of Wε,σ , one can calculate as in the previous section.

Step 1: Consider the leading term in Qγ (Wε : B N
+ (0, δ)).

(4-21)

∫

B N
+ (0,δ)

(1m1
ρ Wε)

2 dµg

=
∫

B N
+ (0,δ)

x
m1

N (1m1
ρ Wε)

2
√

|g| dµg

=
∫

B N
+ (0,δ)

(1m1
ρ Wε)

2 dx − ε4

n
Ric[g]N N ;i i

∫

B N
+ (0,δ/ε)

x2
N r2(∂N W1)

2 dx + o(ε4)

=
∫

B N
+ (0,δ)

(1m1
ρ Wε)

2 dx − π

32
α2

7,3/2|S6|ε4 log
(
δ

ε

)
Ric[g]N N ;i i + O(ε4).

where we have used the formula of Lemma A.4 in the Appendix. Similarly

∫

B N
+ (0,δ)

(1m1
ρ Wε)

2 dx =
∫

B N
+ (0,δ)

(1m1
Wε)

2 dx + I1 + I2.
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It is easy to see I2 = o(ε4) and

I1 = − π

32
α2

7,3/2|S6|ε4 log
(
δ

ε

)
Ric[g]N N ;i i + O(ε4).(4-22)

T1 =
∫

B N
+ (0,δ)

(1m1
ρ Wε)

2 dx − π

16
α2

7,3/2|S6|ε4 log
(
δ

ε

)
Ric[g]N N ;i i + O(ε4).(4-23)

Step 2: We have

∫

B N
+ (0,δ)

Ric[g](∇W1,∇W1) dx = 7π

32
α2

7,3/2|S6|ε4 log
(
δ

ε

)
Ric[g]N N ;i i + O(ε4).

and
∫

B N
+ (0,δ)

J |∇Wε|2g dµg = 5π

32
α2

7,3/2|S6|ε4 log
(
δ

ε

)
Ric[g]N N ;i i + O(ε4).

Hence

(4-24) T2 = − 43
48
α2

7,3/2|S6|ε4 log
(
δ

ε

)
Ric[g]N N ;i i + O(ε4).

It is not hard to see that

T3 = n−2γ

2

∫

B N
+ (0,δ)

Qm1
ρ1

W 2
ε dµg =−10π

32
α2

7,3/2|S6|ε4 log
(
δ

ε

)
Ric[g]N N ;i i+O(ε4).

Putting Ti back into Qγ (Wε : B N
+ (0, δ)), one gets

Qγ (Wε : B N
+ (0, δ))

=
∫

B N
+ (0,δ)

(1m1
Wε)

2 dx + 19π

48
α2

7,3/2|S6|ε4 log
(
δ

ε

)
Ric[g]N N ;i i + O(ε4).

The rest of proof will be the same as the last part of the proof of Theorem 4.5. We

shall omit it here. �

5. Interaction estimates on bubbles

In this section, we will state the asymptotic analysis of the Palais–Smale sequence

of E
γ

h . The local cases then follow from the Ekeland variational principle. Next

we shall derive interaction estimates of bubbles which is crucial for the algebraic

topological argument in the next section.

5A. Asymptotic analysis and local cases. Suppose (Xn+1,Mn, g+) is a P-E man-

ifold with conformal infinity (M, [h]). Assume ρ is the unique geodesic defining

function for a representative metric h. Then (Xn+1, g = ρ2g+, ρ,m1) is a geodesic

SMMS. Given any point a ∈ M , there is a “good” conformal Fermi coordinates by
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Lemma 4.1. More precisely, there exists a conformal metric ha ∈ [h] and ρa the

associated unique geodesic definition function such that

ga = ρ2
a g+, ga|M = ha, ga = dρ2

a + hρa
near M

Since ha ∈[h], one may assume ha =φ4/(n−2γ )
a h. One can see that ga=(ρa/ρ)

2ρ2g+.

Letting ρ → 0, we get

ha = lim
ρ→0

(
ρa

ρ

)2

h on M.

So we may naturally extend φa = (ρa/ρ)
(n−2γ )/2 onto X . It is known that the map

a →φa and ga is C0. By the expansion of metric (4-2) near a, one knows φa(a)= 1.

Therefore |ρa/ρ− 1| ≤ Cδ near a.

Suppose 9a : O(a)→ B N
+ (0, 2δ) is the Fermi coordinates map, where O(a) is a

open neighborhood of a in X . Recall the definition of Ua,ε,δ in (4-3). Define

(5-1) ua,ε,δ = Ua,ε,δ|M , Va,ε,δ =
(
ρai

ρ

)(n−2γ )/2

Ua,ε,δ, va,ε,δ = Va,ε,δ|M .

By the works of Palatucci and Pisante [2015] and Fang and González [2015], it is

not hard to see the following profile decomposition:

Lemma 5.1. Suppose {uν} ⊂ W
γ,2
+ (M, h) is a Palais–Smale sequence for E

γ

h , that

is dE
γ

h [uν] → 0 and E
γ

h [u] → c∗ as ν → ∞. After some normalization, we may

assume ∮

M

u2n/(n−2γ )
ν dσh = cn/(2γ )

∗ .

Then after passing to subsequence if necessary, there exists a u∞ ∈ W
γ,2
+ (M, h),

an integer m ≥ 0 and a sequence (a j,ν, ε j,ν) for 1 ≤ j ≤ m with the following

properties:

(i) u∞ satisfies P
γ

h u∞ = u
(n−2γ )/(n+2γ )
∞ .

(ii) As ν → ∞,

∥∥∥∥uν − u∞ −
m∑

j=1

va j,ν ,ε j,ν ,δ

∥∥∥∥
W γ,2(M,h)

→ 0,

(E
γ

h [uν])n/(2γ ) → (E
γ

h [u∞])n/(2γ ) + m(Y
γ

Sn )
n/(2γ ).

(iii) For i 6= j

(5-2)
εi,ν

ε j,ν

+ ε j,ν

εi,ν

+ d2
h (ai,ν, a j,ν)

εi,νε j,ν

→ ∞,

where dh is the distance function on (M, h).

It follows from the Ekeland variational principle [Ekeland 1974] that:
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Lemma 5.2. There exists a Palais–Smale sequence at level Yγ (M, [h]).
After the existence of Palais–Smale sequence at level Yγ (M, [h]), the next

ingredient in this approach is the same one as in the subcritical approximations.

Precisely it is the existence of a variational barrier at infinity due to the presence

of local information and is the content of the following proposition.

Proposition 5.3 (local information helps). Under the assumption of case (II-3) and

(II-4), we have that there exists a ∈ M , ε and δ small enough such that

E
γ

h (va,ε,δ) < Y
γ

Sn .

Proof. It follows directly from Theorem 4.5 and 4.6. �

Proof of Local case (II-3) and (II-4). By a contradiction argument, it follows directly

from Lemma 5.2, and Proposition 5.3. �

Remark 5.4. As in the case of the subcritical approximation technique, here also

the solution obtained is a minimizer.

5B. Estimates for global cases. For the rest of this paper, we focus on the global

cases, which are (I-1), (II-1) and (II-2). For every p ∈ N
∗ and A := (a1, . . . , ap) ∈

M p = M × · · · × M , εi , ε j , we define the following quantities

εi, j =
(
εi

ε j

+ ε j

εi

+ d2
h (ai , a j )

εiε j

)(2γ−n)/2

,(5-3)

ei, j = κγQγ (Vai ,ε,δ, Va j ,ε j ,δ),(5-4)

εi, j =
∮

M

(vai ,εi ,δ)
(n+2γ )/(n−2γ )va j ,ε j ,δ dσh,(5-5)

for i, j = 1, . . . , p. Here and the following we always assume that δ and ε0 are

fixed numbers which will be chosen later, and εi ≤ ε0 are small comparable to δ.

Lemma 5.5 (self-action). Under the assumptions of Propositions 3.1, 4.3 and 4.4,

there exist ε0 small enough and C > 0 such that for any va,ε,δ with ε ≤ ε0:

(i) E
γ

h (vai ,ε,δ)≤ Y
γ

Sn + Cδ2γ−nεn−2γ .

(ii)
∮

M
v

2n/(n−2γ )
a,ε,δ dσh = (Y

γ

Sn )
n/(2γ ) + O(εnδ−n).

Proof. These are just the results of the corresponding propositions. �

Lemma 5.6 (higher exponent interaction estimates). There exists µ0 > 0 small

enough so that the following estimates hold provided εi, j < µ0 for i 6= j :

(i)
∮

M
vαai ,εi ,δ

v
β

a j ,ε j ,δ
dσh = O(ε

β

i, j ) for α+β = 2n
n−2γ

and α > n
n−2γ

> β > 0.

(ii)
∮

M
v
(n)/(n−2γ )
ai ,εi ,δ

v
(n)/n−2γ
a j ,ε j ,δ

dσh = O(ε
(n)/(n−2γ )
i, j ln εi, j ).
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Proof. These are just local estimates which does not involve any fractional derivative

of v. One can borrow the proof in [Mayer and Ndiaye 2017b, Lemma 5.4]. �

Lemma 5.7. Suppose that γ ∈ (0, 1)∪
(
1,min

{
2, n

2

})
and Ua,ε,δ is defined in (4-3)

for C0ε ≤ δ ≤ δ0. If δ0 small enough and C0 large enough, there exist C > 0 such

that the following hold:

|Lm0

2,ρa
(Ua,ε,δ)| ≤ Cdga

(x,a)χδWε(9a)+Cε(n−2γ )/2δ2γ−n−11{δ/2≤dga (x,a)≤4δ}.

lim
ρai

→0
ρm0

a ∂ρa
(Ua,ε,δ)= −κ−1

γ χδw
(n+2γ )/(n−2γ )
ε .

Where 1� is the characteristic function for a set �.

Proof. Using the map 9a , we can consider the problem on B N
+ (0, 2δ) with metric

ga having expansions (4-1) and (4-2). Under this coordinates we have ρa = xN . It

is easy to see

lim
ρa→0

ρm0
a ∂ρa

(Ua,ε,δ)= −κ−1
γ χδw

(n+2γ )/(n−2γ )
ε .

For the one of L
m0

2,ρa
(Ua,ε,δ), similar type of estimates were derived in [Brendle

2005, Proposition B.1], [Almaraz 2015, Proposition 3.13], and [Almaraz and Sun

2016, Proposition 3.14]. By the definition in (4-3) and (2-7), we have

(5-6) L
m0

2,ρa
(Ua,ε,δ)= χδL

m0

2,ρa
Wε + 2〈∇χδ,∇(Wε − ε(n−2γ )/2Gγ

a )〉ga

+ (1m0
ρa
χδ)(Wε − ε(n−2γ )/2Gγ

a )

= I1 + I2 + I3.

To handle the first term in the above equality, notice

L
m0
2,ρa

Wε =1m0
ρa
(Wε)+ m0+n−1

2
J [ga]Wε.

We only need to calculate the above in B N
+ (0, 2δ). Since Wε = Wε(|x |, xN ) =

Wε(r, xN ), where r2 = x2
1 + · · ·+ x2

n , we have (write ga as g for short temporarily)

1m0
ρa
(Wε)= 1√

|g|
∂i (

√
|g|gi j x j

r
∂r Wε)+

1√
|g|
∂N (

√
|g|∂N Wε)+ m0x−1

N ∂N Wε

= gi j xi x j

r2
∂2

rr Wε +
[

gi j∂i ln
√

|g| x j

r
+ ∂i

(
gi j x j

r

)]
∂r Wε

+ ∂N ln
√

|g|∂N Wε + ∂2
N N Wε + m0x−1

N ∂N Wε.

Using 1m0
Wε = 0, the above equality leads to

1m0
ρa
(Wε)=

(
gi j xi x j

r2
− 1

)
∂2

rr Wε

+
[

gi j∂i ln
√

|g| x j

r
+ ∂i

(
gi j x j

r

)
− n − 1

r

]
∂r Wε + ∂N ln

√
|g|∂N Wε.
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Using the expansion of ga in (4-1) and (4-2), in B N
+ (0, 2δ), we have

(5-7) 1m0
ρa
(Wε)= O(|x |3)∂2

rr Wε + O(|x |2)(∂r Wε + ∂N Wε)

= O(|x |ε(n−2γ )/2(ε2 + |x |2)−(n−2γ )/2)

= O(|x |Wε),

where in the second and last equality, Lemma A.1 is used. Consequently |I1| ≤
C |x |χδWε.

For I2 and I3 in (5-6), we only need to bound them in B N
+ (0, 2δ) \ B N

+ (0, δ). In

this region, one can use (2-8), (2-14) and [Mayer and Ndiaye 2017b, Corollary 5.3]

|Wε − ε(n−2γ )/2Gγ
a | + |x · ∇(Wε − ε(n−2γ )/2Gγ

a )| ≤ Cε(n−2γ )/2δ2γ−n+1.

Therefore

|I2| + |I3| ≤ Cε(n−2γ )/2δ2γ−n−11{δ≤|x |≤2δ},

where 1� is the characteristic function for a set �. Taking δ < δ0 small enough

such that |x | and dg(x, a) are comparable, one can get the conclusion. �

Remark 5.8. Since (X , gai
, ρai

,m0) and (X , g, ρ,m0) are two geodesic SMMS

which are conformal to each other, then by the conformal change property (2-2)

L
m0

2,ρ(Vai ,εi ,δ)=
(
ρai

ρ

)(n+4−2γ )/2

L
m0

2,ρai

(Uai ,εi ,δ)

= O(dg(x,a)χδWεi
(9ai

(x)))+O(ε
(n−2γ )/2
i δ2γ−n−11{δ/2≤dg(x,a)≤4δ}).

It follows from [Case 2017, Theorem 3.2] that limρ→0 ρ
m0∂ρ is also conformally

covariant. Then

lim
ρ→0

ρm0∂ρVai ,εi ,δ = φ(n+2γ )/(n−2γ )
ai

lim
ρai

→0
ρm0

ai
∂ρai

(Uai ,εi ,δ)

= −κ−1
γ φ(n+2γ )/(n−2γ )

ai
χδw

(n+2γ )/(n−2γ )
εi

(9ai
).

Lemma 5.9 (interaction). For γ ∈ (0, 1)∪
(
1,min

{
2, n

2

})
, and C0 max{εi , ε j } ≤

δ ≤ δ0 for some sufficiently small δ0 and large C0. Assume εi, j ≤ µ0 for some small

µ0, then:

(i) ei, j = (1 + O(δ))εi, j + O(max{εi , ε j }2γ δ−2γ ))εi, j .

(ii) εi, j = (Y
γ

Sn )
n

2γ (1 + O(δ)+ O(max{ε j , εi }2γ δ−2γ ))εi, j .

Proof. For (ii), there is no fractional derivative involved. One can use the proof from

[Mayer and Ndiaye 2017b, Lemma 5.5]. Now consider (i). Let us use abbreviation

Vi = Vai ,εi ,δ, ϕi = ϕai ,εi ,δ and Wi = Wεi
(9ai

(x)).
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Suppose γ ∈ (0, 1). It follows from (2-5) that

ei, j = κγ

∫

X

L
m0

2,ρ(Vi )V jρ
m0dµg − κγ

∮

M

lim
ρ→0

ρm0∂ρ(Vi )V j dσh .

Here by symmetry, we can assume ε j ≤ εi . Since Remark 5.8 and Lemma A.5,

∫

X

L
m0

2,ρ(Vi )V jρ
m0 dµg = O(δ)εi, j .

For the other term, one can apply Remark 5.8 and Lemma A.7 to get

−κγ
∮

M

lim
ρ→0

ρm0∂ρ(Vi )V j dσh

= (1 + O(δ))

∮

M

χiw
(n+2γ )/(n−2γ )
i v j dσh

= (1 + O(δ))εi, j − (1 + O(δ))

∮

M

(v
(n+2γ )/(n−2γ )
i −χiw

(n+2γ )/(n−2γ )
i )v j dσh

= (1 + O(δ))εi, j + O(ε
2γ
i δ−2γ )εi, j .

Combing the above two estimates, one gets (i) when γ ∈ (0, 1).

Suppose γ ∈
(
1,min

{
2, n

2

})
. It follows from (2-11) that

(5-8) ei, j = κγ

∫

X

L
m1

4,ρ(Vi )V jρ
m1 dµg + κγ

∮

M

lim
ρ→0

ρm1∂ρ1
m1
ρ (Vi )V j dσh

= I1 + I2.

Claim 1. I1 = O(δ)εi, j .

Proof. It follows from [Case and Chang 2016, Theorem 3.1] that L
m1

4,ρ has the

decomposition

L
m1

4,ρ = L
m1+2
2,ρ ◦ L

m0

2,ρ = L
m1+2
2,ρ ◦ L

m0

2,ρ,

where by definition one has

L
m1+2
2,ρ = L

m1

2,ρ − 2ρ−1∂ρ + J [g].

Since

L
m0

2,ρa
(Ua,ε,δ)= χδL

m0

2,ρa
Wε + (1 −χδ)Lm0

2,ρa
Gγ

a

+ 2〈∇χδ,∇(W − ε(n−2γ )/2Gγ
a )〉ga

+1m0
ρa
χδ(Wε − ε(n−2γ )/2Gγ

a ),
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using the estimates in (2-14) and Lemma A.1, we arrive at the following estimates

in B N
+ (0, 2δ) which are

L
m1

4,ρa
(Ua,ε,δ)

= L
m1+2
2,ρa

(χδL
m0

2,ρa
Wε+(1−χδ)Lm0

2,ρa
Gγ

a )+O(ε(n−2γ )/2δ2γ−n−31{δ≤|x |≤2δ})

= χδL
m1+2
2,ρa

(L
m0

2,ρa
Wε)+ 2〈∇χδ,∇(Lm0

2,ρa
(Wε − Gγ

a ))〉ga

+ (1m1+2
ρa

χi )L
m0

2,ρa
(Wε − Gγ

a )+ O(ε(n−2γ )/2δ2γ−n−31{δ≤|x |≤2δ})

= χδL
m1+2
2,ρa

(L
m0

2,ρa
Wε)+ O(ε(n−2γ )/2δ2γ−n−31{δ≤|x |≤2δ}).

By (2-2), we have

L
m1

4,ρ(Vi )

= (ρai
/ρ)(n+8−2γ )/2L

m1

4,ρai
(Ui )

= (ρai
/ρ)(n+8−2γ )/2[χδL

m1+2
2,ρai

(L
m0

2,ρai
Wi )+ O(ε(n−2γ )/2δ2γ−n−31{δ≤dgai

(x,ai )≤2δ})]

= χδL
m1+2
2,ρ (L

m0

2,ρ Ṽi )+ O(ε(n−2γ )/2δ2γ−n−31{δ/2≤dg(x,ai )≤4δ}).

Here Ṽi = (ρai
/ρ)(n−2γ )/2Wi . Then by Lemma A.6

I1 = κγ

∫

X

χδL
m1+2
2,ρ (L

m0

2,ρ Ṽi )V jρ
m1dµg

+ O

(∫

X

ε
(n−2γ )/2
i δ2γ−n−31{δ/2≤dg(x,ai )≤4δ}V jρ

m1 dµg

)

= κγ

∫

X

χδL
m1+2
2,ρ (L

m0

2,ρ Ṽi )V jρ
m1dµg + O(δ)εi, j

= κγ

∫

X

χδL
m1

2,ρ(L
m0

2,ρ Ṽi )V jρ
m1dµg

− 2κγ

∫

X

χδρ
−1∂ρ(L

m0

2,ρ Ṽi )V jρ
m1dµg + O(δ)εi, j

= κγ

∫

X

χδL
m1

2,ρ(L
m0

2,ρ Ṽi )V jρ
m1dµg + O(δ)εi, j .

It follows from integration by parts that

∫

X

χδL
m1

2,ρ(L
m0

2,ρ Ṽi )V jρ
m1dµg −

∫

X

L
m0

2,ρ(Ṽi )L
m1

2,ρ(χδV j )ρ
m1 dµg

= −
∮

M

lim
ρ→0

ρm1∂ρ(L
m0

2,ρ Ṽi )V j dσh +
∮

M

lim
ρ→0

ρm1∂ρ(χδV j )L
m0

2,ρ Ṽi dσh

= 0.
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Then

I1 = κγ

∫

X

(L
m0

2,ρ Ṽi )L
m1

2,ρ(χδV j )ρ
m1dµg + O(δ)εi, j = O(δ)εi, j . �

To deal with I2 in (5-8), we have

lim
ρ→0

ρm1∂ρ1
m1
ρ (Vi )= φ(n+2γ )/(n−2γ )

ai
lim
ρai

→0
ρm1

ai
∂ρai

1m1
ρai
(Wi )

= κ−1
γ φ(n+2γ )/(n−2γ )

ai
χδw

(n+2γ )/(n−2γ )
i .

Hence

I2 =
∮

M

φ(n+2γ )/(n−2γ )
ai

χδw
(n+2γ )/(n−2γ )
i v j dσh

= (1 + O(δ))

∮

M

χδw
(n+2γ )/(n−2γ )
i v j dσh

= (1 + O(δ))εi, j + O(ε
2γ
i δ−2γ ))εi, j .

Inserting the estimates of I1 and I2 into (5-8), we get the desired result. �

6. Algebraic topological argument

In this section, we will outline the algebraic topological argument by [Bahri and

Coron 1988]. We omit some standard proofs. Readers are encouraged to find them

in [Mayer and Ndiaye 2017a].

To introduce the neighborhood of potential critical points at infinity of E
γ

h , we

first choose some ν0 > 1 and ν0 ≈ 1, and some µ0 > 0 and µ0 ≈ 0. With the

later quantities fixed, for p ∈ N
∗, and 0< µ≤ µ0, we define V (p, µ) the (p, µ)-

neighborhood of potential critical points at infinity of E
γ

h by the following formula

V (p, µ) :=
{
u ∈ W

γ,2
+ (M) : ∃a1, . . . , ap ∈ M, α1, . . . , αp > 0,

0< ε1, . . . , εp ≤ µ,
∥∥u −

p∑
i=1

αivai ,εi ,δ

∥∥ ≤ ε,

αi

α j
≤ ν0 and εi, j ≤ µ, i 6= j = 1, . . . , p

}
,

where ‖·‖ denotes the standard W γ,2-norm.

Next, we introduce the sublevels of our Euler–Lagrange functional corresponding

to the quantized values due to the involved bubbling phenomena. They are the sets

L p (p ∈ N) defined as follows

L p := {u ∈ W
γ,2
+ (M) : Eγh [u] ≤ (p + 1)2γ /n

Y
γ

Sn } for p ≥ 1,

and

L0 := ∅.
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As in classical calculus of variations and classical critical points theory where

Ekeland variational principle and deformation lemma play dual role in producing

Palais–Smale sequences, here also for the Ekeland variational principle in the calcu-

lus of variations at infinity underlying the Aubin–Schoen’s minimizing technique,

we have the following deformation lemma which plays the corresponding role in

the critical point theory at infinity behind the barycenter technique that we are going

to use. It follows from the profile decomposition (Lemma 5.1) and same arguments

as in others applications of the algebraic topological argument of Bahri and Coron

[1988].

Lemma 6.1 (deformation lemma). Assuming that E
γ

h has no critical points, then

for every p ∈ N
∗, there exists 0 < µp < µ0 such that, for every 0 < µ ≤ µp,

it holds that (L p, L p−1) retracts by deformation onto (L p−1 ∪ Ap, L p−1) with

V (p, µ̃) ⊂ Ap ⊂ V (p, µ) where 0 < µ̃ <
µ

4
is a very small positive real number

which depends on µ.

On the other hand, since we are in the global case, and no variant of the positive

mass theorem is known to hold, then clearly there is no variational barrier available.

However, as the mass there is another global invariant of the variational problem

which is the interaction. Using the later information we will establish a multiple

variational barrier estimate (see Proposition 6.3) which will play dual role in the

application of the algebraic topological argument for existence.

Now we present some topological properties of the space of formal barycenter

of M , that we need for our barycenter technique for existence. To do that we recall

that for p ∈ N
∗ the set of formal barycenters of M of order p is defined as

Bp(M)=
{ p∑

i=1

αiδai
: ai ∈ M, αi ≥ 0, i = 1, . . . , p,

p∑

i=1

αi = 1

}
, B0(M)= ∅,

where δa for a ∈ M is the Dirac measure at a. Moreover we have the existence of

Z2 orientation classes

(6-1) wp ∈ H(n+1)p−1(Bp(M), Bp−1(M))

and that the cap product acts as follows

(6-2) H l(M p/σp))× Hk(Bp(M), Bp−1(M))
_−→ Hk−l(Bp(M), Bp−1(M)).

On the other hand, since M is a closed n-dimensional manifold, we have

an orientation class 0 6= O∗
M ∈ H n(M),

and there is a natural way to see O∗
M ∈ H n(M) as a nontrivial element of

H n(M p/σp); see [Mayer and Ndiaye 2017a, pages 532–533], namely

(6-3) O∗
M ' O∗

p with 0 6= O∗
p ∈ H n((M p)/σp).
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Recalling (6-2), and identifying O∗
M and O∗

p via (6-3), we have the following

well-known formula.

Lemma 6.2. There holds

H n((M p)/σp)× H(n+1)p−1(Bp(M), Bp−1(M))
_−→ H(n+1)p−(n+1)(Bp(M), Bp−1(M))

∂−→ H(n+1)p−n−2(Bp−1(M), Bp−2(M)),

and

ωp−1 = ∂(O∗
M _wp).

Next we define for p ∈ N
∗ and ε > 0

f p(ε) : Bp(M)→ W
γ,2
+ (M) : σ =

p∑

i=1

αiδai
∈ Bp(M)→ f p(ε)(σ )=

p∑

i=1

αivai ,ε,δ.

Using the f p(ε), we express the multiple variational barrier in the following propo-

sition:

Proposition 6.3. There exists ν0 > 1 such that for every p ∈ N
∗, p ≥ 2 and every

0< µ≤ µ0, there exists εp := εp(µ) such that for every 0< ε ≤ εp and for every

σ =
∑p

i=1 αiδai
∈ Bp(M), we have:

(1) If
∑

i 6= j εi, j > µ or there exist i0 6= j0 such that
αi0

α j0

> ν0, then

E
γ

h [ f p(ε)(σ )] ≤ p2γ /n
Y
γ

Sn .

(2) If
∑

i 6= j εi, j ≤ µ and for every i 6= j we have αi

α j
≤ ν0, then

E
γ

h [ f p(ε)(σ )] ≤ p2γ /n
Y
γ

Sn (1 + C6ε
(n−2γ )/2 − C7(p − 1)ε(n−2γ )/2),

where C6, C7 > 0 depend on n, γ, g, δ.

Proof. Notice that in the definition of f p(ε) we are taking all εi the same. The

proof is the same as the one of Proposition 3.1 in [Mayer and Ndiaye 2017a] using

Propositions 2.2, 2.3 and Lemmas 5.5, 5.6, 5.9 and Propositions 3.1, 4.3, 4.4. �

Now we start transporting the topology of the manifold M into the sublevels

of the Euler–Lagrange functional E
γ

h by bubbling via va,ε,δ. But before that, we

first recall the definition of the selection map defined inside the neighborhood of

potential critical points at infinity. For every p ∈ N
∗, there exists 0<µp ≤µ0 such

that for every 0< µ≤ µp there holds:

(6-4)
∀u ∈ V (p, µ) the minimization problem, minB

p
µ

∥∥u −
∑p

i=1 αivai ,εi ,δ

∥∥ has

a solution, which is unique up to permutations,
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where B
p
µ is defined as

B p
µ :=

{
(α, A, λ) : εi ≤ µ, i = 1, . . . , p, αi

α j
≤ ν0 and εi, j ≤ µ, i 6= j = 1, . . . , p

}

where (α, A, λ)∈R
p
+×M p×(0,+∞)p and ν0 is as in Proposition 6.3. Furthermore

we define the selection map via

sp : V (p, µ)→ (M)p/σp : u → sp(u)= A and A is given by (6-4).

Recalling (6-1) we have:

Lemma 6.4. Assuming that E
γ

h has no critical points and 0< µ≤ µ1, then up to

taking µ1 smaller and ε1 smaller too, we have that for every 0< ε ≤ ε1, there holds

f1(ε) : (B1(M), B0(M))→ (L1, L0)

is well defined and satisfies

( f1(ε))∗(w1) 6= 0 in Hn(L1, L0).

Proof. The proof follows from the same arguments as the ones used in the proof of

Lemma 4.2 in [Mayer and Ndiaye 2017a] by using the selection map s1, Lemma 6.1

and Proposition 3.1, 4.3, 4.4. �

Next we use the previous lemma and pile up masses by bubbling via va,ε,δ in a

recursive way. Still recalling (6-1) we have:

Lemma 6.5. Assuming that E
γ

h has no critical points and 0 < µ ≤ µp+1, then

up to taking µp+1 smaller, and εp and εp+1 smaller too, we have that for every

0< ε ≤ min{εp, εp+1}, there holds

f p+1(ε) : (Bp+1(M), Bp(M))→ (L p+1, L p)

and

f p(ε) : (Bp(M), Bp−1(M))→ (L p, L p−1)

are well defined and satisfy

( f p(ε))∗(wp) 6= 0 in Hnp−1(L p, L p−1)

implies

( f p+1(ε))∗(wp+1) 6= 0 in Hn(p+1)−1(L p+1, L p).

Proof. The proof follows from the same arguments as the ones used in the proof of

Lemma 4.3 in [Mayer and Ndiaye 2017a], by using the selection map sp, Lemma 6.1

and Proposition 6.3. �

Finally we use the strength of Proposition 6.3 — namely point (ii) — to give a

criterion ensuring that the recursive process of piling up masses via Lemma 6.5

will lead to a topological contradiction after a very large number of steps.
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Lemma 6.6. Setting

p∗ :=
[
1 + C6

C7

]
+ 1,

we have that ∀ 0< ε ≤ εp∗ there holds

f p∗(ε)[Bp∗(M)] ⊂ L p∗−1.

Proof. The proof is a direct application of Proposition 6.3 . �

Proof of Theorems 1.1 and 1.2. It follows by a contradiction argument from

Lemmas 6.4–6.6. �

7. Case (I-2): low dimension in AH

In this section, we want to show that our method could also apply to some asymp-

totically hyperbolic case. Suppose (Xn+1, g+) is an asymptotically hyperbolic

manifold with conformal infinity (Mn, [h]). Assume also ρ is the geodesic defining

function of a representative metric h. Furthermore we require

(7-1) R[g+] + n(n + 1)= o(ρ) as ρ → 0 uniformly on M.

Then it follows from [Kim et al. 2018, Lemma 2.3] that the mean curvature H = 0.

According to [Kim et al. 2018, Lemma 2.2 and 2.4], for any point a ∈ M , there

exist ha ∈ [h] (write ha as h for short) and the geodesic defining function ρa near

M such that the metric g = ρ2
a g+ has the following expansion

(7-2) gi j (x)= δi j + 2πi j xN + 1
3

Rik jl[h]xk xl + g
i j

,Nk xN xk

+ (3πikπk j + Ri N j N [g])x2
N + O(|x |3)

√
|g|(x)= 1 − 1

6
Ric[h]i j xi x j −

(
1
2
‖π‖2 + Ric[g]N N

)
x2

N + O(|x |3)
in B N

+ (0, δ).

In terms of Fermi coordinates around a. Here π is the second fundamental form of

(M, h)⊂ (X , g). Every tensor in the expansion is computed at a = 0.

As in (3-2), we define

Ua,ε,δ(x)= χδWε(9a(x))+ (1 −χδ(9a(x)))ε
(n−2γ )/2Gγ

a (x)

for C0ε < δ ≤ δ0 ≤ 1. We shall consider the case n < 2 + 2γ and γ ∈ (0, 1), which

is a global case, notice this implies n = 3 and γ ∈
(

1
2
, 1

)
.

Proposition 7.1. Suppose that n < 2 + 2γ and γ ∈ (0, 1). If (7-1) holds and δ0

small enough and C0 large enough, then there exists a constant C8 > 0 such that

(7-3) E
γ

h [Ua,ε,δ] ≤ E
γ

h [Ua,ε,δ] ≤ Y
γ

Sn + εn−2γ
C8(n, γ, g, δ)+ o(εn−2γ ).
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Proof. The proof is similar to the one of Proposition 3.1. The energy inequality of

(2-6) in [Case 2017] goes through verbatim in AH setting for γ ∈ (0, 1). One just

needs to use the expansion of the metric in (7-2) instead of (3-1). �

Once the above proposition is established, then we have the corresponding self-

action estimates in Lemma 5.5. Although (5-7) will be changed to O(Wε), the

interaction estimates Lemma 5.9 still holds in this case. Therefore, one can also

run the critical points at infinity approach.

Appendix: Some estimates

In this appendix, we will provide some details for the estimates used in the previous

sections.

Lemma A.1. Suppose n > 2γ . Wε = Wε,0 is defined in (2-17). Denote |x | =
|x |2 + x2

N on R
N
+ , then:

(1) Wε(x, xN )= O(ε(n−2γ )/2(ε2 + |x |2)−(n−2γ )/2).

(2) ∂N Wε(x, xN )= O(ε(n−2γ )/2x
2γ−1
N (ε2 + |x |2)−n/2).

(3) ∇x Wε(x, xN )= O(ε(n−2γ )/2(ε2 + |x |2)−(n−2γ+1)/2).

(4) ∇2
x Wε(x, xN )= O(ε(n−2γ )/2(ε2 + |x |2)−(n−2γ+2)/2).

(5) ∂N ∇2
x Wε(x, xN )= O(ε(n−2γ )/2x

2γ−1
N (ε2 + |x |2)−(n+2)/2), for γ > 1.

Proof. These estimates follow from [Mayer and Ndiaye 2017b, Corollary 5.2]. One

of crucial observation in [Mayer and Ndiaye 2017b, (47)] is that Wε,σ in (2-17) can

be interpreted as the interaction of standard bubbles on R
n . �

Let us use the notation

W = W1(|x |, xN ) and r = |x |.
We have the following list of formulae. Here we borrow the notations Fi from [Kim

et al. 2018, Lemma B.6].

Lemma A.2. If n > 2γ + 4, then

A1 =
∫

R
N
+

x
4−2γ
N r∂N W∂r W dx = 1

4

[
n
2
F2 +

(
n
2
− 1

)
F3 +F7

]
,

A2 =
∫

R
N
+

x
5−2γ
N r∂2

N N W∂r W dx = −(5 − 2γ )A1 + n
2
(F2 −F3),

A3 =
∫

R
N
+

x
4−2γ
N r2∂N W∂2

rr W dx = −(n + 1)A1 −F9.



UNIFORMIZATION THEOREMS: BETWEEN YAMABE AND PANEITZ 153

Proof. Integration by parts gives

A2 =
∫

R
N
+

x
5−2γ
N r∂2

N N W∂r W dx

= −(5 − 2γ )

∫

R
N
+

x
4−2γ
N r∂N W∂r W dx −

∫

R
N
+

x
5−2γ
N r∂N W∂2

r N W dx

= −(5 − 2γ )A1 − 1
2

∫

R
N
+

x
5−2γ
N r∂r |∂N W |2 dx

= −(5 − 2γ )A1 + n
2

∫

R
N
+

x
5−2γ
N |∂N W |2 dx

= −(5 − 2γ )A1 + n
2
(F2 −F3).

Using (2-23), one obtains

−(1 − 2γ )A1 =
∫

R
N
+

x
5−2γ
N r1W∂r W dx

= F7 + (n − 1)F3 +
∫

R
N
+

x
5−2γ
N r∂2

N N W∂r W dx

= F7 + (n − 1)F3 − (5 − 2γ )A1 + n
2
(F2 −F3).

One can combine the above two equalities to get A1 and A2. Similarly

A3 =
∫

R
N
+

x
4−2γ
N r2∂N W∂2

rr W dx

= −(n + 1)

∫

R
N
+

x
4−2γ
N r∂N W∂r W dx −

∫

R
N
+

x
4−2γ
N r2∂r W∂2

r N W dx

= −(n + 1)A1 −F9. �

Lemma A.3. Suppose n> 2γ +4 and γ ∈
(
1,min

{
2, n

2

})
, then C4 defined in (4-19)

is positive.

Proof. Inserting the expressions of A1 and A3 into the previous lemma into (4-19)

gives

nC4 = −n(n − 2γ )

2
F1 − n

2
F2 −

(
n

2
− 1

)
F3 + n − 2γ

2
F5

− n2 − n + 4

(n − 1)(n + 2)
F6 −F7 − 6

n + 2
F9

= I1 + I2 + n2 − n + 4

(n − 1)(n + 2)
F6
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where

I1 = −n

2
F2 −

(
n

2
− 1

)
F3 −F7 − 6

n + 2
F9

= −2(2 − γ )(12γ (γ + 2)+ 5n2 − 8(γ + 2)n)

5(n − 4)(n − 4 − 2γ )(n − 4 + 2γ )
A3 B2,

I2 = −n(n − 2γ )

2
F1 + n − 2γ

2
F5

= n(n − 2γ )(−4γ 2 + 3n2 − 18n + 28)

2(γ + 1)(n − 4)(n − 4 − 2γ )(n − 4 + 2γ )
A3 B2.

Here we were using the expression of Fi in [Kim et al. 2018, Lemma B.6]. Now it is

not hard to show I1 + I2 > 0 for n > 4+2γ and γ ∈
(
1,min

{
2, n

2

})
. Consequently,

C4 > 0. �

Lemma A.4. Suppose that 0 < 2ε ≤ δ ≤ 1, n = 2γ + 4 = 7 and W is defined in

(4-20), then
∫

B N
+ (0,δ/ε)

W 2 dx = 5π

32
α2

7,3/2|S6| log
(
δ

ε

)
+ O(1),

∫

B N
+ (0,δ/ε)

r2(∂N W )2 dx = 7π

32
α2

7,3/2|S6| log
(
δ

ε

)
+ O(1),

∫

B N
+ (0,δ/ε)

r2(∂r W )2 dx = 63π

32
α2

7,3/2|S6| log
(
δ

ε

)
+ O(1),

∫

B N
+ (0,δ/ε)

xN r∂N W∂r W dx = 7π

32
α2

7,3/2|S6| log
(
δ

ε

)
+ O(1),

∫

B N
+ (0,δ/ε)

xN r2∂N W (∂2
rr W − r−1∂r W ) dx = −63π

64
α2

7,3/2|S6| log
(
δ

ε

)
+ O(1),

where α7,3/2 is defined in (2-26) and |S6| is the volume of a 6 dimensional sphere.

Proof. We show how to get the second estimate, the others follow from this similarly:

∂r W = −4α7,3/2

|x |(x2
N + 8xN + 1 + |x |2)

[(1 + xN )2 + |x |2]4
.

∂N W = −4α7,3/2

xN (x
2
N + 8xN + 7 + |x |2)

[(1 + xN )2 + |x |2]4
.

∂2
rr W − r−1∂r W = 24α7,3/2

|x |2(x2
N + 10xN + 1 + |x |2)

[(1 + xN )2 + |x |2]5
.
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Then∫

B N
+ (0,δ/ε)

r2(∂N W )2 dx

= 16α2
7,3/2

∫

R
N
+∩{xN ≤δ/ε}

r2x2
N (x

2
N + 8xN + 7 + |x |2)2

[(1 + xN )2 + |x |2]8
dxdxN + O(1)

= 16α2
7,3/2

∫ δ/ε

0

∫

Rn

x2
N

(1 + xN )3

s2
(

xN +7
xN +1

+ s2
)2

(1 + s2)8
s6 dsdxN + O(1)

= 16α2
7,3/2

∫ δ/ε

0

∫

Rn

x2
N

(1 + xN )3

s8

(1 + s2)6
dsdxN + O(1)

= 7π

32
α2

7,3/2 log
(
δ

ε

)
+ O(1). �

Suppose χδ is defined in (2-28) and Wε,σ is defined in (2-17). Let 9a : O(a)→
B N

+ (0, 2δ) be the Fermi coordinate map. Let us use the short notation Vi = Vai ,εi ,δ

in (5-1), χi = χδ(9ai
), Wi = Wεi

(9ai
).

Lemma A.5. Suppose γ ∈ (0, 1) and C0ε j ≤ C0εi ≤ δ < δ0 is small enough, then

(1)
∫

X
ρm0χi Wi V j dµg ≤ Cδ2εi, j ,

(2)
∫

X
ρm0ε

(n−2γ )/2
i δ2γ−n−11{1/2δ≤dgai

(x,ai )≤4δ}V j dµg ≤ Cδεi, j ,

where εi, j is defined in (5-3).

Proof. We use the techniques in [Brendle 2005, Lemma B.4].

(1) Assume that δ0 is small enough such that the support of χi is contained in

{x ∈ X : dg(x, ai )≤ 4δ}. Denote

A = {x ∈ X : 2dg(a j , x)≤ εi + dg(ai , a j )} ∩ {dg(x, ai )≤ 4δ},
A

c = {x ∈ X : 2dg(a j , x) > εi + dg(ai , a j )} ∩ {dg(x, ai )≤ 4δ}.
Then it follows from Lemma A.1 that∫

X

ρm0χi Wi V j dµg

=
∫

A∪Ac

ρm0χi Wi V j dµg

≤ C

(∫

A

+
∫

Ac

)
ρm0

(
εi

ε2
i + dg(x, ai )2

)(n−2γ )/2(
ε j

ε2
j + dg(x, a j )2

)(n−2γ )/2

dµg

= I1 + I2.
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For I2, we have

I2 ≤ C

∫

{dg(x,ai )≤4δ}
ρm0

(
εi

ε2
i + dg(x, ai )2

)(n−2γ )/2(
ε j

ε2
i + dg(ai , a j )2

)(n−2γ )/2

dµg

≤ Cδ2
ε
(n−2γ )/2
i ε

(n−2γ )/2
j

(ε2
i + dg(ai , a j )2)(n−2γ )/2

≤ Cδ2εi, j ,

where in the last inequality we used ε j ≤εi . To deal with I1, notice that on A, one has

εi + dg(x, ai )≥ εi + dg(ai , a j )− dg(a j , x)≥ 1
2
(εi + dg(ai , a j )).

Consequently dg(ai , a j )≤ δ+ 2dg(x, ai )≤ 9δ and A ⊂ {dg(x, a j )≤ 5δ}. Then

I1 ≤ C

∫

{dg(x,a j )≤5δ}

(
εi

ε2
i + dg(ai , a j )2

)(n−2γ )/2(
ε j

ε2
j + dg(x, a j )2

)(n−2γ )/2

dµg

≤ Cδ2
ε
(n−2γ )/2
i ε

(n−2γ )/2
j

(ε2
i + dg(ai , a j )2)(n−2γ )/2

≤ Cδ2εi, j .

Combining the estimates of I1 and I2, we can prove (1).

(2) Taking δ0 small enough such that∫

X

ρm0ε
(n−2γ )/2
i δ2γ−n−11{1/2δ≤dgai

(x,ai )≤4δ}V j dµg

≤ C
1

δ

∫

{1/2δ≤dg(x,ai )≤8δ}
ρm0

(
εi

ε2
i + dg(x, ai )2

)(n−2γ )/2

×
(

ε j

ε2
j + dg(x, a j )2

)(n−2γ )/2

dµg.

One can use the proof of (1) without significant change to conclude (2). �

Similarly we have:

Lemma A.6. Suppose that γ ∈
(
1,min

{
2, n

2

})
, and C0ε j ≤ C0εi ≤ δ < δ0 small

enough, then:

(1)
∫

X
ρm1χi Wi V j dµg ≤ Cδ4εi, j .

(2)
∫

X
ρm1ε

(n−2γ )/2
i δ2γ−n−31{1/2δ≤dgai

(x,ai )≤4δ}V j dµg ≤ Cδεi, j .

Now let us prove some interaction estimates on the boundary.

Lemma A.7. Suppose that γ ∈ (0, 1)∪
(
1,min

{
2, n

2

})
, and C0ε j ≤ C0εi ≤ δ ≤ δ0,

vi = vai ,εi ,δ is defined in (5-1). Then
∮

M

|v(n+2γ )/n−2γ
i −χiw

(n+2γ )/n−2γ
i |v j dσh ≤ C

ε
2γ
i

δ2γ
εi, j .

here wi and vi are defined in (2-17) and (5-1).
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Proof. Since M and X are smooth compact manifolds, the metric dg(x, a) and

dh(x, a) for x, a ∈ M are comparable. Notice that by Lemma A.1, (2-8) and (2-14)

|v(n+2γ )/(n−2γ )
i −χiw

(n+2γ )/(n−2γ )
i | ≤ C(1 −χi )

(
εi

ε2
i + dh(x, ai )2

)(n+2γ )/2

.

Define

A = {x ∈ M : 2dh(a j , x)≤ εi + dh(ai , a j )} ∩
{
dh(x, ai )≥ δ

2

}
,

A
c = {x ∈ M : 2dh(a j , x) > εi + dh(ai , a j )} ∩

{
dh(x, ai )≥ δ

2

}
.

Then∮

M

(v
(n+2γ )/(n−2γ )
i −χiw

(n+2γ )/(n−2γ )
i )v j dσh

≤ C

∫

A∪Ac

(
εi

ε2
i + dh(x, ai )2

)(n+2γ )/2(
ε j

ε2
j + dh(x, a j )2

)(n−2γ )/2

dσh

≤ C

∫

A

ε
(n+2γ )/2
i

δ2γ (ε2
i + dh(ai , a j )2)n/2

(
ε j

ε2
j + dh(x, a j )2

)(n−2γ )/2

dσh

+ C

∫

{dh(x,ai )>δ/2}

(
εi

ε2
i + dh(x, ai )2

)(n+2γ )/2(
ε j

ε2
i + dh(ai , a j )2

)(n−2γ )/2

dσh

≤ C
ε

2γ
i

δ2γ

ε
(n−2γ )/2
i ε

(n−2γ )/2
j

(ε2
i + dh(ai , a j )2)(n−2γ )/2

≤ C
ε

2γ
i

δ2γ
εi, j .

In the last inequality we used ε j ≤ εi . �
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