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Abstract
Werigorously prove thewell-posedness of the formal sensitivity equationswith respect
to the viscosity corresponding to the 2D incompressible Navier–Stokes equations.
Moreover, we do so by showing a sequence of difference quotients converges to the
unique solution of the sensitivity equations for both the 2D Navier–Stokes equations
and the related data assimilation equations, which utilize the continuous data assimila-
tion algorithm proposed by Azouani, Olson, and Titi. As a result, this method of proof
provides uniform bounds on difference quotients, demonstrating parameter recovery
algorithms that change parameters as the system evolveswill bewell behaved. Further-
more, our analysis can be extended to analyze the sensitivity of the 2D Euler equations
to a viscous regularization. We also note that this appears to be the first such rigorous
proof of global existence and uniqueness to strong or weak solutions to the sensitivity
equations for the 2D Navier–Stokes equations (in the natural case of zero initial data),
and that they can be obtained as a limit of difference quotients with respect to the
viscosity.
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1 Introduction

Turbulent flows are well known to be chaotic, in the sense that the solutions to math-
ematical models of such flows are highly sensitive to initial conditions (see, e.g.,
Constantin and Foias 1985; Grappin and Léorat 1991). However, sensitivity with
respect to physical parameters is also an important consideration in terms of making
reliably accurate predictions. Parameter sensitivity is often measured by formally con-
sidering the derivative of a solution with respect to a particular parameter; however,
the only rigorous justification of this approach in the literature seems to be limited to
linear equations, or nonlinear equations under assumptions on the nonlinearity which
are too strong to include, e.g., the Navier–Stokes equations of fluids (see, e.g., Brewer
1982; Gibson and Clark 1997 for a semigroup theory approach). Therefore, in the
present work, we provide a fully rigorous proof of the global well-posedness of the
sensitivity equations for the 2D Navier–Stokes equations. Specifically, we give a rig-
orous proof of the existence of unique weak and strong solutions with zero1 initial
data to the associated viscosity sensitivity equations specifically for the 2D Navier–
Stokes equations. Moreover, we prove that the derivative of solutions with respect to
the viscosity is a limit of difference quotients corresponding to different viscosities.

We also extend our results to the case of a data assimilation algorithm. This is
because the motivation for this present work arose from our recent work Carlson et al.
(2020), where an algorithm was proposed to recover an unknown viscosity, or equiv-
alently Reynolds number. This algorithm works in tandem with a data assimilation
method proposed in Azouani and Titi (2014), Azouani et al. (2014). This algorithm,
commonly referred to as the Azouani–Olson–Titi (AOT) or continuous data assimila-
tion (CDA) algorithm, has seen much recent work (see, e.g., Albanez et al. 2016; Altaf
et al. 2017; Bessaih et al. 2015; Biswas et al. 2019, 2018; Biswas and Martinez 2017;
Carlson et al. 2020; Carlson and Larios 2020; Celik et al. 2019; Di Leoni et al. 2018;
Leoni et al. 2019; Desamsetti et al. 2019; Farhat et al. 2020, 2018, 2015, 2016a, b, ?,
2017, 2019; Foias et al. 2016; Foyash et al. 2014; García-Archilla et al. 2020; Gard-
ner et al. 2021; Gesho et al. 2016; Glatt-Holtz et al. 2014; Hudson and Jolly 2019;
Ibdah et al. 2019; Jolly et al. 2019, 2017; Larios et al. 2018; Larios and Victor 2021;
Lunasin and Titi 2017; Markowich et al. 2016; Mondaini and Titi 2018; Pei 2019;
Rebholz and Zerfas 2021; Zerfas et al. 2019; Larios and Pei 2017 and the references
therein). Specifically, Azouani et al. (2014) consider the 2D Navier–Stokes system,
written abstractly in the form

du

dt
= Fν(u).

The difficulty is that the initial data are unknown; however, it is assumed that the
solution can be measured at certain points. In order to converge to the correct solution,
it is proposed to instead consider the system

1 Note that considerations of sensitivity arise in the context of perturbations; hence, the natural initial data
for a sensitivity equation is identically zero data.
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{
dv
dt = Fν(v) + μ(Ih(u) − Ih(v))

v(0) = v0,

where μ > 0 is a sufficiently large positive relaxation parameter, Ih(u) represents the
observational measurements with sufficiently small spacing h > 0, v0 is arbitrarily
chosen in a certain function space, and Fν is a nonlinear, nonlocal differential operator
depending on the viscosity parameter ν > 0. Ih is an interpolation operator satisfying
certain bounds (see Sect. 2); e.g., Ih could be piecewise linear interpolation at given
nodes. In Azouani et al. (2014), it was proved that v converges to u exponentially fast
in time in certain standard norms. Later, Carlson et al. (2020) investigated the case of
an unknown viscosity, gave estimates for the resulting error in the solution, proposed
an algorithm to recover the unknown viscosity, and demonstrated computationally that
the algorithm converges exponentially fast in time to the correct solution. However, the
algorithm in Carlson et al. (2020) introduces a discontinuous change in the viscosity
during the simulation, leading to a desire to ensure that this abrupt change does not lead
to undesirable behavior. Hence, we also prove that the difference quotient methods
developed here can be used to prove rigorous results for the sensitivity equations of
the modified system of equations via the data assimilation algorithm. For this system,
we prove that the derivative of solutions with respect to the viscosity is a well-defined
object which is bounded in appropriate function spaces; additionally, we prove that the
corresponding sensitivity equations are globally well posed in time in an appropriate
sense and that strong solutions are unique.

Furthermore, one can also perceive the importance of analyzing the sensitivity
of a system of equations to a parameter-based regularization. Hence, we also prove
rigorously that the sensitivity equations for a viscous regularization (i.e., a Navier–
Stokes-like perturbation) of the 2D incompressible Euler equations in 2D (under
periodic boundary conditions) have a unique strong solution that can be realized as a
sequence of difference quotients.

Sensitivity for partial differential equations has been studied formally in many
contexts; see, e.g., Anderson et al. (1999), Borggaard and Burns (1997), Breckling
et al. (2018), Brewer (1982), Davis and Pahlevani (2013), Fernández and Moubachir
(2002),Gibson andClark (1997),Hamby (1994),Kimet al. (1999),Kouhi et al. (2016),
Neda et al. (2016), Noacco et al. (2019), Pahlevani (2004), Pahlevani (2006), Rebholz
et al. (2017), Stanley and Stewart (2002), Vemuri and Raefsky (1979), Zerfas et al.
(2019). In Stanley and Stewart (2002), it was argued, though only formally, that the
sensitivity equations for the steady-state 2DNavier–Stokes equations are globally well
posed. Some analysis for the sensitivity equations has been carried out in the slightly
more general context of a large eddy simulation (LES) model of the 2DNavier–Stokes
equations in an unpublished PhD thesis (Pahlevani 2004), where a formal argument
for the global existence and uniqueness of the equations was given, based on formal
energy estimates.

The paper is organized as follows. In Sect. 2, we describe the mathematical frame-
work for the problems we consider. In Sect. 3, we prove the global existence and
uniqueness of solutions to the sensitivity equations. Moreover, we show that these
solutions can be realized as limits of difference quotients. In Sect. 4, we extend the

123



84 Page 4 of 30 Journal of Nonlinear Science (2021) 31 :84

results in the previous section to the context of AOT data assimilation algorithm.
Finally, we summarize our results and implications of this work in Sect. 5.

2 Preliminaries

In this section, we lay out notation and recall some standard results about the incom-
pressible Navier–Stokes equations. Proofs can be found in, e.g., Constantin and Foias
(1988), Foias et al. (2001), Robinson (2001), Temam (2001), Temam (1995). Sim-
ilarly, equivalent results for the modified data assimilation equations given by the
AOT algorithm are stated without proof as well, since proofs were given in Azouani
et al. (2014). On a general open spatial domain �, the incompressible Navier–Stokes
equations are given by

ut + (u · ∇)u = −∇ p + ν�u + f , in � × [0, T ], (2.1a)

∇ · u = 0, in � × [0, T ], (2.1b)

u(x, 0) = u0(x), in �. (2.1c)

where ν > 0 is the kinematic viscosity, u is the velocity, p is the (density normalized)
pressure, and f is a (density normalized) body force. In this paper, we take � to be
the torus, i.e., � = T

2 = R
2/Z2, which is an open, bounded, and connected domain

with empty boundary. We denote the space

V := { f : � → R
2 | f ∈ Ċ∞

p (T2)},

where Ċ∞
p (T2) is the set of all mean-free, periodic, and infinitely differentiable func-

tions on T
2. Denote by H the closure of V in L2(�;R2) and by V the closure of V

in H1(�;R2). Since H and V are closed subspaces of L2(�;R2) and H1(�;R2),
respectively, they are Hilbert spaces which inherit inner products denoted by

(u, v) =
∫
T2

u · v dx ((u, v)) =
2∑

i, j=1

∫
T2

∂ui
∂x j

∂vi

∂x j
dx,

with the corresponding norms denoted by |u| = √
(u, u) and ‖u‖ = √

((u, u)). We
denote by L p(0, T ; X) those functions which are L p((0, T )) in time with values in
the Banach space X in the sense of the Bochner integral; similarly for expressions
such as Ck([0, T ]; X). We denote the dual space of V by V ′.

We consider the equivalent problem applying the Leray projection to (2.1), where
the Leray projection onto divergence-free vector fields is defined by Pσu := u −
∇�−1∇ · u, Pσ : L2(�) → H . As in Azouani et al. (2014), we denote the Stokes
operator A : D(A) → H , whereD(A) := {u ∈ V : Au ∈ H} is the domain of A, and
the bilinear term B : V × V → V ′ as the continuous extensions of the operators A,
defined on V , and B, defined on V × V , by
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Au = −Pσ �u and B(u, v) = Pσ (u · ∇v).

Due to boundedness of the domain and the mean-zero condition, the following
Poincaré inequalities hold:

λ1‖u‖2L2 ≤ ‖∇u‖2L2 for u ∈ V , (2.2)

λ1‖∇u‖2L2 ≤ ‖Au‖2L2 for u ∈ D(A). (2.3)

We note that, as proved in, e.g., Constantin and Foias (1988), Robinson (2001),
Temam (2001), A is a linear self-adjoint positive definite operator with a compact
inverse. Hence, there exists a complete orthonormal set of eigenfunctions {wi }i∈N in
V such that Awi = λiwi , where the corresponding eigenvalues {λi }i∈N are positive
and monotonically increasing. Hence, for s ∈ R, the fractional operators As may be
defined via Aswi = λ2i wi and extension to appropriate spaces by linearity and density.

As proved in, e.g., Constantin and Foias (1988), Robinson (2001), Temam (2001),
the bilinear operator, B, has the property

〈B(u, v), w〉V ′,V = −〈B(u, w), v〉V ′,V , (2.4)

for all u, v, w ∈ V , which directly implies that

〈B(u, w),w〉V ′,V = 0, (2.5)

for all u, v, w ∈ V . Furthermore, we have the following inequalities:

| 〈B(u, v), w〉 | ≤ ‖u‖L∞(�)‖v‖|w| for u ∈ L∞(�), v ∈ V , w ∈ H
(2.6)

| 〈B(u, v), w〉 | ≤ c|u|1/2‖u‖1/2‖v‖|w|1/2‖w‖1/2 for u, v, w ∈ V ,

(2.7)

|(B(u, v), w)| ≤ c|u|1/2‖u‖1/2‖v‖1/2|Av|1/2|w| for u ∈ V , v ∈ D(A), w ∈ H
(2.8)

|(B(u, v), w)| ≤ c|u|1/2|Au|1/2‖v‖|w| for u ∈ D(A), v ∈ V , w ∈ H .

(2.9)

Due to the periodic boundary conditions, it also holds (in 2D) that

(B(w,w), Aw) = 0 for every w ∈ D(A). (2.10)

From this an some manipulation, it follows that for u, w ∈ D(A),

(B(u, w), Aw) + (B(w, u), Aw) = −(B(w,w), Au). (2.11)

Additionally, further properties of the bilinear term are stated in Lemma 2.1, which
we prove using similar strategies as in Robinson (2001), Temam (2001).
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Lemma 2.1 Suppose {an}n∈N and {bn}n∈N are uniformly bounded sequences in
L2(0, T ; V ) ∩ L∞(0, T ; H). Then ‖B(an, bn)‖L2(0,T ;V ′) is uniformly bounded in
n. Moreover, if {an}n∈N and {bn}n∈N are uniformly bounded in L2(0, T ;D(A)) ∩
L∞(0, T ; V ), then ‖B(an, bn)‖L2(0,T ;H) is uniformly bounded in n.

Proof By the definition of the dual norm, (2.4), and (2.7)

‖B(an, bn)‖V ′ = sup
w∈V‖w‖=1

|(B(an, w), bn)| ≤ k|an|1/2‖an‖1/2|bn|1/2‖bn‖1/2.

Using Hölder’s inequality,

‖B(an, bn)‖2L2(0,T ;V ′) ≤
∫ T

0
k2|an|‖an‖|bn|‖bn‖ds

≤ k2‖an‖L∞(0,T ;H)‖bn‖L∞(0,T ;H)‖an‖L2(0,T ;V )‖bn‖L2(0,T ;V ).

Hence, since {an}n∈N and {bn}n∈N are uniformly bounded in L2(0, T ; V ) ∩
L∞(0, T ; H), it follows that ‖B(an, bn)‖L2(0,T ;V ′) is uniformly bounded in n.

Next, suppose {an}n∈N and {bn}n∈N are bounded uniformly in L2(0, T ;D(A)) ∩
L∞(0, T ; V ). Then by definition of the dual norm, (2.8), and (2.2),

‖B(an, bn)‖2L2(0,T ;H)
≡

∫ T

0
|B(an, bn)|2dt ≤ c

∫ T

0
|an|‖an‖‖bn‖|Abn|dt

≤ c

λ1
‖an‖2L∞(0,T ;V )

∫ T

0
|Abn|2dt

= c

λ1
‖an‖2L∞(0,T ;V )‖bn‖2L2(0,T ;D(A))

,

which implies that ‖B(an, bn)‖L2(0,T ;H) is uniformly bounded in n. ��
Finally, without loss of generality, we make the assumption that f ∈ L∞(0, T ; H)

so that Pσ f = f . This allows us to apply Pσ to (2.1) to obtain the equivalent set of
equations

d

dt
u + B(u, u) = −νAu + f , in � × [0, T ], (2.12a)

u(x, 0) = u0(x), in �. (2.12b)

Using the following corollary of de Rham’s theoremTemam (2001), Foias et al. (2001)

g = ∇ p with p a distribution if and only if 〈g, h〉 = 0 for all h ∈ V, (2.13)

one can recover the pressure term. Furthermore, we will utilize the following lemma
due to Lions and Magenes as stated in Temam (2001).
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Lemma 2.2 (Temam 2001) Let V , H , V ′ be three Hilbert spaces such that V ⊂ H ≡
H ′ ⊂ V ′, where V ′ is the dual of V . If a function u ∈ L2(0, T ; V ) and its time deriva-
tive u′ ∈ L2(0, T ; V ′), then u is almost everywhere equal to a function continuous
from [0, T ] into H and the following equality holds in the scalar distribution sense
on (0,T):

d

dt
|u|2 = 2

〈
u′, u

〉
.

For reference, we state the standard definition of weak and strong solutions to
(2.12).

Definition 2.3 Let T > 0. Let initial data u0 ∈ H and forcing f ∈ L∞(0,∞; V ′).
A weak solution of (2.1) is an element u ∈ L2(0, T ; V ) ∩ C([0, T ]; H) satisfying
du
dt ∈ L2(0, T ; V ′) and

〈
d

dt
u, φ

〉
+ 〈B(u, u), φ〉 + ν 〈Au, φ〉 = 0 (2.14)

for a.e. t ∈ [0, T ] and for all φ ∈ V . Furthermore, the map u0 ∈ H �→ u ∈ H
is continuous for a.e. t ∈ [0, T ], i.e., the initial data are satisfied in the sense of
C([0, T ]; H).

If, in addition, f ∈ L∞(0,∞; H) and u0 ∈ V , then a strong solution of (2.1)
is defined to be a weak solution such that u ∈ L2(0, T ;D(A)) ∩ C([0, T ]; V ) and
dũ
dt ∈ L2(0, T ; H), and moreover u satisfies (2.14) for a.e. t ∈ [0, T ] and for all
φ ∈ H . Furthermore, the map u0 ∈ V �→ u ∈ V is continuous for a.e. t ∈ [0, T ], i.e.,
the initial data are satisfied in the sense of C([0, T ]; V ).

It is well established that given a force f ∈ L2(0,∞; H−1) and initial data u0 ∈ H ,
a unique weak solution to (2.12) exists globally in time (see, e.g., Constantin and
Foias 1988; Foias et al. 2001; Robinson 2001; Temam 2001). For many real-world
applications, it is important to consider the sensitivity of (2.1) to the parameters since it
is not necessarily the case we have an exact estimate on the said parameters; however,
additional uncertainty in modeling real-world systems is introduced by the fact that
we do not expect to know u0 exactly, and so cannot compute u(t) from (2.12). Hence,
we will also analyze the sensitivity equations corresponding to a modified system of
equations that utilizes measured data collected on the true field u(t) over the time
interval [0, T ]. This modified system of equations incorporates the measured data by
introducing a feedback control involving the interpolated data Ih(u(t)) into (2.12),
resulting in the following system which was proposed and studied in Azouani et al.
(2014), Azouani and Titi (2014) (see also Blömker et al. 2013).

vt + (v · ∇)v = −∇q + νappx�v + f + μ(Ih(u) − Ih(v)) (2.15a)

v(x, 0) = v0(x), (2.15b)
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or, with the Leray projection applied,

d

dt
v + B(v, v) = −νappxAv + f + μPσ (Ih(u) − Ih(v)) (2.16a)

v(x, 0) = v0(x). (2.16b)

Here, νappx > 0 is a kinematic viscosity approximating ν > 0, μ > 0 is a positive
relaxation parameter, and Ih is a linear operator satisfying

‖ϕ − Ih(ϕ)‖2L2(�)
≤ c0h

2‖ϕ‖2H1(�)
. (2.17)

Assuming either no-slip Dirichlet or periodic boundary conditions (and allowing
for even more general interpolation operators Ih), Azouani et al. (2014) proved that
(2.16) has a unique solution, stated in the following theorem.

Theorem 2.4 Suppose Ih satisfies (2.17) and μc0h2 ≤ νappx, where c0 is the constant
from (2.17). Then the continuous data assimilation equations (2.16) possess a unique
solution v that satisfies

v ∈ C([0, T ]; V ) ∩ L2((0, T );D(A)) and
dv

dt
∈ L2((0, T ); H), (2.18)

for any T > 0. Furthermore, the map u0 ∈ V �→ u ∈ V is continuous for a.e.
t ∈ [0, T ], i.e., the initial data are satisfied in the sense of C([0, T ]; V ).

For Eqs. (2.12) and (2.16), we denote the dimensionless Grashof numbers as

G1 = 1

4π2ν2
lim sup
t→∞

‖ f (t)‖L2(�) (2.19)

G2 = 1

4π2ν2appx
lim sup
t→∞

‖ f (t)‖L2(�). (2.20)

Finally, we consider the Euler equations in 2D without forcing:

ut + u · ∇u+∇ p = 0, (2.21a)

∇ · u = 0 (2.21b)

u(x, 0) = u0. (2.21c)

Applying the Leray projection yields the system

du

dt
+ B(u, u) = 0, (2.22a)

u(x, 0) = u0. (2.22b)

The relevant literature on the inviscid limit of solutions to (2.12) to sufficiently
smooth solutions of Euler is usually considered in the whole space R2 Kato (1972);
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Swann (1971), Golovkin (1966), Ponce (1986), Constantin and Foias (1988), but we
utilize the relevant theorems straightforwardly extendable to the periodic setting (see,
e.g., Masmoudi 2007). We state the types of solutions to Euler that are limits of
solutions to (2.1).

Theorem 2.5 (Masmoudi 2007) Let s > 0 and suppose u ∈ C([0, T );D(As/2)) is a
solution of the Euler system (2.22) for some T > 0 with u0 ∈. Let un0 ∈ D(As/2) such
that un0 → u0 in D(As/2) as n → ∞. Then, for all 0 < T0 < T , for any sequence
νn → 0, the corresponding unique sequence of solutions un ∈ C([0, T0];D(As/2))

to (2.1) with f ≡ 0 is such that

‖un − u‖L∞(0,T0;D(As/2)) → 0, n → ∞.

For simplicity, we take f ≡ 0 for a direct application of this theorem from Mas-
moudi (2007). We also note that since we are in the periodic domain T

2 instead of
R
2, this implies that convergence of un → u also holds in L∞(0, T0;D(As′/2)) for

all s′ ≤ s.

3 Sensitivity for 2D Navier–Stokes & The Inviscid Limit

In this section, we analyze the sensitivity of w to the viscosity by considering individ-
ually the sensitivity of u and v to the viscosity. We wish to consider taking a derivative
of equations (2.12a) and (2.16a) with respect to the viscosity. This has been done
formally in many works on sensitivity (see, e.g., Anderson et al. 1999; Borggaard
and Burns 1997; Breckling et al. 2018; Davis and Pahlevani 2013; Fernández and
Moubachir 2002; Hamby 1994; Kim et al. 1999; Kouhi et al. 2016; Pahlevani 2004,
2006; Vemuri and Raefsky 1979), yielding what are known as the sensitivity equa-
tions. However, to the best of our knowledge, a rigorous treatment has yet to appear in
the literature. Therefore, we provide a rigorous justification here of the existence and
uniqueness of weak and strong solutions to the sensitivity equations in the case of zero
initial data, which is the natural data for the sensitivity equation, as discussed below.
Moreover, we prove that these solutions can be realized as limits of difference quo-
tients ofNavier–Stokes solutionswith respect to different viscosities. Indeed, this is the
method of our existence proofs, rather than using, e.g., Galerkin methods, fixed-point
methods, etc. Proofs using limits of difference quotients have appeared in the literature
before, such as in standard proofs of elliptic regularity and the corresponding result
for the Stokes equations. However, in the present context (i.e., the time-dependent
sensitivity equations for 2D Navier–Stokes), we believe such a proof strategy is novel.

Working formally for a moment, we take the derivative of (2.1) with respect to ν,
and denote (again, formally) ũ := du

dν
and p̃ := dp

dν
, to obtain

ũt + ũ · ∇u + u · ∇ũ−ν�ũ − �u + ∇ p̃ = 0, (3.1a)

∇ · ũ = 0. (3.1b)
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These are knownas the sensitivity equations for theNavier–Stokes equations. Similarly
we formally take the derivative of (2.15) with respect to νappx, denoting ṽ := dv

dνappx

and q̃ := dq
dνappx

,

ṽt + ṽ · ∇v + v · ∇ṽ−νappx�ṽ − �v + ∇q̃ = μIh (̃u − ṽ), (3.2a)

∇ · ṽ = 0. (3.2b)

Below, we prove some well-posedness results for these systems in the case of zero
initial data. We begin by defining what we mean by solutions.

Remark 3.1 The following proofs follow mostly standard techniques; however, they
establish that the solutions of the sensitivity equations can indeed be realized as limits
of difference quotients, which is the first time this has been done rigorously.Moreover,
wenote that the analysis for the sensitivity of theEuler equationswith respect to viscous
perturbations is done via methods typically used in Navier–Stokes-type analysis rather
than methods used in the analysis of the Euler equations. Furthermore, this method of
proof highlights the independence of the initial data on the parameter, and specifies
what one should mean when referring to the sensitivity equations.

Definition 3.2 Let T > 0. Let u ∈ L2(0, T ; V ) ∩C([0, T ]; H) be a weak solution to
(2.1). A weak solution of (3.1) is a weak solution in the sense of Definition 2.3, but
with the equation instead given by

〈
d

dt
ũ, φ

〉
+ 〈B (̃u, u), φ〉 + 〈B(u, ũ), φ〉 + ν 〈Aũ, φ〉 + 〈Au, φ〉 = 0. (3.3)

If, in addition, ũ0 ∈ V , and u is a strong solution to (2.1), then we similarly define
a strong solution of (3.1) in the same sense as Definition 2.3 with respect to the above
equation.

As discussed in Remark 3.6, we only give a definition of strong solutions for the
assimilation equations to avoid redundancy.

Definition 3.3 Let T > 0. Let v be a strong solution to (2.16) with initial data v0 ∈ V
and forcing f ∈ L∞(0,∞; H). A strong solution of (3.2) is a strong solution in the
sense of Definition 2.3 with the equation given by

〈
d

dt
ṽ, φ

〉
+〈B (̃v, v), φ〉+〈B(v, ṽ), φ〉+νappx 〈Aṽ, φ〉+〈Av, φ〉=μ 〈Ih (̃u − ṽ), φ〉 .

Before we prove the existence and uniqueness of solutions with zero initial data to
these equations,wefirst consider equations for the differencequotients.Note that, since
these are simple arithmetic operations on the Navier–Stokes equations, the manipu-
lations can be performed rigorously, not just formally. To this end, let (u1, p1) be a
strong solution to (2.1) with viscosity ν1 and (u2, p2) be a strong solution to (2.1) with
viscosity ν2 with the same initial data. We take the difference of the two versions of
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(2.1), each with viscosities ν1 and ν2. We then divide by the difference in viscosities,
yielding the system

wt + u2 · ∇w + w · ∇u1−ν2�w − �u1 + ∇P = 0, (3.4a)

∇ · w = 0, (3.4b)

w(x, 0) = 0, (3.4c)

where w = u1−u2
ν1−ν2

and P := p1−p2
ν1−ν2

. As defined, w is a strong solution to (3.4), and

note that u1 = (ν1 − ν2)w + u2. Additionally, w ∈ L2(0, T ;D(A)) ∩ C([0, T ]; V )

and dw
dt ∈ L2(0, T ; H). However, we need to establish that w is the unique solution

to (3.4), which is the content of Lemma 3.4.

Lemma 3.4 Let T > 0 be given, and let u1, u2 ∈ L2(0, T ;D(A)) ∩ C([0, T ]; V ) be
strong solutions to (2.16), with viscosities ν1 and ν2, respectively. There exists one and
only one solution w to (3.4) that lies in L2(0, T ;D(A)) ∩ C([0, T ]; V ), i.e., for all
φ ∈ H,

(
d

dt
w,φ

)
+ (B(w, u1), φ) + (B(u2, w), φ)+ν2(Aw,φ) + (Au1, φ) = 0,

where d
dt w ∈ L2(0, T ; H). Moreover, the map u0 ∈ V �→ u ∈ V is continuous for

a.e. t ∈ [0, T ], i.e., the solution depends continuously on the initial data.

Next, we consider difference quotients for the assimilation system (2.16). Let
(v1, q1) be the strong solution to (2.16) with viscosity νappx,1 and (v2, q2) be the
strong solution to (2.16) with viscosity νappx,2. Subtracting the two equations and
dividing by the difference in the viscosities yields

w̃t + w̃ · ∇v1 + v2 · ∇w̃−νappx,2�w̃ − �v1 + ∇Q = μIh(w − w̃) (3.5a)

∇ · w̃ = 0 (3.5b)

w̃(x, 0) = 0, (3.5c)

where w̃ := v1−v2
νappx,1−νappx,2

and Q := q1−q2
νappx,1−νappx,2

. It follows from the definition that
w̃ is a strong solution to (3.5). Moreover, note that v1 = (νappx,1 − νappx,2)w̃ + v2.
Additionally, w̃ ∈ L2(0, T ;D(A)) ∩ C([0, T ]; V ) and d

dt w̃ ∈ L2(0, T ; H).

Lemma 3.5 Let T > 0 be given, and let v1, v2 ∈ L2(0, T ;D(A)) ∩ C([0, T ]; V ) be
strong solutions to (2.16), with viscosities νappx,1 and νappx,2, respectively. There exists
a unique strong solution w to (3.5) that lies in L2(0, T ;D(A)) ∩C([0, T ]; V ), in the
sense that for all φ ∈ H,

(
d

dt
w̃, φ

)
+ (B(v2, w̃), φ) + (B(w̃,∇v1), φ) + νappx,2(Aw̃, φ) + (Av1, φ)

= μ(Pσ Ih(w − w̃), φ),
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where d
dt w̃ ∈ L2(0, T ; H). Moreover, the map u0 ∈ V �→ u ∈ V is continuous for

a.e. t ∈ [0, T ], i.e., the solution depends continuously on the initial data.

Remark 3.6 The proofs of the above two lemmata are very similar; hence, we
only present the proof of Lemma 3.5. Moreover, we also note that in the case
μ = 0, the proof of Lemma 3.4 holds mutatis mutandis in the case where u1,
u2 ∈ C([0, T ]; H) ∩ L2(0, T ; V ) are only assumed to be weak solutions to the 2D
Navier–Stokes equations, and then one obtains uniqueness of weak solutions to (3.4)
in the class C([0, T ]; H) ∩ L2(0, T ; V ). However, in the case μ > 0, the notion of
weak solutions for the assimilation equations (2.16) has not been established in the
literature for general interpolants Ih , and therefore, we assume that the solutions v1
and v2 are strong solutions to (2.16), and prove the uniqueness of strong solutions to
(3.4). The existence of weak solutions is attainable if further assumptions are made on
Ih (e.g., if Ih is a projection onto low Fourier modes) but we do not pursue this here
as we want to focus on general interpolants.

Proof Suppose there exist two solutions w̃1 and w̃2. We consider the difference of the
equations

d

dt
w̃1 + B(w̃1, v1) + B(v2, w̃1) + νappx,2Aw̃1 + Av1 = μPσ Ih(w − w̃1) (3.6)

and

d

dt
w̃2 + B(w̃2, v1) + B(v2, w̃2) + νappx,2Aw̃2 + Av1 = μPσ Ih(w − w̃2). (3.7)

Namely, denoting W := w̃1 − w̃2 yields

d

dt
W + B(W , v1) + B(v2,W ) + νappx,2AW = −μPσ Ih(W ) (3.8)

with W (0) = 0. So, W must be a solution to the above equation. Taking the inner
product with AW , one can follow the argument in Azouani et al. (2014) line by line
to obtain to obtain that

||W (t)||2 ≤ ‖W (0)‖2ect (3.9)

for some constant c > 0. Since W (0) = 0, this implies that W ≡ 0. Hence, solutions
to (3.5) are unique. Moreover, (3.9) gives the continuous dependence on initial data.

��
Since systems (3.4) and (3.5) have unique strong solutions for every ν > 0, wewant

to show that, asν → ν0 for somefixedν0 > 0, the solutions to these equations converge
to the unique strong solutions of the respective equations (in the sense ofDefinitions 3.2
and 3.3 ) of the formal sensitivity equations (3.1) and (3.2) with initial data u0 ≡ 0
in Theorems 3.9 and 4.1 . We additionally prove that weak solutions exist for the
sensitivity equations (3.1) with initial data u0 ≡ 0 in Theorem 3.7. Via this method of
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proof, we show that the solution ũ is a Fréchet derivative in the sense of L2(0, T ; H).
Specifically, for weak solutions, ν ∈ R

+ �→ u ∈ L2(0, T ; H), and hence the Fréchet
derivative in L2(0, T ; H)will be defined asA : R → L2(0, T ; H) such thatA(δ) �→
δũ. Analogously, for strong solutions, ν ∈ R

+ �→ u ∈ L2(0, T ; V ), and hence, the
Fréchet derivative in L2(0, T ; V ) will be defined as A : R → L2(0, T ; V ) such that
A(δ) �→ δũ.

Theorem 3.7 Let T > 0 and {νn}n∈N be a sequence such that νn → ν as n → ∞. Let

• u be a solution to (2.1) with viscosity ν, forcing f ∈ L∞(0,∞; H), and initial
data u0 ∈ V ;

• un solve (2.1) with viscosity νn, forcing f ∈ L∞(0,∞; H), and initial data
u0 ∈ V ;

• {wn}n∈N be a sequence of strong solutions to (3.4) with wn(0) = 0 with corre-
sponding viscosity νn and solutions to (2.1) un and u.

Then there exists a subsequence of {wn}n∈N that converges in L2(0, T ; H) to a unique
weak solution ũ of (3.1) with initial data u0 ≡ 0. Furthermore, the operatorA : R →
L2(0, T ; H) given byA(δ) = ũδ is the Fréchet derivative in the sense of L2(0, T ; H)

of the solution u with respect to ν.

Remark 3.8 Theorem 3.7 holds for more general initial data via a similar proof under
certain assumptions on the initial data; indeed, assuming that the initial data of (2.1)
has a derivative with respect to the viscosity and that it lies in an appropriate space
and is a limit of difference quotients of the initial data corresponding to the sequence
of solutions of (2.1), one can show a similar result. However, note that the sensitivity
equations are a model for the evolution of the instantaneous change in a solution with
respect to changes in the viscosity, hence the natural initial condition to consider is the
case of identically zero initial data. Thus, to avoid obfuscation, we work in the natural
setting of identically zero initial data; however, we provide a definition of weak and
strong solutions for above general initial data. Similar remarks holds for all theorems
below.

Proof Let T > 0 be given. Let N sufficiently large such that for all n > N ,
{νn}n∈N ⊂ ( ν

2 , 3ν
2 ). Then, one can follow the proof of strong solutions for (2.1) as in,

e.g., Constantin and Foias (1988), Foias et al. (2001), Robinson (2001), Temam (2001),
to obtain bounds on {un} for n > N in the appropriate spaces that are independent of
νn :

‖un‖2L∞(0,T ;V ) ≤ ‖un(0)‖2 +
‖ f ‖2

L2(0,T ;H)

νn
≤ ‖u0‖2 +

2‖ f ‖2
L2(0,T ;H)

ν

and

‖un‖2L2(0,T ;D(A))
≤ 1

νn
‖un(0)‖2 +

‖ f ‖2
L2(0,T ;H)

ν2n
≤ 2

ν
‖u0‖2 +

4‖ f ‖2
L2(0,T ;H)

ν2
.
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Note that ‖ f ‖2
L2(0,T ;H)

< ∞ since all bounded functions are locally integrable. Hence

there is a subsequence that is relabeled un → u1 in L2(0, T ; V ) for some function u1.
Continuing to follow the proof of strong solutions for (2.1) as in, e.g., Constantin and
Foias (1988), Foias et al. (2001), Robinson (2001), Temam (2001), we note that dun

dt
is uniformly bounded in n in L2(0, T ; H). Hence, we can find a subsequence which
we relabel {un} such that

dun
dt

⇀
du1
dt

in L2(0, T ; H)

νn Aun⇀νAu1 in L2(0, T ; H)

B(un, un)⇀B(u1, u1) in L2(0, T ; H).

Indeed, u1 satisfies (2.1) with corresponding viscosity ν and thus, by uniqueness and
the fact that un → u1 in L2(0, T ; V ), it follows that u1 = u.

Let wn be the strong solution to (3.4) with ν = νn . Taking the action of (3.4) on
wn and using (2.7), (2.5), Lemma 2.2, and Young’s inequality, we obtain

1

2

d

dt
|wn|2 + νn‖wn‖2 ≤ c2

νn
‖u1‖2|wn|2 + νn

4
‖wn‖2 + 1

2νn
‖u1‖2 + νn

2
‖wn‖2.

Hence,

1

2

d

dt
|wn|2 + νn

4
‖wn‖2 ≤ c2

νn
‖u‖2|wn|2 + 1

2νn
‖u‖2. (3.10)

Dropping the second term on the left-hand side, we obtain

1

2

d

dt
|wn|2 ≤ c2

νn
‖u‖2|wn|2 + 1

2νn
‖u‖2.

Taking the integral with respect to time on [0, T ] and applying Grönwall’s inequal-
ity, then for a.e. t ∈ [0, T ],

|wn(t)|2 ≤
[ 1

νn

∫ T

0
‖u‖2dt

]
exp

( ∫ T

0

2c2

νn
‖u‖2dt

)

≤
[2
ν

∫ T

0
‖u‖2dt

]
exp

( ∫ T

0

4c2

ν
‖u‖2dt

)
=: K1.

Since u ∈ L2(0, T ; V ), then wn is bounded uniformly in L∞(0, T ; H).
Next, refraining from dropping the second term on the left-hand side of (3.10), we

estimate
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νn

4

∫ T

0
‖wn‖2dt ≤ c2

νn

∫ T

0
‖u‖2|wn|2dt + 1

2νn

∫ T

0
‖u‖2dt

≤ K1
c2

νn

∫ T

0
‖u‖2dt + 1

2νn

∫ T

0
‖u‖2dt

Rewriting, we obtain

∫ T

0
‖wn‖2dt ≤ K1

4c2

ν2n

∫ T

0
‖u‖2dt + 2

ν2n

∫ T

0
‖u‖2dt

≤ K1
16c2

ν2

∫ T

0
‖u‖2dt + 8

ν2

∫ T

0
‖u‖2dt

Thus, wn is bounded above uniformly in L2(0, T ; V ) with respect to n. Hence, by the
Banach–Alaoglu theorem, there exists a subsequence, relabeled as (wn), such that

wn
∗
⇀ w in L∞(0, T ; H) and wn⇀w in L2(0, T ; V ). (3.11)

Using (3.11), note that all uniform bounds in n on the terms in (3.4) in L2(0, T ; V ′)
are obtained in a similar manner to the proof of weak solutions for (2.1) except for the
term B(un, wn). However, by Lemma 2.1,

‖B(un, wn)‖L2(0,T ;V ′) ≤k‖un‖L∞(0,T ;H)‖wn‖L∞(0,T ;H)‖un‖L2(0,T ;V )‖wn‖L2(0,T ;V ),

and due to the following standard bounds on un (which can be found in Constantin
and Foias 1988; Foias et al. 2001; Robinson 2001; Temam 2001, etc.) and the fact that
νn ∈ ( ν

2 , 3ν
2 ),

‖un‖2L∞(0,T ;H) ≤ |un0|2 + ‖ f ‖L∞(0,T ;H)

λ21ν
2
n

≤ |u0|2 + 4‖ f ‖L∞(0,T ;H)

λ21ν
2

and

‖un‖2L2(0,T ;V )
≤ 1

νn
|un(0)|2 + ‖ f ‖2L∞(0,T ;H)

λ1ν2n
T ≤ 2

ν
|u0|2 + 4‖ f ‖2L∞(0,T ;H)

λ1ν2
T ,

and thus ‖B(un, wn)‖L2(0,T ;V ′) is bounded above uniformly in n independent of νn .
Hence, independent of νn , dwn/dt is bounded uniformly in n. Thus, by the Aubin
compactness theorem, wn → w strongly in L2(0, T ; H). Utilizing these bounds and
the convergence properties, we can follow the usual arguments to state there exists
a weak solution in the sense of Definition 3.2, where weak continuity can be proved
directly in the same manner as for weak solutions to (2.12) and strong continuity
follows fromLemma2.2. Furthermore,weak continuity in H follows due to the bounds
on each of the above terms. The initial condition is satisfied by construction. To prove
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uniqueness, suppose that there exist two weak solutions ũ1 and ũ2. We consider the
difference of the equations

d

dt
ũ1 + B (̃u1, u) + B(u, ũ1) + νAũ1 + Au1 = 0

and

d

dt
ũ2 + B (̃u2, u) + B(u, ũ2) + νAũ2 + Au1 = 0,

which, defining U := ũ1 − ũ2, yields

d

dt
U + B(U , u) + B(u,U ) + νAU = 0

withU (0) = 0. Taking the action onU , using (2.5), and applying the Lions–Magenes
Lemma 2.2,

1

2

d

dt
|U |2 + 〈B(U , u),U 〉 + ν‖U‖2 = 0.

Thus, by (2.7) and Young’s inequality,

1

2

d

dt
|U |2 + ν‖U‖2 ≤ c‖U‖|U |‖u‖ ≤ c2

ν
‖u‖2|U |2 + ν

2
‖U‖2.

Dropping the second term and applying Grönwall’s inequality, for a.e. 0 ≤ t ≤ T ,

|U (t)|2 ≤ |U (0)|2exp
( ∫ T

0

c2

2ν
‖u‖2dt

)
.

Thus, exp
( ∫ T

0
c2
ν

‖u‖2dt
)

< ∞ for all T > 0 andU (0) = 0. Hence, ‖U‖L∞(0,T ;H) =
0, which implies that U ≡ 0. Hence, weak solutions to (3.4) are unique.

Finally, we want to show that the sequence of difference quotients defines a Fréchet
derivative. Let A : R → L2(0, T ; H), A(δ) ≡ δũ. Note that A is a bounded linear
operator since ũ is bounded in L2(0, T ; H). Let δn = νn−ν, so that δn → 0 asn → ∞.
Note that for any sequence νn → ν, there is a subsequence such that wnk → ũ in
L2(0, T ; H). However, by the fact that for every subsequence of {wn}n∈N we can find
a convergent subsequence, we can conclude that wn → ũ in L2(0, T ; H). We rewrite
wn → ũ in L2(0, T ; H) as

∥∥∥∥u(ν + δn) − u(ν)

δn
− ũ

∥∥∥∥
L2(0,T ;H)

= 1

|δn| ‖u(ν1 + δn) − u(ν1) − δnũ‖L2(0,T ;H) → 0.

Therefore, A defines a Fréchet derivative from R to L2(0, T ; H). ��
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Theorem 3.9 Let T > 0 and {νn}n∈N be a sequence such that νn → ν as n → ∞. Let

• u be the solution to (2.1) with viscosity ν, forcing f ∈ L∞(0,∞; H), and initial
data u0;

• un solve (2.1)with viscosity νn, forcing f ∈ L∞(0,∞; H), and initial data u0 ∈ V
• {wn}n∈N be a sequence of strong solutions to (3.4) with wn(0) = 0 with corre-
sponding viscosity νn and solutions to (2.1) un and u.

Then there exists a subsequence of {wn}n∈N that converges in L2(0, T ; V ) to a unique
strong solution ũ of (3.1) with initial data u0 ≡ 0. Furthermore, the operator A :
R → L2(0, T ; V ) given byA(δ) = ũδ is the Fréchet derivative in L2(0, T ; V ) of the
solution u with respect to ν.

Proof Let T > 0 be given, and let N > 0 be large enough that n > N implies
{νn} ⊂ ( ν1

2 , 3ν1
2 ). Then by the argument in Theorem 3.7, we can obtain a subsequence

which we relabel {un} such that un → u in L2(0, T ; V ).
Consider wn to be the strong solution to (3.4) with viscosity νn . Taking a justified

inner product of (3.4) with Awn ,

1

2

d

dt
‖wn‖2 + νn|Awn|2 = −(B(wn, u), Awn) − (B(un, wn), Awn) − (Au, Awn).

Applying Young’s inequality, we obtain

1

2

d

dt
‖wn‖2 + νn

2
|Awn|2 ≤ −(B(wn, u), Awn) − (B(un, wn), Awn) + 1

2νn
|Au|2.

Applying (2.6) to the second bilinear term,

1

2

d

dt
‖wn‖2 + νn

2
|Awn|2 ≤ −(B(wn, u), Awn)+‖un‖L∞(�)‖wn‖|Awn|+ 1

2νn
|Au|2

≤ 2k2

νn
|un||Aun|‖wn‖2 + νn

8
|Awn|2

− (B(wn, u), Awn) + 1

2νn
|Au|2

and applying (2.8) to the first bilinear term,

1

2

d

dt
‖wn‖2 + 3νn

8
|Awn|2 ≤ 2k2

νn
|un||Aun|‖wn‖2

+ c|wn|1/2‖wn‖1/2‖u‖1/2|Au|1/2|Awn| + 1

2νn
|Au|2

≤ 2k2

νn
|un||Aun|‖wn‖2 + 2c2

λ1νn
‖wn‖2‖u‖|Au|

+ νn

8
|Awn|2 + 1

2νn
|Au|2
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which can be rewritten as

d

dt
‖wn‖2 + νn

2
|Awn|2 ≤

(4k2
νn

|un||Aun| + 4c2

λ1νn
‖u‖|Au|

)
‖wn‖2 + 1

νn
|Au|2.

Integrating on both sides in time, with 0 ≤ t ≤ T ,

‖wn(t)‖2 + νn

2

∫ t

0
|Awn|2ds ≤ 1

νn

∫ t

0
|Au(s)|2ds

+
∫ t

0

(4k2
νn

|un(s)||Aun(s)| + 4c2

λ1νn
‖u(s)‖|Au(s)|

)
‖wn(s)‖2ds

Dropping the second term on the left-hand side, we apply Grönwall’s inequality to
obtain

‖wn(t)‖2 ≤ αn(t) exp
( ∫ t

0

4k2

νn
|un(s)||Aun(s)| + 4c2

λ1νn
‖u(s)‖|Au(s)|ds

)

≤ α(t) exp
( ∫ t

0

8k2

ν
|un(s)||Aun(s)| + 8c2

λ1ν
‖u(s)‖|Au(s)|ds

)
.

where αn(t) := 2
νn

∫ t
0 |Au(s)|2ds ≤ α(t) := 4

ν

∫ t
0 |Au(s)|2ds. Since

∫ T

0
|Aun|2ds ≤ ‖u0‖2 +

‖ f ‖2
L2(0,T ;H)

ν2n

as proved in, e.g., Constantin and Foias (1988), Robinson (2001), Foias et al. (2001),
Temam (2001), then

sup
t∈[0,T ]

‖wn(t)‖2 ≤ α(T ) exp

(
8k2

λ21ν

∫ T

0
|Aun|2ds + 8c2

λ1ν
‖u(s)‖|Au(s)|ds

)

≤ α(T ) exp

(
8k2

λ21ν

[
‖u0‖2 +

‖ f ‖2
L2(0,T ;H)

ν2n

])

+ α(T ) exp

(∫ T

0

8c2

λ1ν
‖u(s)‖|Au(s)|ds

)

≤ α(T ) exp

(
8k2

λ21ν

[
‖u0‖2 +

4‖ f ‖2
L2(0,T ;H)

ν2

])

+ α(T ) exp

(∫ T

0

8c2

λ1ν
‖u(s)‖|Au(s)|ds

)

This implies that wn ∈ L∞(0, T ; V ) and {wn} is uniformly bounded in this space.
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Additionally, considering again the inequality

‖wn(t)‖2 + νn

2

∫ t

0
|Awn|2ds ≤ 1

νn

∫ t

0
|Au(s)|2ds

+
∫ t

0

(4k2
νn

|un(s)||Aun(s)| + 4c2

λ1νn
‖u(s)‖|Au(s)|

)
‖wn(s)‖2ds,

we set t = T , drop the first term on the left-hand side, and bound the above viscosity
to obtain

∫ T

0
|Awn|2ds ≤ 8

ν2

(∫ T

0
|Au(s)|2ds

)

+
∫ T

0

(32k2
λ1ν2

|Aun(s)|2 + 32c2

λ1ν2
‖u(s)‖|Au(s)|

)
‖wn(s)‖2ds.

By the fact that {‖un‖L2(0,T ;D(A))} is bounded above in n, as demonstrated in Theo-
rem3.7, and the result that {‖wn‖L∞(0,T ;V )} is bounded aboveuniformly inn, it follows
that {‖wn‖L2(0,T ;D(A))} is bounded above uniformly in n. Since {wn} is bounded above
uniformly in n in both L∞(0, T ; V ) and L2(0, T ;D(A)), then we can conclude that
there exists a subsequence, which we relabel as {wn}, such that

wn
∗
⇀ w in L∞(0, T ; V ) and wn⇀w in L2(0, T ;D(A)). (3.12)

Using (3.12), note that all uniform bounds in n on the terms in (3.4) in L2(0, T ; H)

are obtained in a similar manner to the proof of strong solutions for the (2.1) and
are independent of νn except for the bilinear terms. The bilinear terms are bounded
uniformly in L2(0, T ; H)with respect to n, due to Lemma 2.1. Hence, dwn

dt is bounded
above uniformly in n in L2(0, T ; H). Thus, by the Aubin Compactness Theorem,
wn → w strongly in L2(0, T ; V ). Utilizing these bounds and convergence rates, it is
classical to show thatw is a strong solution in the sense of Definition 3.2. Specifically,
as in, e.g., Robinson (2001), Temam (2001), Foias et al. (2001), Constantin and Foias
(1988), w ∈ C([0, T ]; V ). The initial condition is also satisfied by construction.
Uniqueness holds due to the results in Theorem 3.7.

Finally, following a similar argument as in the proof of Theorem 3.7, one can show
that the sequence of difference quotients gives rise to a Fréchet derivativeA(δ) ≡ δũ,
where A : R → L2(0, T ; V ). Let A(δ) = δũ. Let δn = νn − ν, so that δn → 0 as
n → ∞. Note that for any sequence νn → ν, there is a subsequence such thatwnk → ũ
in L2(0, T ; V ). However, by the fact that for every subsequence of {wn}n∈N we can
find a convergence subsequence, one can in fact conclude that the entire sequence
wn → ũ in L2(0, T ; V ). We rewrite wn → ũ in L2(0, T ; V ) as∥∥∥∥u(ν1 + δn) − u(ν1)

δn
−ũ

∥∥∥∥
L2(0,T ;V )

= 1

|δn| ‖u(ν1+δn) − u(ν1)−δnũ‖L2(0,T ;V ) → 0.

��

123



84 Page 20 of 30 Journal of Nonlinear Science (2021) 31 :84

Remark 3.10 Ideally, one would like to show that the difference quotients of weak
solutions give rise to a Fréchet derivative in the sense of the Leray space L2(0, T ; V )∩
L∞(0, T ; H), rather than just the space L2(0, T ; H). Unfortunately, with the given
hypotheses the method of proof employed here does not seem to allow for a proof in
this context, since we only have weak or weak-∗ convergence in the relevant spaces.
It may be possible to prove such a result, using, e.g., the methods described in Singler
(2008), but such a proof would be lengthy and distract from the main focus of the
present work. Hence, we plan to explore these details in a future work.

Finallywe consider the sensitivity of the Euler equations to a viscous regularization.
This leads to the following statement of the formal sensitivity equations:

ũt + ũ · ∇u + u · ∇ũ − �u + ∇ p̃ = 0, (3.13a)

∇ · ũ = 0, (3.13b)

where (u, p) is the solution to the Euler equations. With (uν, pν) is the solution to
(2.1) with viscosity ν, the corresponding system of difference quotient equations is

wt + uν · ∇w + w · ∇u−�u + ∇P = 0, (3.14a)

∇ · w = 0, (3.14b)

w(x, 0) = 0, (3.14c)

where w = uν−u
ν

and P = pν−p
ν

.
We only utilize the least amount of regularity required on the initial data in Theo-

rem 2.5 to preserve the convergence of strong solutions to the corresponding systems
of difference quotient equations in the same spaces as in Theorem 3.9. We state the
definition of strong solutions to (3.13) in the same sense as for (3.5) to illustrate the
minimal needed additional regularity for the convergence of solutions to (3.14) to
those of (3.13).

Definition 3.11 Let T > 0, and s > 2. Let u ∈ C([0, T ];D(As/2)) be a strong
solution to (2.21) with initial data u0 ∈ D(As/2) and f ≡ 0. A strong solution of
(3.13) is an element ũ ∈ L2(0, T ;D(A))∩C([0, T ]; V ) satisfying dũ

dt ∈ L2(0, T ; H)

and

〈
d

dt
ũ, φ

〉
+ 〈B (̃u, u), φ〉 + 〈B(u, ũ), φ〉 + 〈Au, φ〉 = 0 (3.15)

for a.e. t ∈ [0, T ], for all φ ∈ H , and initial data ũ0 ∈ D(As/2). Moreover, the
map ũ0 ∈ H �→ ũ ∈ H is continuous for a.e. t ∈ [0, T ], i.e., the solution depends
continuously on the initial data.

Remark 3.12 We do not extend this analysis to the equations involving the data assim-
ilation algorithm, as the Euler equations are not dissipative.
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Definition 3.13 Let T > 0, and s > 2, and suppose u, uν ∈ L2(0, T ;D(A)) ∩
C([0, T ]; V ). A strong solution to (3.14) is an element w ∈ L2(0, T ;D(A)) ∩
C([0, T ]; V ), such that d

dt w ∈ L2(0, T ; H), and for all φ ∈ H and for a.e., t ∈ [0, T ],
(
d

dt
w,φ

)
+ (B(w, u), φ) + (B(uν, w), φ)+(Au, φ) = 0.

Moreover, the map u0 ∈ H �→ u ∈ H is continuous for a.e. t ∈ [0, T ], i.e., the
solution depends continuously on the initial data.

Lemma 3.14 Let T > 0 be given, and let u, u1 ∈ L2(0, T ;D(A)) ∩ C([0, T ]; V ) be
strong solutions to (2.1) and (2.21), respectively. Then there exists a unique strong
solution to (3.14).

Proof Since �u ∈ L2(0, T ; H), and uν is sufficiently smooth, existence follows
exactly as in the standard theory for the 2D Navier–Stokes equations. Uniqueness
is also similar, but we carry out the short proof to show the dependencies on various
quantities. Hence, supposew1 andw2 are strong solutions to (3.14). LetU := w1−w2,
so that

d

dt
U + B(U , u) + B(u1,U ) = 0

with U (0) = 0 in V . Taking the H inner product with U ,

1

2

d

dt
|U |2 = −(B(U , u),U ) ≤ ‖∇u‖L∞|U |2,

and applying Grönwall’s inequality yields

|U (t)|2 ≤ |U (0)|2e2
∫ t
0 ‖∇u(s)‖L∞ds . (3.16)

Since u ∈ C([0, T ],D(As/2)), s > 2, andU (0) = 0, we necessarily have uniqueness.
Furthermore, note that (3.16) implies that the map u0 ∈ H �→ u ∈ H is continuous.

��
Remark 3.15 In the following theorem, we note that it is worth noting that the analysis
can be carried out in a similar manner as when the viscosity is nonzero for the formal
sensitivity equations, as one does not encounter the difficulties expected in energy
estimates for Euler. The reason for this is that the formal derivative of the viscous
regularization results in a diffusive term that is independent of the viscosity.

Theorem 3.16 Let T > 0 and {νn}n∈N be a sequence such that νn → 0 as n → ∞.
Let

• u be the solution to (2.21) with forcing f ≡ 0 and initial data u0 ∈ D(As/2),
s > 2,
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• un solves (2.1) with viscosity νn, forcing f ≡ 0, and initial data u0 ∈ D(As/2),
s > 2,

• {wn} be a sequence of strong solutions to (3.14) with corresponding viscosity νn,
solution to (2.1) un, and solution to (2.22) u.

Then {wn}n∈N that converges in L2(0, T ; V ) to a unique strong solution ũ of (3.13)
with initial data u0 ≡ 0. Furthermore, the operator A : R → L2(0, T ; V ) given by
A(δ) = ũδ is the Fréchet derivative in L2(0, T ; V ) of the weak solution u with respect
to ν.

Proof Taking the difference between (2.1) and (2.21), and dividing by the viscosity
νn , we obtain the system of difference quotient equations, we obtain

d

dt
wn + B(wn, u) + B(un, wn) + Awn + Au = 0.

Taking the inner product with Awn then applying (2.7) and Young’s inequality,

1

2

d

dt
‖wn‖2 + |Awn|2 = −(B(wn, u), Awn) − (B(un, wn), Awn) − (Au, Awn)

≤ c|wn|1/2‖wn‖1/2‖u‖1/2|Au|1/2|Awn|
+ c|un|1/2‖un‖1/2‖wn‖1/2|Awn|1/2|Awn| + |Au||Awn|

≤
(

c2√
λ1

‖u‖|Au|
)

‖wn‖2 + 1

4
|Awn|2

+ (32c/3)4

4
|un|2‖un‖2‖wn‖2 + 1

8
|Awn|2 + 2|Au|2

+ 1

8
|Awn|2,

which implies

d

dt
‖wn‖2 + |Awn|2 ≤

(
2c2√
λ1

‖u‖|Au|
)

‖wn‖2

+ (32c/3)4

2
|un|2‖un‖2‖wn‖2 + 4|Au|2.

Dropping the second term on the left-hand side and applying Grönwall’s inequality,
for any 0 ≤ t ≤ T ,

‖wn(t)‖2 ≤ 4
∫ t

0
|Au(s)|2ds exp

(∫ t

0

2c2√
λ1

‖u(τ )‖|Au(τ )| + (32c/3)4

2
|un(τ )|2‖un(τ )‖2dτ

)
,

(3.17)

which is bounded due to the fact that u ∈ C([0, T ];D(As/2)) and un is bounded
uniformly as well in C([0, T ];D(As/2)). Furthermore, retaining the above second
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term and integrating, we obtain

∫ t

0
|Awn(s)|2

≤
∫ t

0

(
2c2√
λ1

‖u(s)‖|Au(s)| + (32c/3)4

2
|un(s)|2‖un(s)‖2‖wn(s)‖2

)
ds

+ 4
∫ t

0
|Au(s)|2ds

≤ ‖wn(s)‖2L∞(0,T ;V )

∫ t

0

(
2c2√
λ1

‖u(s)‖|Au(s)| + (32c/3)4

2
|un(s)|2‖un(s)‖2

)
ds

+ 4
∫ t

0
|Au(s)|2ds,

which is bounded by (3.17). By Theorem 2.5 we have that u ∈ L2(0, T ;D(A)) and
that un is bounded uniformly inC([0, T ]; V )∩ L2(0, T ;D(A))with respect to n. The
convergence results in Theorem 2.5 can also be applied such that following the exact
same arguments as in Theorem 3.9, we obtain the existence of a strong solution ũ
as per Definition 3.13. Uniqueness and continuity with respect to the initial data also
follows as in Lemma 3.14. Finally, defining A(δ) ≡ δũ, A : R → L2(0, T ; V ), we
also obtain a formal Fréchet derivative in the same manner as in Theorem 3.9. ��

4 Extension to a Data Assimilation Algorithm

In this section, we extend our analysis to the context of a data assimilation algorithm,
as discussed in the introduction.

Theorem 4.1 Let T > 0 and {νn}n∈N be a sequence such that νn → νappx, νappx > 0,

as n → ∞. Choose μ and h such that 4μc0h2 ≤ νn ≤ 3νappx
2 . Let

• v be the solution to (2.16) with viscosity νappx, forcing f ∈ L∞(0,∞; H), and
initial data v0;

• ũ be a strong solution to (3.1);
• vn solve (2.16) with viscosity νn, forcing f ∈ L∞(0,∞; H), and initial data

v0 ∈ V ;
• {w̃n}n∈N be a sequence of strong solutions to (3.5) with w̃n(0) = 0 with corre-
sponding viscosity νn and solutions to (2.16) un and u.

Then there exists a subsequence of {w̃n}n∈N that converges in L2(0, T ; V ) to a unique
solution ṽ of (3.2) with initial data u0 ≡ 0. Furthermore, the operator A : R →
L2(0, T ; V ) given by A(δ) = ũδ is the Fréchet derivative in L2(0, T ; V ) of the
solution u with respect to νappx.

Proof Let T > 0. Note that since {νn} ⊂
(

νappx
2 ,

3νappx
2

)
for n > N for some suffi-

ciently large N , we can follow the proof of strong solutions for (2.16) in Azouani et al.
(2014) to obtain bounds on {vn}n>N in the appropriate spaces that are independent of

123



84 Page 24 of 30 Journal of Nonlinear Science (2021) 31 :84

νn . First, we note that Azouani et al. (2014) quickly proves | f + μPσ Ih(un)|2 ≤ Mn

since |Pσ Ih(un)|2 ≤ (c0
√
h + λ

−1/2
1 )‖un‖2. However, since un is bounded above

uniformly in n (see the proof of Theorem 3.7), we have that | f + μPσ Ih(un)|2 ≤ m
for somem independent of n. Thus, we have the following bounds from Azouani et al.
(2014) bounded above uniformly in n:

‖vn‖2L∞(0,T ;H) ≤ |vn(0)|2 + m

μνnλ1
≤ |v0|2 + 2m

μνappxλ1
, (4.1)

‖vn‖2L2(0,T ;V )
≤ 1

νn
|vn(0)|2 + T

μνn
m ≤ 2

νappx
|v0|2 + 2T

μνappx
m, (4.2)

and, defining

exp
{ c

(ν2)3n

∫ T

0
|vn |2‖vn‖2ds

}
≡ 1

ψn
νn

(T )
≤ 1

ψn
νappx

(T )
≡ exp

{ 8c

ν3appx

∫ T

0
|vn |2‖vn‖2ds

}
,

which is bounded above uniformly in n due to (4.1) and (4.2),

‖vn‖2L∞(0,T ;V ) ≤ 1

ψn
νn

(T )

[
‖vn(0)‖2 + 4T

νn
m

]
≤ 1

ψn
νappx

(T )

[
‖v0‖2 + 8T

νappx
m

]
.

(4.3)

Furthermore,

‖vn‖2L2(0,T ;D(A))
≤ 1

νn
‖vn(0)‖2 + c

(ν2)3n

∫ T

0
(|vn|2‖vn‖4 + 4

νn
| f + Pσ Ih(un)|2)ds

≤ 2

νappx
‖v0‖2 + 8c

ν3appx

∫ T

0
|vn|2‖vn‖4ds + 8T

νappx
m,

which is bounded above uniformly in n due to (4.1), (4.2), (4.3). Hence, we will obtain
a subsequence that is relabeled vn → v1 in L2(0, T ; V ) for some function v1. Indeed,
we see that by identical arguments presented in Theorem 3.7, v1 = v. Also due to
Poincaré’s inequality, we obtain that vn → v in L2(0, T ; H).

Let {w̃n}n∈N be a sequence of solutions to (3.5). We consider the Leray projection
of (3.5):

d

dt
w̃n + B(w̃n, v) + B(vn, w̃n) + νn Aw̃n + Av = μPσ Ih(wn − w̃n).

The existence proof for (3.2) closely follows the proof of Theorem 3.9, with some
modifications on the bounds of w̃n which we show below. Taking the inner product
with Aw̃n and proceeding as in the proof of Theorem 3.9, we obtain

1

2

d

dt
‖w̃n‖2 + νn

4
|Aw̃n|2 ≤

(2k2
νn

|vn||Avn| + 2c2

λ1νn
‖v‖|Av|

)
‖w̃n‖2
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+ 1

2νn
|Av|2 + μ(Ih(wn − w̃n), Aw̃n). (4.4)

We slightlymodify the inequalities obtained inAzouani et al. (2014) for the interpolant
term,

−μ(Ih(w̃n), Aw̃n) ≤ 4μ2

νn
|w̃n − Ih(w̃n)|2 + νn

16
|Aw̃n|2 − μ‖w̃n‖2

≤ 4μ2c0h2

νn
‖w̃n‖2 + νn

16
|Aw̃n|2 − μ‖w̃n‖2

≤ νn

16
|Aw̃n|2.

Also,

μ|(Ih(wn), Aw̃n)| ≤ 4μ2

νn
|wn|2 + νn

16
|Aw̃n|2.

Using these inequalities in (4.4):

1

2

d

dt
‖w̃n‖2 + νn

8
|Aw̃n|2 ≤

(2k2
νn

|vn||Avn| + 2c2

λ1νn
‖v‖|Av|

)
‖w̃n‖2

+ 1

2νn
|Av|2 + 4

νn
|wn|2

≤
(2k2

νn
|vn||Avn| + 2c2

λ1νn
‖v‖|Av|

)
‖w̃n‖2

+ 1

2νn
|Av|2 + 4

λ21νn
|Awn|2.

Following identical arguments as in Theorem 3.9 with

αn(t) := 1

2νn
|Av1|2 + 4

λ21νn
|Awn|2 ≤ α(t) := 1

νappx
|Av|2 + 8

λ21νappx
|Awn|2,

along with the fact that Pσ Ih(wn − w̃n) is bounded uniformly in n in L2(0, T ; H), we
obtain a subsequence relabeled w̃n → w̃ in L2(0, T ; V ). Indeed, letφ ∈ L2(0, T ; H);
then

∫ T

0
(Pσ Ih(wn − w̃n) − Pσ Ih(w − w̃), φ)ds ≤

∫ T

0
|Ih(wn − w̃n) − Ih(w − w̃)||φ|ds

≤
∫ T

0
|Ih(wn − w) − Ih(w̃n − w̃)||φ|ds

≤
∫ T

0
|[(wn − w) − (w̃n − w̃)] − Ih((wn − w) − (w̃n − w̃))||φ|ds
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+
∫ T

0
|(wn − w) − (w̃n − w̃)||φ|ds

≤ √
c0h

∫ T

0
‖(wn − w) − (w̃n − w̃)‖|φ|ds + 1

λ
1/2
1

∫ T

0
‖(wn − w) − (w̃n − w̃)‖|φ|ds

≤ √
c0h‖wn − w‖L2(0,T ;V )‖φ‖L2(0,T ;H) + 1

λ
1/2
1

‖w̃n − w̃‖L2(0,T ;V )‖φ‖L2(0,T ;H).

Additionally, since we now have that w̃n → w in L2(0, T ; V ), then Pσ Ih(wn −
w̃n)⇀Pσ Ih(w − w̃) in L2(0, T ; H) and we conclude w̃ is a strong solution in the
sense of Definition 3.3.

To show that the solutions are unique, we consider the difference of the equations

d

dt
ṽ1 + B (̃v1, v) + B(v, ṽ1) + νappxAṽ1 + Av = μPσ Ih (̃u − ṽ1)

and

d

dt
ṽ2 + B (̃v2, v) + B(v, ṽ2) + νappxAṽ2 + Av = μPσ Ih (̃u − ṽ2)

which, defining W := ṽ1 − ṽ2, yields

d

dt
W + B(W , v) + B(v,W ) + νappxAW = −μPσ Ih(W )

with W (0) = 0. So, W must be a solution to the above equation. Taking the action on
W and applying the Lions–Magenes Lemma 2.2,

1

2

d

dt
|W |2 + 〈B(W , v),W 〉 + νappx‖W‖2 = 〈−μPσ Ih(W ),W 〉

which implies that

1

2

d

dt
|W |2 + νappx‖W‖2 ≤ c‖v‖|W |‖W‖ + μ(

√
c0h + λ−1

1 )‖W‖|W |

≤ μ2(
√
c0h + λ−1

1 )2

νappx
|W |2 + ν

4
‖W‖2

+ c2

2νappx
‖v‖2|W |2 + νappx

2
‖W‖2.

Thus,

d

dt
|W |2 ≤

(μ2(
√
c0h + λ−1

1 )2

νappx
+ c2

2νappx
‖v‖2

)
|W |2
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and Grönwall’s inequality implies, for a.e. 0 ≤ t ≤ T ,

|W (t)|2 ≤ |W (0)|2exp
( ∫ T

0

μ2(
√
c0h + λ−1

1 )2

νappx
+ c2

2νappx
‖v‖2dt

)
.

But W (0) = 0, and thus ‖W‖L∞(0,T ;H) = 0 implies that W ≡ 0. Hence, solutions to
(3.5) are unique.

Finally, we want to show that the sequence of difference quotients defines a Fréchet
derivative. Following a similar argument as in Theorem 3.7, the Fréchet derivative
A(δ) ≡ δũ maps R → L2(0, T ; V ). ��

5 Conclusion

In this article, we proved well-posedness of the sensitivity equations for the 2D incom-
pressible Navier–Stokes equations and the associated AOT data assimilation system,
as well as a viscous regularization of Euler. Specifically, we proved the existence and
uniqueness of global solutions to these equations. A byproduct of the proof is that
the sensitivity of solutions to the equations involved in the algorithm are bounded in
appropriate spaces. Hence, changing the viscosity, or equivalently the Reynolds num-
ber, mid-simulation as in Carlson et al. (2020) does not result in major aberrations in
the solution. We note that in the present context, our proof is somewhat nonstandard,
in that we proved the existence by showing that the difference quotients converge to
a solution of the equations. We believe this is the first such rigorous proof that the
sensitivity equations for the 2DNavier–Stokes equations are globally well posed (even
in the inviscid limit), although formal proofs have been given in other works, cited
above.
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