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Abstract

We rigorously prove the well-posedness of the formal sensitivity equations with respect
to the viscosity corresponding to the 2D incompressible Navier—Stokes equations.
Moreover, we do so by showing a sequence of difference quotients converges to the
unique solution of the sensitivity equations for both the 2D Navier—Stokes equations
and the related data assimilation equations, which utilize the continuous data assimila-
tion algorithm proposed by Azouani, Olson, and Titi. As a result, this method of proof
provides uniform bounds on difference quotients, demonstrating parameter recovery
algorithms that change parameters as the system evolves will be well behaved. Further-
more, our analysis can be extended to analyze the sensitivity of the 2D Euler equations
to a viscous regularization. We also note that this appears to be the first such rigorous
proof of global existence and uniqueness to strong or weak solutions to the sensitivity
equations for the 2D Navier—Stokes equations (in the natural case of zero initial data),
and that they can be obtained as a limit of difference quotients with respect to the
viscosity.
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1 Introduction

Turbulent flows are well known to be chaotic, in the sense that the solutions to math-
ematical models of such flows are highly sensitive to initial conditions (see, e.g.,
Constantin and Foias 1985; Grappin and Léorat 1991). However, sensitivity with
respect to physical parameters is also an important consideration in terms of making
reliably accurate predictions. Parameter sensitivity is often measured by formally con-
sidering the derivative of a solution with respect to a particular parameter; however,
the only rigorous justification of this approach in the literature seems to be limited to
linear equations, or nonlinear equations under assumptions on the nonlinearity which
are too strong to include, e.g., the Navier—Stokes equations of fluids (see, e.g., Brewer
1982; Gibson and Clark 1997 for a semigroup theory approach). Therefore, in the
present work, we provide a fully rigorous proof of the global well-posedness of the
sensitivity equations for the 2D Navier—Stokes equations. Specifically, we give a rig-
orous proof of the existence of unique weak and strong solutions with zero! initial
data to the associated viscosity sensitivity equations specifically for the 2D Navier—
Stokes equations. Moreover, we prove that the derivative of solutions with respect to
the viscosity is a limit of difference quotients corresponding to different viscosities.

We also extend our results to the case of a data assimilation algorithm. This is
because the motivation for this present work arose from our recent work Carlson et al.
(2020), where an algorithm was proposed to recover an unknown viscosity, or equiv-
alently Reynolds number. This algorithm works in tandem with a data assimilation
method proposed in Azouani and Titi (2014), Azouani et al. (2014). This algorithm,
commonly referred to as the Azouani—Olson—Titi (AOT) or continuous data assimila-
tion (CDA) algorithm, has seen much recent work (see, e.g., Albanez et al. 2016; Altaf
et al. 2017; Bessaih et al. 2015; Biswas et al. 2019, 2018; Biswas and Martinez 2017;
Carlson et al. 2020; Carlson and Larios 2020; Celik et al. 2019; Di Leoni et al. 2018;
Leoni et al. 2019; Desamsetti et al. 2019; Farhat et al. 2020, 2018, 2015, 2016a,b, ?,
2017, 2019; Foias et al. 2016; Foyash et al. 2014; Garcia-Archilla et al. 2020; Gard-
ner et al. 2021; Gesho et al. 2016; Glatt-Holtz et al. 2014; Hudson and Jolly 2019;
Ibdah et al. 2019; Jolly et al. 2019, 2017; Larios et al. 2018; Larios and Victor 2021;
Lunasin and Titi 2017; Markowich et al. 2016; Mondaini and Titi 2018; Pei 2019;
Rebholz and Zerfas 2021; Zerfas et al. 2019; Larios and Pei 2017 and the references
therein). Specifically, Azouani et al. (2014) consider the 2D Navier—Stokes system,
written abstractly in the form

du_F()
Pl L(u).

The difficulty is that the initial data are unknown; however, it is assumed that the
solution can be measured at certain points. In order to converge to the correct solution,
it is proposed to instead consider the system

1 Note that considerations of sensitivity arise in the context of perturbations; hence, the natural initial data
for a sensitivity equation is identically zero data.
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& = F(0) + pUp ) — I (v)
U(O) = 0,

where 1 > 0 is a sufficiently large positive relaxation parameter, I, (1) represents the
observational measurements with sufficiently small spacing 2 > 0, vg is arbitrarily
chosen in a certain function space, and F), is a nonlinear, nonlocal differential operator
depending on the viscosity parameter v > 0. I, is an interpolation operator satisfying
certain bounds (see Sect. 2); e.g., I, could be piecewise linear interpolation at given
nodes. In Azouani et al. (2014), it was proved that v converges to u exponentially fast
in time in certain standard norms. Later, Carlson et al. (2020) investigated the case of
an unknown viscosity, gave estimates for the resulting error in the solution, proposed
an algorithm to recover the unknown viscosity, and demonstrated computationally that
the algorithm converges exponentially fast in time to the correct solution. However, the
algorithm in Carlson et al. (2020) introduces a discontinuous change in the viscosity
during the simulation, leading to a desire to ensure that this abrupt change does not lead
to undesirable behavior. Hence, we also prove that the difference quotient methods
developed here can be used to prove rigorous results for the sensitivity equations of
the modified system of equations via the data assimilation algorithm. For this system,
we prove that the derivative of solutions with respect to the viscosity is a well-defined
object which is bounded in appropriate function spaces; additionally, we prove that the
corresponding sensitivity equations are globally well posed in time in an appropriate
sense and that strong solutions are unique.

Furthermore, one can also perceive the importance of analyzing the sensitivity
of a system of equations to a parameter-based regularization. Hence, we also prove
rigorously that the sensitivity equations for a viscous regularization (i.e., a Navier—
Stokes-like perturbation) of the 2D incompressible Euler equations in 2D (under
periodic boundary conditions) have a unique strong solution that can be realized as a
sequence of difference quotients.

Sensitivity for partial differential equations has been studied formally in many
contexts; see, e.g., Anderson et al. (1999), Borggaard and Burns (1997), Breckling
et al. (2018), Brewer (1982), Davis and Pahlevani (2013), Fernandez and Moubachir
(2002), Gibson and Clark (1997), Hamby (1994), Kim et al. (1999), Kouhi et al. (2016),
Neda et al. (2016), Noacco et al. (2019), Pahlevani (2004), Pahlevani (2006), Rebholz
et al. (2017), Stanley and Stewart (2002), Vemuri and Raefsky (1979), Zerfas et al.
(2019). In Stanley and Stewart (2002), it was argued, though only formally, that the
sensitivity equations for the steady-state 2D Navier—Stokes equations are globally well
posed. Some analysis for the sensitivity equations has been carried out in the slightly
more general context of a large eddy simulation (LES) model of the 2D Navier—Stokes
equations in an unpublished PhD thesis (Pahlevani 2004), where a formal argument
for the global existence and uniqueness of the equations was given, based on formal
energy estimates.

The paper is organized as follows. In Sect. 2, we describe the mathematical frame-
work for the problems we consider. In Sect. 3, we prove the global existence and
uniqueness of solutions to the sensitivity equations. Moreover, we show that these
solutions can be realized as limits of difference quotients. In Sect. 4, we extend the
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results in the previous section to the context of AOT data assimilation algorithm.
Finally, we summarize our results and implications of this work in Sect. 5.

2 Preliminaries

In this section, we lay out notation and recall some standard results about the incom-
pressible Navier—Stokes equations. Proofs can be found in, e.g., Constantin and Foias
(1988), Foias et al. (2001), Robinson (2001), Temam (2001), Temam (1995). Sim-
ilarly, equivalent results for the modified data assimilation equations given by the
AQT algorithm are stated without proof as well, since proofs were given in Azouani
et al. (2014). On a general open spatial domain €2, the incompressible Navier—Stokes
equations are given by

U+ w-Vyu=-Vp+vAu+ f, in 2 x [0, T], (2.1a)
V.u=0, inQ x [0, T, (2.1b)
u(x,0) = ugpx), in Q. (2.1¢)

where v > 0 is the kinematic viscosity, u is the velocity, p is the (density normalized)
pressure, and f is a (density normalized) body force. In this paper, we take 2 to be
the torus, i.e., Q = T? = R? / 72, which is an open, bounded, and connected domain
with empty boundary. We denote the space

Vi={f:Q-> R | felXT)

where C ;o (Tz) is the set of all mean-free, periodic, and infinitely differentiable func-
tions on T2. Denote by H the closure of V in L*(2; R?) and by V the closure of V
in HY(Q; R?). Since H and V are closed subspaces of L?(Q; R?) and HY(Q; R?),
respectively, they are Hilbert spaces which inherit inner products denoted by

2
814,'8111‘

vy = vd v) = Ui TV gy,

(u, v) /TZM vdx ((u, v)) i;lfw 9%, 0, x

with the corresponding norms denoted by |u| = +/(u, ) and |Ju] = /((u, u)). We
denote by L? (0, T'; X) those functions which are L?((0, 7)) in time with values in

the Banach space X in the sense of the Bochner integral; similarly for expressions
such as C*([0, T: X). We denote the dual space of V by V.

We consider the equivalent problem applying the Leray projection to (2.1), where
the Leray projection onto divergence-free vector fields is defined by Pyu := u —
VAV .u, P, : L2(Q) — H. As in Azouani et al. (2014), we denote the Stokes
operator A : D(A) — H,where D(A) :={u € V : Au € H} is the domain of A, and
the bilinear term B : V x V — V' as the continuous extensions of the operators A,
defined on V, and B, defined on V x V), by
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Au=—P;Au and B(u,v)= P;(u-Vv).

Due to boundedness of the domain and the mean-zero condition, the following
Poincaré inequalities hold:

Mllulf, < IVul7, for ueV, 22)
MIVul7, < |Aull3, for u € D(A). (2.3)

We note that, as proved in, e.g., Constantin and Foias (1988), Robinson (2001),
Temam (2001), A is a linear self-adjoint positive definite operator with a compact
inverse. Hence, there exists a complete orthonormal set of eigenfunctions {w; }; <y in
V such that Aw; = A;w;, where the corresponding eigenvalues {);}; are positive
and monotonically increasing. Hence, for s € R, the fractional operators A® may be
defined via A*w; = Al.zw ; and extension to appropriate spaces by linearity and density.

As proved in, e.g., Constantin and Foias (1988), Robinson (2001), Temam (2001),
the bilinear operator, B, has the property

(B(u, v), w)yry = — (B(u, w), v)yry, 24
for all u, v, w € V, which directly implies that
(B(u, w), w)yy =0, (2.5)

for all u, v, w € V. Furthermore, we have the following inequalities:

| (B(u, v), w) | < [lullrllvll|w] foru e L(Q),veV,weH
(2.6)
(B, v), w) | < clul?ull2lv]l|w]"/?|w] /> for u, v,w € V,
2.7)
|(Bu, v), w)| < clul"[ull/?|v]|'? Av|'*lw|  forueV,veD@A),weH
(2.8)
[(B(u, v), w)| < clul'?|Au"*||v]||w]| foru e D(A),veV,weH.
(2.9)

Due to the periodic boundary conditions, it also holds (in 2D) that
(B(w,w), Aw) =0 forevery w € D(A). (2.10)

From this an some manipulation, it follows that for u, w € D(A),
(B(u, w), Aw) + (B(w, u), Aw) = —(B(w, w), Au). (2.11)

Additionally, further properties of the bilinear term are stated in Lemma 2.1, which
we prove using similar strategies as in Robinson (2001), Temam (2001).
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Lemma 2.1 Suppose {an}nen and {b,}nen are uniformly bounded sequences in
L2(0,T; V) N L0, T; H). Then ||B(ay, b)llr20,7: vy is uniformly bounded in
n. Moreover, if {a,}nen and {b,}nen are uniformly bounded in L%0,T: D(A)) N
L®(0,T; V), then || B(ay, bn)||L2(0’T;H) is uniformly bounded in n.

Proof By the definition of the dual norm, (2.4), and (2.7)

I1B(@n, bp)lly' = sup |(B(an, ), by)| < klan?|lan|?1b |/ 15y )|>.

weV
lwl=1

Using Holder’s inequality,

T
1B an, ba)l1 720 7y < / K |an |l an [16n] 12 | ds
Y 0

2
<k ||an||L°C(O,T;H)||bn||L°°(0,T;H)||an||L2(0,T;V)||bn||L2(0,T;V)-
Hence, since {a,}neny and {b,},en are uniformly bounded in L?0,T;V) N

L>(0, T; H), it follows that || B(an, bn)ll2(0. 1.y 1s uniformly bounded in n.

Next, suppose {ay}nen and {b,},en are bounded uniformly in L2(0, T; D(A)) N
L®°(0, T; V). Then by definition of the dual norm, (2.8), and (2.2),

T T
1B (@n, b) 320 1. 11y = fo |B(an, by)|*dt < ¢ fo \anlllanll|bn ||| Aby|dt

c T
< sy [ 146 Par

)\‘1 PNt 0

¢ 2 2
= A_l"a”||L“(0,T:V)||b"”Lz(O,T;D(A))’

which implies that || B(a,, b,) || L2(0,T; H) is uniformly bounded in 7. O

Finally, without loss of generality, we make the assumption that f € L*°(0, T; H)
so that P, f = f. This allows us to apply P, to (2.1) to obtain the equivalent set of
equations

d
au + B(u,u) = —vAu + f, in Q x [0, T], (2.12a)
u(x,0) =ugp(x), in Q. (2.12b)
Using the following corollary of de Rham’s theorem Temam (2001), Foias et al. (2001)
g = Vp with p adistribution if and only if (g, h) =O0forallh € V, (2.13)

one can recover the pressure term. Furthermore, we will utilize the following lemma
due to Lions and Magenes as stated in Temam (2001).
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Lemma 2.2 (Temam 2001) Let V, H, V' be three Hilbert spaces suchthat V C H =
H' C V', where V' is the dual of V. If a functionu € L*(0, T; V) and its time deriva-
tive ' € L*(0,T; V'), then u is almost everywhere equal to a function continuous

Jrom [0, T] into H and the following equality holds in the scalar distribution sense
on (0,T):

d
5|u|2 =2(u',u).

For reference, we state the standard definition of weak and strong solutions to
(2.12).

Definition 2.3 Let 7 > 0. Let initial data ug € H and forcing f € L*°(0, co; V).
A weak solution of (2.1) is an element u € L?(0,T; V) N C([0, T1; H) satisfying
du e 12(0,T; V') and

<(f—tu,¢>+(B(u,M),¢)~I—v(Au,¢) =0 (2.14)

for a.e. t+ € [0, T] and for all ¢ € V. Furthermore, the map ug € H — u € H
is continuous for a.e. t € [0, T'], i.e., the initial data are satisfied in the sense of
C([0,T]; H).

If, in addition, f € L°°(0, 00; H) and uy € V, then a strong solution of (2.1)
is defined to be a weak solution such that u € L2(0,T: D(A) N C([0,T]; V) and
‘é—’t‘ € LZ(O, T; H), and moreover u satisfies (2.14) for a.e. r € [0, T'] and for all
¢ € H.Furthermore, the map ug € V +— u € V is continuous for a.e. t € [0, T'], i.e.,

the initial data are satisfied in the sense of C ([0, T']; V).

Itis well established that given a force f € L2(0, co; H~ 1) and initial dataug € H,
a unique weak solution to (2.12) exists globally in time (see, e.g., Constantin and
Foias 1988; Foias et al. 2001; Robinson 2001; Temam 2001). For many real-world
applications, it is important to consider the sensitivity of (2.1) to the parameters since it
is not necessarily the case we have an exact estimate on the said parameters; however,
additional uncertainty in modeling real-world systems is introduced by the fact that
we do not expect to know u exactly, and so cannot compute u(¢) from (2.12). Hence,
we will also analyze the sensitivity equations corresponding to a modified system of
equations that utilizes measured data collected on the true field u(¢) over the time
interval [0, 7']. This modified system of equations incorporates the measured data by
introducing a feedback control involving the interpolated data I (u(¢)) into (2.12),
resulting in the following system which was proposed and studied in Azouani et al.
(2014), Azouani and Titi (2014) (see also Blomker et al. 2013).

v+ (V- V)v = —=Vq + vappx Av + [+ u(lp(u) — 1,(v)) (2.15a)
v(x, 0) = vo(x), (2.15b)
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or, with the Leray projection applied,

d
EU + B(v,v) = _VapprU + f+ uPs(Up(u) — I (v)) (2.16a)

v(x,0) = vo(x). (2.16b)

Here, vappx > 0 is a kinematic viscosity approximating v > 0, . > 0 is a positive
relaxation parameter, and [, is a linear operator satisfying

lo = 1h(@) 172y < col®lloll1q)- (2.17)

Assuming either no-slip Dirichlet or periodic boundary conditions (and allowing
for even more general interpolation operators /), Azouani et al. (2014) proved that
(2.16) has a unique solution, stated in the following theorem.

Theorem 2.4 Suppose I, satisfies (2.17) and ,ucoh2 < Vappx» Where cq is the constant
from (2.17). Then the continuous data assimilation equations (2.16) possess a unique
solution v that satisfies

ve C(0,T]; V)N LY, T); D(A)  and 3—’: e LX((0, T); H), (2.18)

for any T > 0. Furthermore, the map ugy € V +— u € V is continuous for a.e.
t € [0, T, i.e., the initial data are satisfied in the sense of C([0, T]; V).

For Egs. (2.12) and (2.16), we denote the dimensionless Grashof numbers as

o
G = ) lltnlsogp If N2 (2.19)
1 .
Gy = P lim sup ||f(t)||L2(Q). (2.20)

appx  [—>00

Finally, we consider the Euler equations in 2D without forcing:

ur+u-Vu+Vp =0, (2.21a)
V-u=0 (2.21b)
u(x,0) = uop. (2.21¢)

Applying the Leray projection yields the system

du

ot B =0, (2.222)

u(x,0) = uyg. (2.22b)

The relevant literature on the inviscid limit of solutions to (2.12) to sufficiently
smooth solutions of Euler is usually considered in the whole space R? Kato (1972);
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Swann (1971), Golovkin (1966), Ponce (1986), Constantin and Foias (1988), but we
utilize the relevant theorems straightforwardly extendable to the periodic setting (see,
e.g., Masmoudi 2007). We state the types of solutions to Euler that are limits of
solutions to (2.1).

Theorem 2.5 (Masmoudi 2007) Let s > 0 and suppose u € C([0, T); D(A*/?)) is a
solution of the Euler system (2.22) for some T > QO with ug €. Let uj € D(AY'?) such
that uy — ug in D(A*?) as n — oo. Then, for all 0 < Ty < T, for any sequence
v, — 0, the corresponding unique sequence of solutions u" € C([0, Tyl; D(AS/2))
to (2.1) with f = 0 is such that

lu" — ull Lo 0. 1y D(As/2)) — 0, B — 00.

For simplicity, we take f = 0 for a direct application of this theorem from Mas-
moudi (2007). We also note that since we are in the periodic domain T? instead of
R?, this implies that convergence of u,, — u also holds in L>(0, To; D(A®/?)) for
all s/ <s.

3 Sensitivity for 2D Navier-Stokes & The Inviscid Limit

In this section, we analyze the sensitivity of w to the viscosity by considering individ-
ually the sensitivity of u and v to the viscosity. We wish to consider taking a derivative
of equations (2.12a) and (2.16a) with respect to the viscosity. This has been done
formally in many works on sensitivity (see, e.g., Anderson et al. 1999; Borggaard
and Burns 1997; Breckling et al. 2018; Davis and Pahlevani 2013; Ferndndez and
Moubachir 2002; Hamby 1994; Kim et al. 1999; Kouhi et al. 2016; Pahlevani 2004,
2006; Vemuri and Raefsky 1979), yielding what are known as the sensitivity equa-
tions. However, to the best of our knowledge, a rigorous treatment has yet to appear in
the literature. Therefore, we provide a rigorous justification here of the existence and
uniqueness of weak and strong solutions to the sensitivity equations in the case of zero
initial data, which is the natural data for the sensitivity equation, as discussed below.
Moreover, we prove that these solutions can be realized as limits of difference quo-
tients of Navier—Stokes solutions with respect to different viscosities. Indeed, this is the
method of our existence proofs, rather than using, e.g., Galerkin methods, fixed-point
methods, etc. Proofs using limits of difference quotients have appeared in the literature
before, such as in standard proofs of elliptic regularity and the corresponding result
for the Stokes equations. However, in the present context (i.e., the time-dependent
sensitivity equations for 2D Navier—Stokes), we believe such a proof strategy is novel.

Working formally for a moment, we take the derivative of (2.1) with respect to v,

and denote (again, formally) & := Zl—ﬁ and p := j—':, to obtain

Uy +u-Vu+u-Vi—vAU — Au+Vp =0, (3.1a)
V.-u=0. (3.1b)
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These are known as the sensitivity equations for the Navier—Stokes equations. Similarly

we formally take the derivative of (2.15) with respect to vappx, denoting v := dispx
~ d
and § := dvasz,
U+ V- VU4 Vi—vgppx AV — Av + Vg = pl(u — ), (3.2a)
vV.7=0. (3.2b)

Below, we prove some well-posedness results for these systems in the case of zero
initial data. We begin by defining what we mean by solutions.

Remark 3.1 The following proofs follow mostly standard techniques; however, they
establish that the solutions of the sensitivity equations can indeed be realized as limits
of difference quotients, which is the first time this has been done rigorously. Moreover,
we note that the analysis for the sensitivity of the Euler equations with respect to viscous
perturbations is done via methods typically used in Navier—Stokes-type analysis rather
than methods used in the analysis of the Euler equations. Furthermore, this method of
proof highlights the independence of the initial data on the parameter, and specifies
what one should mean when referring to the sensitivity equations.

Definition3.2 Let 7 > 0. Letu € L2(0, T; V) N C([0, T]; H) be a weak solution to
(2.1). A weak solution of (3.1) is a weak solution in the sense of Definition 2.3, but
with the equation instead given by

d
<aﬁ, ¢> + (B(, u), ¢) + (B(u, u), ¢) + v (AU, ¢) + (Au, ¢) = 0. (3.3)

If, in addition, o € V, and u is a strong solution to (2.1), then we similarly define
a strong solution of (3.1) in the same sense as Definition 2.3 with respect to the above
equation.

As discussed in Remark 3.6, we only give a definition of strong solutions for the
assimilation equations to avoid redundancy.

Definition 3.3 Let 7 > 0. Let v be a strong solution to (2.16) with initial data vy € V
and forcing f € L*(0, oo; H). A strong solution of (3.2) is a strong solution in the
sense of Definition 2.3 with the equation given by

d . ~ ~ ~
<Ev’ ¢>+(B(v, V), §)+H(B(v, V), @) +vappx (AV, @)+ (Av, ) = (I — ), ¢) .

Before we prove the existence and uniqueness of solutions with zero initial data to
these equations, we first consider equations for the difference quotients. Note that, since
these are simple arithmetic operations on the Navier—Stokes equations, the manipu-
lations can be performed rigorously, not just formally. To this end, let (u1, p;) be a
strong solution to (2.1) with viscosity vy and (u#2, p>) be a strong solution to (2.1) with
viscosity vp with the same initial data. We take the difference of the two versions of
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(2.1), each with viscosities v; and v,. We then divide by the difference in viscosities,
yielding the system

wy+ur - Vw +w - Vui—vpAw — Aug + VP =0, (3.4a)

V.ow=0, (3.4b)

w(x,0) =0, (3.4¢)

where w = “1=%2 and P := 21=L2 As defined, w is a strong solution to (3.4), and
1—V2 v|i—V2

note that u; = (v; — v2)w + us. Additionally, w € L*(0, T; D(A)) N C([0, T1; V)
and ‘fi—’f’ € L%(0, T; H). However, we need to establish that w is the unique solution
to (3.4), which is the content of Lemma 3.4.

Lemma3.4 Let T > 0 be given, and let uy, uy € L20,T;: D(A) NC(0,T]; V) be
strong solutions to (2.16), with viscosities v and vy, respectively. There exists one and
only one solution w to (3.4) that lies in L*(0, T; D(A)) N C([0, T1; V), i.e., for all
¢ € H,

d
(aw, </>> + (B(w, uy1), ) + (B(uz, w), ¢)+va(Aw, ¢) + (Auy, ¢) =0,
where %w € L%(0, T; H). Moreover, the map ug € V — u € V is continuous for

a.e. t € [0, T), i.e., the solution depends continuously on the initial data.

Next, we consider difference quotients for the assimilation system (2.16). Let
(v1, ¢1) be the strong solution to (2.16) with viscosity vappx,1 and (vz2, g2) be the
strong solution to (2.16) with viscosity vappx,2. Subtracting the two equations and
dividing by the difference in the viscosities yields

Wy + W - Vui + v - VU —Vappx 2AW — Avy + VO = ulp(w — w) (3.5a)

V.#=0 (3.5b)
#(x. 0) =0, (3.5¢)
where W (= —%=%2___ and Q := —L=9__ [t follows from the definition that

Vappx, 1 —Vappx,2 Vappx, 1 —Vappx,2
w is a strong solution to (3.5). Moreover, note that vy = (Vappx,1 — Vappx,2)W + V2.

Additionally, w € L?(0, T; D(A)) N C([0, T]; V) and (f—tﬁ e L0, T; H).
Lemma3.5 Let T > 0 be given, and let vi, vy € L%0, T; D(A)) N C(0, T1; V) be
strong solutions to (2.16), with viscosities Vappx,1 and Vappy 2, respectively. There exists
a unique strong solution w to (3.5) that lies in L*(0, T; D(A)) N C([0, T1; V), in the
sense that for all ¢ € H,

d . ~ ~ ~
<Ew9 ¢> + (B(UZa UJ), ¢) + (B(w’ VUI), ¢) + Uappx,z(Aw’ ¢) + (AUl, d))

= M(P(Tlh(w - lZ), ¢)’
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where %@ € L2(0, T; H). Moreover, the map ug € V +— u € V is continuous for
a.e. t € [0, T), i.e., the solution depends continuously on the initial data.

Remark 3.6 The proofs of the above two lemmata are very similar; hence, we
only present the proof of Lemma 3.5. Moreover, we also note that in the case
uw = 0, the proof of Lemma 3.4 holds mutatis mutandis in the case where uq,
u € C([0, T]; H)ynN LZ(O, T; V) are only assumed to be weak solutions to the 2D
Navier—Stokes equations, and then one obtains uniqueness of weak solutions to (3.4)
in the class C([0, T']; H) N L2(O, T; V). However, in the case n > 0, the notion of
weak solutions for the assimilation equations (2.16) has not been established in the
literature for general interpolants 7, and therefore, we assume that the solutions v
and vy are strong solutions to (2.16), and prove the uniqueness of strong solutions to
(3.4). The existence of weak solutions is attainable if further assumptions are made on
Iy, (e.g., if Ij, is a projection onto low Fourier modes) but we do not pursue this here
as we want to focus on general interpolants.

Proof Suppose there exist two solutions w; and w,. We consider the difference of the
equations

d - - ~ ~
T + B(wi, v1) + B(v2, W1) + vappx,2 AWy + Avy = uPolp(w —wy)  (3.6)

and

d . - ~ ~ ~
302 + B(waz, v1) + B(v2, w2) + vappx,2Awn + Avy = uPelp(w —wy).  (3.7)

Namely, denoting W := w; — w; yields

d
EW +B(W,v1) + B(v2, W) + Vappx,ZAW = —uPsIp(W) (3.8)

with W(0) = 0. So, W must be a solution to the above equation. Taking the inner
product with AW, one can follow the argument in Azouani et al. (2014) line by line
to obtain to obtain that

IWOI < [W(O)]%e (3.9

for some constant ¢ > 0. Since W (0) = 0, this implies that W = 0. Hence, solutions
to (3.5) are unique. Moreover, (3.9) gives the continuous dependence on initial data.
O

Since systems (3.4) and (3.5) have unique strong solutions for every v > 0, we want
toshow that,as v — vg for some fixed vo > 0, the solutions to these equations converge
to the unique strong solutions of the respective equations (in the sense of Definitions 3.2
and 3.3 ) of the formal sensitivity equations (3.1) and (3.2) with initial data uyp = 0
in Theorems 3.9 and 4.1 . We additionally prove that weak solutions exist for the
sensitivity equations (3.1) with initial data #¢ = 0 in Theorem 3.7. Via this method of
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proof, we show that the solution # is a Fréchet derivative in the sense of L2(0, T, H).
Specifically, for weak solutions, v € RT > u € LZ(O, T; H), and hence the Fréchet
derivative in L*(0, T; H) will be defined as A : R — L2(0, T; H) such that A(8) —
8u. Analogously, for strong solutions, v € R > u € L2(O, T; V), and hence, the
Fréchet derivative in L*(0, T:; V) will be defined as A : R — L2(0, T; V) such that
A(8) — 8.

Theorem 3.7 Let T > 0 and {v, },eN be a sequence such that v, — v as n — 00. Let

e u be a solution to (2.1) with viscosity v, forcing f € L*(0, oo; H), and initial
data uy € V;

e u, solve (2.1) with viscosity vy, forcing f € L°°(0,00; H), and initial data
ug eV,

e {wy,}neN be a sequence of strong solutions to (3.4) with w,(0) = 0 with corre-
sponding viscosity v, and solutions to (2.1) u, and u.

Then there exists a subsequence of {wy, },eN that converges in L%(0,T:H)toa unique
weak solution U of (3.1) with initial data uo = 0. Furthermore, the operator A : R —
L%(0, T; H) given by A(8) = 18 is the Fréchet derivative in the sense of L*(0, T; H)
of the solution u with respect to v.

Remark 3.8 Theorem 3.7 holds for more general initial data via a similar proof under
certain assumptions on the initial data; indeed, assuming that the initial data of (2.1)
has a derivative with respect to the viscosity and that it lies in an appropriate space
and is a limit of difference quotients of the initial data corresponding to the sequence
of solutions of (2.1), one can show a similar result. However, note that the sensitivity
equations are a model for the evolution of the instantaneous change in a solution with
respect to changes in the viscosity, hence the natural initial condition to consider is the
case of identically zero initial data. Thus, to avoid obfuscation, we work in the natural
setting of identically zero initial data; however, we provide a definition of weak and
strong solutions for above general initial data. Similar remarks holds for all theorems
below.

Proof Let T > 0 be given. Let N sufficiently large such that for all n > N,
{vilnen C (%, 37”). Then, one can follow the proof of strong solutions for (2.1) as in,
e.g., Constantin and Foias (1988), Foias et al. (2001), Robinson (2001), Temam (2001),
to obtain bounds on {u,} for n > N in the appropriate spaces that are independent of
Vpt

1£17 2007
LO.TH)

[0

2 2 2 2”f”iz((),T;H)
lunlizoo,7:vy < lun O + It

n

and

2
1 1f 12 7. 2
2 2 L°(0,T;H)
l n”Lz((),T,D(A)) v llun (O) |l 02 » lluo

n

2
”2 + 4||f||L2(0,T;H)
v2 '
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Note that || f ||i2 o1 H) < since all bounded functions are locally integrable. Hence

there is a subsequence that is relabeled u,, — u1 in L%(0, T; V) for some function u;.
Continuing to follow the proof of strong solutions for (2.1) as in, e.g., Constantin and

Foias (1988), Foias et al. (2001), Robinson (2001), Temam (2001), we note that d('j‘t"

is uniformly bounded in 7 in L2(0, T; H). Hence, we can find a subsequence which
we relabel {u;} such that

du,,_\dul
dt dr
vpAup,—vAu,  in L*(0,T; H)

By, un)—B(ui,u;)  in L*(0, T; H).

in L2(0, T; H)

Indeed, u satisfies (2.1) with corresponding viscosity v and thus, by uniqueness and
the fact that u,, — u in L2(O, T; V), it follows that u; = u.

Let w,, be the strong solution to (3.4) with v = v,,.. Taking the action of (3.4) on
wy, and using (2.7), (2.5), Lemma 2.2, and Young’s inequality, we obtain

1d 2 ) 1 v
zd—t|wn|2 + vy llw, ||* < ;||u1||2|wn|2+ Z”nwnn2 + Enulnz + 7”||wn||2.
Hence,
L P+ P = S P + — P (3.10)
—— W —|w —|U w —||U . .
2dr " 47 =y, " 2v,

Dropping the second term on the left-hand side, we obtain

il = Pl + —— )
——w — U w —||U .
2dr " Ty, " 2v,

Taking the integral with respect to time on [0, T'] and applying Gronwall’s inequal-
ity, then for a.e. r € [0, T],

1 T T2C2
unP = [ [ e fexp( [ 2 juiar)
Yn Jo 0 Vn
_72 ro, T4cr 5\
<[5 [ tulParfexp( | =luldr) = K.
Vv Jo 0 v

Since u € L2(O, T; V), then w, is bounded uniformly in L*°(0, T'; H).
Next, refraining from dropping the second term on the left-hand side of (3.10), we
estimate
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—/ llw, [12dr < —/ ]| [y |

<K1—/ ||u|| dr +

2
IIMII dr

1
5 / ||u||2dt
Vn Jo

Rewriting, we obtain

T 2 T T
4c 2
/||wn||2drsl<1—2/ ||u||2dr+—2/ lue]|*de
0 Yy Jo Vi Jo

C2 T 8 T
<Ki— | lul*dt+— [ [ul*dt
1)2 0 \)2 0

Thus, w, is bounded above uniformly in LZ(0, T; V) with respect to n. Hence, by the
Banach—Alaoglu theorem, there exists a subsequence, relabeled as (wy,), such that

wy — win L0, T; H) and w,—w in L2(0, T; V). (3.11)
Using (3.11), note that all uniform bounds in » on the terms in (3.4) in L%(0,T; V')

are obtained in a similar manner to the proof of weak solutions for (2.1) except for the
term B (u,, w,). However, by Lemma 2.1,

1B ns wa)ll20,7: vy <kllunllzoe©,7; 8y lwalloe,7; ) lnll 20, 7; vy lwnll 200, 7; v+

and due to the following standard bounds on u,, (which can be found in Constantin
and Foias 1988; Foias et al. 2001; Robinson 2001; Temam 2001, etc.) and the fact that

vn€(27 2)

Il f L0, 7 1) 4||f||L 0 (0,T;H)
lunlZooo.7: ) < Q17 + === < luol* + ——5—>—=
le,% ATV 2
and
2
a2 | ") + ||f||L ©OTH) 7 2| 2y AN oo 0.7 )
n L2(0 T: V) )\, 2 v uo )\.11)2 )

and thus || B(un, wn) | 20,7y is bounded above uniformly in n independent of v,.
Hence, independent of v,, dw, /dt is bounded uniformly in n. Thus, by the Aubin
compactness theorem, w,, — w strongly in L>(0, T'; H). Utilizing these bounds and
the convergence properties, we can follow the usual arguments to state there exists
a weak solution in the sense of Definition 3.2, where weak continuity can be proved
directly in the same manner as for weak solutions to (2.12) and strong continuity
follows from Lemma 2.2. Furthermore, weak continuity in H follows due to the bounds
on each of the above terms. The initial condition is satisfied by construction. To prove

@ Springer



84 Page 16 of 30 Journal of Nonlinear Science (2021) 31:84

uniqueness, suppose that there exist two weak solutions %] and . We consider the
difference of the equations

d . ~ ~ ~
Eul + B(uy,u) + B(u,u;) + vAu; + Au; =0

and

d . - ~ ~
auz + B(up, u) + B(u, up) + vAur + Auy; =0,

which, defining U := U — U2, yields

d
LU+ BW, 0+ B, U)+vAU =0

with U (0) = 0. Taking the action on U, using (2.5), and applying the Lions—Magenes
Lemma 2.2,

——|U BWU,u),U Uul-=0.
S|Vl HBW.w). U) +v|[U]

Thus, by (2.7) and Young’s inequality,

1d 2 2 c? 272 LV 2
=—|UI"+v Ul <cllUNUull < —ull"IUI" + U
2 dt v 2

Dropping the second term and applying Gronwall’s inequality, fora.e. 0 <t < T,
T 2
VOP < WO Pexp( [ 5-tulie)
0 2v

Thus, exp(fOT §||u||2dt) < ooforall T > 0and U(0) = 0. Hence, ||U||L0.7: 1) =
0, which implies that U = 0. Hence, weak solutions to (3.4) are unique.

Finally, we want to show that the sequence of difference quotients defines a Fréchet
derivative. Let A : R — L2(0, T: H), A(8) = 8u. Note that A is a bounded linear
operator since ' is bounded in L2(0, T; H).Let$, = v,—v,sothat$, — Oasn — oo.
Note that for any sequence v, — v, there is a subsequence such that w,, — ¥ in
L2(0, T; H). However, by the fact that for every subsequence of {w, },,cn wWe can find
a convergent subsequence, we can conclude that w, — ¥ in L2(O, T; H). We rewrite
w, — W in L%(0, T; H) as

u+38,) —ulv) -
8—_u

vy + 8n) — u(r) = 8uill 20, 7.1y = O-

L2(0,T;H) |8n|

Therefore, A defines a Fréchet derivative from R to LZ(O, T; H). O
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Theorem 3.9 Let T > 0 and {v, },eN be a sequence such that v, — v asn — o0. Let

o u be the solution to (2.1) with viscosity v, forcing f € L*°(0, oo; H), and initial
data ug,

e i, solve (2.1) withviscosity vy, forcing f € L*°(0, co; H), and initial datauy € V

e {wy},en be a sequence of strong solutions to (3.4) with w,(0) = 0 with corre-
sponding viscosity v, and solutions to (2.1) u, and u.

Then there exists a subsequence of {w, }neN that converges in LZ(O, T; V) toaunique
strong solution U of (3.1) with initial data uy = 0. Furthermore, the operator A :
R — L%(0, T; V) given by A(8) = U8 is the Fréchet derivative in L*>(0, T; V) of the
solution u with respect to v.

Proof Let T > 0 be given, and let N > 0 be large enough that n > N implies
{vn} C (”7‘, 3%). Then by the argument in Theorem 3.7, we can obtain a subsequence
which we relabel {u,} such that u, — wu in L2(0, T; V).

Consider w,, to be the strong solution to (3.4) with viscosity v,. Taking a justified

inner product of (3.4) with Aw,,,

1d
Ed_t”wnnz + Vn|Awn|2 = —(B(wy, u), Awy,) — (B(uu, wy), Awy) — (Au, Awy,).

Applying Young’s inequality, we obtain

1

|Aul?.
2v,

1d 5 VU 5
E&”wn” + ?|Awn| < —(B(wp, u), Awy) — (B(up, wy), Awy) +
Applying (2.6) to the second bilinear term,

—1 a I ||2 i | | < —(B( ) )+ lluy |l lwa | —1 [Au|
w, + Aw,|? B(w,,u), Aw,)+||u 00 wy |[|Aw, |+ Aul?
2 [ n 2 n — n n n L (Q) n n 2]}

2
v
< |un||Aun|||wn||2+§"|Awn|2
n
1
— (B(wy, 1), Awy) + —|Aul?
2v,

and applying (2.8) to the first bilinear term,

1d 3v 2k2
mnwnn% 8”|Awn|2s o |t || At || ||*
1
+ clwa 2w 12 Nl V2 Au) 2| Aw, | + > |Aul?
Vn
2 ) 2C2
< T Jun || Ay |l wy 1> +

2
lwnll“ el Aul
Vn AlVn

Vn 2 1 2
—|A —A
+ g 1wl + 4w
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which can be rewritten as

2 1

v, 4k
: luell Aul) w17 +

d
—lhwnl? + 2 Aw, ? < (

2 4c 2
[t ||Auy| + |[Au|”.

Vn Ay Vn

Integrating on both sides in time, with0 <7 < T,

v 4 1 [
||wn<t>||2+7”/ |Aw,|ds < v—f |Au(s)|?ds
0 n JO

"ak? 4c? 2
+f ( | ()| Aun ()] + ||u(s)|||Au(s)|)IIwn(s)II ds
0 V, A

n 1Vn

Dropping the second term on the left-hand side, we apply Gronwall’s inequality to
obtain

2 2

"4k 4c
s = 0 exp( [ ==l ©)llus(5)1 +
0 Vn A1V

||u<s>|||Au(s)|ds)

! 8k 8¢
< a() exp(/o = @ lA ] + )l Aulds)

where a, (1) 1= Vl Jo 1Au(s)2ds < a(t) := 2[5 |Au(s)|?ds. Since

T I£11%,
L*(0,T;H

[ 1AunPas < uol? + =—EOT

0 v

n

as proved in, e.g., Constantin and Foias (1988), Robinson (2001), Foias et al. (2001),
Temam (2001), then

) 8k T ) 8c?
sup [lwp (D" < a(T) exp |Aup|”ds + M—vllu(s)lllAu(s)lds

1€[0,T] A Jo
2
8](2 ”f”LZ 0.7:-H
< a(T)exp (T[IIMOIIZ + —LQnD |
ATV vy

T 8C2
+ a(T) exp (/ TIIM(S)IIIAM(S)IdS)
0 1v

8k2 4||f||iZOTH
< a(T)exp (m[lluollz + — L]
1

T 8C2
+a(T)exp (f r||u<s>|||Au(s>|ds)
0 1V

This implies that w,, € L*°(0, T; V) and {w,} is uniformly bounded in this space.
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Additionally, considering again the inequality

v 4 1 [!
a1 + 2 f |AwyPds < - / |Au(s) Pds
0 Vn Jo

to4k? 4¢2 5
+/ ( un ($)|| A (s)] + IIM(S)IIIAu(s)I)Ilwn(s)ll ds,
0 Vy Ay

we set t = T, drop the first term on the left-hand side, and bound the above viscosity
to obtain

T 8 T
/ |Aw, |*ds < — (/ |Au(s)|2ds)
0 v 0

+/T(32k2|A OF + 2 @ lAu) ), 6)1Pd
e U, (s o2 u(s u(s wy, (s s.

By the fact that {||un || 120, 7.Da))} 18 bounded above in n, as demonstrated in Theo-
rem 3.7, and the result that {||wy || L (0,7:v)} is bounded above uniformly in 7, it follows
that {||wn |l 2(0,7.D(4)) } is bounded above uniformly in n. Since {w), } is bounded above

uniformly in 7 in both L*°(0, T'; V) and L2(0, T; D(A)), then we can conclude that
there exists a subsequence, which we relabel as {w,,}, such that

wy, X win L*>(0, T; V) and w,—w in LZ(O, T;D(A)). (3.12)

Using (3.12), note that all uniform bounds in n on the terms in (3.4) in L2(0, T; H)
are obtained in a similar manner to the proof of strong solutions for the (2.1) and
are independent of v, except for the bilinear terms. The bilinear terms are bounded
uniformly in L2(O, T; H) withrespect to n, due to Lemma 2.1. Hence, dgj" is bounded
above uniformly in 7 in LZ(O, T; H). Thus, by the Aubin Compactness Theorem,
w, — w strongly in L2(0, T; V). Utilizing these bounds and convergence rates, it is
classical to show that w is a strong solution in the sense of Definition 3.2. Specifically,
asin, e.g., Robinson (2001), Temam (2001), Foias et al. (2001), Constantin and Foias
(1988), w € C([0,T]; V). The initial condition is also satisfied by construction.
Uniqueness holds due to the results in Theorem 3.7.

Finally, following a similar argument as in the proof of Theorem 3.7, one can show
that the sequence of difference quotients gives rise to a Fréchet derivative A(8) = 8,
where A : R — L2(0, T:; V). Let A(8) = 8. Let 8, = v, — v, so that §, — 0 as
n — oo. Note that for any sequence v, — v, there is a subsequence such that w,,, — #
in L%(0, T; V). However, by the fact that for every subsequence of {wy,},eN We can
find a convergence subsequence, one can in fact conclude that the entire sequence
w, — in L2(0, T; V). We rewrite w, — # in L2(0, T; V) as

20,1:v)  |6nl

u(vy +8,) —u(vy) o

5 lu(wi+8,) — u(w1) —=8nttll120,7:v) — O.
n

O
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Remark 3.10 Ideally, one would like to show that the difference quotients of weak
solutions give rise to a Fréchet derivative in the sense of the Leray space L>(0, T'; V)N
L°(0, T; H), rather than just the space L%0,T: H). Unfortunately, with the given
hypotheses the method of proof employed here does not seem to allow for a proof in
this context, since we only have weak or weak-* convergence in the relevant spaces.
It may be possible to prove such a result, using, e.g., the methods described in Singler
(2008), but such a proof would be lengthy and distract from the main focus of the
present work. Hence, we plan to explore these details in a future work.

Finally we consider the sensitivity of the Euler equations to a viscous regularization.
This leads to the following statement of the formal sensitivity equations:

Uy +u-Vu+u-Vii — Au+Vp =0, (3.13a)
V.7=0, (3.13b)

where (u, p) is the solution to the Euler equations. With (u,, p,) is the solution to
(2.1) with viscosity v, the corresponding system of difference quotient equations is

w; +uy-Vw+w-Vu—Au+ VP =0, (3.14a)
V.-w=0, (3.14b)
w(x,0) =0, (3.14¢)

where w = “—* and P = 2L,

We only utilize the least amount of regularity required on the initial data in Theo-
rem 2.5 to preserve the convergence of strong solutions to the corresponding systems
of difference quotient equations in the same spaces as in Theorem 3.9. We state the
definition of strong solutions to (3.13) in the same sense as for (3.5) to illustrate the
minimal needed additional regularity for the convergence of solutions to (3.14) to
those of (3.13).

Definition3.11 Let 7 > 0, and s > 2. Let u € C([0, T]; D(A*/?)) be a strong
solution to (2.21) with initial data ug € D(A*/?) and f = 0. A strong solution of
(3.13)isanelement i € L2(0, T; D(A))NC([0, T1; V) satistying 4% € L*(0, T; H)
and

d
<Ei7, ¢>> + (B, u), ¢) + (B(u, i), ¢) + (Au, ¢) =0 (3.15)

for a.e. t € [0,T], for all ¢ € H, and initial data iy € D(AX/2). Moreover, the
map iy € H — u € H is continuous for a.e. t € [0, T], i.e., the solution depends
continuously on the initial data.

Remark 3.12 We do not extend this analysis to the equations involving the data assim-
ilation algorithm, as the Euler equations are not dissipative.
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Definition3.13 Let 7 > 0, and s > 2, and suppose u,u, € L*(0,T;D(A)) N
C([0,T]; V). A strong solution to (3.14) is an element w € L%, T; D(A)) N
C([0, T]; V), such that %w IS L2(0, T; H),andforall ¢ € H and fora.e.,t € [0, T'],

d
<Ew’ ¢) + (B(w, u), ¢) + (B(uy, w), p)+(Au, ¢) = 0.

Moreover, the map ug € H +— u € H is continuous for a.e. t € [0, T], i.e., the
solution depends continuously on the initial data.

Lemma3.14 Let T > 0 be given, and let u, uy € L2(0,T: D(A))NC(0,T]; V) be
strong solutions to (2.1) and (2.21), respectively. Then there exists a unique strong
solution to (3.14).

Proof Since Au € LZ(O, T; H), and u, is sufficiently smooth, existence follows
exactly as in the standard theory for the 2D Navier—Stokes equations. Uniqueness
is also similar, but we carry out the short proof to show the dependencies on various
quantities. Hence, suppose w; and w; are strong solutions to (3.14). Let U := w1 —w>,
so that

d
EU-FB(U,M)-FB(IM, U)=0

with U(0) = 0 in V. Taking the H inner product with U,

L 0P = —(BW. w), U) < [Vull e U
2dt - 7u ) — M LOO )

and applying Gronwall’s inequality yields

Sinceu € C([0, T1, D(A*/?)),s > 2,and U (0) = 0, we necessarily have uniqueness.
Furthermore, note that (3.16) implies that the map uo € H +— u € H is continuous.
O

Remark 3.15 In the following theorem, we note that it is worth noting that the analysis
can be carried out in a similar manner as when the viscosity is nonzero for the formal
sensitivity equations, as one does not encounter the difficulties expected in energy
estimates for Euler. The reason for this is that the formal derivative of the viscous
regularization results in a diffusive term that is independent of the viscosity.

Theorem 3.16 Let T > 0 and {v,}neN be a sequence such that v, — 0 as n — oo.
Let

e u be the solution to (2.21) with forcing f = 0 and initial data ug € D(A/?),
s> 2,
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o u, solves (2.1) with viscosity v,, forcing f = 0, and initial data ug € D(A*/?),
s> 2,

e {wy,} be a sequence of strong solutions to (3.14) with corresponding viscosity v,
solution to (2.1) u,,, and solution to (2.22) u.

Then {wy}nen that converges in L*(0, T V) to a unique strong solution i of (3.13)
with initial data uy = 0. Furthermore, the operator A : R — L2(O, T; V) given by
A(8) = U8 is the Fréchet derivative in L*>(0, T:; V) of the weak solution u with respect
to v.

Proof Taking the difference between (2.1) and (2.21), and dividing by the viscosity
vn, we obtain the system of difference quotient equations, we obtain

d
awn + B(wy, u) + B(u,, w,) + Aw, + Au = 0.

Taking the inner product with Aw,, then applying (2.7) and Young’s inequality,

1d
ﬁnwnn2 + | Awy > = —(B(wy, 1), Awy) — (B(un, wy), Aw,) — (Au, Aw,)

1/2 1/2 1/2 1/2
< clwa V2 w12 12| Au| 2| Aw, |

+ elun Pl 12 w121 Awy |2 Aw, | + | Aul| Awy |

< (< hatau) Bl + 2 A ?
— U u w, — AW
— \/)\’—1 n 4 n
(32¢/3)* 1
+T/|un|2||un||2||wn||2+§|Awn|2+2|Au|2

1
+§|Awn|2,

which implies

G [lws |l | |2 = (—,—” Il |> 1wy |l

wull? + [Aw ul||Au w?

t n n — )\‘l n
(32c/3)4

+ T|un|2||un||2||wn||2 + 4| Aul?.

Dropping the second term on the left-hand side and applying Gronwall’s inequality,
forany0 <t <T,

t t 2 . 4
lwa ()2 < 4 fo | Au(s)2ds exp(f0 %numnmu(r)w(32‘2/3) \un(r>|2||un<r>||2dr),
(3.17)

which is bounded due to the fact that u € C([0, T]; D(A*/?)) and u, is bounded
uniformly as well in C ([0, T']; D(A*/?)). Furthermore, retaining the above second
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term and integrating, we obtain

t
/ A (52
0

t 2 4
sfo (ji_lnu(s)umu(sw%|un<s)|2||un<s>||2||wn(s>||2> ds

t
+ 4f |Au(s)|2ds
0

t 2 4
< ||wn<s)||%oo(0,m)/0 (%uu(s)nmu(sn + @mmnzuun(s)nz) ds

t
+4/ |Aus)|?ds.
0

which is bounded by (3.17). By Theorem 2.5 we have that u € L%(0, T; D(A)) and
that u,, is bounded uniformly in C ([0, T']; V)N L%(0, T: D(A)) with respect to n. The
convergence results in Theorem 2.5 can also be applied such that following the exact
same arguments as in Theorem 3.9, we obtain the existence of a strong solution &
as per Definition 3.13. Uniqueness and continuity with respect to the initial data also
follows as in Lemma 3.14. Finally, defining A(8) = 8, A : R — L?(0, T; V), we
also obtain a formal Fréchet derivative in the same manner as in Theorem 3.9. O

4 Extension to a Data Assimilation Algorithm

In this section, we extend our analysis to the context of a data assimilation algorithm,
as discussed in the introduction.

Theorem 4.1 Let T > 0 and {v,},en be a sequence such that v, — Vappx, Vappx > 0,
3
as n — 00. Choose  and h such that 4,ucoh2 <y, < % Let

o v be the solution to (2.16) with viscosity Vappy, forcing f € L*(0, 00; H), and
initial data vg,

e U be a strong solution to (3.1);

e v, solve (2.16) with viscosity v,, forcing f € L°(0, 00; H), and initial data
Vg € V;

o {W,}neN be a sequence of strong solutions to (3.5) with w,(0) = 0 with corre-
sponding viscosity v, and solutions to (2.16) u, and u.

Then there exists a subsequence of {Wy }nen that converges in L2(0, T; V) toaunique
solution v of (3.2) with initial data ug = 0. Furthermore, the operator A : R —
L%(0,T; V) given by A(8) = U8 is the Fréchet derivative in L*(0,T; V) of the
solution u with respect to Vgppy.

2 2
ciently large N, we can follow the proof of strong solutions for (2.16) in Azouani et al.
(2014) to obtain bounds on {v, },~n in the appropriate spaces that are independent of

Proof Let T > 0. Note that since {v,} C (Ua’;”", Mﬂ) for n > N for some suffi-
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v,,. First, we note that Azouani et al. (2014) quickly proves | f + Py I, (uy) 12 < M,
since | Py Iy (un)|* < (covh + )»1_1/2)||un||2. However, since u, is bounded above
uniformly in 7 (see the proof of Theorem 3.7), we have that | f + u Py I, (u,,)l2 <m
for some m independent of n. Thus, we have the following bounds from Azouani et al.

(2014) bounded above uniformly in n:

lonBoo gy < [on (O + —2— < o + — @.1)
A HVp Al MVappxA1
1 T 2
lonll 720,720y < —10n (O + —m < lvol* + m, 4.2)
e Vn MUYy Vappx M Vappx

and, defining

Cc

r 1 1 8 [T
2 2 — — 2 2
ex"{(mgfo AR ds}:w;;m < o =l 13 fo Jun P llun%ds .

Vappx appx

which is bounded above uniformly in »n due to (4.1) and (4.2),

1o |2 < 1! [||v 02 + —4Tm] < [I|v0||2+ il m]
nllpee©,r;v) = w;ln(T) n Vn - Clappx(T) Vappx .
4.3)

Furthermore,

C
(n);

IA

1 2 L I 2
— v (O [I” + (lva " NlvaI™ + —1f + PoIn(ua)|")ds
Vn 0 Vn

2
” Un ||L2(0,T;D(A))

IA

3 m,

8c T 8T
2 2 4

lvoll” + / [vn[“llvp"ds +
Vappx Vappx /0 Vappx

which is bounded above uniformly in n due to (4.1), (4.2), (4.3). Hence, we will obtain
a subsequence that is relabeled v, — v; in LZ(O, T; V) for some function v;. Indeed,
we see that by identical arguments presented in Theorem 3.7, vi = v. Also due to
Poincaré’s inequality, we obtain that v, — v in L>(0, T; H).

Let {w, }nen be a sequence of solutions to (3.5). We consider the Leray projection
of (3.5):

d . ~ ~ ~ ~

awn + B(Wp, v) + B(vy, wWp) + vy Aw, + Av = w Py In(wy — wp).
The existence proof for (3.2) closely follows the proof of Theorem 3.9, with some
modifications on the bounds of w, which we show below. Taking the inner product
with Aw, and proceeding as in the proof of Theorem 3.9, we obtain

_1 _” ”2 _V | | = ( | || |
w, + Aw vnl|Av +
2.dt " 4 " - Vn " " )L]Un

~ 12
el Avl)
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1 ~ ~
+ 5 |AVE + wUp(wy = Bn), AT, (44)
Vn
We slightly modify the inequalities obtained in Azouani et al. (2014) for the interpolant
term,

4 2
—u(lp(wy), Aw,) <

~ ~ V ~ ~
W — Iy (@) |* + —= | A |* — wllib,]I*
B 16

dpeoh® 5 Vn o ~
< ——— ||l +1—’;|Awn| — wll Wyl
n

V ~
1—2|Awn|2.
Also,

2

~ 4n
wl(p(wp), Awy,)| <

V, ~
- |wn|2+l—’;|Awn|2.

Using these inequalities in (4.4):

L A = (2 A0 + 2 ol A 1
——||w —_— w v v v v w
2dr " g = Uy, T A, "
1 4
+ >—1Avf + —w,|?
2v, Vn
2k? 2¢2 U
< (S lunllAva] + =—llvll1Av] )1
Vn Ay
1 4
+ —AvP + ——|Aw, |
2v, AVn
Following identical arguments as in Theorem 3.9 with
1 2 4 2 1 2 2
on (1) = s—|Avi|" + 5 —|Awp|” = a(t) := |Av|" + — |Aw, |7,
2 A{Vn Vappx A Vappx

along with the fact that P, I}, (w,, — W,) is bounded uniformly in n in L>(0, T; H), we
obtain a subsequence relabeled w, — win L>(0, T; V). Indeed, let¢ € L>(0, T; H);
then

T T
/(; (Palh(wn _wn)_Pth(w_iE)s ¢)ds 5/0 |Ih(wn _wn)_lh(w_w)||¢|ds
T
< /(; n(wn — w) — I (W, — W)]|¢]ds

T
= /0 l(wn = w) = (@ — W)] — Ip((wn — w) — Wy — W))|$lds
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T
+/0 [(wy — w) — (Wy — W)|l¢lds
T T
0

~ 1 ~
Sx/ah/ l(wn —w) = (wy —w)|||¢|dS+W/O (wn — w) — (W, — w)lll¢]ds
1

r .
< Jeohllw, — w||L2(O,T:V) ||¢||L2(0,T;H) + W”wn - w”LZ(O,T;V)||¢||L2(0,T;H)-
1

Additionally, since we now have that w,, — w in L2(0, T;V), then P, I(w, —
W,)— Py I, (w — W) in L*>(0, T; H) and we conclude i is a strong solution in the
sense of Definition 3.3.

To show that the solutions are unique, we consider the difference of the equations

d ~ ~ ~ ~ o~
Evl + B(v1,v) + B(v, vp) + VapprU] + Av = uPsIn(u — vy)

and

d - ~ ~ ~ ~
502 + B(v2,v) + B(v, v2) + VapprU2 + Av = puPsIy(u —v2)

which, defining W := 7| — v, yields

d
3 W BOV.0) + B W)+ vappe AW = —p Py Ty (W)

with W(0) = 0. So, W must be a solution to the above equation. Taking the action on
W and applying the Lions—Magenes Lemma 2.2,

1d
55|W|2 +(B(W, ), W) + vappx I W[ = (= Po Iy (W), W)

which implies that

1d _
zalle + Vappx W11 < clvlllWIIW | + e(/coh + A7 HITW W]

_ K (Jaoh +a7")?
- Vappx

2

v
'W'2+Z”W”2

+

v
ol?IW]? + =222 w2
2Vappx 2

Thus,

1 (Jeoh + 171> G
Vappx 21)appx

d
S = ( o) 1w

@ Springer



Journal of Nonlinear Science (2021) 31:84 Page 27 0f30 84

and Gronwall’s inequality implies, fora.e. 0 <t < T,

T p(Jeaoh+217)? | 2
WP < woyPe( [ JOREM T | pprar),
0 Vappx 21)appx
But W(0) = 0, and thus || W|| =, 7. #) = 0 implies that W = 0. Hence, solutions to
(3.5) are unique.
Finally, we want to show that the sequence of difference quotients defines a Fréchet

derivative. Following a similar argument as in Theorem 3.7, the Fréchet derivative
A(8) = 8umaps R — L2(0,T; V). O

5 Conclusion

In this article, we proved well-posedness of the sensitivity equations for the 2D incom-
pressible Navier—Stokes equations and the associated AOT data assimilation system,
as well as a viscous regularization of Euler. Specifically, we proved the existence and
uniqueness of global solutions to these equations. A byproduct of the proof is that
the sensitivity of solutions to the equations involved in the algorithm are bounded in
appropriate spaces. Hence, changing the viscosity, or equivalently the Reynolds num-
ber, mid-simulation as in Carlson et al. (2020) does not result in major aberrations in
the solution. We note that in the present context, our proof is somewhat nonstandard,
in that we proved the existence by showing that the difference quotients converge to
a solution of the equations. We believe this is the first such rigorous proof that the
sensitivity equations for the 2D Navier—Stokes equations are globally well posed (even
in the inviscid limit), although formal proofs have been given in other works, cited
above.
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