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Abstract

We adapt a continuous data assimilation scheme, known as the Azouani–Olson–Titi (AOT) algorithm, to the case of moving
bservers for the 2D incompressible Navier–Stokes equations. We propose and test computationally several movement patterns
which we refer to as “the bleeps, the sweeps and the creeps”), as well as Lagrangian motion and combinations of these
atterns, in comparison with static (i.e. non-moving) observers. In several cases, order-of-magnitude improvements in terms of
he time-to-convergence are observed. We end with a discussion of possible applications to real-world data collection strategies
hat may lead to substantial improvements in predictive capabilities.

2022 Elsevier B.V. All rights reserved.
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“I’m having trouble with the radar, sir. [...] I’ve lost the bleeps, I’ve lost the sweeps, and I’ve lost the creeps.”

[Michael Winslow as Radar Technician in Spaceballs [1]]

. Introduction

One difficulty in the simulation of many physically interesting dynamical systems is that initial data is often
ncomplete or inaccurate. However, one can circumvent this difficulty by using the tools of data assimilation, which
s a class of techniques used to increase accuracy by combining time-dependent observational data together with

physical model, driving simulations to converge to the “true” solution. In this work, we concentrate on a simple
et powerful data assimilation tool known as the Azouani–Olson–Titi (AOT) algorithm, since it readily lends itself
o the case of dynamic observation points, which is the major focus of this manuscript. In a previous work [2],
wo of the authors first proposed the idea of dynamic observers for the AOT algorithm, and showed that in a
implified 1D model (the Allen–Cahn reaction–diffusion equations), moving the observation points in time resulted

∗ Corresponding author.
E-mail addresses: trenton.franz@unl.edu (T. Franz), alarios@unl.edu (A. Larios), collin.victor@huskers.unl.edu (C. Victor).
ttps://doi.org/10.1016/j.cma.2022.114673
045-7825/© 2022 Elsevier B.V. All rights reserved.

http://www.elsevier.com/locate/cma
https://doi.org/10.1016/j.cma.2022.114673
http://www.elsevier.com/locate/cma
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2022.114673&domain=pdf
mailto:trenton.franz@unl.edu
mailto:alarios@unl.edu
mailto:collin.victor@huskers.unl.edu
https://doi.org/10.1016/j.cma.2022.114673


T. Franz, A. Larios and C. Victor Computer Methods in Applied Mechanics and Engineering 392 (2022) 114673

s

N

f

in order-of-magnitude increases in the time to convergence to machine precision error. In the present work, we
extend the idea of continuous data assimilation via moving observers to the 2D Navier–Stokes equations, and show
similar gains in convergence rates. Moreover, we propose and investigate several movement schemes for observers,
and compare these to the case of static (i.e., non-moving) observers. During the completion of this manuscript, we
learned of another work [3], which shows convergence of the AOT algorithm for the 2D Navier–Stokes equations
with observers in a moving square patch. However, the purpose of the present work is to examine the effectiveness
of several different, arguably more realistic, movement patterns with the aim of real-world data collection strategies.

Since its inception in [4,5], the AOT algorithm has been the subject of much recent study in both analytical
tudies [3,6–38] and computational studies [2,39–47].

In this work we investigate the AOT algorithm as applied to the 2D Navier–Stokes equations (NSE). Writing the
SE in an abstract form1 we have the following equation

d
dt

u = F(u). (1.1)

Note that in (1.1), we do not know the initial condition for this system. However, we assume that we can observe the
solution at certain spatial locations, which may be sparsely distributed, say with some characteristic spatial distance
between observations h > 0. Using these measurements, the AOT algorithm [4,5] constructs the system{

d
dt v = F(v) + µ(Ih(u) − Ih(v))
v(0) = v0

(1.2)

where Ih(u) is a suitable interpolation of the observed values of a strong solution u of (1.2), and µ > 0 is a constant,
sometimes called the “nudging parameter”. It was proven in [4] that for sufficiently large µ and sufficiently small
h that ∥u(t) − v(t)∥L2 → 0 and ∥∇u(t) − ∇v(t)∥L2 → 0 exponentially fast in time as t → ∞ for any choice of
v0 ∈ L2 such that v0 is divergence-free. Note that in many works including the present one, for simplicity data is
assumed to be observed continuously in time and without noise. However, similar exponential convergence results
for discrete-in-time observations were proven in [22] and examined computationally in [50], and for noisy data and
stochastic forcing in [7,40].

An important aspect to consider when capturing physical phenomena via data assimilation is where to place
observers. Observers can be thought of as physical objects such as weather stations in the case of predicting the
weather. These observers may require financial investment and manpower to place, thus it is crucial to minimize
the number of observers required for convergence of the method. Computational tests in the case of 2D NSE
indicated exponential convergence in time using a static uniform grid of observers [44]. The rate of convergence
can typically be sped up by adding more observers, however computational studies [2,51] seem to suggest that
the rate of convergence can be improved by moving existing observers instead. In a previous work we found in
the case of the 1D Allen–Cahn equations that the number of observers can be drastically reduced by replacing the
static uniform grid with a mobile cluster of fine length scale [2]. Recently in [51] it was shown computationally
that mobile local data assimilation in the case of 2D NSE achieved fast convergence rates when compared to a
non-mobile local data assimilation algorithm. There mobile local data assimilation was investigated in the single
regime of continuously moving a square subdomain around the domain. In this work we investigate computationally
the effect of movement strategies for observers on convergence rates for 2D NSE for both local and global data
assimilation.

The effect of mobile observers has been seen recently in the reduction of accuracy in weather forecasting models
due to the elimination of cross Atlantic air travel. For example, it was shown in [52] the 50%–75% reduction in air
flights in 2020 has lead to a decrease of 2◦C in air temperature forecasts over Greenland and Siberia and a sustained
reduction in flights will lead to further degradation of the air pressure and wind speed forecast skill.

In the present work, we focus on the 2D incompressible Navier–Stokes equations, given by:

ut + u · ∇u − ν△u = ∇ p + f, (1.3a)

∇ · u = 0. (1.3b)

1 After solving for the pressure, one can write F(u) = ν△u − u · ∇u − ∇△
−1

∇ · (u ⊗ u) (see, e.g., [48,49] for details), but this specific
orm is not especially relevant for the present discussion.
2
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Here u(x, t) = (u1(x, t), u2(x, t)) is the velocity, ν > 0 is the viscosity, p is the pressure and f is a forcing term.
Applying the continuous data assimilation algorithm (1.2) to this system yields the following equations:

vt + v · ∇v − ν△v = ∇ p + f + µ(Ih,t (u) − Ih,t (v)), (1.4a)

∇ · v = 0. (1.4b)

Here, Ih,t is a linear operator representing nodal piecewise-linear interpolation. In the static case, more general
interpolation operators were considered in [4], but for the sake of simplicity, we only consider the case of piecewise-
linear interpolation. Note that, in contrast to the usual AOT algorithm for static observers, here, we allow the observer
locations to depend on time, as denoted by the subscript t in Ih,t .

This paper is laid out as follows. In Section 2, we describe the various observer movement patterns that we
consider. In Section 3, we describe our computational methods and results, but to keep the discussion concise, we
only refer to the graphics, which are in the appendix. In Section 4, we conclude with a comparative discussion on
the merits of the various observer movement patterns, and contrast them with the results of the static observer vase.

2. Movement patterns

For this study we computationally examined different methods of moving observers dynamically. We group these
into three general movement patterns that we call “The Bleeps”, “The Sweeps” and “The Creeps”. In addition to
these movement patterns we also investigate a fourth pattern given by observers as Lagrangian particles suspended
in the fluid.

2.1. The bleeps

“The Bleeps” refers to the strategy of observing data at random locations that change over time. Observers are
initially placed at locations that are determined randomly and moved to new random locations at every time-step.
These random locations are determined by picking uniformly random integers xi ∈ {0, 1, . . . , N } with locations
given by x⃗ = (x1 · ∆x − π, x2 · ∆y − π ). Here ∆x = ∆y = 2π/N , where N is the resolution of the underlying
spatial grid used in simulations. The locations are chosen in this manner so that their coordinates align with the
underlying spatial grid.

While we do not claim that there is a physically-realistic scenario corresponding to this movement strategy,
studying “The Bleeps” can give some idea of how non-static observations can influence convergence rates in the
absence of any coherent spatial structure. Thus, we examine this case as guideline or comparative test to shed light
on the importance of domain coverage vs. certain geometric patterns in observer motion.

2.2. The sweeps

“The Sweeps” refers to the general strategy of moving a group observers at a constant velocity periodically
over the domain. For this method we investigated three separate movement strategies referred to as thin, thick, and
random sweeps.

“Thin-sweeps” refers to the strategy of utilizing a large cluster of observers placed in a thin rectangular strip of
the domain that moves continuously to the right at a constant velocity. The rectangular strip utilized by this strategy
has length x = a∆x and width y = L y = 2π and moves at constant velocity b∆x

∆t for some a, b ∈ N. Note that
the form of the velocity and x-dimension were chosen specifically so that the rectangular region would align with
the underlying spatial grid at every timestep. In all of the simulations conducted we choose values a ∈ {1, . . . , 20}

and additionally with b = a. In simulations this rectangular box contains observers placed at each gridpoint along
the spatial grid, meaning that the full solution of u is observed locally in this rectangular region. Outside of this
rectangle, Ih,t (u − v) = 0 for any given time t . Thus Ih,t is given as follows:

Ih,t (u − v) = (u − v)χR(t)

Here R(t) refers to the sliding rectangular box of observers at the t (see Fig. 2.1).
“Thick-sweeps” refers to the strategy of utilizing a uniform grid of observers placed on a rectangular region that
is fitted with a coarse grid of observers (see Fig. 2.1). We fix the rectangular region to be a box containing the

3
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Fig. 2.1. Graph displaying movement of observers using the thick sweeps movement strategy displayed over the vorticity of the reference
solution at time t = 2. Observers were initially placed at locations indicated by ‘×’ and travel to the right along the black paths with ending
locations marked by ‘■’.

Fig. 2.2. Graph displaying movement of observers using the random sweeps movement strategy displayed over the vorticity of the reference
olution at time t = 2. Observers were initially placed at 10 locations indicated by ‘×’ and travel along random trajectories indicated by
lack paths with ending locations marked by ‘■’.

ourth of the domain given by R =
{
(x, y) ∈ T2

: −π ≤ x ≤ −
π
2

}
. This rectangular region moves to the right at

the constant velocity b∆x
∆t . In all of the simulations whose results are presented here we used b = 1. For certain

velocities one can view this method as a uniform static grid with only a fourth of the observers active at any given
time. Ih,t is given as follows:

Ih,t (u − v) = (Ih(u − v))χR(t)

“Random-sweeps” refers to the strategy of placing observers at random locations with an additional random
velocity (see Fig. 2.2). A major difference between this and all of the previous methods is that the location of the
observers are not restricted to the underlying spatial grid. This means that the value of u − v must be interpolated
from the spatial grid at each timestep in order obtain approximate values for the observer to observe. The velocities
of each observer are given by vectors with each component having a random uniformly distributed value from the
4
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Fig. 2.3. Graph displaying movement of observers using the creeps movement style displayed over the vorticity of the reference solution
at time t = 10. Observers were initially placed at 25 locations indicated by ‘×’ and travel along a random walk indicated by black paths
with ending locations marked by ‘■’.

interval (−1, 1). Ih,t is given as follows:

Ih,t (u − v) = Ih,t ◦ J∆x,t (u − v)

Here J is a linear interpolation operator applied to u − v in order to get the approximate values for the observers
with I interpolating these observed values onto T2. We note that random-sweeps can be viewed as a hybridization
of bleeps and sweeps. We have elected to list it as a variation of sweeps as the observers move continuously in
time (see Fig. 2.2).

We study each of these sweep-movement strategies as each can be potentially realized in physical scenarios.
The thin-sweep observers can be used to model observations given by, e.g., a laser sweeping through a domain in
particle image velocimetry (PIV) applications, where a velocity profile is taken as an observation. Thick sweeps
can be used to model observers on mobile platforms that move at a fixed velocity. Random sweeps can be thought
of as modeling observers with a fixed velocity, e.g., aircraft or satellites.

2.3. The creeps

“The creeps” refers to the strategy of having observers move according to random walks (“creeping” along) (see
Fig. 2.3). After a given amount of time, each observer will (uniformly) randomly pick an integer j ∈ {1, 2, 3, 4, 5}.
These integers determine the direction of motion d( j) as follows:

d( j) =

(
x1∆x
x2∆y

)
where

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1 = 1, x2 = 0, if j = 1,
x1 = −1, x2 = 0, if j = 2,
x1 = 0, x2 = 1, if j = 3,
x1 = 0, x2 = −1, if j = 4,
x1 = 0, x2 = 0 if j = 5.

hat is, they randomly move in a cardinal direction, or remain still, with uniform probability (see Fig. 2.3).

.4. Lagrangian particles

The final movement strategy we considered is given by observers following Lagrangian particles trajectories (see

ig. 2.4). Observers are initialized into a uniform grid of spatial resolution h > 0 and then follow the Lagrangian

5
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Fig. 2.4. Graph displaying movement of observers given by Lagrangian particles displayed over the vorticity of the reference solution at
ime t = 10. Observers were initially placed at 10 locations indicated by ‘×’ and travel along trajectories indicated by black paths with

ending locations marked by ‘■’.

trajectory ℓ(t) as determined by
dℓ
dt

= u(ℓ(t), t). (2.1)

This is a very natural type of dynamic observer, as the movement of the observer comes exactly from the behavior
of the system that we are attempting the capture in simulations of v. For instance, one can consider sensors attached
to buoys (e.g., Argo floats) set adrift in the ocean as observers.

Lagrangian trajectories for observers were evolved forward using third-order Adams–Bashforth method with
values of u at locations (ℓ(t), t). As in the case for random-sweeps, observers in the case of Lagrangian particles
the observations do not in general occur at location on the underlying spatial grid. Therefore we must approximate
the value u(ℓ(t), t) via a linear interpolation of u. In this case we can consider Ih,t (u − v) as follows:

Ih,t (u − v) = Iℓ(t),t ◦ Jℓ(t)(u − v)

Here Jℓ(t)(u − v) is a piecewise-linear interpolant used to approximate the values of u − v in order to find the
observational data and Iℓ(t),t is another piecewise-linear interpolant used to extend the observational data to the
numerical grid (see Fig. 2.4).

3. Computational results

All of our computations were done on the 2D NSE in the vorticity-stream function formulation using a fully
dealiased pseudospectral code with physical domain T2

= [−π, π]2. As in [51] we used viscosity ν = 10−4 with
orcing as given in [44] that was multiplied by a scalar constant to obtain a forcing f with Grashof number G = 106.
dditionally, consistent with [51,53,54], we used a third-order Adams–Bashforth method with an integrating factor

o solve for the linear term exactly. We used step size ∆t = 0.005, and our initial data was generated by evolving
ero initial data out to time t = 25,000. The spectrum of the initial data for the reference solution u is plotted
n Fig. 3.1 and one can see that spectrum is well-resolved (it also remained well-resolved for all times). We note
hat the spectrum of the assimilation solution v was temporarily slightly under-resolved in all of our simulations.
dditionally, we used spatial resolution N 2

= 1, 0242 in our simulations in order to fully resolve the energy
pectrum to machine precision (roughly 2.22 × 10−16) before the 2/3’s dealiasing cutoff (see, e.g., Fig. 3.1).

emark 3.1. In simulations it was found that the choice of initial data v0 did not affect convergence rates
ignificantly. For our simulations we chose v0 = 0 at all points in the domain, but another natural choice of initial
ata is v (x) = I (u ). We found that the choice of initial data only effectively lowered the initial error without
0 h 0

6
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Fig. 3.1. Energy spectrum of the initial data with ν = 10−4, G = 106, and ∆t = 0.005. The vertical red line is the 2/3’s dealiasing cutoff
t 2

3
N
2 = 341.3.

increasing the rate of convergence at larger times. Due to the lower initial error, simulations with the interpolated
observational data as the initial data converged between 0.5 to 2 units of time faster than zero initial data. The exact
speedup depends on the number of observers used for the simulation. We elected to use zero initial data to avoid
potentially favoring methods with globally distributed observers.

Note that while the equation was simulated using the vorticity-stream function formulation, the interpolation
term was calculated at the velocity level using nodal interpolation in physical space. To preserve the periodicity in
the interpolation across the periodic “boundary” we interpolated using observed values over [−3π, 3π ]×[−3π, 3π ]
nstead of just over T2

= [−π, π] × [−π, π], and then truncated the result back to the physical domain. Since we
re simulating the equations at the vorticity-stream function level, we calculate ∥ψ − ψ̃∥L2 as the error between
he simulated and reference solutions. In particular, we look at the error with the smallest number of observers
eeded to obtain convergence by roughly time t ≈ 70 (see Figs. 3.2(a) and 3.3(a)), and the time to convergence
or approximately the same number of observers (see Figs. 3.4(a) and 3.7(a)). We perform similar computations
oth ∥ω − ω̃∥L∞ (see Figs. 3.5, 3.6, 3.8 and 3.9) and ∥ω − ω̃∥L2 (see Figs. 3.2(b), 3.3(b), 3.4(b) and 3.7(b)). Here

denotes the stream function of the u equation with ω being the vorticity of u, and ·̃ denoting the corresponding
uantity in system (1.4).

Using the numerical methods discussed above, which are described in more detail in Appendix A, we simulated
ynamic observers that move in accordance with the movement styles. We found that the choice of µ varied for
ifferent movement methods. For the uniform static grid it was found that µ = 10 was the optimal choice of µ.

It appears that the choice of larger µ values is restricted by a CFL condition on the time-step; namely ∆t < 2/µ.
We observed, similar to our previous work, [2] that highly mobile movement schemes, such as thin-sweeps, do
not appear to be subject to the same restriction on µ, perhaps due to the numerically destabilizing effect of large

-values being only briefly concentrated in any given spatial location. For simulations of sweeps, we used the value
= 30, which was unstable in the case of the static uniform grid of observers. In our simulations we observed

hat larger values of µ tended to lead to faster convergence in the case of thin-sweeps. In simulations, we tested
hick-sweeps and found that the method did allow for larger choices of µ when the speed of the observer movement
as increased to that of the thin-sweeps (from 1∆x

∆t to 3∆x
∆t ), further corroborating the “brief local destabilization”

explanation discussed above. While thick-sweeps did allow for a larger choice of µ we did not observe faster
convergence rates in these trials. We conjecture that, at least typically, the larger values of µ are optimal for very
fast moving observer regimes in which any given point will only be observed for a short amount of time.

In preliminary simulations, we observed that certain µ values for which the static uniform grid remained stable
ould introduce instabilities in mobile observer schemes (except in the case of thin-sweeps and thick-sweeps). This is
erhaps due to a CFL condition restricting the length-scale h, the minimum length between observers. Since h is not
7
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Fig. 3.2. Comparison of stream function error 3.2(a) and vorticity error 3.2(b) in the L2-norm over time for static uniform grid and dynamic
observer strategies with number of observers optimized to ensure convergence around the time t = 70 (log-linear plot). See legend entries for
the number of observers used in each method. µ = 10 for all methods except thin-sweeps, which uses µ = 30. Thick-sweeps has constant
x velocity 3∆x

∆t .

restricted for most of the mobile observer paradigms, µ values should be smaller to avoid this instability. We found
that the value µ = 10 was optimal for the uniform static grid and did not cause instability in the mobile observers
for our choice of spatial resolution N 2

= 10242. In preliminary simulations with spatial resolution N 2
= 5122 we

saw that the mobile observer methods required µ values smaller than the optimal choice of µ for the uniform static
grid to avoid instability. However this instability was not seen in any of the higher resolution tests. While µ can
potentially be further optimized, as generally higher µ values coincide with faster decay in the error, it is worth
noting that our results showed faster rates of convergence using the same µ values, but with smaller numbers of
observers required (see Figs. 3.2(a) and 3.3(a)).

To test these methods computationally, we first ran simulations for the uniform static grid case to establish a
baseline for comparison. We found that, for our choices of parameters, a uniform grid of 5625 observers would

−14
converge to an error of ≈ 10 (close to machine precision) by approximately time t = 70 (see Figs. 3.2(a), 3.2(b),

8
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Fig. 3.3. Comparison of stream function error 3.3(a) and vorticity error 3.3(b) in the L2 norm over CPU time for static uniform grid and
dynamic observer strategies with number of observers optimized to ensure convergence around the time t = 70 (log-linear plot). See legend
entries for the number of observers used in each method. µ = 10 for all methods except thin-sweeps, which uses µ = 30. Thick-sweeps
has constant x velocity 3∆x

∆t .

.3(a), 3.3(b), 3.4(a), 3.4(b), 3.5, 3.6, 3.7(a), 3.7(b), 3.8 and 3.9). We found in our simulations that approximately
500 observers were required to achieve convergence to the true solution for the times simulated. We saw that for
imulations with fewer numbers of observers, either numerical instability arose, or the simulated solution converged
o an incorrect solution with the error staying approximately constant during the simulation times. Simulations with
arger numbers of observers demonstrated faster rates of decay in the error, and thus we chose to use a uniform
rid with 5625 observers in our trials as simulations converged relatively quickly without utilizing extremely large
umbers of observers. Using this as a baseline, we varied the number of observers in the case of the bleeps, the
weeps, and the creeps in order to obtain convergence at approximately the same time (t = 70) for the sake of

comparison. The results from these studies can be seen in Figs. 3.2(a), 3.3(a), 3.2(b), 3.3(b), 3.5 and 3.8. Here,
Figs. 3.2(a), 3.2(b) and 3.5 all detail the results of these simulations plotting the error in different norms against
the simulation time. Figs. 3.3(a), 3.3(b) and 3.8 plot the same errors as before, but against the CPU time to better
9
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Fig. 3.4. Comparison of stream function error 3.4(a) and vorticity error 3.4(b) in the L2 norm over time for static uniform grid and dynamic
observer strategies all initialized using approximately 5625 observers (log-linear plot). See legend entries for the number of observers used
in each method. µ = 10 for all methods except thin-sweeps, which uses µ = 30. Thick-sweeps has constant x velocity 3∆x

∆t .

judge the computational advantages of each method (although we note that different implementations, optimizations,
software, hardware, data I/O speeds, etc., may have a significant effect on CPU times). As we see from these
results, all three of these methods enjoy exponential convergence to the reference solution in the each norm plotted.
Moreover, all three methods converge to machine precision faster than the uniform grid using significantly fewer
observers. The bleeps in particular demonstrated almost an order-of-magnitude improvement in the number of
observers compared to the uniform grid.

Next, we ran simulations utilizing mobile observers with each initialized to approximately 5625 observers to
compare with the static uniform grid of 5625 observers. As expected, we observed that all of the mobile observer
methods converged exponentially fast to the reference solution u at a faster rate than the uniform static grid. Our
results can be seen in Figs. 3.4(a), 3.4(b), 3.7(a), 3.7(b), 3.6 and 3.9. Here Figs. 3.4(a), 3.4(b) and 3.6 all detail the
results of these simulations plotting the error in different norms against the simulation time. Figs. 3.7(a), 3.7(b) and
10
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Fig. 3.5. Comparison of vorticity error in the L∞ norm over time for static uniform grid and dynamic observer strategies with number of
bservers optimized to ensure convergence around the time t = 70 (log-linear plot). See legend entries for the number of observers used in

each method. µ = 10 for all methods except thin-sweeps, which uses µ = 30. Thick-sweeps has constant x velocity 3∆x
∆t .

Fig. 3.6. Comparison of vorticity error in the L∞ norm over time for static uniform grid and dynamic observer strategies all initialized
sing approximately 5625 observers (log-linear plot). See legend entries for the number of observers used in each method. µ = 10 for all
ethods except thin-sweeps, which uses µ = 30. Thick-sweeps has constant x velocity 3∆x

∆t .

3.9 are plotting the same errors as before but against the CPU time to better judge the computational advantages
of each method.

One additional metric we used for comparison with the uniform static grid was the CPU time required to obtain
convergence to machine precision. It is important to check that the extra complexity built into simulating moving
observers does not make these methods prohibitively expensive to simulate when compared to the static uniform
grid. It is arguable that this additional complexity is not an issue, as this will not be seen when conducting data
assimilation live. In all of the simulations described above we also captured the CPU time. Graphs of the error vs
the CPU time can be seen in Figs. 3.7(a), 3.7(b) and 3.9 for our simulations in which the number of observers
were chosen to achieve convergence at simulation time 70, and Figs. 3.3(a), 3.3(b) and 3.8 for our simulations with
each method utilizing approximately 5625 observers. Note that the CPU time required to update the locations is

included in these calculations of total CPU time. This includes the time to randomly determine locations, move the

11
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Fig. 3.7. Comparison of stream function error 3.7(a) and vorticity error 3.7(b) over CPU time for static uniform grid and dynamic observer
strategies all initialized using approximately 5625 observers (log-linear plot). See legend entries for the number of observers used in each
method. µ = 10 for all methods except thin-sweeps, which uses µ = 30. Thick-sweeps has constant x velocity 3∆x

∆t .

rectangular subdomain, and determine random walks for bleeps, sweeps, and creeps, respectively (this would likely
not be needed when working with real-world data, but on the other hand, working real-world data may bring other
CPU-intensive operations, such as I/O costs or off-grid interpolation on non-uniform grids). Additionally, note that
since the thin-sweeps strategy use the exact solution over a small rectangular subdomain there is no interpolation
performed. This leads to a very low CPU time in those figures. In the plots, we found that when the number
of observers is chosen to ensure convergence by (roughly) time t = 70, all of the dynamic observer movement
strategies except Lagrangian particles obtain convergence significantly faster in CPU time than the uniform grid
case. This is perhaps due to the fewer number of observers used, simplifying the calculations of the interpolation
term. Additionally, when all of the methods are simulated using approximately 5625 observers, the mobile observer
methods still obtain faster convergence than the static uniform grid. In this case, it is likely due to the rate of
convergence, which can be seen in Figs. 3.4(a), 3.4(b) and 3.6.
12
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Fig. 3.8. Comparison of vorticity L∞ error over CPU time for static uniform grid and dynamic observer strategies with number of observers
ptimized to ensure convergence around the time t = 70 (log-linear plot). See legend entries for the number of observers used in each
ethod. µ = 10 for all methods except thin-sweeps, which uses µ = 30. Thick-sweeps has constant x velocity 3∆x

∆t .

Fig. 3.9. Comparison of error over CPU time for static uniform grid and dynamic observer strategies all initialized using approximately 5625
observers (log-linear plot). See legend entries for the number of observers used in each method. µ = 10 for all methods except thin-sweeps,
which uses µ = 30. Thick-sweeps has constant x velocity 3∆x

∆t .

We note that all of the data assimilation methods, except thin and thick sweeps, show a steep decay in the error
initially until time t ≈ 1. This steep decay is possibly due to the global distribution of observers across the domain.

his steeper decay can be seen in the case of thick-sweeps when initialized with 1400 observers moving with
onstant velocity 3∆x

∆t in the x direction until approximately time t = 8 (see Fig. 3.2(a)). Moreover we note that
this steep decay was not seen for thick-sweeps with the constant velocity 1∆x

∆t in the x direction (see Fig. 3.10(a)).
In the above simulations it appears that performing thin-sweeps is a good strategy for mobile data assimilation

owever it requires the exact solution in a small rectangle. All of the other movement schemes are adaptable to
igher resolution with no difficulties, but with thin-sweeps for a fixed rectangular region the number of observers
cales with the resolution. Physically this may be feasible if the data collection comes from a device that gathers a
elocity profile along one dimension, however it is not feasible if the velocity is measured using observers placed

t discrete points. This lead to the generalization of thin-sweeps to thick-sweeps, which allows for mobile observers

13
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Fig. 3.10. Comparison of stream function error in the L2 norm over simulation time 3.10(a) and over CPU time 3.10(b) for Thick-Sweep
methods initialized with different speeds (log-linear plot). Both trials were initialized with the 5700 observers, µ = 10, moving with constant
velocity in the x direction as given in legend parentheses.

that sample locally in space and move continuously in time without requiring a number of observers proportional
to the spatial resolution of the underlying numerical grid. Here, instead of having access to the full solution in a
rectangle, we extend the rectangular area to cover a quarter of the domain and interpolate locally over a uniform grid
of observers distributed locally on this subdomain. In our simulations we found that the velocity of the observers
was an important factor in the convergence rate (see Figs. 3.10(a) and 3.10(b)). One may be able to optimize the
velocity of the observers based on the size of the domain being sampled to improve convergence rates further, but
we do not explore this in the present work.

4. Conclusions

Our simulations of mobile observers provide evidence that highly mobile observers such as the bleeps give the
fastest convergence rates using the fewest number of observers when compared to a static uniform grid of observers.

All mobile methods demonstrated convergence faster in simulation time than the static uniform grid when initialized

14
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with the same number of observers; however, the methods that demonstrated the highest convergence rates were the
bleeps and random-sweeps, both of which require some level of randomness. While sensors with random movement
may be difficult to implement physically, this does demonstrate the need for observing data throughout the domain.

While all of the methods converged to machine precision faster in simulation time than the static uniform grid, the
hick-sweeps and Lagrangian mobile observer movement schemes performed poorly in comparison to the rest of the

obile methods. In particular, neither thick-sweeps nor Lagrangian particle observers demonstrate the improvements
n CPU time seen in the other mobile methods. In the case of thick-sweeps, the poor performance relative to the
ther mobile methods is likely due to lack of mobility. While thick-sweeps do move observers continuously, all
f the simulations done in this study used b = 1 which results in slow movement across the domain. Larger b
alues would likely make thick-sweeps behave similarly to thin-sweep in convergence rates. Similarly, we believe
hat the Lagrangian particle observers perform poorly due to the slow movement of fluid particles and the tendency
or particles to become trapped in vorticity structures (e.g., eddies).

An additional point of note is the performance of thin-sweeps. Recall that thin-sweeps measures the full solution
ithin a small rectangle and inserts this directly into the v equation without interpolation of any sort. This leads to a

drastic decrease in CPU time when compared to the other methods which can be seen in Figs. 3.2(a), 3.2(b), 3.3(a),
3.3(b), 3.4(a), 3.4(b), 3.5, 3.6, 3.7(a), 3.7(b), 3.8 and 3.9. Additionally, due to the requirement of measuring the full
solution inside a small rectangle, the number of observers is misleading. As the resolution increases, the thin-sweep
strategy will need an increasing amount of observers if the rectangular area remains the same size. The need to
measure the full solution essentially means that the thin-sweep strategy requires an infinite number of observers.
As currently implemented, the number of observers determines the width of the rectangular area, which for 3072 is
3072/N∆x = 3∆x . Another restriction of thin-sweeps is that this requirement that the number of observers must
be a multiple of the resolution N .

Due to the shortcomings of both thin-sweeps and thick-sweeps, we propose that a hybrid of the two methods
ould be practical to implement and would have some of the beneficial properties of both while being more readily

mplementable physically. This hybrid method would replace the rectangular area of thick-sweeps with the much
maller rectangle from thin-sweeps. Additionally, as in thin-sweeps, this hybrid method would keep the movement
f the rectangular area proportional to its width. However, unlike thin-sweeps, we would actually interpolate over
he area within the rectangle instead of requiring the full solution. We will explore these ideas in a future work.

From our simulations it appears that the bleeps method requires the smallest number of observers to achieve
onvergence comparable to the uniform static grid. In the description of the bleeps movement strategy, we noted
hat the locations of observers are changed at each timestep. In our previous simulations, it was found that the
leep strategy also demonstrates exponential convergence to the reference solution when observers are placed in
andom locations that changed after a specified amount of time. We noted that the error decreased sharply for a
hort amount of time after the observers were moved. In order to maintain this steep rate of decay, we chose to
andomize the observer locations at every timestep. This suggests that one could optimize the randomization time,
hich will be the subject of a future work.
When considering the viability of mobile methods, it is important to consider the feasibility of physical

mplementations. In particular, one should ask if one can realize these methods using actual sensors physically
oving in time. Moreover, in physical implementations, mobile observers may be more expensive than non-mobile

bservers and more prone to break down and potentially suffer measurement error. Therefore, factoring in cost of
umber of observers should be taken into account in real-world applications, but this is beyond the scope of the
resent work. In this study, we assumed that all observers had the same level of accuracy (namely, they are assumed
o have perfect accuracy). Although studies of the AOT algorithm have been carried out in the context of noisy
ata [7,40], showing that the algorithm with static observations is robust with respect noisy measurements, factoring
n different levels of accuracy for different observers may be crucial in real-world implementations. (For example,
ensors on aircraft tend to be much more accurate, but more expensive that ground-based sensors.)

We note that, although we made an effort to follow good coding practices, no specific effort was made to optimize
he computation of the various moving observer schemes, nor their interpolation, nor the nudging constants µ,

except in the case of static observers. However, the moving-observer schemes still outperform the static observer
case in simulation time. When measured in CPU time the moving-observer schemes outperform the static observer
case except in the case of Lagrangian observers. It appears that Lagrangian tracer particles tend to get stuck in

eddies, decreasing their global coverage. However, the random sampling locations of the bleeps demonstrated
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significantly better error. Therefore, for example, in the case of observational devices attached to buoys, it may
be worth considering mechanisms to “kick” the buoys into a different location. For example, a small motor or wind
sail attached to Argo buoys could lead to significant decreases the error.

In summary, this work demonstrates the enormous potential for improving data assimilation speed, accuracy,
nd the number of observers required by allowing for observer to move through the domain in certain patterns,
ampling wider regions of the flow. These results open the door to many new possibilities, including optimizing
ovement patterns (using, e.g., machine learning strategies), combining data from moving and non-moving sources

using, e.g., data from ground-based stationary sensors and fast-moving drones), heterogeneous data sources
e.g., temperature and salinity of the ocean), and many others. We will explore these ideas in future works.
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ppendix A. Description of numerical algorithms

All simulations were carried out in Matlab (R2019b) using our own code, a version of which we have made
reely available at:

https://github.com/cvictor2/AOT CDA 2D NSE

In all our simulations, we used pseudo-spectral methods (see, e.g., [55–57] for textbook descriptions of these
methods); namely, derivatives were computed using appropriate multipliers in Fourier space, using Matlab’s
implementation of the n-dimensional fast Fourier transform (fftn, which relies on FFTW). Computations were
done at the stream function level, where, e.g., the 2D Navier–Stokes equations (1.3) are written in the form

ψt + △
−1(u · ∇ω) = ν△ψ + △

−1
∇

⊥
· f

u := ∇
⊥ψ =

(
∂yψ

−∂xψ

)
, ω := ∂x u2 − ∂yu1 = −△ψ

where the inverse Laplacian △
−1 is taken with respect to periodic boundary conditions and the mean-free condition.

To compute the nonlinear term, the standard 2/3’s dealiasing rule was applied, zeroing out the modes above
wavenumber N/3, where N is number of gridpoints in one direction of the periodic box. Moreover, to reduce
the number of fft operations, we used the Basdevant formula u · ∇ω = (∂2

x − ∂2
y )(u1u2) + ∂xy(u2

2 − u2
1), and one

ses ∇ ·u := ∂x u1 + ∂yu2 = 0 (see [58,59] for further details on the Basdevant formula). Time stepping was carried
ut using an implict/explicit scheme. Namely, the linear diffusion term was handled implicitly using an integrating
actor in Fourier space, and the solution was then updated using the Adams–Bashforth-3 (AB-3) method2 adapted
o allow for an integrating factor. To initialize AB-3, we used Runge–Kutta-4 for the ψ solution (where there is no
eed to interpolate data in time), and identically zero data for the ψ̃ solution.

The interpolation operators were created using periodic versions of the observational data combined with Matlab’s
uilt-in ScatteredInterpolant function. To create periodic observational data we duplicated the observational
ata from the periodic box T2

= [−π, π] × [−π, π] over a larger [−3π, 3π ] × [−3π, 3π ] domain. This was
one by taking each observer and including 8 more sister observers that share the same data at locations that

2 We used AB-3 for the sake of consistency with [44], which used AB-3 for AOT simulations. We note that multi-stage methods, such
as Runge–Kutta methods, are not suitable for implementation of the AOT algorithm, due to the need to interpolate data in time. See [53]
for a discussion of these issues.
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have been periodically shifted outside of T2 into the larger domain. For example, if there was an observer at the
origin, (0, 0), we would duplicate the values of this observer to the points (0,−2π ), (0, 2π ), (−2π, 0), (2π, 0),
−2π,−2π ), (−2π, 2π ), (2π,−2π ), and (2π, 2π ). We used all of these extra observers to preserve periodicity
cross the “boundary” when the ScatteredInterpolant generated is evaluated on the original domain T2.

For the Lagrangian particle observers as well as the random-sweeps, there was an extra interpolation step
equired. Since these mobile methods were not in general aligned with the underlying spatial grid, interpolation
f nearby points was required to generate the data that was observed by these methods. To generate the data for
hese types of observers, we interpolated using the values from the nearest four points on the spatial grid. Once
he data for all of the observers was generated in this fashion, we proceeded as described previously to create the
nterpolation operator using the observational data.
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