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Abstract—We consider an opportunistic cognitive radio (CR)
system in which secondary transmitter (SU.) is equipped with
a reconfigurable antenna (RA). Utilizing the beam steering ca-
pability of the RA, we regard a design framework for integrated
sector-based spectrum sensing and data communication. In this
framework, SU.. senses the spectrum and detects the beam
corresponding to active primary user’s (PU) location. SU also
sends training symbols (prior to data symbols), to enable channel
estimation at secondary receiver (SU,x) and selection of the
strongest beam between SU.x—SU,, for data transmission. We
establish a lower bound on the achievable rates of SU;.—
SU,x link, in the presence of spectrum sensing and channel
estimation errors, and errors due to incorrect detection of the
beam corresponding to PU’s location and incorrect selection of
the strongest beam for data transmission. We formulate a novel
constrained optimization problem, aiming at maximizing the
derived achievable rate lower bound subject to average transmit
and interference power constraints. We optimize the durations
of spatial spectrum sensing and channel training as well as data
symbol transmission power. Our numerical results demonstrate
that between optimizing spectrum sensing and channel training
durations, the latter is more important for providing higher
achievable rates.

Index Terms—Achievable rates, beam detection, beam selec-
tion, channel estimation, imperfect spectrum sensing, opportunis-
tic cognitive radio system, optimal and sub-optimal transmit
power, reconfigurable antennas, training and data symbols.

I. INTRODUCTION
A. Literature Review

Cognitive radio (CR) technology improves spectrum utiliza-
tion and fills the spectral holes, via allowing an unlicensed or
secondary user (SU) to access licensed bands in a such way
that its imposed interference on license holder primary users
(PUs) is restricted [1]. CR systems are mainly classified as
underlay CR and opportunistic (or interweave) CR systems.
In underlay CR systems, SUs use a licensed frequency band
simultaneously with PUs, as long as the interference caused
by SUs and imposed on PUs stays below a pre-determined
threshold [1]-[3]. While underlay CR systems do not re-
quire spectrum sensing to detect PUs’ activities, they demand
coordination between PUs and SUs to obtain channel state
information (CSI), that is not always feasible. In opportunistic
CR systems, SUs use a licensed frequency band during a time
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interval, only if that frequency band is not used by PUs. While
opportunistic CR systems do not require coordination between
PUs and SUs to acquire CSI corresponding to SU-PU link (and
hence the system implementation is easier), they necessitate
spectrum sensing to monitor and detect PUs’ activities.

The CR literature mainly assume that SU has access to full
CSI of all links for its operation. However, in practice, SU
has access only to partial CSI, due to several factors including
channel estimation error, mobility of PU or SU, and limitation
of feedback channel. Partial (imperfect) CSI has deteriorating
effects on the fundamental performance limits of CRs and
should not be overlooked. We note that the impact of partial
CSI on the performance of underlay and opportunistic CR
systems are different, due to inherent distinctions between
these two CR systems. For underlay CR systems, several
researchers have studied the impact of imperfect CSI on the
ergodic capacity [4]-[9] and symbol error probability [10]. In
particular, references [4]-[6] focus on investigating the impact
of imperfect CSI of SUy—PU receiver (PU,y) link on the op-
timal transmit power of SU:, that maximizes the constrained
capacity of SUy—SU, link, where SU;, cannot always satisfy
the interference power constraint (due to partial CSI) and has
to reduce its transmit power. The authors in [7], [8] considered
the impact of partial CSI for both SUy—PU;; and SU—
SU,x links on the CR system capacity. Different from [4]-
[8], [9] discussed the trade-off between channel estimation
accuracy and channel estimation duration (time). The authors
in [9] studied the optimal transmit power of SUy, and optimal
channel estimation duration, such that the capacity of SUyx—
SU, link is maximized, subject to a constraint on interference
power imposed on PU,.

In opportunistic CR systems, spectrum sensing is necessary
for detecting PUs’ activities and protecting the PUs against
harmful interference. In general, any spectrum sensing (signal
in noise detection) technique is prone to errors, that can be
described as mis-detection or false alarm probability [11], [12].
On the other hand, imperfect CSI of SU,—SU,« link due to
channel estimation error (even under perfect spectrum sensing)
has negative influence on the link capacity. Imperfect spectrum
sensing exacerbates the negative effect of imperfect CSI on the
link capacity. Hence, for opportunistic CR systems, one needs
to study the combined impacts of imperfect spectrum sensing
and imperfect CSI on the system performance. Such study
presents new challenges, compared with studies that focus on



understanding only the effect of imperfect spectrum sensing,
when CSI is perfect (or vice versa), on the link capacity. To
the best of our knowledge, there are only a few works that
have considered the aforementioned combined effects in their
system performance analysis [13]-[16]. For example in [13]
SUx estimates the received power from PU during sensing-
estimation time and monitors PU’s activity. If the spectrum is
sensed idle, SUy, with its imperfect CSI of SU;—SU,x link,
sends data to SU,, with a fixed power. The authors showed
that the constrained capacity of SU;—SU, link can be signifi-
cantly enhanced (subject to a constraint on the detection prob-
ability), via optimizing sensing-estimation time. The authors
in [14] considered a delay-sensitive CR system with a different
setup, where after spectrum sensing at SUyy, SU transmits
at fixed powers and rates, where these fixed values depend
on the result of spectrum sensing (i.e., the transmit power
and rate corresponding to spectrum being sensed idle are
different from those corresponding to spectrum being sensed
busy). The authors optimized these fixed powers and rates
such that the defined effective capacity is maximized, subject
to average transmit power and buffer length constraints. The
authors in [15] considered a related problem to [14], where
the two data transmit power levels are given and instead two
training power levels as well as training period are optimized
to maximize the achievable rate. The work in [16] considered
different levels of CSI corresponding to SUyx—SU,y and SUx—
PU links, and studied optimal transmit power levels of SUiy,
such that the capacity of SUx—SU, link is maximized, where
the optimized power levels depend on the level of CSI.

In the above cited works SUs are equipped with single
antenna. Multiple antennas and in particular transmit beam-
forming techniques have been utilized to ameliorate the perfor-
mance degradation due to the interference imposed on PUs for
underlay CR systems [17]-[19] and opportunistic CR systems
[20] with perfect CSI of SU;x—SU, link available at SU.
The authors in [21] considered an opportunistic CR system,
where SU¢y has a single antenna and SU, has multiple anten-
nas and applies maximum ratio combining (MRC) technique,
and studied the combined effects of spectrum sensing error
and imperfect CSI of SU;,—SU,x link at SUy, on the system
bit error rate (BER) performance. Optimal spectrum sensing
time, channel estimation time, and SUy, transmit power are
obtained, such that BER is minimized, subject to average
transmit and peak interference power constraints. We note
that the benefits of multi-antenna techniques come at the cost
of requiring an expensive and power-hungry radio frequency
(RF) chain per antenna, which consists of digital-to-analog
converters, filters, mixers, and amplifiers.

Alternatively, reconfigurable antenna (RA) is a low-
complexity and low-cost antenna technology that provides
benefits similar to those of multiple-antenna techniques with
a very low cost hardware, since a RA has only one RF
chain [22]-[24]. RAs enable efficient exploitation of spatial
diversity (via dynamically adjusting radiation pattern and beam
steering/scanning capability) for reliable spectrum sensing and
data transmission in CR systems. They are also capable of
changing their parameters to dynamically adjust their po-
larization, carrier frequency and bandwidth [22], [23], [25].

Utilizing their beam steering capability and low cost hardware
advantage, RAs can pave the path to the next generation
of CR wireless communication systems for a wide range of
applications, including personal communications, emergency-
response, cyber-physical systems, tactical wireless communi-
cations, and 5G wireless systems [26]. For instance, RAs are
employed in [27], [28] to establish directional wireless links,
combat significant path-loss, and reduce the number of RF
chains in mmWave massive MIMO systems. For both underlay
and opportunistic CR systems, RAs are used to increase
signal-to-noise ratio (SNR) for transmission and reception of
directional signals [29], enhance spectrum sensing [29]—-[31],
and limit interference to and from PUs [32], [33]. Motivated
by the advantages of RAs, in our study we assume that SUyy is
equipped with an RA that has beam steering capability.

B. Knowledge Gap, Research Questions, and Our Contribu-
tions

To the best of our knowledge, our work is the first to
consider the combined effects of spectrum sensing error and
imperfect CSI of SU.—SU,x link on the achievable rates
of an opportunistic CR system with a RA at SUi. In our
opportunistic CR system, SUy relies on the beam steering
capability of RA to detect the direction of PU’s activity and
also to select the strongest beam for data transmission to SU .
We assume SUix sends training symbols to enable channel
estimation at SU,, and employs Gaussian input signaling for
transmitting its data symbols to SU,.. Also, SU,. shares its
imperfect CSI of SUx—SU,y link with SUy through an error-
free low-rate feedback channel.

Assuming that there are average transmit power constraint
(ATPC) and average interference constraint (AIC), we provide
answers to the following research questions: How does spec-
trum sensing error affect accuracy of detecting the direction of
PU’s activity, estimating SUyx—SU,« channel, and selecting the
strongest beam for data transmission? How do training symbol
transmission and beam detection error (error in obtaining the
true direction of PU’s activity) affect interference imposed on
PU? How do the combined effects of spectrum sensing error
and channel estimation error, as well as beam detection error
and beam selection error (error in finding the true strongest
beam for data communication to SU,y) impact the achievable
rates for reliable communication over SU,—SU,« link? How
do the trade-offs between spatial spectrum sensing time,
channel training time, data transmission time, training and data
symbol transmission powers affect the achievable rates? How
can we utilize these trade-offs to design transmit power control
strategies, such that the achievable rates subject to ATPC and
AIC are maximized? Our main contributions follow:

1) Given this system model, we establish a lower bound on
the achievable rates of SUy—SU,y link, in the presence of
both spectrum sensing error and channel estimation error. We
formulate a novel constrained optimization problem, aiming
at maximizing the derived lower bound subject to AIC and
ATPC.

2) Our problem formulation takes into consideration the com-
bined effects of imperfect spectrum sensing and channel esti-
mation as well as the errors due to (i) incorrect detection of the
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Fig. 1: Our opportunistic CR system with an M -beam RA at SU¢x and omni-
directional antennas at SU;y and PU.

beam corresponding to PU’s location (and its corresponding
effect on average interference imposed on PU) occurred during
spatial spectrum sensing phase, (ii) incorrect selection of the
strongest beam for data transmission from SUg, to SUy,
occurred during channel training phase. These beam detection
and beam selection errors are introduced by the RA at SUjy.
3) Given a fixed-length frame, we optimize the durations
of spatial spectrum sensing and channel training as well as
data symbol transmission power. Based on the structure of
the optimized transmit power, we propose alternative power
adaptation schemes that are simpler to implement and yield
lower bounds on the achievable rates that are very close to
the one produced by the optimized transmit power.

C. Paper Organization

The remainder of the paper is organized as follows. Section
IT explains our system model consisting of three phases:
spatial spectrum sensing phase, channel training phase, and
data transmission phase. Sections III and IV describe spatial
spectrum sensing phase and channel training phase, respec-
tively. Section V discusses data transmission phase, establishes
a lower bound on the achievable rates, and characterizes
ATPC and AIC. Then, it formalizes a constrained optimization
problem with three optimization variables (durations of spatial
spectrum sensing and channel training phases, and data symbol
transmission power), aiming at maximizing the derived lower
bound, subject to ATPC and AIC. Section VI provides solution
to this constrained optimization problem. Section VII presents
our simulation results and Section VIII concludes the paper.

II. SYSTEM MODEL
A. Structure of a RA

We consider a RA which can generate M beampatterns and
these beampatterns cover the angular plane from ¢; to ¢o,
i.e., the angular space from ¢; to ¢ is divided into M spatial
sectors or beams'. One can extend this angular space to cover
the entire azimuth plane. The beampattern corresponding to

. . . 2n(m—1
m-th beam achieves its maximum at angle x,, = %

I'Throughout this paper, “sector” and “beam” are used interchangeably.

for m = 1,..., M. Fig. 1 shows the beampatterns of a RA
with M = 7 beams. It is noteworthy that the RA can also
reconfigure itself to generate an omni-directional pattern. To
mathematically model the radiation pattern of beams, we adopt
the Gaussian pattern in z—y azimuth plane in terms of angle
¢ given by [32]

p(#) = ArtAoe P(5E) . M(6) = modas (6-+m)

(1)
where mods,(¢) denotes the remainder of %, B = In(2),
¢3qB is the 3-dB beamwidth, A; and Ay are two constant
antenna parameters. The radiation pattern of m-th beam at

angle ¢ is
pm(®) = p(d — Km),

In this paper, we discuss the received or transmitted signal
at m-th beam of SU. This implies that, during the signal
reception or transmission, the SU,’s antenna parameters are
set and tuned such that the beampattern corresponding to m-
th beam is generated. Given the antenna design, we focus on
how the sector-based structure of this RA can be exploited
to enhance the system performance of our opportunistic CR
system, in which SU;, optimizes its sector-based data com-
munication to SU, according to the results of its sector-based
spectrum sensing.

form=1,..., M. 2)

B. Description of Our Opportunistic CR System

Our opportunistic CR system model is illustrated in Fig. 1,
consisting of a PU and a pair of SUy, and SU,x. We note
that PU in our system model can be a primary transmitter
or receiver. We assume when PU is active it is engaged
in a bidirectional communication with another PU, which is
located far from SU;, and hence its activity does not impact
our analysis. We assume SUiy is equipped with an M-beam
RA (for spatial spectrum sensing, channel training and data
transmission) with the capability of choosing one out of M
sectors for its data transmission to SU,,, while SU,, and
PU use omni-directional antennas. We assume there is an
error-free low-rate feedback channel® from SU,y to SUiy, to
enable SU,, select the best sector for its data transmission to
SU,, and to adapt its transmit power according to the SU;—
SU,, channel information. The direction (orientation) of PU
and SU,, with respect to SUy, are denoted by angles ¢py,
and ¢gg, receptively, where ¢sgr, opu € (@1, ¢2). Clearly, in
our problem SUy, does not know these directions or angles
(otherwise, the beam selection at SU;, for data transmission
would become trivial).

Let h, hgs, hep denote the fading coefficients of channels
between SU;, and PU, SU;, and SU,,, and SU,, and PU,
respectively, when the RA of SUi. is in omni-directional
mode. We model these fading coefficients as independent
zero mean circularly symmetric complex Gaussian random
variables. Equivalently, g =|h|?, gss = |hss|? and gep = |hsp?
are independent exponentially distributed random variables

2Given a low rate feedback, the error-free feedback channel is a reasonable
assumption [18].
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Fig. 2: The structure of frame employed by SU¢x.

with mean v, s and ~sp, respectively®. In our problem we
assume that SUs and PU cannot cooperate, and hence SUs
cannot estimate g and gs,. However, SU, knows the channel
statistics, i.e., the mean values «y and . Let 4,,, and X,
denote the fading coefficients of channel between m/’-th sector
of SU, and PU, and between m-th sector of SU;, and SU,,,
respectively, when the RA of SUy is in directional mode. Us-
ing the radiation pattern expression in (2) we can relate v,/ to
h and X, to hgs as Py =h pm’(¢PU)’ Xrm =hss v pm(¢SR)~
We assume the channel gain v,, = || is an exponentially
distributed random variable with mean «,,, and SU;, knows
Qm, for all m [32], [35]. For the readers’ convenience, we
have collected the most commonly used symbols in Table I.

TABLE I: Most commonly used symbols.

Symbol | Description

M Number of beams

Nge Number of samples used for spatial spectrum sensing

Nir Number of samples used for channel training

Py Power of training symbols

Vo Fading coefficient of channel between m/’-th beam of
SU¢x and PU

Xm, Xm,Xm | Fading coefficient of channel between m-th beam of

SUtx and SU;x, LMMSE channel estimate, and its
corresponding estimation error

Variances of Xm , Xm s Xm

Indices of selected beam for PU and SU,«

Channel gain of selected beam for data transmission
from SU¢x to SU;x

QAm, Om; Om

* *
Mpy>MgRr
Ij*

Suppose, SUs employ a frame with a fixed duration of T
seconds, depicted in Fig. 2. We assume the SU;—SU, channel
remains constant over the frame duration. SU¢, first senses the
spectrum and monitors PU’s activity. We refer to this period
as spatial spectrum sensing phase with a variable duration of
Tse = M Ny Ty seconds, where T is the sampling period and
Nge 1s the number of collected samples during this phase per
beam. Suppose H; and H represent the binary hypotheses
of PU being active and inactive, respectively, with prior
probabilities Pr{#;} = m; and Pr{Ho} = 7. SU;x applies
a binary detection rule to decide whether or not PU is active.
The details of the binary detector are presented in Section
III-A. While being in this phase, SU;x determines the beam
corresponding to the orientation of PU based on the received
signal energy as we describe in Section III-B.

Depending on the outcome of spectrum sensing, SUy stays
in spatial spectrum sensing phase or enters the next phase,
which we refer to as channel training phase with a variable
duration of Ti, = M N, Ty seconds. In this phase, SU;, sends
Ny, training symbols with fixed symbol power P;, per beam
to enable channel estimation at SU,, as we explain in Section

3We note that the distances between users are included in the small scale
fading model [34], i.e., the mean values -y, ss,¥sp encompass distance-
dependent path loss.

IV-A. Based on the results of channel estimation for all beams,
SU,« selects the beam with the largest SUyx—SU, fading gain,
as we describe in Section IV-B. This information as well as
the corresponding beam index are shared with SU;, via the
feedback channel. Next, SU;y enters data transmission phase
with a variable duration of Ty = Tt—T4—T}, seconds. During
this phase, SUyy sends Ng = Ty/Ts Gaussian data symbols
with adaptive symbol power P to SU,, over the selected
strongest beam. SU;, adapts P aiming at maximizing the
achievable rates, subject to ATPC and AIC as we describe
in Section V. In the following sections, we describe how
SUix operates during spatial spectrum sensing phase, channel
training phase, and data transmission phase.

III. SPATIAL SPECTRUM SENSING PHASE
A. FEigenvalue-Based Detector for Spatial Spectrum Sensing

Let 7/-1\1 and 7/{\() denote the detector outcome, i.e., the detec-
tor finds PU active (spectrum is sensed busy and occupied) and
inactive (spectrum is sensed idle and unoccupied and thus can
be used by SU;, for data transmission), respectively. Suppose
when PU is active, it transmits signal s(¢) with power P,.
Let y,,(n) denote the discrete-time representation of received
signal at m-th sector of SUyy at time instant ¢ = n7;. We
model PU’s transmitted signal s(n) as a zero-mean complex
Gaussian random variable with variance P, and we assume
SUix knows P;,. Since SU¢ collects Ny, samples per beam
during spatial spectrum sensing phase, the hypothesis testing
problem at discrete time instant n for m-th sector is

Ho: Ym(n) = wm(n),
Hit ym(n) = m(n)s(n) + wm(n).

The term w,,(n) is the additive noise at m-th sector of
SUy, antenna and is modeled as w,,(n) ~ CN(0,02). We
assume that ,,(n), s(n) and w,,(n) are mutually inde-
pendent random variables. Since SU;, takes samples of the
received signal for different sectors sequentially (in different
time instants), ¥, (n) and w.,(n) are independent and thus
uncorrelated both in time and space (sector) domains. Under
hypothesis H1, given vy, we have y,,(n) ~ CN(0,02,+02)
where 02, = [¢n]?P,. Under hypothesis Ho, we have
Ym(n) ~ CN(0,03).

Our proposed binary detector uses all the collected samples
from M sectors. To facilitate the signal processing needed for
the binary detection, we define an M X Ng, sample matrix Z =
[z1,...,2nN.], where the first row of Z is the Ny, samples
collected from the first sector, the second row of Z is the Ny,
samples collected from the second sector, and so forth. Given
our assumptions, the columns of Z are orthogonal under both
hypotheses, that is

E{Zizf”‘[o} = 0,
for i # j,

where E{-} is the statistical expectation operator and have the
below covariance matrices

Ty =E{z;z'[Ho} = 021,
Iy =E{z;z}'[Hi, ¢} = Popp™ + 021y,

3)

E{zizﬂ’}{l} = O,
ivj:]-w”aNse 4

(5a)
(5b)



where vector 1 :iwl, W, ..., M]T Therefore the sample
covariance matrix R becomes R = - ZZ" . Let f (Z|Ho)
and f(Z|H1,v) denote the probablhty distribution function
(pdf) of Z under Hy and H; (given ), respectively. These
pdf expressions are

H
tr(ZZ )} | 6a)

1
f(Z|Ho)= (702)Nea exp{ 2

1 tr(0y ' ZZ")
6b
mNea det(I'y ) Nee eXp{ —02 , (6b)

(2, y) =
where Noq = M N.. The optimal detector would compare the
logarithm of likelihood ratio (LLR) against a threshold 7 to
detect the PU’s activity as below

f2[H, %) > 7

F(@ZHo) = Ho"
In the absence of the knowledge of the fading coefficients
vector 1, SU;y obtains the generalized likelihood ratio test
(GLRT) [36]-[40] which uses the maximum likelihood (ML)
estimate of v under H;. Let £4(Z) = In f(Z|H1,v). To
find the maximum of £;(Z) with respect to 1, we take the
derivative of £1(Z) with respect to ¢ and solve %El (Z)=0
for 1. The obtained solution is the ML estimate of 2.
Substituting this solution into (7) and after some mathe-
matical manipulation, we reach the following decision rule
Augs = Ha
o2 rH
maximum eigenvalue of R, and 7 is the threshold. For large
Nge, T under H is distributed as Tracy-Widom distribution
of order 2 [39, Lemma 1] and the probability of false alarm
Pro = Pr(Hy[Ho) = Pr(T > n|Ho) is

LLR = In 7)

7 [39], where T is the test statistics, Amax iS the

*0sen
Py, =1— Frw2 (777) ; 3
where Frw» () is the commutative distribution function (CDF)
of Tracy-Widom distribution of order 2 and 0y, and oge, in
(8) are given below

fren = (14 f\‘f)Q %)
o= e (B (e A) o

For large Ng, T under H; is Gaussian distributed
[39,ALemma 2] and the probability of detection Py =
Pr(H1|H1) = Pr(T > n|H4) is [39], [40]

n Nse M-1
Py = VoTse ~v/Nee |, 10
d Q <1+5S€H 6senVNse > ( )

. The average detection probability Pgq

P,
where dgen = M’H

can be computed by averaging (10) over vector v, Py =
Eq{Pq}. For a given Py, we can numerically find 7 and obtain
P, using (8). We can also compute the probabilities of events
H() and 7‘[1 as WQ—PF{H(]} = fo+ 51 and 7 —Pr{’Hl} =

1 — 7, respectively, where
ﬁO = Pr{’Ho,ﬁo} = 7T'0(1 - ?fa)7
ﬁl - Pr{Hl,Ho} = 7T1(1 —?d).

(11a)
(11b)

B. Determining the Beam Corresponding to PU Direction

During spatial spectrum sensing phase when the spectrum
is sensed busy, SUyy determines the beam corresponding to
the direction of PU based on the received signal energy. Let
€m be the energy of received signal at m-th beam. We have

mNge

1
aRE P

n=14(m—1)Nge

ym(n)|2.

12)

SU,x determines the beam with the largest amount of received
energy mpy; = arg max{e,, } among all beams. For large N,
we invoke central limit theorem (CLT) to approximate &,,’s
as Gaussian random variables under both hypotheses. Thus,
under H,y we approximate ¢, as a Gaussian with distribution

~ N(02,0% /Ng). Similarly, under H;, given ¢py we
appr0x1mate €m as another Gaussian with distribution &,,, ~
N(Qm,afmml), where the mean ¢, = VP, pm(dpu) + 02,

and the variance o? is given below
Em.‘Hl

[Ué + 3P p2,(pu) + 2020 Pyy pm(dpu) |-

13)
We note that, there is a non-zero error probability when
SUix determines the beam index mpy, i.e., it is possible that
mpy s not the true beam index corresponding to PU direction.

02 *71
m|H1 T
I Nee

Let A, ,, represent the average error probability of find-
ing the sector index corresponding to PU direction, i.e.,
the probability that m}%; = ¢ while the true PU direction
lies in the angular domain of m-th sector, ¢py € @, =
[27r(m1u3/2)7 27r(m]\;1/2)) for i # m,i,m=1,..., M. To find
Az m we start with finding A; = Pr{mPU = z|q§pU,’H,1}
which is the probability that the index of selected sector is
i, given ¢py and H; (the binary detector in Section III-A
finds PU active). Note that under both hypotheses, ¢,,’s are
independent. Also, under Hy, €,,’s are identically distributed.
Therefore, we have

A= Pr{e; > e |opu, Hi |
Vm, m#i

M
=<1/0 fai|H1(y|¢PU)HFsmU-[l(y‘(bPU)dy

mi
+§0 / fsm"Ho

where f; |3,(x) and F_ |y, (x) are the pdf and CDF expres-
sions of &, under H,,¢ = 0,1 and

I\/Il

Py,

= Pr{HolHi} = "5, (152)
~ P,

= Pr{My|H,} = =2, (15b)
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Fig. 3: Zlﬁm versus the index beam m for ¢345 =20 (a) SNRpy =0dB,
(b) SNRpy =—5dB.

pattern index

Using A;, we find A, ,,, as the following

Bim= [ APr{opuc@n} dopn. (16
PPUED,

Note that ZM is the probability of selecting the correct beam
and A, ,, for i # m is the probability of selecting the incorrect
beam, leading to error probability in beam selection. The
average error probability A ,, versus the index beam m is
shown in Figs. 3a and 3b for SNRpy =+ P,/02 =0, —5dB.
As expected, A1 1 increases and A m,m # 1 decreases as
Ny, increases.

IV. CHANNEL TRAINING PHASE

A. Channel Estimation at SU,«

During this phase, SU;x sends the training vector x; over
all beams to enable channel estimation at SU,.. Without
loss of generality, we assume x; = +/P; 1, where 1 is
an Ny x 1 all-ones vector and P, is given. Let r,, =
[Fm(1),... ,rm(Ntr)]T denote the discrete-time representa-
tion of received training symbols at SU,x from m-th sector
of SUi.. We note that SU;, enters this phaseAWhen the
outcome of the binary detector in Section III-A is (. Due to
error in spatial spectrum sensing, we need to differentiate the
signal model for r,,, under Hy and H;. Assuming the fading
coefficient ,, is unchanged during the frame, we have

HOv,}/—l\O: Tm :Xm V Ptr+Qm
—~ a7
HlvHO: 7n?n = Xm V Ptr‘l‘hsp +qm( )

where ¢,,(n) is the additive noise at SU,x antenna and is
modeled as g, (n) ~ CN(0,02). The linear minimum mean
square error (LMMSE) estimation of fading coefficient x,,
when the spectrum sensing result is Hg can be obtained as
[41]

Xm = xmrmcrji T'm,;, (18a)

Crprm = E{xmm | Ho} = \/Por 0t 1, (18b)
Cr., :E{Tmrﬁﬁ-l\o} = wy E{rmrg\’}-[o,ﬁo}

+ w1 E{rmrg\’}-ll,ﬁo}, (18¢)

where

(1 —Pr)  Bo

wo = Pr{Ho|Ho} = e =2 (19a)
—~ m (1 — P,

Finally, the LMMSE estimation of x,, when the spectrum
sensing result is Hg, given in (18a), reduces to

o Nir
Xm = OV Fix Zt rm(n) (20)
m amptrNtr‘i’Ug +W1012J —1 m ’
where Ug = P,7sp. The estimation error is Xm = Xm — Xm

where X, and Y., are orthogonal random variables [41], and
Xm and X,, are zero mean. Approximating hy,(n)s(n) as a
zero-mean Gaussian random variable with variance og, we
find that the estimate X, is distributed as a Gaussian mixture
random variable [16], [42]. Let @,, and @,,, represent the
variances of ¥, and X,,, respectively. Also, Let a%, and &’
represent the variances of X, under Hg and H1, respectively.
We have

~ 57 agnPtrNtr amPtrNtr+02
(amptrNtr+U(21+Wlog)

(21a)
osztrNr a,,PrNr+U +o
_VAR{XM|H1,H0}— t( et k D) )
(0 P Nix + 02 +w102)
(21b)

Therefore, &, = woal, + wyal,. Also, let a2 and al,
indicate the variances of . Xm under 'Ho and #H;, respectively.

We have

Q% = VAR{Xm|Ho, Ho} = am — 2%,  (22a)
al, = VAR{Xm|H1, Ho} = am — @k, (22b)

Hence, &, = wo a + wy a . For perfect spectrum sensing,
we get wg =1 and wy =0 and Xm becomes Gaussian.

B. Determining the Beam Corresponding to SU,x Direction

SUrX finds %, for all beams Consider the random variable

= |Xm|?. Under hypothesis H,, £ = 0,1, glven ’Ho, Uy, 1S
an exponentlal random variable with mean &, and pdf
¢ L=
o (Y) = a—fneam (23)
Hence, the pdf of 7, can be written as
fon ) =wo £ (y) +wi f5, (y). (24)

SU, obtains 7* = max{7,,} among all beams and the cor-
responding beam index mgy = argmax{7,,} and feeds back
this information to SU. Let ¢ = Pr{miy = Z|’Hg,’Ho}
denote the probability that mSB\— ¢ under hypothesis #H, and
the binary detector outcome is Hg. To characterize \IIZ we need
to find the CDF and pdf of U* given H,, denoted as F%, (-)
and fg*(-), respectively. Note that given our assumptions,
Up’s are independent across sectors, however, not necessarily
identically distributed. Therefore, the CDF F%.(z) can be
written as
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From the CDF in (25), we can find the pdf f%. (y)

v =2 ) 117

m=1
mAi
M ,
= Z (—pm* Z AJl Gm © Y Aim, (26)
m=1
Similar to section III-B, we obtain \I/f as
o M
vi= | . []F ) dy 27)
0 m=1
m#i

Without loss of generality, suppose ¢ = 1. After some
mathematical simplification, \Illi can be expressed as

M—-1

’ 1
U =1+ Z Zm W7 28)
where
m 1 M—-m M-—-m+1
Blu=dz— 2= 3 - Y
i=1  1+7Ji J1=1 jJo=j1+1 Jm=Jm-1+1

Then, we have W; = Pr{mgg = i|Ho} = wo W9 + w; UL,

V. DATA TRANSMISSION PHASE

During this phase, SU;y sends Gaussian data symbols to
SU,x, while data symbol transmission power is adapted based
on the information provided by SU,, through the feedback
channel. In particular, SUy, transmits x(n) ~ CN(0, P) over
the selected beam i = mgp, where P depends on v;, and
symbols are independent and identically distributed (i.i.d). Let
u(n) denote the discrete-time representation of received signal
at SU,, from i-th beam of SU;,. We note that SU;, enters this
phase when the outcome of the binary detector in Section III-A
is Ho. Due to error in spatial spectrum sensing, we need to
distinguish the signal model for u(n) under Hy and H;. We
have

7-[0,’;7-[\0 : x(n) + q(n),
M1, Ho : z(n) + hsp(n) s(n) + q(n),

where q(n) ~ CN(0,02) and are ii.d. Substituting x; =
Xi + X; in (29), we reach at

u(n) = x 29

u(n) = x

new noise 7;,0(n)

Ho, Ho: u(n) =xiz(n) + xi 2(n) + q(n),
HiHo o u(n) = Rix(n) + X 2(n) + hop(n)s(n) + q(n) .

new noise 7;,1(n)
(30)
We obtain an achievable rate expression for a frame by
considering symbol-wise mutual information between channel

input and output over the duration of N3 data symbols as
follows

{1 (ot
[{(

+5 E {I (m(n) u

Ng [ 7i0) )
-2y

n)’a,'Ho,ﬁo)}

n)|’1),7'l1,7/{\o)}], 3D

where Dg = Ty/T; is the fraction of the frame used for
data transmission and the expectations are taken over v =
[D1,...,Un] given ’Ho and ’H@,E = 0 1. To characterize R
in (31) we need to find E{I(z(n ’1/77‘[[,7‘[0)} which
is given in (32). Term 1 in (32) is the mutual information
between z(n) and u(n) when SUJEX transmits over j-th beam,
grven the estimated channel gain 7; = |X;|? and given H,
and 7—[0 Term 2 in (32) is the pdf of estimated channel gain

= |X;|? when j-th beam is the selected strongest beam, and
is characterized by statistics of channel estimation error and
beam selection error, occurred during channel training phase.
Focusing on Term 1 in (32) we have

I (x(n) u n)|ﬁi,7/-1\0,7-[e) :h(w(n){ﬁi,ﬁmﬂz)

—h(z(n) {u(n), i, Ho, He),
(33)

where h(-) is the differential entropy. From now on, we drop
the variable n in z(n) and u(n) for brevity. Consider the first
term in (33). Since x ~ CN(0, P) we have h(:c\z//}, ’7’/—[\0, 'Hg) =
log, (meP). Consider the second term in (33). Due to channel
estimation error, the new noises 7; ¢ in (30) are non-Gaussian
and this term does not have a closed form expression. Hence,
similar to [43]-[45] we employ bounding techniques to find
an upper bound on this term. This term is upper bounded by
the entropy of a Gaussian random variable with the variance
@Z’

ok =B {|je —~E{z |7 Ho, e} [P}, G4

where the expectations are taken over the conditional pdf
of = given wu, VL,H(),H[ In fact, @M is the mean _Square
error (MSE) of the MMSE estimate of x given u, I;, ’Ho, He.
Using minimum varrance property of MMSE estimator, we
have @M < @i’ , where @Z’ is the MSE of the LMMSE
estimate of x given u, VZ,/HQ,,He Combining alL we find

h(z|u, 1/7,7-[0,7-[/) < log,(meOp ) and I(x,u|v;, Ho, He) >

log, (P/©1") where
) Po?
op = 55— 2, =aP+olt Lol (35
U= o T =GP Yol 69
At the end, we obtain the lower bounds as follow
~ A7 /V\,LP
I (x;U‘Vi,HO,HO) 210g2<1+w), (363)
I (3 ulps, Ho Ha ) >1og2(1+~L) (36b)
’ ’ ’ - 1P+O’ +
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-3 / 1 (w(n)s u(n) |75, Ho, 1) 14, 55) T FL. () doy. (32)
. ljj =01 1 m—
J=1 ’ Term 1 m¢j1
: Term 2 !
Substituting equations (32) and (36) in (31) and changing the MM
— 1°A * . PR .
integration variable (replacing v; with y), we reach at bo =By 2 2} V5 Ay P(Kj = ki), (42a)
j=1i=
R> Ry = DqfoRo + DaB1 Ry 37 M M
= A s plk; — Ki), 42b
where 0 517;; 2ui DK ) (42b)
yP M e 00
Ro= 1 1~ )9 y)dy, E{P|H,, H :/ P(y) fi (y)dy. (42¢)
02/ o6 (14 7o) 0 TLFE. )y (P Ty = | PO)A-W)
s We note that spectrum sensing error, PU beam selection error,
yP and SU, beamﬁ selection error are reflected in AIC through
Rl_z log2 1+~1p+0 +02) 7z H variables (31, A ; and W}, respectively. Also, channel

m¢7

We note that the lower bounds in (36) are achieved when
the new noises 7,0, 7m,1 in (30) are regarded as worst-case
Gaussian noise and hence the MMSE and LMMSE of z given
U, U, Ho, He coincide.

So far, we have established a lower bound on the achievable
rates. Next, we characterize AIC and ATPC. Let I, indicate
the maximum allowed interference power imposed on PU. To
satisfy the AIC, we need to have

A E{g}{DdE{p(“éR_“;U)P|H17ﬁO} (38)
M
+Dtr Py Z]E{p K‘PU) |H17H0}:| < IdVv
Jj=1

where Dy, = Ty, /Tt. The first term in (38) is the average in-
terference imposed on PU when SUy transmits data symbols,
and the second term is the average interference imposed on PU
when SUiy sends training symbols for channel estimation at
SU,x. Consider the two conditional expectation terms inside
the bracket in (38). Using the fact that, given H1,Ho, p(-)
and P (which depends on 7*) are independent, and also the
average probabilities derived in (16) and (27) we have

M M
E{p(rér — b)) M1, Ho} =D D Wi Aps i p(k; — ki),

j=11i=1
(39)

—~ M JR—
E{p(,‘i] — Kpy) | 7—[1,7-[0} = ZAWEUJ p(K; — Ki). (40)

i=1
Then, the constraint in (38) can be written as

DqboE{P|H1,Ho} + DuuoPe < Tav, (A1)

where

estimation error influences AIC through variable P. Let P,,
denote the maximum allowed average transmit power of SU¢.
To satisfy the ATPC, we need to have

ﬁODd]E{PW_[OvHO}"‘ﬁlDdE{Pw{lvHO}"‘%ODtrPtr < PaLV7

(43)
where E{P|Ho, Ho} = 1" P(y)f2 (y)dy, and the third term
in (43) accounts for transmit power used for training symbols.
We note that spectrum sensing error affects ATPC through
variables 3y, 81 and 7. Also, channel estimation error affects
ATPC through variable P.

Now that we have characterized a lower bound on the
achievable rates Ry g in (37), AIC in (41), and ATPC in (43),
we summarize how the four error types, namely, spectrum
sensing error, beam detection error, channel estimation error,
and beam selection error, affect these expressions. First, spec-
trum sensing error affects AIC via 31, both ATPC and Ry
via By and $3;. Recall 3y, 31 depend on 7, Ps., Pq (see (11)).
Second, beam detection error affects AIC via A,,,» . and does
not have a direct impact on ATPC and Rpg. Third, channel
estimation error affects both AIC and ATPC via T},, and Rip
via &', Fourth, beam selection error impacts AIC, ATPC and
Rip via P (which depends on the estimation channel gain of
the selected beam).

Having the mathematical expressions for Ryp, AIC, ATPC,
our goal is to allocate transmission resources such that Ryp
is maximized, subject to the aforementioned constraints. To
determine our optimization variables, we need to examine
closely the underlying trade-offs between decreasing average
interference and average transmit powers, decreasing four
types of errors (i.e., spectrum sensing error, beam detection
error, channel estimation error, and beam selection error),
and increasing Rpp. Within a frame with fixed duration
of T} seconds, time is divided between three phases with



variable durations: spatial spectrum sensing with duration Ty,
channel training with duration 7%,, and data transmission with
duration of Ty4. Suppose Ti. increases. On the positive side,
spectrum sensing error, beam detection error, and average
interference imposed on PU decrease (i.e., for ideal spectrum
sensing 51 = 0 in (11) and data transmission from SUgy to
SU,x does not cause interference on PU). On the negative
side, T}, + Ty decreases, that can lead to increasing channel
estimation error (due to decrease in 7%i,) and/or decreasing
Ri g (due to decrease in Ty). Given T, as T}, increases,
channel estimation error in (22) decreases. However, average
interference imposed on PU during transmission of training
symbols increases and Rpp decreases 4, Finally, increasing
data symbol transmission power P increases Ry, however,
it increases average interference and average transmit power.
Based on all these existing trade-offs, we seek the optimal
Tye, Ty, P such that Rpp in (37) is maximized, subject to
AIC and ATPC given in (41) and (43), respectively. In other
words, we are interested in solving the following constrained
optimization problem

(P1) Maximize Rrp

s.t.: 0<Tse <Tt — T
Ty >0, P>0
(41) and (43) are satisfied.

Before delving into the solution of (P1), we have a remark
on how our adopted fading model in Section II-B affects our
derivations in this section.

Remark: Our theoretical framework can be extended to
the more general Nakagami fading model, however, certain
expressions need to be re-derived. In particular, Pq = Eqy{ P4}
in (10) changes, since the P\df of vy changes. Also, the con-
ditional pdf of 7, given {Ho, H,} in (23), and the CDF and
pdf of 7* in (25), (26) change. Consequently, the expressions
for W¢ in (27), E{P|H1,Ho} in (42c), and Ryp in (37) must
be re-calculated.

VI. CONSTRAINED MAXIMIZATION OF RATE LOWER
BOUND

In this section, we address the optimization problem (P1).
Taking the second derivative of Rpp with respect to (w.r.t.)
the optimization variables, we note that (P1) is not jointly
concave over Tg, Ti;, P. However, given Ty, and T}, (P1)
is concave °> w.r.t. P. We propose an iterative method based
on the block coordinate descent (BCD) algorithm to solve
(P1). The underlying principle of the BCD algorithm is that, at
each iteration one variable is optimized, while the remaining
variables are fixed. The iteration continues until it converges
to a stationary point of (P1) [46]. To apply the principle of

4Note that as channel estimation error in (22) decreases, the lower bounds
in (36) increase. However, this logarithmic increase is dominated by the linear
decrease of Dy in (37), which leads into a decrease in Ry,p.

5The cost function of (P1) given in (37) depends on P through the two
logarithms, that can be viewed, in terms of P, as (1 + b;+c), where a, b, ¢
are positive. Since the arguments of these logarithms are concave, Ry p is
also concave w.r.t. P.
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Fig. 4: The optimized P obtained from (45a) versus U* (and c) for Pay =
2dB.

the BCD algorithm to (P1), we consider the following three
steps.

e Step (i): given Ty, T}, we optimize P using the La-
grangian method. The Lagrangian is

L = —Rip + p[LHS of (41) — I,y| + A[LHS of (43) — Py, ],

(44)
in which LHS stands for left-hand side, A and p are the
nonnegative Lagrange multipliers, associated with the ATPC
and AIC, respectively. Therefore, the optimal P that mini-
mizes (44) is the solution to the Karush-Kuhn-Tucker (KKT)
optimality necessary and sufficient conditions. The KKT con-
ditions are the first derivatives of £ w.r.t. P, u, A being equal
to zero, i.e., 0L/OP = 0,0L/0u = 0,0L/0\ = 0. We have

1~ Ny o2+ a?) L)
“In(2) Z;ﬁéz o2 ,(yP+a2,,) HFp(y)

=1 Ni,e m=1

M
A B8 () + Bufd )] + bof3 () = 0, (45w
" ‘LHS of (41) = Toy| = 0, (45b)
A ‘LHS of (43) — Po,| = 0. (45¢)

The closed-form analytical solution for (45) cannot be found.
Hence, we solve these equations numerically for every re-
alization of 7*, via the following iterative method. We first
initialize the Lagrangian multipliers p and A and then find
P using (45a), and verify that it satisfies (45b), (45c). Next,
we update p and A using the subgradient method. Using the
updated p and A\, we find P again using (45a). We repeat
this procedure until ;z and A converge (i.e., a pre-determined
stopping criterion is met).

e Step (ii): given P and T}, we optimize Ty.. The optimal
Ts is the solution of the equation OR; /0Ty = 0. In
Appendix A, we show that this equation has one solution in
the interval (0,7t — T%;). This solution can be found using
numerical search methods (e.g., bisection method).

e Step (iii): given P and T, we optimize Ti,, via solving
OR1p /0T, = 0. In Appendix B, we show that this equation
has one solution in the interval (0,7t — Ty.), which can
be found numerically using search methods (e.g., bisection
method).



TABLE II: Pr(0* > ¢myp«) in terms of ¢, given mp« = 0.1484.

[c [ Pr(@* >cmpx) |
4 3.01 x 10~3
8 7.04 x 10~6
12 | 1.54 x 10~8
16 | 4.87 x 1011

To gain an insight on the solution of (P1), we look into
the behavior of the optimized P versus the realizations of the
estimated channel gain 7*. Fig. 4 illustrates the optimized P
versus 7* (and ¢, where 7* = cmgp~ and mgp- is the mean of
v*) for I, = —15.5, —14 dB and other simulation parameters
given in Table III. For these parameters mp- = 0.1484. We
observe that the optimized P for very small * (when U* is
smaller than a cut-off threshold ( = 3.5mgp~) is zero. As U*
increases the optimized P increases gradually until it reaches
a maximum value. As U* increases further, the optimized P
decreases, until it reaches a minimum value for very large *
(when 7* > 85 mgp~), not shown in the figure. Comparing the
curves for I,, = —15.5dB and I,, = —14dB, we note that
the optimized P decays faster (after it reaches its maximum
value) for lower I,,. Moreover, the cut-off threshold ¢ is lower
for higher I,,. The behavior of the optimized P versus 7*
is different from our intuitive expectation that expects to see
the optimized P increases monotonically as 7* increases. We
explore this by examining the optimized P, which satisfies
(45a).

Although for general M the optimized P does not have a
closed form expression, for M = 1 and under a simplifying
assumption® it can approximated as follows:

+
P {Fzﬁ} ; (46)
F= BoW (") + 51 202407
1n(2) [)\(ﬂow(ﬁ*)“"ﬂl)“"ﬂbo} o )
T:Fz—i ‘73;(034-0;2))_ (BoW (0%)+ 1) 02+ pro?
v* *

In(2) [ A(BoW (%) +B1) + pbo |
where W (7*) = fO.(0*)/fL (") = at/a® ¢ ¥ (G —a1),
Considering (21) we realize that @° < &@'. This implies as "
increases, W (v*) and Y decrease. However, the behavior of
F changes, i.e., F' increases until it reaches a maximum value.
As U* increases further, F' decreases. Considering (46) we note
that the behavior of P (in terms of 7*) is dominated by the
behavior of F'. In the ideal scenario when there is no channel
estimation error, we have a° = a! = o and W (7*) = 1,
F monotonically increases and Y deceases, i.e., P in (46)
monotonically increases as U* increases, which is what we
intuitively expect.

The optimized P we discussed so far requires solving (45)
several times for each realization of 7*. Integrating the insights

SWe assume that the optimized Tk is large enough such that &P + og ~~
0(21. This assumption allows us to approximate (45a) for M = 1 as a quadratic

polynomial in P (originally a polynomial of degree 4 in P) and find a closed-
form expression for P.

we have gained into how this optimized P varies in terms of
v*, we propose two transmit power control schemes that are
simpler to implement and yield achievable rate lower bounds
that are very close to the maximized Ryp values in (Pl).
Since Pr(7* > ¢mg~) is very small for ¢ > 8 (see Table II),
we focus on the regime when U* < 8myp+ and develop two
schemes, dubbed here Scheme 1 and Scheme 2, that mimic
the behavior of the optimized P in this regime.

A. Scheme 1

For Scheme 1, when the spectrum is sensed idle, SUy sends
data to SU,, over the selected sector i = mgp according to
the following rule:

I, if

Py = .
51 0, if
i.e., when * is less than a cut-off threshold (, SUy, remains
silent, when 7* is larger than (;, SUy, lets its transmit power
be equal to constant II;. The parameter II; can be found in

terms of Ty, T},, (1, via enforcing AIC in (41) and ATPC in
(43) as the following:

1 . PaLv - ;T\()DtrPtr Tav_u()DtrPtr
Hl = — Imin 1 Y, s I .
Ze:o 54(1_F9*(<1)) bO(l_Ff/* (Cl))(48

Dq

Let Rg, denote the lower bound on the achievable rates
when SU;, adopts the power control scheme in (47). We
find Rg, expression by substituting Ps, in (37) and taking
expectation w.r.t. 7*. This expression is given in (49) where
SNR = T, SNR! = b and Ei() is the
exponential iﬁtegral. With this tflans(ﬁlitl)power scheme, we
consider a modified problem to (P1), where the lower bound
Rg, in (49) is maximized (subject to the same constraints)
and the optimization variables are Tge, Tt,, (1. To solve this
modified problem, we use an iterative method based on the
BCD algorithm and implement the following three steps: Step
(i), given Tg., Ty, we optimize (;, via maximizing Rg,, using
bisection search method. Step (ii), given (;, T},, we optimize
Tse, using bisection search method. Step (iii), given (y, T,
we optimize 7%, using bisection search method. In Section
VII we numerically compare the maximized Ry, in (P1) and
the maximized Rg, .

v > (G

< G )

B. Scheme 2

For Scheme 2, when the spectrum is sensed idle, SU;, sends
data symbols to SU,, over the selected sector i = mgg
according to the following rule:

(1 - &), if
PSQZ{O( ) if

Different from Scheme 1, in the Scheme 2 when 7* exceeds
the cut-off threshold (2, SUiy transmits at a variable power.
The power level increases as ©* increases, until it reaches
its maximum value of Ily, ie., limp«_, oo Ps, = Ily. The

vt 2 G

Ut < (o (50)
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parameter Il can be found in terms of Tge,Tt,, (2, via
enforcing AIC in (41) and ATPC in (43) as the following:

i min { Pav - 7T'Ol)tlrptr TaV_UODtrPtr }
Da im0 Be[1-G4(()] T bo[1-G(¢2)] (5’1

where G¢(¢2) = F£. (C2) + (T*(¢2) and

2 =

oo gl
(2 Y

M
=D (™Y AL Ei(=GAj, ). (52)
m=1

Let Rg, represent the lower bound on the achievable rates
when SUi, adopts the power control scheme in (50). We find
Rg, by substituting Ps, in (37) and taking expectation w.r.t.
v*. With this transmit power scheme, we consider a modified
problem to (P1), where the lower bound Rg, is maximized
(subject to the same constraints) and the optimization variables
are Tye, Ty, (2. To solve this modified problem, we use an
iterative method based on the BCD algorithm and implement
the following three steps: Step (i), given T}, Ty, we optimize
(2, via maximizing Rs,, using bisection search method. Step
(i), given (s, T}., we optimize Ty, using bisection search
method. Step (iii), given (o, Tye, we optimize Tt,, using bisec-
tion search method. In Section VII we numerically compare
the maximized Ry p in (P1) and the maximized Rg,. Note that
the closed-form expression for g, cannot be obtained.

T'(¢) ZE{% | 7" > (o, He} =

C. Discussion on Computational Complexity of Proposed Al-
gorithms

In the following, we discuss the computational complexity
of the three proposed algorithms, namely, the first algorithm
in Section VI, Scheme 1 in Section VI-A, and Scheme 2 in
Section VI-B.

The first algorithm consists of three steps. We discuss the
computational complexity of each step. Step (i): given T,
Tir, we find P via solving (45a), (45b), (45¢) numerically.
In particular, noting that y in (45a) is positive, we partition
the real positive line into N, intervals. Given y is in one of
these IV, intervals, we initialize the Lagrangian multipliers s
and A and then solve (45a) for P using bisection method.
The computational complexity of bisection method to provide
an ep-accurate solution for each of these IV, intervals is
O(log(1/€,)) [47], [48]. Hence, the computational complexity
for solving (45a) N, times is O(NV, log(1/€,)). Moving on to
(45b) and (45c), we need to compute LHS of (41) and (43), re-
spectively, which requires calculating the conditional expecta-
tions E{P|H,,Ho} and E{P|Ho, Ho} and integrating over y.
Hence, the computational complexity for computing (45b) and

(45¢) is O(N,). Since N, < N, log(1/¢,), we can neglect the
computational complexity of solving (45b), (45¢), with respect
to that of solving (45a). Hence, the computational complexity
of solving (45), given p and A, is O(N,log(1/ep)). Next,
we update ;4 and A using the subgradient method. Using the
updated ;o and A, we solve (45a) for P again. We repeat this
procedure until both x and A converge. The computational
complexity to get e,-convergence for 1 and \ is O(S7), where
S1 = (Nylog(1/ep))/ec. Step (ii): given P and Ti,, we
find T, using bisection search method. The computational
complexity of bisection search method to provide an eg.-
accurate solution is O(S3), where Sy = log(1/ese). Step
(iii): given P and Ty, we find T, using bisection search
method. The computational complexity of bisection search
method to provide an e -accurate solution is O(S3), where
S3 = log(1/et,). At each iteration of Step (iii), we execute
Step (ii) and at each iteration of Step (ii), we execute Step
(i). Hence, the overall computational complexity of the first
algorithm is O(51.5253).

Scheme 1: Similar to the first algorithm, Scheme 1 consists
of three steps. At the first step, given Ty, Tt,, we optimize (;
using bisection search method. The computational complexity
of bisection search method to provide an e;-accurate solution
is O(log(1/ec)). The second and third steps are exactly
the same as Step (ii) and Step (iii) in the first algorithm.
Hence, the overall computational complexity of Scheme 1 is
O(S2531log(1/ec)).

Scheme 2: Similar to the first algorithm, Scheme 2 consists
of three steps. At the first step, given Ty, T}, we optimize (o
using bisection search method. The computational complexity
of bisection search method to provide an e;-accurate solution
is O(log(1/e¢)). The computational complexity of integrating
over y in (37) within each iteration of bisection search method
is O(N,). Hence, the computational complexity for the first
step of Scheme 2 is O(Nylog(1/ec)). The second and third
steps are exactly the same as Step (ii) and Step (iii) in the
first algorithm. Hence, the overall computational complexity
of Scheme 2 is O(N,S2531log(1/¢€c)).

Comparing the computational complexity of these three
schemes, it is clear that Scheme 2 has a higher computational
complexity than that of Scheme 1. Under the assumption
€c = €, = €p, we find that the first scheme has the highest
and Scheme 1 has the lowest computational complexity.

VII. SIMULATION RESULTS

We corroborate our analysis on constrained maximization
of achievable rate lower bounds with Matlab simulations. Our
simulation parameters are given in Table III. We start by
illustrating the the behavior of our proposed power allocation
schemes versus 7*. Fig. 5 shows the optimized P obtained



TABLE III: Simulation Parameters

Parameter | Value [[ Parameter [ Value [[ Parameter | Value |

Ao 0.98 Yes 0.1 02,05 0.5
A1 0.02 Y5 Ysp 0.5 P, 0.5 watts
$3dB 20° 0 0.7 T} 30 ms
o1 —55 Py 0.85 P 2 watts
b2 +55° M 7
,
p /‘b:;;
sl
i
[ /
N
1
2r
1 ===Scheme 1 (Ps,)
e — =Scheme 2 (Ps,)
1 —— Obtained from (45a)
L
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1
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Fig. 5: P versus 0* for Pay = 2dB, oy = —12dB .

by solving (45a) and the two proposed suboptimal schemes
Ps, and Ps, versus U*. We observe that Ps, and Ps, mimic
the behavior of the optimized P. Furthermore, for the cut-off
thresholds we have ( < (1 < (o.

Next, we explore the effect of spatial spectrum sensing
duration T,. on the achievable rate lower bounds of our
system. Fig. 6a shows the maximized Rip,Rs, and Rg,
(which we refer in the figures to as ‘“Rate”) versus 7.
To plot this figure, we maximize the bounds w.r.t. only T3,
and P, subject to ATPC and AIC. We note that for all
T. values we have Rig > Rs, > Rs,. We observe that
the achievable rates always have a maximum in the interval
(0, Tt — Tt,). For the simulation parameters in Table III the
optimized Ty, = 0.75ms = 2.5% T¢. Also, Scheme 2 yields
a higher achievable rate than that of Scheme 1, because its
corresponding power Ps, fits better to the optimized power P
obtained from solving (45a). The achievable rate Rg, is very
close to Rrp and we do not have a significant performance
loss if we choose the simple transmit power control scheme
in (50).

To investigate the effect of channel training duration T,
on the achievable rate lower bounds, we plot Fig. 6b which
illustrates the maximized Rip, Rs, and Rg, versus Ti,. To
plot this figure, we maximize the bounds w.rt. only Ti.
and P, subject to ATPC and AIC. For all Ti, values we
have Rig > Rs, > Rg,. We observe that the achievable
rates always have a maximum in the interval (0,7¢ — Tg).
For the simulation parameters in Table III the optimized
Ty = 0.67ms = 2.23% T;. Comparing Fig. 6b and Fig. 6a,
we notice that the achievable rates are more sensitive to the
variations of Ti, compared to that of T.. To be more specific,
considering Fig. 6a and Fig. 6b, suppose we choose T and Tt,
values that are different from their corresponding maximum

0.41
—— maximized Rpp
— =—maximized Rs,
04L =—==maximized Rs, | |
§
5 039
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=2
20384/
5 1 *~.. ~
& i Sl ~ 4
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Fig. 6: (a) Rate versus Tse, (b) Rate versus Tiy for Pay = 2dB, Tay =
—15dB.

values by 20%, i.e., ATy, = 20%, AT}, = 20%. Then

ARLB/ATtr > ARLB/ATSQ,
ARSQ/ATH > Ang/ATsev
ARSI/AT“ > ARSl/ATse-

These indicate that proper allocation of 7%, is more important
than that of T, for providing higher achievable rates in our
system.

To explore the effects of the number of beams M and
1., on the achievable rate lower bounds, Fig. 7a illustrates
the maximized Rip, Rs,, s, versus I, for M = 7,11
and P,, = 2dB. We observe that as M increases a higher
rate can be achieved. For all M and I,, values we have
Ry > Rs, > Rg,. We realize that as I, increases from
—18dB to —14dB, the achievable rates are monotonically
increasing and the AIC is dominant. However, as I, increases
beyond —14dB, the achievable rates remain unchanged and
the ATPC is dominant. Fig. 7b illustrates the maximized
Rip, Rs,, Rs, versus P,, for M = 7,11 and I,, = —14dB.
The behaviors of the achievable rates in terms of M are the
same as Fig. 7a. We note that as P, increases from —4dB
to 2 dB, the achievable rates are monotonically increasing and
the ATPC is dominant. However, as P,, increases beyond
2dB, the achievable rates remain unchanged and the AIC is
dominant.

We also consider outage probability as another performance
metric to evaluate our system. We define the outage probability
as the probability of SU¢y not transmitting data symbols due
to the weak SU;,-SU,, channel /yvhen the spectrum is sensed
idle, i.e., P,y = Pr {P =0] 7—[0}. This probability can be
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directly obtained using the CDF of 7* evaluated at the cut-off
threshold as the following

Pou =Pr(0* < ([Ho) = woF2 () +wiFL(0),
Pout,s, =Pr(0* < (1|Ho) = woFp- (¢1) + wiFp. (C1),
Pout,s, =Pr(0* < (2| Ho) = woFo (C2) + w1 F (C2).

Fig. 8 illustrates Poyt, Pout,S,, Pout,s, Versus Pay for In, =
—8dB. We observe that as P,, increases the outage proba-
bilities decrease. Moreover, for a given P,, we have P, <
Pout,s, < Pout,s,- This is consistent with Fig. 5 which shows
for a given P, we have ¢ < (i < (. Combined this with the
fact that the CDF Fy.(-) is an increasing function of its argu-
ment, we reach the conclusion that Pyt < Pout,s, < Pout,s,-

—~~

VIII. CONCLUSIONS

We considered an opportunistic CR system consisting of a
PU, SUix, and SU,, where SU¢y is equipped with a RA that

has M beams, and there is an error-free low-rate feedback
channel from SU,4 to SU;x. We proposed a system design for
integrated sector-based spatial spectrum sensing and sector-
based data symbol communication. We studied the entangled
effects of spectrum sensing error, channel estimation error,
and beam detection and beam selection errors (introduced by
the RA), on the system achievable rates. We formulated a
constrained optimization problem, where a lower bound on
the achievable rate of SU;—SU, link is maximized, subject to
ATPC and AIC, with the optimization variables being the dura-
tions of spatial spectrum sensing 7y, and channel training 7%,
as well as data symbol transmission power at SUy. Moreover,
we proposed two alternative power adaptation schemes that are
simpler to implement. We solved the proposed constrained op-
timization problems using iterative methods based on the BCD
algorithm. Our simulation results demonstrate that one can
increase the achievable rates of SUx—SU, link significantly,
via implementing these optimizations, while maintaining the
ATPC and AIC. They also showed that the achievable rates
obtained from employing simple Schemes 1 and 2 are very
close to the one produced by the optimized transmit power.
Our numerical results also showed that between optimizing 7§,
and T},, optimizing the latter has a larger effect on increasing
the achievable rates in our system.

APPENDIX A
SHOWING THAT ORy,5/0T = 0 HAS ONE SOLUTION IN
THE INTERVAL (0, Tt — Tt,)

Let Rig = Cy + C1 where Cy = DygfgRo and C; =
Dyf1Ry. To calculate ORy /0Ty we need the following
derivatives:

9Coy [ D4 9o } _ {—/30 9Bo ]
aTsc _RO 60 aT‘sc +Dd 8T'sc B RO 71{ +Dd a,-Tsc '
oC, [ 9Dq4 9B } _ {—51 I ]
aTse 7R1 61 aTse +Dd aT‘se B Rl Tf +Dd aTse '

Recall 3y = 7o(1 — Pg,) and By = m1(1 — Pgq) in (11). We
assume Py is given, hence 01/0Ts = 0. On the other hand,
Py, in (8) is variable w.r.t. T, and hence we have

850 o f (n_esen) 0 (n_esen>
0T - roJmw Osen 0T Osen

where frw, denotes the pdf of the Tracy-Widom distribution

(53)

of order 2, and, 6scp, 0sen are given in (9). Evaluating gjqo
and ggle when T, — 0 we have
. 0Cy .. =P
Tigo 0T _TliIEO T; Fo
(Tr—T,) ( 9Bo
SRy (im0 = 4
T B (im Ay ) = e 64
Yoo
R
Tligo 0T e 7T11I30 T; Fa
(Ty—Ti) ( . 0p )
+ TRI Tigo aTse < 0. (54b)
=0



BCO 801

Evaluating 57% and when T, — T — T}, we have
im 800 = BOR
ToersTe—Tow 0T TS Th T TP
. . 50)
+ RO (Tse_lg,zril_Ttr Dd) <Tse_1>171;£1_Ttx 8qu < O (Ssa)
=0
0C, . -5
Ty T 0T Tseil%?—nr Ty T
. 51)
+ <TSE—1>1%?—T” Dd) (T—P%I Tor 0T e < 0. (35b)
—————
=0
The inequalities in (54a) and (54b) show that
lim7, 0 %@%B > 0. On the other hand, the inequalities
in (55a) and (55b) show that limp, 7,7, 8};“3 < 0.

Together, these indicate that the equation ORpp/ aTse =0
has one solution in the interval (0,7 — T%,). This solution
can be found using bisection search method.

APPENDIX B
SHOWING THAT ORyp /0T = 0 HAS ONE SOLUTION IN
THE INTERVAL (0, Tt — Ty )

To calculate ORy,5/0Tt, we need the following derivatives:

0Cy { 0Ry 0Dqg ] [ IRy 002, Ro}
= D —_—
o, o [Pagr, tar, fo| =P dz 94, oL Tr )
oCy { OR, 8Dd ] [ OR; 0al, Rl}
D —— .
o, 1 Pagr, Tan, =5 dz  9al, T T
Evaluating BCO and 801 when T, — 0 we have
. aC’O BO (Tf_Tse)
Ao 57 = T (img Bo) + Ao 7=
=0
M ~
8R0 . aao
Z: (Tnﬂo 0al, ) (T{rgo 8Ttr) >0 (56a)
>0 >0
301 ﬂl (Tt —Tse)
Ao oT, = T (o) +
=0
al 1 . oal, )
x Z (Jim, 5 ) (Jim, G7) > 0. so)
>0 >0
Evaluating dCO and § 601 when T, — Tt — Ty, we have
0Cy . —BoRo :
T Ti—Toe DTy _Tn—lle“?—T T; +Fo (Tn—lf%?—neDd)
=0
ORy 9al,
lim - ) .
” (Ttr*)Tf 8010 E)Ttr < 0’ (57a)

. 9c . AR .
Tn—lf%?—ne T}, _Tm-—1>11r"?—Tse T A (Tu—y%?—Twa)
=0
OR; oal,
x (Tt,.alzr"?—ne — oay, BTH) <0. (575
The inequalities in (56a) and (56b) show that

limg,, 0 %I%f > 0. On the other hand, the inequalities

in (57a) and (57b) show that limg, 77, 881%:3 < 0.
Together, these indicate that the equation ORy,5/9T;, = 0 has
one solution in this interval, which can be found numerically
using bisection search method.
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