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Abstract—We consider an opportunistic cognitive radio (CR)
system in which secondary transmitter (SUtx) is equipped with
a reconfigurable antenna (RA). Utilizing the beam steering ca-
pability of the RA, we regard a design framework for integrated
sector-based spectrum sensing and data communication. In this
framework, SUtx senses the spectrum and detects the beam
corresponding to active primary user’s (PU) location. SUtx also
sends training symbols (prior to data symbols), to enable channel
estimation at secondary receiver (SUrx) and selection of the
strongest beam between SUtx–SUrx for data transmission. We
establish a lower bound on the achievable rates of SUtx–
SUrx link, in the presence of spectrum sensing and channel
estimation errors, and errors due to incorrect detection of the
beam corresponding to PU’s location and incorrect selection of
the strongest beam for data transmission. We formulate a novel
constrained optimization problem, aiming at maximizing the
derived achievable rate lower bound subject to average transmit
and interference power constraints. We optimize the durations
of spatial spectrum sensing and channel training as well as data
symbol transmission power. Our numerical results demonstrate
that between optimizing spectrum sensing and channel training
durations, the latter is more important for providing higher
achievable rates.

Index Terms—Achievable rates, beam detection, beam selec-
tion, channel estimation, imperfect spectrum sensing, opportunis-
tic cognitive radio system, optimal and sub-optimal transmit
power, reconfigurable antennas, training and data symbols.

I. INTRODUCTION

A. Literature Review

Cognitive radio (CR) technology improves spectrum utiliza-
tion and fills the spectral holes, via allowing an unlicensed or
secondary user (SU) to access licensed bands in a such way
that its imposed interference on license holder primary users
(PUs) is restricted [1]. CR systems are mainly classified as
underlay CR and opportunistic (or interweave) CR systems.
In underlay CR systems, SUs use a licensed frequency band
simultaneously with PUs, as long as the interference caused
by SUs and imposed on PUs stays below a pre-determined
threshold [1]–[3]. While underlay CR systems do not re-
quire spectrum sensing to detect PUs’ activities, they demand
coordination between PUs and SUs to obtain channel state
information (CSI), that is not always feasible. In opportunistic
CR systems, SUs use a licensed frequency band during a time
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interval, only if that frequency band is not used by PUs. While
opportunistic CR systems do not require coordination between
PUs and SUs to acquire CSI corresponding to SU-PU link (and
hence the system implementation is easier), they necessitate
spectrum sensing to monitor and detect PUs’ activities.

The CR literature mainly assume that SU has access to full
CSI of all links for its operation. However, in practice, SU
has access only to partial CSI, due to several factors including
channel estimation error, mobility of PU or SU, and limitation
of feedback channel. Partial (imperfect) CSI has deteriorating
effects on the fundamental performance limits of CRs and
should not be overlooked. We note that the impact of partial
CSI on the performance of underlay and opportunistic CR
systems are different, due to inherent distinctions between
these two CR systems. For underlay CR systems, several
researchers have studied the impact of imperfect CSI on the
ergodic capacity [4]–[9] and symbol error probability [10]. In
particular, references [4]–[6] focus on investigating the impact
of imperfect CSI of SUtx–PU receiver (PUrx) link on the op-
timal transmit power of SUtx that maximizes the constrained
capacity of SUtx–SUrx link, where SUtx cannot always satisfy
the interference power constraint (due to partial CSI) and has
to reduce its transmit power. The authors in [7], [8] considered
the impact of partial CSI for both SUtx–PUrx and SUtx–
SUrx links on the CR system capacity. Different from [4]–
[8], [9] discussed the trade-off between channel estimation
accuracy and channel estimation duration (time). The authors
in [9] studied the optimal transmit power of SUtx and optimal
channel estimation duration, such that the capacity of SUtx–
SUrx link is maximized, subject to a constraint on interference
power imposed on PUrx.

In opportunistic CR systems, spectrum sensing is necessary
for detecting PUs’ activities and protecting the PUs against
harmful interference. In general, any spectrum sensing (signal
in noise detection) technique is prone to errors, that can be
described as mis-detection or false alarm probability [11], [12].
On the other hand, imperfect CSI of SUtx–SUrx link due to
channel estimation error (even under perfect spectrum sensing)
has negative influence on the link capacity. Imperfect spectrum
sensing exacerbates the negative effect of imperfect CSI on the
link capacity. Hence, for opportunistic CR systems, one needs
to study the combined impacts of imperfect spectrum sensing
and imperfect CSI on the system performance. Such study
presents new challenges, compared with studies that focus on



understanding only the effect of imperfect spectrum sensing,
when CSI is perfect (or vice versa), on the link capacity. To
the best of our knowledge, there are only a few works that
have considered the aforementioned combined effects in their
system performance analysis [13]–[16]. For example in [13]
SUtx estimates the received power from PU during sensing-
estimation time and monitors PU’s activity. If the spectrum is
sensed idle, SUtx with its imperfect CSI of SUtx–SUrx link,
sends data to SUrx with a fixed power. The authors showed
that the constrained capacity of SUtx–SUrx link can be signifi-
cantly enhanced (subject to a constraint on the detection prob-
ability), via optimizing sensing-estimation time. The authors
in [14] considered a delay-sensitive CR system with a different
setup, where after spectrum sensing at SUtx, SUtx transmits
at fixed powers and rates, where these fixed values depend
on the result of spectrum sensing (i.e., the transmit power
and rate corresponding to spectrum being sensed idle are
different from those corresponding to spectrum being sensed
busy). The authors optimized these fixed powers and rates
such that the defined effective capacity is maximized, subject
to average transmit power and buffer length constraints. The
authors in [15] considered a related problem to [14], where
the two data transmit power levels are given and instead two
training power levels as well as training period are optimized
to maximize the achievable rate. The work in [16] considered
different levels of CSI corresponding to SUtx–SUrx and SUtx–
PU links, and studied optimal transmit power levels of SUtx,
such that the capacity of SUtx–SUrx link is maximized, where
the optimized power levels depend on the level of CSI.

In the above cited works SUs are equipped with single
antenna. Multiple antennas and in particular transmit beam-
forming techniques have been utilized to ameliorate the perfor-
mance degradation due to the interference imposed on PUs for
underlay CR systems [17]–[19] and opportunistic CR systems
[20] with perfect CSI of SUtx–SUrx link available at SUtx.
The authors in [21] considered an opportunistic CR system,
where SUtx has a single antenna and SUrx has multiple anten-
nas and applies maximum ratio combining (MRC) technique,
and studied the combined effects of spectrum sensing error
and imperfect CSI of SUtx–SUrx link at SUtx on the system
bit error rate (BER) performance. Optimal spectrum sensing
time, channel estimation time, and SUtx transmit power are
obtained, such that BER is minimized, subject to average
transmit and peak interference power constraints. We note
that the benefits of multi-antenna techniques come at the cost
of requiring an expensive and power-hungry radio frequency
(RF) chain per antenna, which consists of digital-to-analog
converters, filters, mixers, and amplifiers.

Alternatively, reconfigurable antenna (RA) is a low-
complexity and low-cost antenna technology that provides
benefits similar to those of multiple-antenna techniques with
a very low cost hardware, since a RA has only one RF
chain [22]–[24]. RAs enable efficient exploitation of spatial
diversity (via dynamically adjusting radiation pattern and beam
steering/scanning capability) for reliable spectrum sensing and
data transmission in CR systems. They are also capable of
changing their parameters to dynamically adjust their po-
larization, carrier frequency and bandwidth [22], [23], [25].

Utilizing their beam steering capability and low cost hardware
advantage, RAs can pave the path to the next generation
of CR wireless communication systems for a wide range of
applications, including personal communications, emergency-
response, cyber-physical systems, tactical wireless communi-
cations, and 5G wireless systems [26]. For instance, RAs are
employed in [27], [28] to establish directional wireless links,
combat significant path-loss, and reduce the number of RF
chains in mmWave massive MIMO systems. For both underlay
and opportunistic CR systems, RAs are used to increase
signal-to-noise ratio (SNR) for transmission and reception of
directional signals [29], enhance spectrum sensing [29]–[31],
and limit interference to and from PUs [32], [33]. Motivated
by the advantages of RAs, in our study we assume that SUtx is
equipped with an RA that has beam steering capability.

B. Knowledge Gap, Research Questions, and Our Contribu-
tions

To the best of our knowledge, our work is the first to
consider the combined effects of spectrum sensing error and
imperfect CSI of SUtx–SUrx link on the achievable rates
of an opportunistic CR system with a RA at SUtx. In our
opportunistic CR system, SUtx relies on the beam steering
capability of RA to detect the direction of PU’s activity and
also to select the strongest beam for data transmission to SUrx.
We assume SUtx sends training symbols to enable channel
estimation at SUrx, and employs Gaussian input signaling for
transmitting its data symbols to SUrx. Also, SUrx shares its
imperfect CSI of SUtx–SUrx link with SUtx through an error-
free low-rate feedback channel.

Assuming that there are average transmit power constraint
(ATPC) and average interference constraint (AIC), we provide
answers to the following research questions: How does spec-
trum sensing error affect accuracy of detecting the direction of
PU’s activity, estimating SUtx–SUrx channel, and selecting the
strongest beam for data transmission? How do training symbol
transmission and beam detection error (error in obtaining the
true direction of PU’s activity) affect interference imposed on
PU? How do the combined effects of spectrum sensing error
and channel estimation error, as well as beam detection error
and beam selection error (error in finding the true strongest
beam for data communication to SUrx) impact the achievable
rates for reliable communication over SUtx–SUrx link? How
do the trade-offs between spatial spectrum sensing time,
channel training time, data transmission time, training and data
symbol transmission powers affect the achievable rates? How
can we utilize these trade-offs to design transmit power control
strategies, such that the achievable rates subject to ATPC and
AIC are maximized? Our main contributions follow:
1) Given this system model, we establish a lower bound on
the achievable rates of SUtx–SUrx link, in the presence of
both spectrum sensing error and channel estimation error. We
formulate a novel constrained optimization problem, aiming
at maximizing the derived lower bound subject to AIC and
ATPC.
2) Our problem formulation takes into consideration the com-
bined effects of imperfect spectrum sensing and channel esti-
mation as well as the errors due to (i) incorrect detection of the



Fig. 1: Our opportunistic CR system with an M -beam RA at SUtx and omni-
directional antennas at SUrx and PU.

beam corresponding to PU’s location (and its corresponding
effect on average interference imposed on PU) occurred during
spatial spectrum sensing phase, (ii) incorrect selection of the
strongest beam for data transmission from SUtx to SUrx,
occurred during channel training phase. These beam detection
and beam selection errors are introduced by the RA at SUtx.
3) Given a fixed-length frame, we optimize the durations
of spatial spectrum sensing and channel training as well as
data symbol transmission power. Based on the structure of
the optimized transmit power, we propose alternative power
adaptation schemes that are simpler to implement and yield
lower bounds on the achievable rates that are very close to
the one produced by the optimized transmit power.

C. Paper Organization

The remainder of the paper is organized as follows. Section
II explains our system model consisting of three phases:
spatial spectrum sensing phase, channel training phase, and
data transmission phase. Sections III and IV describe spatial
spectrum sensing phase and channel training phase, respec-
tively. Section V discusses data transmission phase, establishes
a lower bound on the achievable rates, and characterizes
ATPC and AIC. Then, it formalizes a constrained optimization
problem with three optimization variables (durations of spatial
spectrum sensing and channel training phases, and data symbol
transmission power), aiming at maximizing the derived lower
bound, subject to ATPC and AIC. Section VI provides solution
to this constrained optimization problem. Section VII presents
our simulation results and Section VIII concludes the paper.

II. SYSTEM MODEL

A. Structure of a RA

We consider a RA which can generate M beampatterns and
these beampatterns cover the angular plane from φ1 to φ2,
i.e., the angular space from φ1 to φ2 is divided into M spatial
sectors or beams1. One can extend this angular space to cover
the entire azimuth plane. The beampattern corresponding to
m-th beam achieves its maximum at angle κm = 2π(m−1)

M

1Throughout this paper, “sector” and “beam” are used interchangeably.

for m = 1, . . . ,M . Fig. 1 shows the beampatterns of a RA
with M = 7 beams. It is noteworthy that the RA can also
reconfigure itself to generate an omni-directional pattern. To
mathematically model the radiation pattern of beams, we adopt
the Gaussian pattern in x−y azimuth plane in terms of angle
φ given by [32]

p(φ) = A1+A0 e
−B

�M(φ)
φ3dB

�2
, M(φ) = mod2π(φ+π)−π,

(1)
where mod2π(φ) denotes the remainder of φ

2π , B = ln(2),
φ3dB is the 3-dB beamwidth, A1 and A0 are two constant
antenna parameters. The radiation pattern of m-th beam at
angle φ is

pm(φ) = p(φ− κm), for m = 1, . . . ,M. (2)

In this paper, we discuss the received or transmitted signal
at m-th beam of SUtx. This implies that, during the signal
reception or transmission, the SUtx’s antenna parameters are
set and tuned such that the beampattern corresponding to m-
th beam is generated. Given the antenna design, we focus on
how the sector-based structure of this RA can be exploited
to enhance the system performance of our opportunistic CR
system, in which SUtx optimizes its sector-based data com-
munication to SUrx according to the results of its sector-based
spectrum sensing.

B. Description of Our Opportunistic CR System

Our opportunistic CR system model is illustrated in Fig. 1,
consisting of a PU and a pair of SUtx and SUrx. We note
that PU in our system model can be a primary transmitter
or receiver. We assume when PU is active it is engaged
in a bidirectional communication with another PU, which is
located far from SUtx and hence its activity does not impact
our analysis. We assume SUtx is equipped with an M -beam
RA (for spatial spectrum sensing, channel training and data
transmission) with the capability of choosing one out of M
sectors for its data transmission to SUrx, while SUrx and
PU use omni-directional antennas. We assume there is an
error-free low-rate feedback channel2 from SUrx to SUtx, to
enable SUtx select the best sector for its data transmission to
SUrx, and to adapt its transmit power according to the SUtx–
SUrx channel information. The direction (orientation) of PU
and SUrx with respect to SUtx are denoted by angles φPU,
and φSR, receptively, where φSR, φPU ∈ (φ1, φ2). Clearly, in
our problem SUtx does not know these directions or angles
(otherwise, the beam selection at SUtx for data transmission
would become trivial).

Let h, hss, hsp denote the fading coefficients of channels
between SUtx and PU, SUtx and SUrx, and SUrx and PU,
respectively, when the RA of SUtx is in omni-directional
mode. We model these fading coefficients as independent
zero mean circularly symmetric complex Gaussian random
variables. Equivalently, g= |h|2, gss = |hss|2 and gsp = |hsp|2
are independent exponentially distributed random variables

2Given a low rate feedback, the error-free feedback channel is a reasonable
assumption [18].
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with mean γ, γss and γsp, respectively3. In our problem we
assume that SUs and PU cannot cooperate, and hence SUs
cannot estimate g and gsp. However, SUtx knows the channel
statistics, i.e., the mean values γ and γsp. Let ψm′ and χm
denote the fading coefficients of channel between m′-th sector
of SUtx and PU, and between m-th sector of SUtx and SUrx,
respectively, when the RA of SUtx is in directional mode. Us-
ing the radiation pattern expression in (2) we can relate ψm′ to
h and χm to hss as ψm′=h

√
pm′(φPU), χm=hss

√
pm(φSR).

We assume the channel gain νm = |χm|2 is an exponentially
distributed random variable with mean αm, and SUtx knows
αm, for all m [32], [35]. For the readers’ convenience, we
have collected the most commonly used symbols in Table I.

TABLE I: Most commonly used symbols.

Symbol Description
M Number of beams
Nse Number of samples used for spatial spectrum sensing
Ntr Number of samples used for channel training
Ptr Power of training symbols
ψm′ Fading coefficient of channel between m′-th beam of

SUtx and PU
χm, χ̂m, χ̃m Fading coefficient of channel between m-th beam of

SUtx and SUrx, LMMSE channel estimate, and its
corresponding estimation error

αm, α̂m, α̃m Variances of χm, χ̂m, χ̃m
m∗PU,m

∗
SR Indices of selected beam for PU and SUrx

ν̂∗ Channel gain of selected beam for data transmission
from SUtx to SUrx

Suppose, SUs employ a frame with a fixed duration of Tf

seconds, depicted in Fig. 2. We assume the SUtx–SUrx channel
remains constant over the frame duration. SUtx first senses the
spectrum and monitors PU’s activity. We refer to this period
as spatial spectrum sensing phase with a variable duration of
Tse = MNseTs seconds, where Ts is the sampling period and
Nse is the number of collected samples during this phase per
beam. Suppose H1 and H0 represent the binary hypotheses
of PU being active and inactive, respectively, with prior
probabilities Pr{H1} = π1 and Pr{H0} = π0. SUtx applies
a binary detection rule to decide whether or not PU is active.
The details of the binary detector are presented in Section
III-A. While being in this phase, SUtx determines the beam
corresponding to the orientation of PU based on the received
signal energy as we describe in Section III-B.

Depending on the outcome of spectrum sensing, SUtx stays
in spatial spectrum sensing phase or enters the next phase,
which we refer to as channel training phase with a variable
duration of Ttr = MNtrTs seconds. In this phase, SUtx sends
Ntr training symbols with fixed symbol power Ptr per beam
to enable channel estimation at SUrx, as we explain in Section

3We note that the distances between users are included in the small scale
fading model [34], i.e., the mean values γ, γss, γsp encompass distance-
dependent path loss.

IV-A. Based on the results of channel estimation for all beams,
SUrx selects the beam with the largest SUtx–SUrx fading gain,
as we describe in Section IV-B. This information as well as
the corresponding beam index are shared with SUtx via the
feedback channel. Next, SUtx enters data transmission phase
with a variable duration of Td = Tf−Tse−Ttr seconds. During
this phase, SUtx sends Nd = Td/Ts Gaussian data symbols
with adaptive symbol power P to SUrx over the selected
strongest beam. SUtx adapts P aiming at maximizing the
achievable rates, subject to ATPC and AIC as we describe
in Section V. In the following sections, we describe how
SUtx operates during spatial spectrum sensing phase, channel
training phase, and data transmission phase.

III. SPATIAL SPECTRUM SENSING PHASE

A. Eigenvalue-Based Detector for Spatial Spectrum Sensing

Let ÒH1 and ÒH0 denote the detector outcome, i.e., the detec-
tor finds PU active (spectrum is sensed busy and occupied) and
inactive (spectrum is sensed idle and unoccupied and thus can
be used by SUtx for data transmission), respectively. Suppose
when PU is active, it transmits signal s(t) with power Pp.
Let ym(n) denote the discrete-time representation of received
signal at m-th sector of SUtx at time instant t = nTs. We
model PU’s transmitted signal s(n) as a zero-mean complex
Gaussian random variable with variance Pp and we assume
SUtx knows Pp. Since SUtx collects Nse samples per beam
during spatial spectrum sensing phase, the hypothesis testing
problem at discrete time instant n for m-th sector is

H0 : ym(n) = wm(n),

H1 : ym(n) = ψm(n)s(n) + wm(n).
(3)

The term wm(n) is the additive noise at m-th sector of
SUtx antenna and is modeled as wm(n) ∼ CN (0, σ2

w). We
assume that ψm(n), s(n) and wm(n) are mutually inde-
pendent random variables. Since SUtx takes samples of the
received signal for different sectors sequentially (in different
time instants), ψm(n) and wm(n) are independent and thus
uncorrelated both in time and space (sector) domains. Under
hypothesis H1, given ψm, we have ym(n) ∼ CN (0, σ2

m+σ2
w)

where σ2
m = |ψm|2Pp. Under hypothesis H0, we have

ym(n) ∼ CN (0, σ2
w).

Our proposed binary detector uses all the collected samples
from M sectors. To facilitate the signal processing needed for
the binary detection, we define an M×Nse sample matrix Z =
[z1, . . . , zNse ], where the first row of Z is the Nse samples
collected from the first sector, the second row of Z is the Nse

samples collected from the second sector, and so forth. Given
our assumptions, the columns of Z are orthogonal under both
hypotheses, that is

E
{
ziz

H
j |H0

}
= 0, E

{
ziz

H
j |H1

}
= 0,

for i 6= j, i, j = 1, . . . , Nse (4)

where E{·} is the statistical expectation operator and have the
below covariance matrices

Γ0 =E
{
zjz

H
j |H0

}
= σ2

wIM , (5a)

Γ1 =E
{
zjz

H
j |H1,ψ

}
= Ppψψ

H + σ2
wIM , (5b)



where vector ψ =
[
ψ1, ψ2, . . . , ψM

]T
. Therefore the sample

covariance matrix ÒR becomes ÒR = 1
Nse
ZZH . Let f(Z|H0)

and f(Z|H1,ψ) denote the probability distribution function
(pdf) of Z under H0 and H1 (given ψ), respectively. These
pdf expressions are

f(Z|H0)=
1

(πσ2
w)Neq

exp

¨
tr(ZZH)

−σ2
w

«
, (6a)

f(Z|H1,ψ)=
1

πNeq det(Γ1)Nse
exp

¨
tr(Γ−1

1 ZZH)

−σ2
w

«
, (6b)

where Neq = MNse. The optimal detector would compare the
logarithm of likelihood ratio (LLR) against a threshold η0 to
detect the PU’s activity as below

LLR = ln
f(Z|H1,ψ)

f(Z|H0)
R
ÒH1ÒH0

η0. (7)

In the absence of the knowledge of the fading coefficients
vector ψ, SUtx obtains the generalized likelihood ratio test
(GLRT) [36]–[40] which uses the maximum likelihood (ML)
estimate of ψ under H1. Let L1(Z) = ln f(Z|H1,ψ). To
find the maximum of L1(Z) with respect to ψ, we take the
derivative of L1(Z) with respect to ψ and solve ∂

∂ψL1(Z) = 0
for ψ. The obtained solution is the ML estimate of ψ.
Substituting this solution into (7) and after some mathe-
matical manipulation, we reach the following decision rule

T = λmax
σ2
w

R
ÒH1

ÒH0

η [39], where T is the test statistics, λmax is the

maximum eigenvalue of ÒR, and η is the threshold. For large
Nse, T under H0 is distributed as Tracy-Widom distribution
of order 2 [39, Lemma 1] and the probability of false alarm
Pfa = Pr(ÒH1|H0) = Pr(T > η|H0) is

Pfa = 1− FTW2

�
η−θsen

σsen

�
, (8)

where FTW2(·) is the commutative distribution function (CDF)
of Tracy-Widom distribution of order 2 and θsen and σsen in
(8) are given below

θsen =

�
1 +

Ê
M

Nse

�2

, (9a)

σsen =
1√
Nse

�
1+

Ê
M

Nse

��
1√
Nse

+
1√
M

� 1
3

. (9b)

For large Nse, T under H1 is Gaussian distributed
[39, Lemma 2] and the probability of detection Pd =
Pr(ÒH1|H1) = Pr(T > η|H1) is [39], [40]

Pd = Q

�
η
√
Nse

1+δsen
− M−1

δsen

√
Nse

−
√
Nse

�
, (10)

where δsen =
Pp‖ψ‖2
σ2
w

. The average detection probability P d

can be computed by averaging (10) over vector ψ, P d =
Eψ{Pd}. For a given P d, we can numerically find η and obtain
P fa using (8). We can also compute the probabilities of eventsÒH0 and ÒH1 as π̂0 = Pr{ÒH0} = β0 + β1 and π̂1 = Pr{ÒH1} =

1− π̂0, respectively, where

β0 = Pr{H0, ÒH0} = π0(1− P fa), (11a)

β1 = Pr{H1, ÒH0} = π1(1− P d). (11b)

B. Determining the Beam Corresponding to PU Direction

During spatial spectrum sensing phase when the spectrum
is sensed busy, SUtx determines the beam corresponding to
the direction of PU based on the received signal energy. Let
εm be the energy of received signal at m-th beam. We have

εm =
1

Nse

mNse∑
n=1+(m−1)Nse

∣∣ym(n)
∣∣2. (12)

SUtx determines the beam with the largest amount of received
energy m∗PU = arg max{εm} among all beams. For large Nse,
we invoke central limit theorem (CLT) to approximate εm’s
as Gaussian random variables under both hypotheses. Thus,
under H0 we approximate εm as a Gaussian with distribution
εm ∼ N (σ2

w, σ
4
w/Nse). Similarly, under H1, given φPU we

approximate εm as another Gaussian with distribution εm ∼
N (%m, σ

2
εm|H1

), where the mean %m = γPp pm(φPU) + σ2
w,

and the variance σ2
εm|H1

is given below

σ2
εm|H1

=
1

Nse

[
σ4

w + 3P 2
pγ

2 p2
m(φPU) + 2σ2

wPpγ pm(φPU)
]
.

(13)
We note that, there is a non-zero error probability when
SUtx determines the beam index m∗PU, i.e., it is possible that
m∗PU is not the true beam index corresponding to PU direction.

Let ∆i,m represent the average error probability of find-
ing the sector index corresponding to PU direction, i.e.,
the probability that m∗PU = i while the true PU direction
lies in the angular domain of m-th sector, φPU ∈ Φm =[ 2π(m−3/2)

M , 2π(m−1/2)
M

)
, for i 6= m, i,m = 1, . . . ,M . To find

∆i,m we start with finding ∆i = Pr{m∗PU = i|φPU, ÒH1},
which is the probability that the index of selected sector is
i, given φPU and ÒH1 (the binary detector in Section III-A
finds PU active). Note that under both hypotheses, εm’s are
independent. Also, under H0, εm’s are identically distributed.
Therefore, we have

∆i = Pr
{
εi > εm
∀m,m6=i

∣∣φPU, ÒH1

}
= ς1

∫ ∞
0

fεi|H1

(
y|φPU

) M∏
m=1
m6=i

Fεm|H1

(
y|φPU

)
dy

+ ς0

∫ ∞
0

fεm|H0

(
y
)
FM−1
εm|H0

(
y
)
dy (14)

where fεm|H`(x) and Fεm|H`(x) are the pdf and CDF expres-
sions of εm under H`, ` = 0, 1 and

ς0 = Pr{H0|ÒH1} =
π0P fa

π̂1
, (15a)

ς1 = Pr{H1|ÒH1} =
π1P d

π̂1
. (15b)
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Fig. 3: ∆1,m versus the index beam m for φ3dB =20° (a) SNRPU =0 dB,
(b) SNRPU =−5 dB.

Using ∆i, we find ∆i,m as the following

∆i,m =

∫
φPU∈Φm

∆i Pr
{
φPU∈Φm

}
dφPU. (16)

Note that ∆i,i is the probability of selecting the correct beam
and ∆i,m for i 6= m is the probability of selecting the incorrect
beam, leading to error probability in beam selection. The
average error probability ∆1,m versus the index beam m is
shown in Figs. 3a and 3b for SNRPU = γPp/σ

2
w = 0,−5 dB.

As expected, ∆1,1 increases and ∆1,m,m 6= 1 decreases as
Nse increases.

IV. CHANNEL TRAINING PHASE

A. Channel Estimation at SUrx

During this phase, SUtx sends the training vector xt over
all beams to enable channel estimation at SUrx. Without
loss of generality, we assume xt =

√
Ptr 1, where 1 is

an Ntr × 1 all-ones vector and Ptr is given. Let rm =[
rm(1), . . . , rm(Ntr)

]T
denote the discrete-time representa-

tion of received training symbols at SUrx from m-th sector
of SUtx. We note that SUtx enters this phase when the
outcome of the binary detector in Section III-A is ÒH0. Due to
error in spatial spectrum sensing, we need to differentiate the
signal model for rm under H0 and H1. Assuming the fading
coefficient χm is unchanged during the frame, we have

H0, ÒH0 : rm(n) = χm
√
Ptr + qm(n),

H1, ÒH0 : rm(n) = χm
√
Ptr + hsp(n) s(n) + qm(n),

(17)

where qm(n) is the additive noise at SUrx antenna and is
modeled as qm(n) ∼ CN

(
0, σ2

q

)
. The linear minimum mean

square error (LMMSE) estimation of fading coefficient χm
when the spectrum sensing result is ÒH0 can be obtained as
[41]

χ̂m =CχmrmC
−1
rm rm, (18a)

Cχmrm =E{χmrHm|ÒH0} =
√
Ptr αm 1, (18b)

Crm =E
{
rmr

H
m|ÒH0

}
= ω0 E

{
rmr

H
m|H0, ÒH0

}
+ ω1 E

{
rmr

H
m|H1, ÒH0

}
, (18c)

where

ω0 = Pr{H0|ÒH0} =
π0(1− P fa)

π̂0
=
β0

π̂0
, (19a)

ω1 = Pr{H1|ÒH0} =
π1(1− P d)

π̂0
=
β1

π̂0
. (19b)

Finally, the LMMSE estimation of χm when the spectrum
sensing result is ÒH0, given in (18a), reduces to

χ̂m =
αm
√
Ptr

αmPtrNtr + σ2
q + ω1σ2

p

Ntr∑
n=1

rm(n), (20)

where σ2
p = Ppγsp. The estimation error is χ̃m = χm − χ̂m

where χ̂m and χ̃m are orthogonal random variables [41], and
χ̂m and χ̃m are zero mean. Approximating hsp(n)s(n) as a
zero-mean Gaussian random variable with variance σ2

p, we
find that the estimate χ̂m is distributed as a Gaussian mixture
random variable [16], [42]. Let α̂m and α̃m, represent the
variances of χ̂m and χ̃m, respectively. Also, Let α̂0

m and α̂1
m

represent the variances of χ̂m under H0 and H1, respectively.
We have

α̂0
m=VAR{χ̂m|H0, ÒH0}=

α2
mPtrNtr

(
αmPtrNtr+σ2

q

)(
αmPtrNtr+σ2

q+ω1σ2
p

)2 ,

(21a)

α̂1
m=VAR{χ̂m|H1, ÒH0}=

α2
mPtrNtr

(
αmPtrNtr+σ2

q+σ2
p

)(
αmPtrNtr + σ2

q+ω1σ2
p

)2 .

(21b)

Therefore, α̂m = ω0 α̂
0
m + ω1 α̂

1
m. Also, let α̃0

m and α̃1
m

indicate the variances of χ̃m under H0 and H1, respectively.
We have

α̃0
m =VAR{χ̃m|H0, ÒH0} = αm − α̂0

m, (22a)

α̃1
m =VAR{χ̃m|H1, ÒH0} = αm − α̂1

m. (22b)

Hence, α̃m = ω0 α̃
0
m + ω1 α̃

1
m. For perfect spectrum sensing,

we get ω0 = 1 and ω1 = 0 and χ̂m becomes Gaussian.

B. Determining the Beam Corresponding to SUrx Direction

SUrx finds χ̂m for all beams Consider the random variable
ν̂m = |χ̂m|2. Under hypothesis H`, ` = 0, 1, given ÒH0, ν̂m is
an exponential random variable with mean α̂`m and pdf

f `ν̂m(y) =
1

α̂`m
e
−y
Òα`m . (23)

Hence, the pdf of ν̂m can be written as

fν̂m(y) = ω0 f
0
ν̂m

(y) + ω1 f
1
ν̂m

(y). (24)

SUrx obtains ν̂∗ = max{ν̂m} among all beams and the cor-
responding beam index m∗SR = arg max{ν̂m} and feeds back
this information to SUtx. Let Ψ`

i = Pr{m∗SR = i|H`, ÒH0}
denote the probability that m∗SR = i under hypothesis H` and
the binary detector outcome is ÒH0. To characterize Ψ`

i we need
to find the CDF and pdf of ν̂∗ given H`, denoted as F `ν̂∗(·)
and f `ν̂∗(·), respectively. Note that given our assumptions,
ν̂m’s are independent across sectors, however, not necessarily
identically distributed. Therefore, the CDF F `ν̂∗(x) can be
written as



F `ν̂∗(y)=
M∏
m=1

F `ν̂m(y)=1+
M∑
m=1

(−1)m
∑

m
e−yA

`
j1:jm (25)

A`j1:jm =
m∑
i=1

1

α̂`ji
,

∑
m

=
M−m+1∑
j1=1

M−m+2∑
j2=j1+1

· · ·
M∑

jm=jm−1+1

.

From the CDF in (25), we can find the pdf f `ν̂∗(y)

f `ν̂∗(y) =
M∑
i=1

f `ν̂i(y)
M∏
m=1
m6=i

F `ν̂m(y)

=
M∑
m=1

(−1)m+1
∑

m
A`j1:jme

−yA`j1:jm . (26)

Similar to section III-B, we obtain Ψ`
i as

Ψ`
i =

∫ ∞
0

f `ν̂i(y)
M∏
m=1
m6=i

F `ν̂m(y) dy. (27)

Without loss of generality, suppose i = 1. After some
mathematical simplification, Ψ`

1 can be expressed as

Ψ`
1 = 1 +

M−1∑
m=1

(−1)m
∑′

m

1

1 + α̂`1B
`
j1:jm

, (28)

where

B`j1:jm=

m∑
i=1

1

α̂`1+ji

,
∑′

m
=

M−m∑
j1=1

M−m+1∑
j2=j1+1

· · ·
M−1∑

jm=jm−1+1

.

Then, we have Ψi = Pr{m∗SR = i|ÒH0} = ω0 Ψ0
i + ω1 Ψ1

i .

V. DATA TRANSMISSION PHASE

During this phase, SUtx sends Gaussian data symbols to
SUrx, while data symbol transmission power is adapted based
on the information provided by SUrx through the feedback
channel. In particular, SUtx transmits x(n) ∼ CN

(
0, P

)
over

the selected beam i = m∗SR, where P depends on ν̂i, and
symbols are independent and identically distributed (i.i.d). Let
u(n) denote the discrete-time representation of received signal
at SUrx from i-th beam of SUtx. We note that SUtx enters this
phase when the outcome of the binary detector in Section III-A
is ÒH0. Due to error in spatial spectrum sensing, we need to
distinguish the signal model for u(n) under H0 and H1. We
have

H0, ÒH0 : u(n) = χi x(n) + q(n),

H1, ÒH0 : u(n) = χi x(n) + hsp(n) s(n) + q(n),
(29)

where q(n) ∼ CN (0, σ2
q) and are i.i.d. Substituting χi =

χ̂i + χ̃i in (29), we reach at

H0, ÒH0 : u(n) = χ̂i x(n) +

new noise ηi,0(n)

χ̃i x(n) + q(n),

H1, ÒH0 : u(n) = χ̂i x(n) + χ̃i x(n) + hsp(n)s(n) + q(n)

new noise ηi,1(n)

.

(30)
We obtain an achievable rate expression for a frame by
considering symbol-wise mutual information between channel

input and output over the duration of Nd data symbols as
follows

R =
Dd

Nd

Nd∑
n=1

E
¦
I
�
x(n);u(n)

∣∣ν̂, ÒH0

�©
=
Dd

Nd

Nd∑
n=1

�
β0 E

¦
I
�
x(n);u(n)

∣∣ν̂,H0, ÒH0

�©
+ β1 E

¦
I
�
x(n);u(n)

∣∣ν̂,H1, ÒH0

�© �
, (31)

where Dd = Td/Tf is the fraction of the frame used for
data transmission and the expectations are taken over ν̂ =
[ν̂1, . . . , ν̂M ] given ÒH0 and H`, ` = 0, 1. To characterize R
in (31) we need to find E

{
I
(
x(n);u(n)

∣∣ν̂,H`, ÒH0

)}
which

is given in (32). Term 1 in (32) is the mutual information
between x(n) and u(n) when SUtx transmits over j-th beam,
given the estimated channel gain ν̂j = |χ̂j |2, and given H`
and ÒH0. Term 2 in (32) is the pdf of estimated channel gain
ν̂j = |χ̂j |2 when j-th beam is the selected strongest beam, and
is characterized by statistics of channel estimation error and
beam selection error, occurred during channel training phase.
Focusing on Term 1 in (32) we have

I
�
x(n);u(n)

∣∣ν̂i, ÒH0,H`
�

=h
(
x(n)

∣∣ν̂i, ÒH0,H`
)

−h
(
x(n)

∣∣u(n), ν̂i, ÒH0,H`
)
,
(33)

where h(·) is the differential entropy. From now on, we drop
the variable n in x(n) and u(n) for brevity. Consider the first
term in (33). Since x ∼ CN (0, P ) we have h

(
x|ν̂i, ÒH0,H`

)
=

log2(πeP ). Consider the second term in (33). Due to channel
estimation error, the new noises ηi,` in (30) are non-Gaussian
and this term does not have a closed form expression. Hence,
similar to [43]–[45] we employ bounding techniques to find
an upper bound on this term. This term is upper bounded by
the entropy of a Gaussian random variable with the variance
Θi,`

M

Θi,`
M = E

¦∣∣x− E
{
x | ν̂i, ÒH0,H`

}∣∣2© , (34)

where the expectations are taken over the conditional pdf
of x given u, ν̂i, ÒH0,H`. In fact, Θi,`

M is the mean square
error (MSE) of the MMSE estimate of x given u, ν̂i, ÒH0,H`.
Using minimum variance property of MMSE estimator, we
have Θi,`

M ≤ Θi,`
L , where Θi,`

L is the MSE of the LMMSE
estimate of x given u, ν̂i, ÒH0,H`. Combining all, we find
h(x|u, ν̂i, ÒH0,H`) ≤ log2(πeΘi,`

L ) and I(x, u|ν̂i, ÒH0,H`) ≥
log2(P/Θi,`

L ) where

Θi,`
L =

Pσ2
ηi,`

σ2
ηi,`

+ ν̂iP
, σ2

ηi,`
= α̃`iP + σ2

q + `σ2
p. (35)

At the end, we obtain the lower bounds as follow

I
�
x;u

∣∣ν̂i, ÒH0,H0

�
≥ log2

(
1+

ν̂iP

α̃0
iP+σ2

q

)
, (36a)

I
�
x;u

∣∣ν̂i, ÒH0,H1

�
≥ log2

(
1+

ν̂iP

α̃1
iP+σ2

q+σ2
p

)
. (36b)



E
{
I
�
x(n);u(n)

∣∣ν̂,H`, ÒH0

�}
=

∫ ∞
ν̂1=0

I
�
x(n);u(n)

∣∣ν̂1, ÒH0,H`
�
f `ν̂1(ν̂1) Pr

(
v1 > vm for m = 2, ...,M |H`, ÒH0

)
dν̂1

+ . . .

+

∫ ∞
ν̂M=0

I
�
x(n);u(n)

∣∣ν̂M , ÒH0,H`
�
f `ν̂M (ν̂M ) Pr

(
vM > vm for m = 1, ...,M−1|H`, ÒH0

)
dν̂M

=
M∑
j=1

∫ ∞
ν̂j=0

I
�
x(n);u(n)

∣∣ν̂j , ÒH0,H`
�

Term 1

f `ν̂j (ν̂j)
M∏
m=1
m6=j

F `ν̂m(ν̂j)

Term 2

dν̂j . (32)

Substituting equations (32) and (36) in (31) and changing the
integration variable (replacing ν̂j with y), we reach at

R ≥ RLB = Ddβ0R0 +Ddβ1R1 (37)

where

R0 =

M∑
j=1

∫ ∞
0

log2

(
1+

yP

α̃0
jP+σ2

q

)
f0
ν̂j

(y)

M∏
m=1
m6=j

F 0
ν̂m

(y)dy,

R1 =
M∑
j=1

∫ ∞
0

log2

(
1+

yP

α̃1
jP+σ2

q+σ2
p

)
f1
ν̂j

(y)
M∏
m=1
m6=j

F 1
ν̂m

(y)dy.

We note that the lower bounds in (36) are achieved when
the new noises ηm,0, ηm,1 in (30) are regarded as worst-case
Gaussian noise and hence the MMSE and LMMSE of x given
u, ν̂m, ÒH0,H` coincide.

So far, we have established a lower bound on the achievable
rates. Next, we characterize AIC and ATPC. Let Iav indicate
the maximum allowed interference power imposed on PU. To
satisfy the AIC, we need to have

β1 E
{
g
}[
DdE

{
p(κ∗SR−κ∗PU)P |H1, ÒH0

}
(38)

+DtrPtr

M∑
j=1

E
{
p(κj−κ∗PU) |H1, ÒH0

}]
≤ Iav,

where Dtr = Ttr/Tf . The first term in (38) is the average in-
terference imposed on PU when SUtx transmits data symbols,
and the second term is the average interference imposed on PU
when SUtx sends training symbols for channel estimation at
SUrx. Consider the two conditional expectation terms inside
the bracket in (38). Using the fact that, given H1, ÒH0, p(·)
and P (which depends on ν̂∗) are independent, and also the
average probabilities derived in (16) and (27) we have

E
{
p(κ∗SR − κ∗PU)|H1, ÒH0

}
=

M∑
j=1

M∑
i=1

Ψ1
j ∆m∗PU,i

p(κj − κi),

(39)

E
{
p(κj − κ∗PU) |H1, ÒH0

}
=

M∑
i=1

∆m∗PU,i
p(κj − κi). (40)

Then, the constraint in (38) can be written as

Dd b0 E
{
P |H1, ÒH0

}
+Dtru0Ptr ≤ Iav, (41)

where

b0 =β1γ
M∑
j=1

M∑
i=1

Ψ1
j ∆m∗PU,i

p(κj − κi), (42a)

u0 =β1γ
M∑
j=1

M∑
i=1

∆m∗PU,i
p(κj − κi), (42b)

E
{
P |H1, ÒH0

}
=

∫ ∞
0

P (y)f1
ν̂∗(y)dy. (42c)

We note that spectrum sensing error, PU beam selection error,
and SUrx beam selection error are reflected in AIC through
variables β1, ∆m∗PU,i

and Ψ1
j , respectively. Also, channel

estimation error influences AIC through variable P . Let P av

denote the maximum allowed average transmit power of SUtx.
To satisfy the ATPC, we need to have

β0DdE
{
P |H0, ÒH0

}
+β1DdE

{
P |H1, ÒH0

}
+π̂0DtrPtr ≤ P av,

(43)
where E{P |H0, ÒH0} =

∫∞
0
P (y)f0

ν̂∗(y)dy, and the third term
in (43) accounts for transmit power used for training symbols.
We note that spectrum sensing error affects ATPC through
variables β0, β1 and π̂0. Also, channel estimation error affects
ATPC through variable P .

Now that we have characterized a lower bound on the
achievable rates RLB in (37), AIC in (41), and ATPC in (43),
we summarize how the four error types, namely, spectrum
sensing error, beam detection error, channel estimation error,
and beam selection error, affect these expressions. First, spec-
trum sensing error affects AIC via β1, both ATPC and RLB

via β0 and β1. Recall β0, β1 depend on π0, P fa, P d (see (11)).
Second, beam detection error affects AIC via ∆m∗PU,i

and does
not have a direct impact on ATPC and RLB. Third, channel
estimation error affects both AIC and ATPC via Ttr, and RLB

via α̃`m. Fourth, beam selection error impacts AIC, ATPC and
RLB via P (which depends on the estimation channel gain of
the selected beam).

Having the mathematical expressions for RLB, AIC, ATPC,
our goal is to allocate transmission resources such that RLB

is maximized, subject to the aforementioned constraints. To
determine our optimization variables, we need to examine
closely the underlying trade-offs between decreasing average
interference and average transmit powers, decreasing four
types of errors (i.e., spectrum sensing error, beam detection
error, channel estimation error, and beam selection error),
and increasing RLB. Within a frame with fixed duration
of Tf seconds, time is divided between three phases with



variable durations: spatial spectrum sensing with duration Tse,
channel training with duration Ttr, and data transmission with
duration of Td. Suppose Tse increases. On the positive side,
spectrum sensing error, beam detection error, and average
interference imposed on PU decrease (i.e., for ideal spectrum
sensing β1 = 0 in (11) and data transmission from SUtx to
SUrx does not cause interference on PU). On the negative
side, Ttr + Td decreases, that can lead to increasing channel
estimation error (due to decrease in Ttr) and/or decreasing
RLB (due to decrease in Td). Given Tse, as Ttr increases,
channel estimation error in (22) decreases. However, average
interference imposed on PU during transmission of training
symbols increases and RLB decreases 4. Finally, increasing
data symbol transmission power P increases RLB, however,
it increases average interference and average transmit power.
Based on all these existing trade-offs, we seek the optimal
Tse, Ttr, P such that RLB in (37) is maximized, subject to
AIC and ATPC given in (41) and (43), respectively. In other
words, we are interested in solving the following constrained
optimization problem

Maximize
Tse,Ttr,P

RLB(P1)

s.t.: 0 < Tse < Tf − Ttr

Ttr > 0, P ≥ 0

(41) and (43) are satisfied.

Before delving into the solution of (P1), we have a remark
on how our adopted fading model in Section II-B affects our
derivations in this section.

Remark: Our theoretical framework can be extended to
the more general Nakagami fading model, however, certain
expressions need to be re-derived. In particular, P d = Eψ{Pd}
in (10) changes, since the pdf of ψ changes. Also, the con-
ditional pdf of ν̂m given {ÒH0,H`} in (23), and the CDF and
pdf of ν̂∗ in (25), (26) change. Consequently, the expressions
for Ψ`

i in (27), E{P |H1, ÒH0} in (42c), and RLB in (37) must
be re-calculated.

VI. CONSTRAINED MAXIMIZATION OF RATE LOWER
BOUND

In this section, we address the optimization problem (P1).
Taking the second derivative of RLB with respect to (w.r.t.)
the optimization variables, we note that (P1) is not jointly
concave over Tse, Ttr, P . However, given Tse and Ttr, (P1)
is concave 5 w.r.t. P . We propose an iterative method based
on the block coordinate descent (BCD) algorithm to solve
(P1). The underlying principle of the BCD algorithm is that, at
each iteration one variable is optimized, while the remaining
variables are fixed. The iteration continues until it converges
to a stationary point of (P1) [46]. To apply the principle of

4Note that as channel estimation error in (22) decreases, the lower bounds
in (36) increase. However, this logarithmic increase is dominated by the linear
decrease of Dd in (37), which leads into a decrease in RLB.

5The cost function of (P1) given in (37) depends on P through the two
logarithms, that can be viewed, in terms of P , as (1 + aP

bP+c
), where a, b, c

are positive. Since the arguments of these logarithms are concave, RLB is
also concave w.r.t. P .
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Fig. 4: The optimized P obtained from (45a) versus ν̂∗ (and c) for P av =
2 dB.

the BCD algorithm to (P1), we consider the following three
steps.
• Step (i): given Tse, Ttr, we optimize P using the La-

grangian method. The Lagrangian is

L = −RLB +µ
[
LHS of (41)− Iav

]
+λ
[
LHS of (43)−P av

]
,

(44)
in which LHS stands for left-hand side, λ and µ are the
nonnegative Lagrange multipliers, associated with the ATPC
and AIC, respectively. Therefore, the optimal P that mini-
mizes (44) is the solution to the Karush-Kuhn-Tucker (KKT)
optimality necessary and sufficient conditions. The KKT con-
ditions are the first derivatives of L w.r.t. P, µ, λ being equal
to zero, i.e., ∂L/∂P = 0, ∂L/∂µ = 0, ∂L/∂λ = 0. We have

− 1

ln(2)

1∑
`=0

β`

M∑
i=1

y (σ2
q + `σ2

p) f `ν̂i(y)

σ2
ηi,`

(
yP + σ2

ηi,`

) M∏
m=1
m6=i

F `ν̂m(y)

+λ
[
β0f

0
ν̂∗(y) + β1f

1
ν̂∗(y)

]
+ µb0f

1
ν̂∗(y) = 0, (45a)

µ
∣∣∣LHS of (41)− Iav

∣∣ = 0, (45b)

λ
∣∣∣LHS of (43)− P av

∣∣∣ = 0. (45c)

The closed-form analytical solution for (45) cannot be found.
Hence, we solve these equations numerically for every re-
alization of ν̂∗, via the following iterative method. We first
initialize the Lagrangian multipliers µ and λ and then find
P using (45a), and verify that it satisfies (45b), (45c). Next,
we update µ and λ using the subgradient method. Using the
updated µ and λ, we find P again using (45a). We repeat
this procedure until µ and λ converge (i.e., a pre-determined
stopping criterion is met).
• Step (ii): given P and Ttr, we optimize Tse. The optimal

Tse is the solution of the equation ∂RLB/∂Tse = 0. In
Appendix A, we show that this equation has one solution in
the interval (0, Tf − Ttr). This solution can be found using
numerical search methods (e.g., bisection method).
• Step (iii): given P and Tse, we optimize Ttr, via solving

∂RLB/∂Ttr = 0. In Appendix B, we show that this equation
has one solution in the interval (0, Tf − Tse), which can
be found numerically using search methods (e.g., bisection
method).



TABLE II: Pr(ν̂∗ ≥ cmν̂∗ ) in terms of c, given mν̂∗ = 0.1484.

c Pr(ν̂∗ ≥ cmν̂∗ )

4 3.01 × 10−3

8 7.04 × 10−6

12 1.54 × 10−8

16 4.87 × 10−11

To gain an insight on the solution of (P1), we look into
the behavior of the optimized P versus the realizations of the
estimated channel gain ν̂∗. Fig. 4 illustrates the optimized P
versus ν̂∗ (and c, where ν̂∗ = cmν̂∗ and mν̂∗ is the mean of
ν̂∗) for Iav = −15.5,−14 dB and other simulation parameters
given in Table III. For these parameters mν̂∗ = 0.1484. We
observe that the optimized P for very small ν̂∗ (when ν̂∗ is
smaller than a cut-off threshold ζ = 3.5mν̂∗ ) is zero. As ν̂∗

increases the optimized P increases gradually until it reaches
a maximum value. As ν̂∗ increases further, the optimized P
decreases, until it reaches a minimum value for very large ν̂∗

(when ν̂∗ > 85mν̂∗ ), not shown in the figure. Comparing the
curves for Iav = −15.5 dB and Iav = −14 dB, we note that
the optimized P decays faster (after it reaches its maximum
value) for lower Iav. Moreover, the cut-off threshold ζ is lower
for higher Iav. The behavior of the optimized P versus ν̂∗

is different from our intuitive expectation that expects to see
the optimized P increases monotonically as ν̂∗ increases. We
explore this by examining the optimized P , which satisfies
(45a).

Although for general M the optimized P does not have a
closed form expression, for M = 1 and under a simplifying
assumption6 it can approximated as follows:

P ≈
�
F +

√
Υ

2

�+

, (46)

F =
β0W (ν̂∗)+β1

ln(2)
[
λ
(
β0W (ν̂∗)+β1

)
+µb0

] − 2σ2
q+σ2

p

ν̂∗
,

Υ=F 2− 4

ν̂∗

�
σ2

q(σ2
q+σ2

p)

ν̂∗
−

(
β0W (ν̂∗)+β1

)
σ2

q+β1σ
2
p

ln(2)
[
λ(β0W (ν̂∗)+β1)+µb0

]
�
.

where W (ν̂∗) = f0
ν̂∗(ν̂

∗)/f1
ν̂∗(ν̂

∗) = α̂1/α̂0 e−ν̂
∗( 1

Òα0− 1
Òα1 ).

Considering (21) we realize that α̂0 < α̂1. This implies as ν̂∗

increases, W (ν̂∗) and Υ decrease. However, the behavior of
F changes, i.e., F increases until it reaches a maximum value.
As ν̂∗ increases further, F decreases. Considering (46) we note
that the behavior of P (in terms of ν̂∗) is dominated by the
behavior of F . In the ideal scenario when there is no channel
estimation error, we have α̂0 = α̂1 = α and W (ν̂∗) = 1,
F monotonically increases and Υ deceases, i.e., P in (46)
monotonically increases as ν̂∗ increases, which is what we
intuitively expect.

The optimized P we discussed so far requires solving (45)
several times for each realization of ν̂∗. Integrating the insights

6We assume that the optimized Ttr is large enough such that α̃P + σ2
q ≈

σ2
q. This assumption allows us to approximate (45a) for M = 1 as a quadratic

polynomial in P (originally a polynomial of degree 4 in P ) and find a closed-
form expression for P .

we have gained into how this optimized P varies in terms of
ν̂∗, we propose two transmit power control schemes that are
simpler to implement and yield achievable rate lower bounds
that are very close to the maximized RLB values in (P1).
Since Pr(ν̂∗ ≥ cmν̂∗) is very small for c ≥ 8 (see Table II),
we focus on the regime when ν̂∗ < 8mν̂∗ and develop two
schemes, dubbed here Scheme 1 and Scheme 2, that mimic
the behavior of the optimized P in this regime.

A. Scheme 1

For Scheme 1, when the spectrum is sensed idle, SUtx sends
data to SUrx over the selected sector i = m∗SR according to
the following rule:

PS1
=

{
Π1, if ν̂∗ ≥ ζ1
0, if ν̂∗ < ζ1

(47)

i.e., when ν̂∗ is less than a cut-off threshold ζ1, SUtx remains
silent, when ν̂∗ is larger than ζ1, SUtx lets its transmit power
be equal to constant Π1. The parameter Π1 can be found in
terms of Tse, Ttr, ζ1, via enforcing AIC in (41) and ATPC in
(43) as the following:

Π1 =
1

Dd
min

¨
P av − π̂0DtrPtr∑1
`=0 β`

(
1−F `ν̂∗(ζ1)

) , Iav−u0DtrPtr

b0
(
1−F 1

ν̂∗(ζ1)
)«.
(48)

Let RS1 denote the lower bound on the achievable rates
when SUtx adopts the power control scheme in (47). We
find RS1

expression by substituting PS1
in (37) and taking

expectation w.r.t. ν̂∗. This expression is given in (49) where
SNR0

i = Π1

α̂0
i+σ

2
q

, SNR1
i = Π1

α̂1
i+σ

2
q+σ2

p
and Ei(·) is the

exponential integral. With this transmit power scheme, we
consider a modified problem to (P1), where the lower bound
RS1 in (49) is maximized (subject to the same constraints)
and the optimization variables are Tse, Ttr, ζ1. To solve this
modified problem, we use an iterative method based on the
BCD algorithm and implement the following three steps: Step
(i), given Tse, Ttr, we optimize ζ1, via maximizing RS1

, using
bisection search method. Step (ii), given ζ1, Ttr, we optimize
Tse, using bisection search method. Step (iii), given ζ1, Tse,
we optimize Ttr, using bisection search method. In Section
VII we numerically compare the maximized RLB in (P1) and
the maximized RS1

.

B. Scheme 2

For Scheme 2, when the spectrum is sensed idle, SUtx sends
data symbols to SUrx over the selected sector i = m∗SR

according to the following rule:

PS2
=

{
Π2

(
1− ζ2

ν̂∗

)
, if ν̂∗ ≥ ζ2

0, if ν̂∗ < ζ2
(50)

Different from Scheme 1, in the Scheme 2 when ν̂∗ exceeds
the cut-off threshold ζ2, SUtx transmits at a variable power.
The power level increases as ν̂∗ increases, until it reaches
its maximum value of Π2, i.e., limν̂∗→∞ PS2

= Π2. The



RS1
=

Dd

ln(2)

1∑
`=0

β`

M∑
j=1

�
Y
(
α̂`j , SNR`j

)
+

M∑
m=1
m6=j

(−1)m
∑

m
Y
(
d`j,m, SNR`j

)�
(49)

Y (a, b)=

∫ ∞
ζ1

ln(1 + bx)
1

a
e
−x
a dx=e−ζ1/a ln

(
1 + bζ1

)
−e1/ab Ei

(
− ζ1/a− 1/ab

)
, d`j,m=

�
A`k1:km +

1

α̃`j

�−1

.

parameter Π2 can be found in terms of Tse, Ttr, ζ2, via
enforcing AIC in (41) and ATPC in (43) as the following:

Π2 =
1

Dd
min

¨
P av − π̂0DtrPtr∑1
`=0 β`

[
1−G`(ζ2)

] , Iav−u0DtrPtr

b0
[
1−G1(ζ2)

]« ,
(51)

where G`(ζ2) = F `ν̂∗(ζ2) + ζ2T
`(ζ2) and

T `(ζ2) =E
§

1

ν̂∗
∣∣ ν̂∗ ≥ ζ2, H`ª =

∫ ∞
ζ2

f `ν̂∗(y)

y
dy

=

M∑
m=1

(−1)m
∑

m
A`j1:jmEi

(
−ζ2A`j1:jm

)
. (52)

Let RS2 represent the lower bound on the achievable rates
when SUtx adopts the power control scheme in (50). We find
RS2

by substituting PS2
in (37) and taking expectation w.r.t.

ν̂∗. With this transmit power scheme, we consider a modified
problem to (P1), where the lower bound RS2 is maximized
(subject to the same constraints) and the optimization variables
are Tse, Ttr, ζ2. To solve this modified problem, we use an
iterative method based on the BCD algorithm and implement
the following three steps: Step (i), given Ttr, Tse, we optimize
ζ2, via maximizing RS2

, using bisection search method. Step
(ii), given ζ2, Ttr, we optimize Tse, using bisection search
method. Step (iii), given ζ2, Tse, we optimize Ttr, using bisec-
tion search method. In Section VII we numerically compare
the maximized RLB in (P1) and the maximized RS2

. Note that
the closed-form expression for RS2

cannot be obtained.

C. Discussion on Computational Complexity of Proposed Al-
gorithms

In the following, we discuss the computational complexity
of the three proposed algorithms, namely, the first algorithm
in Section VI, Scheme 1 in Section VI-A, and Scheme 2 in
Section VI-B.

The first algorithm consists of three steps. We discuss the
computational complexity of each step. Step (i): given Tse,
Ttr, we find P via solving (45a), (45b), (45c) numerically.
In particular, noting that y in (45a) is positive, we partition
the real positive line into Ny intervals. Given y is in one of
these Ny intervals, we initialize the Lagrangian multipliers µ
and λ and then solve (45a) for P using bisection method.
The computational complexity of bisection method to provide
an εp-accurate solution for each of these Ny intervals is
O(log(1/εp)) [47], [48]. Hence, the computational complexity
for solving (45a) Ny times is O(Ny log(1/εp)). Moving on to
(45b) and (45c), we need to compute LHS of (41) and (43), re-
spectively, which requires calculating the conditional expecta-
tions E{P |H1, ÒH0} and E{P |H0, ÒH0} and integrating over y.
Hence, the computational complexity for computing (45b) and

(45c) is O(Ny). Since Ny � Ny log(1/εp), we can neglect the
computational complexity of solving (45b), (45c), with respect
to that of solving (45a). Hence, the computational complexity
of solving (45), given µ and λ, is O(Ny log(1/εp)). Next,
we update µ and λ using the subgradient method. Using the
updated µ and λ, we solve (45a) for P again. We repeat this
procedure until both µ and λ converge. The computational
complexity to get εL-convergence for µ and λ is O(S1), where
S1 = (Ny log(1/εp))/εL. Step (ii): given P and Ttr, we
find Tse using bisection search method. The computational
complexity of bisection search method to provide an εse-
accurate solution is O(S2), where S2 = log(1/εse). Step
(iii): given P and Tse, we find Ttr using bisection search
method. The computational complexity of bisection search
method to provide an εtr-accurate solution is O(S3), where
S3 = log(1/εtr). At each iteration of Step (iii), we execute
Step (ii) and at each iteration of Step (ii), we execute Step
(i). Hence, the overall computational complexity of the first
algorithm is O(S1S2S3).

Scheme 1: Similar to the first algorithm, Scheme 1 consists
of three steps. At the first step, given Tse, Ttr, we optimize ζ1
using bisection search method. The computational complexity
of bisection search method to provide an εζ-accurate solution
is O(log(1/εζ)). The second and third steps are exactly
the same as Step (ii) and Step (iii) in the first algorithm.
Hence, the overall computational complexity of Scheme 1 is
O(S2S3 log(1/εζ)).

Scheme 2: Similar to the first algorithm, Scheme 2 consists
of three steps. At the first step, given Tse, Ttr, we optimize ζ2
using bisection search method. The computational complexity
of bisection search method to provide an εζ-accurate solution
is O(log(1/εζ)). The computational complexity of integrating
over y in (37) within each iteration of bisection search method
is O(Ny). Hence, the computational complexity for the first
step of Scheme 2 is O(Ny log(1/εζ)). The second and third
steps are exactly the same as Step (ii) and Step (iii) in the
first algorithm. Hence, the overall computational complexity
of Scheme 2 is O(NyS2S3 log(1/εζ)).

Comparing the computational complexity of these three
schemes, it is clear that Scheme 2 has a higher computational
complexity than that of Scheme 1. Under the assumption
εζ = εL = εp, we find that the first scheme has the highest
and Scheme 1 has the lowest computational complexity.

VII. SIMULATION RESULTS

We corroborate our analysis on constrained maximization
of achievable rate lower bounds with Matlab simulations. Our
simulation parameters are given in Table III. We start by
illustrating the the behavior of our proposed power allocation
schemes versus ν̂∗. Fig. 5 shows the optimized P obtained



TABLE III: Simulation Parameters

Parameter Value Parameter Value Parameter Value
A0 0.98 γss 0.1 σ2

w, σ
2
q 0.5

A1 0.02 γ, γsp 0.5 Pp 0.5 watts
φ3dB 20° π0 0.7 Tf 30 ms
φ1 −55° Pd 0.85 Ptr 2 watts
φ2 +55° M 7
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Fig. 5: P versus ν̂∗ for P av = 2 dB, Iav = −12 dB .

by solving (45a) and the two proposed suboptimal schemes
PS2

and PS1
versus ν̂∗. We observe that PS2

and PS1
mimic

the behavior of the optimized P . Furthermore, for the cut-off
thresholds we have ζ < ζ1 < ζ2.

Next, we explore the effect of spatial spectrum sensing
duration Tse on the achievable rate lower bounds of our
system. Fig. 6a shows the maximized RLB, RS2

and RS1

(which we refer in the figures to as “Rate”) versus Tse.
To plot this figure, we maximize the bounds w.r.t. only Ttr

and P , subject to ATPC and AIC. We note that for all
Tse values we have RLB > RS2 > RS1 . We observe that
the achievable rates always have a maximum in the interval
(0, Tf − Ttr). For the simulation parameters in Table III the
optimized Tse = 0.75 ms = 2.5%Tf . Also, Scheme 2 yields
a higher achievable rate than that of Scheme 1, because its
corresponding power PS2 fits better to the optimized power P
obtained from solving (45a). The achievable rate RS2 is very
close to RLB and we do not have a significant performance
loss if we choose the simple transmit power control scheme
in (50).

To investigate the effect of channel training duration Ttr

on the achievable rate lower bounds, we plot Fig. 6b which
illustrates the maximized RLB, RS2

and RS1
versus Ttr. To

plot this figure, we maximize the bounds w.r.t. only Tse

and P , subject to ATPC and AIC. For all Ttr values we
have RLB > RS2

> RS1
. We observe that the achievable

rates always have a maximum in the interval (0, Tf − Tse).
For the simulation parameters in Table III the optimized
Ttr = 0.67 ms = 2.23%Tf . Comparing Fig. 6b and Fig. 6a,
we notice that the achievable rates are more sensitive to the
variations of Ttr compared to that of Tse. To be more specific,
considering Fig. 6a and Fig. 6b, suppose we choose Tse and Ttr

values that are different from their corresponding maximum
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Fig. 6: (a) Rate versus Tse, (b) Rate versus Ttr for P av = 2 dB, Iav =
−15 dB.

values by 20%, i.e., ∆Tse = 20%,∆Ttr = 20%. Then

∆RLB/∆Ttr > ∆RLB/∆Tse,

∆RS2
/∆Ttr > ∆RS2

/∆Tse,

∆RS1
/∆Ttr > ∆RS1

/∆Tse.

These indicate that proper allocation of Ttr is more important
than that of Tse, for providing higher achievable rates in our
system.

To explore the effects of the number of beams M and
Iav on the achievable rate lower bounds, Fig. 7a illustrates
the maximized RLB, RS2

, RS1
versus Iav for M = 7, 11

and P av = 2 dB. We observe that as M increases a higher
rate can be achieved. For all M and Iav values we have
RLB > RS2 > RS1 . We realize that as Iav increases from
−18 dB to −14 dB, the achievable rates are monotonically
increasing and the AIC is dominant. However, as Iav increases
beyond −14 dB, the achievable rates remain unchanged and
the ATPC is dominant. Fig. 7b illustrates the maximized
RLB, RS2 , RS1 versus P av for M = 7, 11 and Iav = −14 dB.
The behaviors of the achievable rates in terms of M are the
same as Fig. 7a. We note that as P av increases from −4 dB
to 2 dB, the achievable rates are monotonically increasing and
the ATPC is dominant. However, as P av increases beyond
2 dB, the achievable rates remain unchanged and the AIC is
dominant.

We also consider outage probability as another performance
metric to evaluate our system. We define the outage probability
as the probability of SUtx not transmitting data symbols due
to the weak SUtx-SUrx channel when the spectrum is sensed
idle, i.e., Pout = Pr

{
P = 0 | ÒH0

}
. This probability can be
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Fig. 7: (a) Rate versus Iav for M = 7, 11 and P av = 2 dB, (b) Rate versus
P av for M = 7, 11 and Iav = −14 dB.
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Fig. 8: Pout versus P av for Iav = −8 dB.

directly obtained using the CDF of ν̂∗ evaluated at the cut-off
threshold as the following

Pout = Pr(ν̂∗ ≤ ζ|ÒH0) = ω0F
0
ν̂∗(ζ) + ω1F

1
ν̂∗(ζ),

Pout,S1
= Pr(ν̂∗ ≤ ζ1|ÒH0) = ω0F

0
ν̂∗(ζ1) + ω1F

1
ν̂∗(ζ1),

Pout,S2
= Pr(ν̂∗ ≤ ζ2|ÒH0) = ω0F

0
ν̂∗(ζ2) + ω1F

1
ν̂∗(ζ2).

Fig. 8 illustrates Pout, Pout,S2 , Pout,S1 versus P av for Iav =
−8 dB. We observe that as P av increases the outage proba-
bilities decrease. Moreover, for a given P av we have Pout <
Pout,S2

< Pout,S1
. This is consistent with Fig. 5 which shows

for a given P av, we have ζ < ζ1 < ζ2. Combined this with the
fact that the CDF Fν̂∗(·) is an increasing function of its argu-
ment, we reach the conclusion that Pout < Pout,S2 < Pout,S1 .

VIII. CONCLUSIONS

We considered an opportunistic CR system consisting of a
PU, SUtx, and SUrx, where SUtx is equipped with a RA that

has M beams, and there is an error-free low-rate feedback
channel from SUrx to SUtx. We proposed a system design for
integrated sector-based spatial spectrum sensing and sector-
based data symbol communication. We studied the entangled
effects of spectrum sensing error, channel estimation error,
and beam detection and beam selection errors (introduced by
the RA), on the system achievable rates. We formulated a
constrained optimization problem, where a lower bound on
the achievable rate of SUtx–SUrx link is maximized, subject to
ATPC and AIC, with the optimization variables being the dura-
tions of spatial spectrum sensing Tse and channel training Ttr

as well as data symbol transmission power at SUtx. Moreover,
we proposed two alternative power adaptation schemes that are
simpler to implement. We solved the proposed constrained op-
timization problems using iterative methods based on the BCD
algorithm. Our simulation results demonstrate that one can
increase the achievable rates of SUtx–SUrx link significantly,
via implementing these optimizations, while maintaining the
ATPC and AIC. They also showed that the achievable rates
obtained from employing simple Schemes 1 and 2 are very
close to the one produced by the optimized transmit power.
Our numerical results also showed that between optimizing Tse

and Ttr, optimizing the latter has a larger effect on increasing
the achievable rates in our system.

APPENDIX A
SHOWING THAT ∂RLB/∂Tse = 0 HAS ONE SOLUTION IN

THE INTERVAL (0, Tf − Ttr)

Let RLB = C0 + C1 where C0 = Ddβ0R0 and C1 =
Ddβ1R1. To calculate ∂RLB/∂Tse we need the following
derivatives:

∂C0

∂Tse
=R0

�
β0
∂Dd

∂Tse
+Dd

∂β0

∂Tse

�
=R0

�−β0

Tf
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∂β0
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�
,

∂C1

∂Tse
=R1

�
β1
∂Dd

∂Tse
+Dd

∂β1

∂Tse

�
=R1

�−β1

Tf
+Dd

∂β1

∂Tse

�
.

Recall β0 = π0(1 − P fa) and β1 = π1(1 − P d) in (11). We
assume P d is given, hence ∂β1/∂Tse = 0. On the other hand,
P fa in (8) is variable w.r.t. Tse, and hence we have

∂β0

∂Tse
= π0fTW2

�
η−θsen

σsen

�
∂

∂Tse

�
η−θsen

σsen

�
(53)

where fTW2 denotes the pdf of the Tracy-Widom distribution
of order 2, and, θsen, σsen are given in (9). Evaluating ∂C0

∂Tse

and ∂C1

∂Tse
when Tse → 0 we have

lim
Tse→0

∂C0

∂Tse
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Tse→0

−β0
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Tf
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= +∞, (54a)
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(Tf−Ttr)
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R1

(
lim
Tse→0
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=0

)
< 0. (54b)



Evaluating ∂C0

∂Tse
and ∂C1

∂Tse
when Tse → Tf − Ttr we have

lim
Tse→Tf−Ttr
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∂Tse
= lim
Tse→Tf−Ttr

−β0
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lim
Tse→Tf−Ttr
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∂Tse
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The inequalities in (54a) and (54b) show that
limTse→0

∂RLB

∂Tse
> 0. On the other hand, the inequalities

in (55a) and (55b) show that limTse→Tf−Ttr

∂RLB

∂Tse
< 0.

Together, these indicate that the equation ∂RLB/∂Tse = 0
has one solution in the interval (0, Tf − Ttr). This solution
can be found using bisection search method.

APPENDIX B
SHOWING THAT ∂RLB/∂Ttr = 0 HAS ONE SOLUTION IN

THE INTERVAL (0, Tf − Tse)

To calculate ∂RLB/∂Ttr we need the following derivatives:
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Evaluating ∂C0

∂Ttr
and ∂C1
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when Ttr → 0 we have
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Evaluating ∂C0
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when Ttr → Tf − Tse we have
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Ttr→Tf−Tse

Dd︸ ︷︷ ︸
=0

)

×
(

lim
Ttr→Tf−Tse

M∑
m=1

∂R1

∂α̂1
m

∂α̂1
m

∂Ttr

)
< 0. (57b)

The inequalities in (56a) and (56b) show that
limTtr→0

∂RLB

∂Ttr
> 0. On the other hand, the inequalities

in (57a) and (57b) show that limTtr→Tf−Tse

∂RLB

∂Ttr
< 0.

Together, these indicate that the equation ∂RLB/∂Ttr = 0 has
one solution in this interval, which can be found numerically
using bisection search method.
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