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Abstract. We study the asymptotics of the Poisson kernel and Green’s func-

tions of the fractional conformal Laplacian for conformal infinities of asymptot-
ically hyperbolic manifolds. We derive sharp expansions of the Poisson kernel
and Green’s functions of the conformal Laplacian near their singularities. Our

expansions of the Green’s functions answer the first part of the conjecture of
Kim-Musso-Wei[21] in the case of locally flat conformal infinities of Poincare-
Einstein manifolds and together with the Poisson kernel asymptotic is used
also in our paper [25] to show solvability of the fractional Yamabe problem
in that case. Our asymptotics of the Green’s functions on the general case of
conformal infinities of asymptotically hyperbolic space is used also in [29] to
show solvability of the fractional Yamabe problem for conformal infinities of
dimension 3 and fractional parameter in ( 1

2
, 1) corresponding to a global case

left by previous works.

1. Introduction. In the last decades there has been a lot of study about fractional
order operators in Analysis and Geometric Analysis as well. In both fields, the
recurrent themes are existence, regularity and sharp estimates, see [3], [4], [5], [6], [7],
[8], [11], [10], [30], [17], [18], [14], [15]). In this paper we are interested in the issue
of existence, regularity and sharp estimates in the context of Conformal Geometry.
Precisely, we study the issue of existence, regularity and sharp asymptotics of the
Poisson and Green’s functions of the fractional conformal Laplacian on conformal
infinities of asymptotically hyperbolic manifolds.

To introduce the fractional conformal Laplacian, we first recall some definitions
in the theory of asymptotically hyperbolic metrics. Given X = Xn+1 a smooth
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manifold with boundary M =Mn and n ≥ 2 we say that % is a defining function
of the boundary M in X, if

% > 0 in X, % = 0 on M and d% 6= 0 on M.

A Riemannian metric g+ on X is said to be conformally compact, if for some
defining function %, the Riemannian metric

g := %2g+ (1)

extends to X := X ∪M so that (X, g) is a compact Riemannian manifold with
boundary M and interior X. Clearly this induces a conformal class of Riemannian
metrics

[h] = [g|TM ]

on M , where TM denotes the tangent bundle of M , when the defining functions
% vary and the resulting conformal manifold (M, [h]) is called conformal infinity
of (X, g+). Moreover a Riemannian metric g+ in X is said to be asymptotically
hyperbolic, if it is conformally compact and its sectional curvature tends to −1 as
one approaches the conformal infinity of (X, g+), which is equivalent to

|d%|ḡ = 1

onM , see [26], and in such a case (X, g+) is called an asymptotically hyperbolic
manifold. Furthermore a Riemannian metric g+ on X is said to be conformally
compact Einstein or Poincaré-Einstein (PE), if it is asymptotically hyperbolic and
satisfies the Einstein equation

Ricg+ = −ng+,
where Ricg+ denotes the Ricci tensor of (X, g+).

On one hand for every asymptotically hyperbolic manifold (X, g+) and every
choice of the representative h of its conformal infinity (M, [h]), there exists a
geodesic defining function y of M in X such that in a tubular neighborhood of
M in X, the Riemannian metric g+ takes the following normal form

g+ =
dy2 + hy

y2
, (2)

where hy is a family of Riemannian metrics on M satisfying h0 = h and y is
the unique such a one in a tubular neighborhood of M . Furthermore we say that

the conformal infinity (M, [ĥ]) of an asymptotically hyperbolic manifold (X, g+)
is locally flat, if h is locally conformally flat, and clearly this is independent of the
representative h of [h]. Moreover we say that (M, [h]) is umbilic, if (M,h) is
umbilic in (X, g) where g is given by (1) and y is the unique geodesic defining
function given by (2), and this is clearly independent of the representative h of
[h], as easily seen from the uniqueness of the normal form (2) or Lemma 2.3 in [15].
Similarly we say that (M, [h]) is minimal if Hg = 0 with Hg denoting the mean

curvature of (M, h) in (X, g) with respect to the inward direction, and this is
again clearly independent of the representative of h of [h], as easily seen from
Lemma 2.3 in [15]. Finally we say that (M, [h]) is totally geodesic, if (M, [h]) is
umbilic and minimal.

Remark 1. We remark that in the conformally compact Einstein case, hy as
in (2) has an asymptotic expansion which contains only even powers of y, at
least up to order n, see [8]. In particular the conformal infinity (M, [h]) of any
Poincaré-Einstein manifold (X, g+) is totally geodesic.
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Remark 2. As every 2-dimensional Riemannian manifold is locally conformally
flat, we will say locally flat conformal infinity of a Poincaré-Einstein manifold to
mean just the conformal infinity of a Poincaré-Einstein manifold when the dimension
is either 2 or which is further locally flat if the dimension is bigger than 2.

On the other hand, for any asymptotically hyperbolic manifold (X, g+) with con-
formal infinity (M, [h]), Graham-Zworsky[17] have attached a family of scattering
operators S(s) which is a meromorphic family of pseudo-differential operators on
M defined on C, by considering Dirichlet-to-Neumann operators for the scattering
problem for (X, g+) and a meromorphic continuation argument. Indeed it follows
from [17] and [28] that for every f ∈ C∞(M), and for every s ∈ C such that
Re(s) > n

2 and s(n−s) is not an L2-eigenvalue of −∆g+ , the following generalized
eigenvalue problem

−∆g+u− s(n− s)u = 0 in X (3)

has a solution of the form

u = Fyn−s +Gys, F, G ∈ C∞(X), F |y=0 = f,

where y is given by (2) and for those values of s the scattering operator S(s) on
M is defined as

S(s)f = G|M . (4)

Furthermore using a meromorphic continuation argument, Graham-Zworsky[17]
extend S(s) defined by (4) to a meromorphic family of pseudo-differential operators
on M defined on all C and still denoted by S(s) with only a discrete set of poles
including the trivial ones s = n

2 ,
n
2 + 1, · · · , which are simple poles of finite rank,

and possibly some others corresponding to the L2-eigenvalues of −∆g+ . Using the
regular part of the scattering operators S(s), to any γ = s− n

2 ∈ (0, 1) such that
(n

2

)2

− γ2 < λ1(−∆g+)

with λ1(−∆g+) denoting the first eigenvalue of −∆g+ , Chang-Gonzalez[8] have
attached the following fractional order pseudo-differential operators referred to as
fractional conformal Laplacians or fractional Paneitz operators

P γ [g+, h] := −dγS
(n

2
+ γ
)

, (5)

where dγ is a positive constant depending only on γ and chosen such that the
principal symbol of P γ [g+, h] is exactly the same as the one of the fractional
Laplacian (−∆h)

γ , when

X = R
n+1
+ , M = R

n, h = gRn and g+ = gHn+1 .

When there is no possible confusion with the metric g+, we just use the simple
notation

P
γ
h := P γ [g+, h].

Similarly to the other well studied conformally covariant differential operators,
Chang-Gonzalez[8] associate to each P

γ
h the curvature quantity

Q
γ
h := P

γ
h (1).

The Q
γ
h are referred to as fractional scalar curvatures, fractional Q-curvatures

or simply Qγ-curvatures. Of particular importance to conformal geometry is the
conformal covariance property verified by P

γ
h

P
γ
hu
(v) = v−

n+2γ
n−2γ P

γ
h (uv) for hv = v

4
n−2γ and 0 < v ∈ C∞(M). (6)
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The fractional Yamabe problem is the problem of finding conformal metrics of with
constant Qγ-curvature. As in the classical Yamabe problem, see [31], its study
deeply depends on the existence, regularity and sharp asymptotic of the Green’s
function of P γ

h .
In this paper, we show existence, regularity and sharp asymptotics of the Poisson

kernel Kg and Green’s functions Γg under weighted Neumann boundary conditions
of the Chang-Gonzalez[8] extension problem associated to P

γ
h and the Green’s

function Gh of P γ
h . Indeed recalling (12), we prove:

Theorem 1.1. Let (X, g+) be an asymptotically hyperbolic manifold with con-

formal infinity (M, [h]) of dimension n ≥ 2. If

1

2
6= γ ∈ (0, 1) and λ1(−∆g+) > s(n− s) for s =

n

2
+ γ,

then the Poison kernel Kg and the Green’s functions Γg and Gh respectively for
{

DgU = 0 in X

U = f on ,
{

DgU = 0 in X

−d∗γ limy→0 y
1−2γ∂yU = f on M

and
{

P
γ
h u = f on M

exist and we may expand in g-normal Fermi-coordinates around ξ ∈M

Kg(z, ξ) ∈ ηξ(z)
(

pn,γ
y2γ

|z|n+2γ +
∑2m+5−2γ

l=−n−2γ y
2γH1+l(z)

)

+ y2γC2m,α(X)

Γg(z, ξ) ∈ ηξ(z)
(

gn,γ

|z|n−2γ +
∑2m+3

l=−n H1+2γ+l(z)
)

+ C2m,α(X)

Gh(x, ξ) ∈ ηξ(x)
(

gn,γ

|x|n−2γ +
∑2m+3

l=−n H1+2γ+l(x)
)

+ C2m,α(M)

with Hl ∈ C∞(Rn+1
+ \ {0}) being homogeneous of order l, ηξ is a cut-off function

as in (23), pn,γ is as in (9), and gn,γ is as in (41), provided Hg = 0.

In the case of locally flat conformal infinities of Poincare-Einstein manifolds, we
have:

Theorem 1.2. Let (X, g+) be a Poincaré-Einstein manifold with conformal

infinity (M, [h]) of dimension n = 2 or n ≥ 3 and (M, [h]) is locally flat. If

1

2
6= γ ∈ (0, 1) and λ1(−∆g+) > s(n− s) for s =

n

2
+ γ,

then the Poisson kernel Kg and the Green’s functions Γg and Gh respectively for

{

DgU = 0 in X

U = f on M
{

DgU = 0 in X

−d∗γ limy→0 y
1−2γ∂yU = f on M

and
{

P
γ
h u = f on M
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are respectively of class y2γC2,α and C2,α away from the singularity and admit

for every a ∈M locally in ga-normal Fermi-coordinates an expansion around a

Ka(z) ∈ pn,γ
y2γ

|z|n+2γ + y2γH−2γ(z) + y2γH1−2γ(z) + y2γH2−2γ(z) + y2γC2,α(X)

Γa(z) ∈ gn,γ

|z|n−2γ +H2γ(z) +H1+2γ(z) + C2,α(X)

Ga(x) ∈ gn,γ

|x|n−2γ + H2γ(x) + H1+2γ(x) + C2,α(M), where ga is as in (46),

Ka = Kga(·, a), Γa = Γga(·, a) and Ga = Gha
(·, a) and Hk ∈ C∞(Rn

+ \ {0}) are

homogeneous of degree k.

To prove Theorem 1.1 and Theorem 1.2, we use the method of Lee-Parker[22] of
killing deficits successively. However difficulties arise due the the rigidity involved in
the problem (see (2)) and the lack of classical regularity theory. To overcome the
rigidity issue, we work with the space of homogeneous functions rather than the
one of polynomials as done in [22]. To handle the regularity issue, we show some
higher order regularity results for the Dirichlet problem and the weighted Neumann
boundary problem of the Chang-Gonzalez[8] extension problem for P

γ
h which are

of independent interest, see Proposition 2 and Proposition 3. We point out that
even if the estimates in Proposition 2 and Proposition 3 are weak, they are enough
for our purpose and in turn get improved by the estimates of the Poisson kernel and
Green’s function in Theorem 1.1 and Theorem 1.2 that they imply. On the other
hand, we would like to emphasize that the expansion of Γa in Theorem 1.2 answers
the first part of the Conjecture of Kim-Musso-Wei[21] about the asymptotics of Γa

and gives the definition of the fractional mass, see our work [25], Definition 4.3 and
Lemma 4.1.

The structure of the paper is as follows: In Section 2 we fix some notations. In
Section 3 we develop a non-homogeneous extension of some aspects of the works
of Chang-Gonzalez[8] and Graham-Zworsky[17]. It is divided in two subsections.
In the first one, namely Subsection 3.1, we develop a non-homogeneous scattering
theory, define the associated non-homogeneous fractional operator and its relation
to a non-homogeneous uniformly degenerate boundary value problem. In Sub-
section 3.2 we discuss the conformal property of the non-homogeneous fractional
operator. We point out that Section 3 even being of independent interest contains
estimates which are used in Section 5 and in [25], and a regularity result that
we use in [25]. Section 4 is concerned with the study of the Poisson kernel Kg

and the Green’s function Γg under weighted Neumann boundary conditions of
the Chang-Gonzalez extension problem of P γ

h , and the Green’s function Gh of
P

γ
h all in the general case of asymptotically hyperbolic manifolds with minimal

conformal infinity. In Section 5 we sharpen the results obtained in Section 4 in
the particular case of a locally flat conformal infinity of a Poincaré-Einstein manifold.

2. Notations and preliminaries. In this section we fix some notations. First of
all let X = Xn+1 be a manifold of dimension n + 1 with boundary M = Mn

and closure X with n ≥ 2.
In the following, for any Riemannian metric h̄ defined on M , a ∈M and r > 0,

we use the notation Bh̄
r (a) to denote the geodesic ball with respect to h̄ of radius

r and center a. We also denote by dh̄(x, y) the geodesic distance with respect to
h̄ between two points x and y of M . injh̄(M) stands for the injectivity radius
of (M, h̄). dVh̄ denotes the Riemannian measure associated to the metric h̄ on M .
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For a ∈M we use the notation expa
h̄

to denote the exponential map with respect

to h̄ on M .
Similarly for any Riemannian metric ḡ defined on X, a ∈M and r > 0 we use

the notation Bḡ,+
r (a) to denote the geodesic half ball with respect to ḡ of radius

r and center a. We also denote by dḡ(x, y) the geodesic distance with respect to ḡ

between two points x ∈M and y ∈ X. injḡ(X) stands for the injectivity radius of

(X, ḡ). dVḡ denotes the Riemannian measure associated to the metric ḡ on X. For
a ∈Mn we use the notation expḡ,+a to denote the exponential map with respect
to ḡ on X.

N denotes the set of nonnegative integers, N∗ the set of positive integers and
for k ∈ N

∗, Rk stands for the standard k-dimensional Euclidean space, Rk
+ the

open positive half-space of Rk, and R̄
k
+ its closure in R

k. For simplicity we use the

notation R+ := R
1
+, and R̄+ := R̄

1
+. For r > 0 we denote respectively

BR
k

r (0) and B
R

k
+

r (0) = BR
k

r (0) ∩ R
k
+ ']0, r[×BR

k−1

r (0)

the open and open upper half ball of R
k of center 0 and radius r, and set

Br = BR
n

r and B+
r = B

R
n+1
+

r . For k ∈ N
∗, we set

Sk = ∂BR
k+1

1 (0) and Sk
+ = Sk ∩ R

k+1
+ .

We also denote by ∇⊥
Sn
+

the normal part of the standard gradient ∇Sn
+

on Sn
+.

For p ∈ N
∗, let Mp denotes the Cartesian product of p copies of M . We define

(M2)∗ :=M2 \Diag(M2), where Diag(M2) = {(a, a) : a ∈M} is the diagonal of
M .

For 1 ≤ p ≤ ∞, k ∈ N, s ∈ R+, β ∈]0, 1[ and h̄ a Riemannian metric defined
on M ,

Lp(M, h̄), W s,p(M, h̄), Ck(M, h̄) and Ck,β(M, h̄)

stand respectively for the p-Lebesgue, (s, p)-Sobolev space, k-continuously differen-
tiable space and k-continuously differentiable space of Hölder exponent β, all on
M and with respect to h̄, if the definition required a metric structure. Similarly
for 1 ≤ p ≤ ∞, k ∈ N, s ∈ R+, β ∈]0, 1[ and ḡ a Riemannian metric defined on X,

L
p
f (X, ḡ), W

s,p
f (X, ḡ), Ck(X, ḡ) and Ck,β(X, ḡ)

stand respectively for the weighted p-Lebesgue, (s, p)-Sobolev space, continuously
differentiable space of order k and k-continuously differentiable space of Hölder
exponent β, all on X, and as above with respect to ḡ and a measurable function
f > 0 on X , if required. For precise definitions and properties see [1], [9], [13], [12]
and [32]. C∞

0 (X) means element in C∞(X) vanishing on M to infinite order.
For ε > 0 and small oε(1) means quantities which tend to 0 as ε tends to 0.

O(1) stands for quantities which are bounded. For x ∈ R we use the notation O(x)
and oε(x) to mean respectively |x|O(1) and |x|oε(1). Large positive constants
are usually denoted by C and the value of C is allowed to vary from formula
to formula and also within the same line. Similarly small positive constants are
denoted by c and their values may vary from formula to formula and also within
the same line.

We define

d∗γ =
dγ

2γ
, (7)
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cf. (5). Furthermore, we set

c
γ
n,3 =

∫

Rn

(

1

1 + |x|2
)

n+2γ
2

dx, (8)

and

pn,γ =
1

c
γ
n,3

(9)

Let (X, g+) be an asymptotically hyperbolic manifold of dimension n+ 1 with
n ≥ 2 and minimal conformal infinity (M, [h]). Then, because of (2) and minimality
of the conformal infinity, we can consider a geodesic defining function y splitting
the metric

g = y2g+, g = dy2 + hy near M and h = hybM
in such a way, that Hg = 0. Moreover using the existence of conformal normal
coordinates, cf. [19], there exists for every a ∈M a conformal factor

0 < ua ∈ C∞(M) satisfying
1

C
≤ ua ≤ C, ua(a) = 1 and ∇ua(a) = 0, (10)

inducing a conformal normal coordinate system close to a on M , in particular in
normal coordinates with respect to

ha = u
4

n−2γ
a h

we have for some small ε > 0

ha = δ +O(|x|2), detha ≡ 1 on Bha
ε (a).

As clarified in Subsection 3.2 the conformal factor ua then naturally extends onto
X via

ua = (
ya

y
)

n−2γ
2 ,

where ya close to the boundary M is the unique geodesic defining function, for
which

ga = y2ag
+, ga = dy2a + ha,ya

near M with ha = ha,ya
bM

and there still holds Hga = 0. Consequently

ga = δ +O(y + |x|2) and det ga = 1 +O(y2) in Bga,+
ε (a).

3. Non-homogeneous scattering theory. In this section we extend some PDE
aspects of the works of Chang-Gonzalez[8] and Graham-Zworsky[17] to a non-
homogeneous setting and in the general framework of asymptotically hyperbolic
manifolds. It is of independent interest, but in it we derive estimates that are
used in Section 5 and [25], and an existence and regularity result used in [25]
to construct barrier solutions in order to compare different types of bubbles via
maximum principle. We divide this section in two subsections.
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3.1. Scattering operators and uniformly degenerate equations. In this sub-
section we extend some parts of the works of Chang-Gonzalez[8] and Graham-
Zworski[17] to a non-homogeneous setting in the context of asymptotically hyperbolic
manifolds. First of all let (X, g+) be an asymptotically hyperbolic manifold with
conformal infinity (M, [h]) and y the unique geodesic defining function associated
to h given by (2). Then we have the normal form

y2g+ = g = dy2 + hy near M

with y > 0 in X, y = 0 on M and |dy|g = 1 near M. Furthermore let

�g+ = −∆g+ − s(n− s),

where by definition

s =
n

2
+ γ, γ ∈ (0, 1), γ 6= 1

2
and s(n− s) ∈ (0,

n2

4
).

According to Mazzeo and Melrose [26], [27], [28]

σ(−∆g+) = σpp(−∆g+) ∪ [
n2

4
,∞), σpp(−∆g+) ⊂ (0,

n2

4
),

where σ(−∆g+) and σpp(−∆g+) are respectively the spectrum and the pure point
spectrum of L2-eigenvalues of −∆g+ . Using the work of Graham-Zworski[17], see
equation (3.9) therein, we may solve

{

�g+u = f in X

ys−nu = v on M

for s(n− s) 6∈ σpp(−∆g+) and f ∈ yn−s+1C∞(X) + ys+1C∞(X) in the form
{

u = yn−sA+ ysB in X

A, B ∈ C∞(X), A = v on M.

As in the case f = 0, which corresponds to the generalized eigenvalue problem of
Graham-Zworsky[17], this gives rise to a Dirichlet-to-Neumann map Sf (s) via

v = AbM−→ BbM= v,

which we refer to as non-homogeneous scattering operator and denote it by Sf (s).
Clearly S0(s) = S(s) and Sf (s) is invertible, since the standard scattering operator
S0(s) is invertible, cf. equation (1.2) in [20]. We define the non-homogeneous
fractional operators by

P
γ
f,h = −dγSf (s),

where dγ is as in (5). Following [15] we find by conformal covariance of the
conformal Laplacian that

�g+u = f
U=ys−nu⇐=====⇒ DgU = y−s−1f, (11)

where

DgU = −divg(y1−2γ∇gU) + EgU (12)

and with Lg = −∆g +
Rg

cn
denoting the conformal Laplacian on (X, g)

Eg := y
1−2γ

2 Lgy
1−2γ

2 − (
Rg+

cn
+ s(n− s))y(1−2γ)−2, cn =

4n

n− 1
. (13)
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Thus we find for φ, ψ ∈ C∞(X), that
{

�g+u = yn−s+1φ+ ys+1ψ in X

ys−nu = v on M

U=ys−nu⇐=====⇒
{

DgU = y−2γφ+ ψ in X

U = v on M
.

Note, that such a solution U is of the form

U = A+By2γ =
∑

Aiy
i +
∑

Biy
i+2γ + U0

for some U0 ∈ C∞
0 (X) and has principal terms

{

v + vy2γ for γ < 1
2

v +A1y + vy2γ for γ > 1
2 .

As for the case γ > 1
2 , expanding the boundary metric hy, we find

hy = h0 + h1y +O(y2) with h1 = 2Πg

and Πg denoting the second fundamental form of (M,h) in (X, g). Still according
to [17] we may solve

{

�g+u = yn−s+2φ+ ys+1ψ in X

ys−nu = v on M

for φ, ψ ∈ C∞(X) in the form
{

u = yn−sA+ ysB in X

A, B ∈ C∞(X), A = v on M

with asymptotic

A =
∑

Aiy
i, A0 = v, A1 = 0

at a point, where Hg = 0, i.e. the mean curvature vanishes. Thus for γ > 1
2

{

�g+u = yn−s+2φ+ ys+1ψ in X

ys−nu = v on M

U=ys−nu⇐=====⇒
{

DgU = y1−2γφ+ ψ in X

U = v on M

with principal terms

U = v + vy2γ + o(y2γ)

at a point with Hg = 0 - just like in the case γ < 1
2 - and there holds v =

1
2γ limy→0 y

1−2γ∂yU.

We summarize the latter discussion in the following proposition.

Proposition 1. Let (X, g+) be a (n+ 1)-dimensional asymptotically hyperbolic

manifold with conformal infinity (M, [h]) of dimension n ≥ 2 being minimal in

case γ ∈ ( 12 , 1) and y the unique geodesic defining function associated to h given

by (2). Assuming that

s =
n

2
+ γ, γ ∈ (0, 1), γ 6= 1

2
, s(n− s) 6∈ σpp(∆g+)

and f ∈ yn−s+2C∞(X) + ys+1C∞(X), then for every v ∈ C∞(M)

P
γ
f,h(v) = −d∗γ lim

y→0
y1−2γ∂yU

f ,
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where Uf is the unique solution to
{

DgU = y−s−1f in X

U = v on M

and d∗γ is as in (7). Moreover Uf satisfies

Uf = A+ y2γB, A, B ∈ C∞(X)

and A and B satisfy the asymptotics
{

A =
∑

Aiy
i, Ai ∈ C∞(M), A0 = v and A1 = 0

B =
∑

Biy
i, Bi ∈ C∞(M) and − dγB0 = −dγv = P

γ
f,h(v),

where dγ is as in (5), hence Uf = v + vy2γ + o(y2γ).

3.2. Conformal property of the non-homogeneous scattering operator. In
this subsection we study the conformal property of the non-homogeneous scattering
operator P γ

h,f of the previous subsection. To this end we first consider as background

data (X, g+) with conformal infinity (M, [h]) with n ≥ 2 and y the associated
unique geodesic definition function such that

g = y2g+, g = dy2 + hy close to M and h = gbM
as in (2). From (13) it is easy to see, that in g-normal Fermi coordinates (y, x)

Eg =
n− 2γ

2

∂y
√
g

√
g
y−2γ close to M. (14)

We assume further that (M, [h]) is minimal and �g+ is positive, i.e.

Hg = 0 and λ1(−∆g+) > s(n− s).

Then ∂y
√
g = 0 on Mn+1 and we may assume

∂y
√
g ∈ yC∞(X) (15)

whence Dg is well defined on

W
1,2
y1−2γ =W

1,2
y1−2γ (X, g) = C∞(X)

‖·‖
W

1,2

y1−2γ
(X,g)

with

‖u‖2
W

1,2

y1−2γ (X,g)
=

∫

X

y1−2γ(|du|2g + u2)dVg

and becomes positive under Dirichlet condition, cf. (11), so

∂y
√
g ∈ yC∞(X) and 〈·, ·〉Dg

' 〈·, ·〉W 1,2

y1−2γ
.

Let us consider now a conformal metric h̃ = ϕ
4

n−2γ h on M . We then find a unique
geodesic defining function ỹ > 0, precisely unique in a tubular neighborhood of M ,
such that

g̃ = dỹ2+h̃y close to M, ỹ−2g̃ = g+ = y−2g and h̃ = ϕ
4

n−2h = (
ỹ

y
)2h on M.

So we may naturally extend ϕ = ( ỹ
y
)

n−2γ
2 onto X and by the conformal relation

g̃ = (
ỹ

y
)2g = ϕ

4
n−2γ g,
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we still have 〈·, ·〉Dg̃
' 〈·, ·〉W 1,2

ỹ1−2γ
. Putting ỹ = αy, the equation

|dy|2g = 1 = |dỹ|2g̃ = 1 + 2
y

α
〈dα, dy〉g + (

y

α
)2|dα|2g

for the geodesic defining functions implies ∂yα = − 1
2
y
α
|dα|2g. Since g̃ = α2g by

definition, we firstly find Hg = 0 =⇒ Hg̃ = 0, i.e. minimality is preserved as already
observed by Gonzalez-Qing[15], and secondly ỹ = α0y + O(y3). Thus on the one
hand side the properties

∂ỹ
√

g̃ ∈ ỹC∞ and 〈·, ·〉Dg̃
' 〈·, ·〉W 1,2

ỹ1−2γ

are preserved under a conformal change of the metric on the boundary. Moreover we
obtain a conformal transformation for the extension operators Dg̃ and Dg subjected
to Dirichlet and weighted Neumann boundary conditions. Put ũ = (y

ỹ
)n−su. As for

the Dirichlet case, (11) directly shows
{

Dgu = f in X

u = v on M
⇐⇒

{

Dg̃ũ = (y
ỹ
)s+1f in X

ũ = (y
ỹ
)n−sv on M.

Moreover there holds

lim
y→0

y1−2γ∂yu = v ⇐⇒ lim
ỹ→0

ỹ1−2γ∂ỹũ = (
y

ỹ
)n−s+2γv,

since ỹ = α0y +O(y3), whence for the weighted Neumann case we obtain
{

Dgu = f in X

limy→0 y
1−2γ∂yu = v on M

⇐⇒
{

Dg̃ũ = (y
ỹ
)s+1f in X

limỹ→0 ỹ
1−2γ∂ỹũ = (y

ỹ
)n−s+2γv on M.

We may rephrase this via ϕ = ( ỹ
y
)

n−2γ
2 = ( ỹ

y
)n−s as

{

Dg(ϕu) = ϕ
s+1
n−s f in X

ϕu = ϕv on M
⇐⇒

{

Dg̃u = f in X

u = v on M

and
{

Dg(ϕu) = ϕ
s+1
n−s f in X

limy→0 y
1−2γ∂y(ϕu) = ϕ

n+2γ
n−2γ v on Mn

⇐⇒
{

Dg̃ũ = f in X

limỹ→0 ỹ
1−2γ∂ỹu = v on M.

Noticing s+1
n−s

= n+2+2γ
n−2γ we thus have shown

P
γ

f,h̃
(v) = v

KS

��

ks +3











Dg̃u = f in X

u = v on M

−d∗γ limỹ→0 ỹ
1−2γ∂ỹu = v on M

KS

��

P
γ

ϕ
s+1
n−s f,h

(ϕv) = ϕ
n+2γ
n−2γ v ks +3











Dg(ϕu) = ϕ
n+2+2γ
n−2γ f in X

ϕu = ϕv on M

−d∗γ limy→0 y
1−2γ∂y(ϕu) = ϕ

n+2γ
n−2γ v,

where the last equation on the right hand side holds on M . Therefore the non-
homogeneous fractional operator verifies the conformal property

P
γ

f,h̃
(v) = ϕ− n+2γ

n−2γ P
γ

ϕ
s+1
n−s f,h

(ϕv) for h̃ = ϕ
4

n−2γ h
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or equivalently

P
γ

f̃,h̃
(v) = ϕ− n+2γ

n−2γ P
γ
f,h(ϕv) for h̃ = ϕ

4
n−2γ h and f̃ = ϕ

−s−1
n−s f,

hence extending the conformal property of the homogeneous fractional operator to
the non-homogeneous setting. We remark that

P
γ
h = P

γ
0,h.

4. Fundamental solutions in the asymptotically hyperbolic case. In this
section, keeping the notations of the previous one, for an asymptotically hyperbolic
manifold (X, g+) with conformal infinity (M, [h]), we study the existence and
asymptotic behavior of the Poisson kernel Kg := Kγ

g of Dg, the Green’s functions

Γg := Γγ
g of Dg under weighted normal boundary condition and Gh := G

γ
h of the

fractional conformal Laplacian P
γ
h , i.e.







DgKg(·, ξ) = 0 in X and for all ξ ∈M

limy→0Kg(y, x, ξ) = δξ(x) and for all x, ξ ∈M

and






DgΓg(·, ξ) = 0 in X and for all ξ ∈M

−d∗γ limy→0 y
1−2γ∂yΓg(y, x, ξ) = δξ(x) and for all x, ξ ∈M,

where d∗γ is given by (7), and P γ
hG

γ
h(x, ξ) = δξ(x), x ∈M. So by definition

Kg : (X ×M) \Diag(M) −→ R+

is the Green’s function to the extension problem






DgU = 0 in X

U = v on M,

while

Γg : (X ×M) \Diag(M) −→ R

is the Green’s function to the dual problem






DgU = 0 in X

−d∗γ limy→0 y
1−2γ∂yU = v on M

and

Gh : (M ×M) \Diag(M) −→ R.

is the Green’s function of the nonlocal problem P
γ
h v = v on M. They are linked

via

Γg(z, ξ) =

∫

M

Kg(z, x)Gh(x, ξ)dVh(x), z ∈ X, ξ ∈M. (16)
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4.1. Study of the Poisson kernel for Dg . In this subsection we study the
Poisson kernel Kg focusing on the existence issue and its asymptotics. We follow
the method of Lee-Parker[22] of killing deficits successively. However, due to the
rigidity property involved in the problem, see the normal form (2), we have to work
close to the boundary in Fermi coordinates rather than normal ones. To compensate
this we are forced to pass from the space of polynomials used in [22] to the space of
homogeneous functions. We start with recalling some related facts in the case of the
standard Euclidean space R

n+1
+ . According to [4] on R

n+1
+

K(y, x, ξ) = Kγ(y, x, ξ) = pn,γ
y2γ

(y2 + |x− ξ|2)n+2γ
2

, (y, x) ∈ R
n+1

+ , ξ ∈ R
n (17)

where pn,γ is as in (9), is the Poisson kernel of the operator

D = −div(y1−2γ∇( · )),
namely the Green’s function of the extension problem

{

Du = 0 in R
n+1
+

u = f on R
n,

i.e.
{

DK(y, x, ξ) = 0 in R
n+1
+ , (y, x) ∈ R

n+1
+ , ξ ∈ R

n

K(y, x, ξ) → δξ(x) for (y, x) ∈ R
n+1
+ , ξ ∈ R

n, y → 0.
(18)

We will construct the Poisson kernel for Dg, cf. (12), namely the Green’s function
of the analogous extension problem

{

Dgu = 0 in X

u = f on M,

i.e. Kg solves for z ∈ X and ξ ∈M
{

DgKg(z, ξ) = 0 in X

K(z, ξ) → δξ(x) for y → 0,

where z = (y, x) ∈ X for z close to M . To that end we identify

ξ ∈M ∩ U ⊂ U ∩X with 0 ∈ BR
n+1

ε (0) ∩ R
n ⊂ BR

n+1

ε (0) ∩ R
n+1

+

for some open neighborhood U of ξ in X and small ε > 0, and write K(z) =
K(z, 0). We then have

DgK = − ∂p√
g
(
√
ggp,qy1−2γ∂qK) + EgK = f ∈ yH−n−2γ−1C

∞ (19)

on BR
n+1

ε (0) ∩ R
n+1
+ due (15), which relies on minimality Hg = 0, where by

definition

Hl = {ϕ ∈ C∞(Rn+1
+ \ {0}) | ϕ is homogeneous of degree l}. (20)

The next lemma allows us to solve homogeneous deficits homogeneously.

Lemma 4.1. For 1
2 6= γ ∈ (0, 1) and fl ∈ yHl−1, l ∈ N − n − 2γ there exists

K1+2γ+l ∈ y2γHl+1 such, that

DK1+2γ+l = fl.
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Proof. First of all the Stone-Weierstraß Theorem implies

〈Qk
l (y, x) = y2γ+2kPl(x) | k, l ∈ N and Pl ∈ Πl〉 ⊂

dense
y2γC0(B1(0) ∩ R

n+1
+ )

with Πl = {ϕ ∈ C∞(Rn) | ϕ is homogeneous of degree l} and an easy induction
argument shows, that we have a unique representation

Qk
l =

∑

|z|2iA2k+l−2i

with D-harmonics of the form Am(y, x) =
∑

y2γ+2lPm−2l(x), DAm = 0. Since

y2γC0(Sn
+) ⊂

dense
L2
y1−2γ (Sn

+),

we thus obtain a D-harmonic basis E = {eik} for L2
y1−2γ (Sn

+) with

Deik = 0, k = deg(eik), k ∈ N+ 2γ and i ∈ {1, . . . , dk},
where dk denotes the dimension of the space of D-harmonics of degree k. We may
assume, that eik, e

j
k for i 6= j are orthogonal with respect to the scalar product on

L2
y1−2γ (Sn

+). Moreover on Sn
+ we have

0 =−Deik = ∂y(y
1−2γ∂ye

i
k) + y1−2γ∆xe

i
k = ∇y1−2γ∇eik + y1−2γ∆eik

=∇y1−2γ∇eik + y1−2γ ∆Sn

r2
eik + y1−2γ [∂2r +

n∂r

r
]eik

=∇⊥
Sn
+
y1−2γ∇⊥

Sn
+
eik + divSn

+
(y1−2γ∇Sn

+
eik) + k(k + n− 1)y1−2γeik,

whence due to

∇⊥
Sn
+
y1−2γ∇⊥

Sn
+
eik =〈∇y1−2γ , νSn

+
〉〈νSn

+
,∇eik〉 = (1− 2γ)y−2γ〈en+1, νSn

+
〉r∂reik

=(1− 2γ)ky1−2γeik

there holds for DSn
+
= −divSn

+
(y1−2γ∇Sn

+
· )

DSn
+
eik = k(k + n− 2γ)y1−2γeik.

Therefore E = {eik} is an orthogonal basis of y2γ−1DSn
+
-eigenfunctions with

eigenvalues
λk = k(k + n− 2γ).

By the same argument solving
{

Du = f ∈ L2
y2γ−1(R

n+1
+ ) in R

n+1
+

u = 0 on R
n

(21)

with homogeneous f, u of degree λ, λ+ 1 + 2γ is equivalent to solving
{

DSn
+
u = f + (λ+ 1 + 2γ)(λ+ n+ 1)y1−2γu in Sn

+

u = 0 on ∂Sn
+ = Sn−1

and thus, writing u =
∑

ai,ke
i
k, y

2γ−1f =
∑

bj,le
j
l , also equivalent to solving

∑

ai,k(k(k + n− 2γ)− (λ+ 1 + 2γ)(λ+ n+ 1))eik =
∑

bj,le
j
l

and the latter system is always solvable in case

k(k + n− 2γ)− (λ+ 1 + 2γ)(λ+ n+ 1) 6= 0 for all k, n, λ ∈ N. (22)

This observation allows us to prove the lemma, by whose assumptions

deg(fl) = λ = m− n− 2γ, m ∈ N.
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And we know

deg(eik) = k = m′ + 2γ, m′ ∈ N.

Plugging these values into (22), solvability of (21) is a consequence of

(m′ + 2γ)(m′ + n)− (m− n+ 1)(m+ 1− 2γ) 6= 0 for all m′, n,m ∈ N

and this holds true for 1
2 6= γ ∈ (0, 1). Thus we have proven solvability of
{

DK1+2γ+l = fl in R
n+1
+

K1+2γ+l = 0 on R
n \ {0}

with K1+2γ+l being homogeneous of degree 1 + 2γ + l. We are left with showing
K1+2γ+l ∈ y2γHl+1. But this follows easily from Proposition 2 below.

Now recalling (19) we may use Lemma 4.1 to solve (18) successively, since

DgK1+2γ+l = fl + (Dg −D)K1+2γ+l ∈ fl + yHlC
∞

due to (15) and K1+2γ+l ∈ y2γHl+1. With a suitable cut-off function

ηξ : X −→ R
+, supp(ηξ) = B+

ε (ξ) = Bg,+
ε (ξ) for M 3 ξ ∼ 0 ∈ R

n and

ε > 0 small
(23)

and for the meaning of Bg,+
ε (ξ) see Section 2, we then find

Kg = ηξ(K +

m+2−2γ
∑

l=−n−2γ

K1+2γ+l) + κm

for m ∈ N and a weak solution
{

Dgκm = −Dg

(

ηξ(K +
∑m+2−2γ

l=−n−2γ K1+2γ+l)
)

= hm in X

κm = 0 on M

with hm ∈ yCm,α.
The following weak regularity statement will be sufficient for our purpose.

Proposition 2. Let h ∈ yC2k+3,α(X) and u ∈W
1,2
y1−2γ (X) be a weak solution of

{

Dgu = h in X

u = 0 on M.

Then u is of class y2γC2k,β(X), provided Hg = 0.

Putting these facts together before giving the proof of Proposition 2, we have the
existence of Kg and can describe its asymptotic.

Corollary 1. Let 1
2 6= γ ∈ (0, 1). Then Kg exists and we may expand in

g-normal Fermi-coordinates around ξ ∈M

Kg(z, ξ) ∈ ηξ(z)



pn,γ
y2γ

|z|n+2γ
+

2m+5−2γ
∑

l=−n−2γ

y2γH1+l(z)



+ y2γC2m,α(X)

with Hl ∈ C∞(Rn+1
+ \ {0}) being homogeneous of order l and pn,γ is as in (9),

provided Hg = 0.
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Proof of Proposition 2. We use the Moser iteration argument. First let p, q =
1, . . . , n+ 1 and i, j = 1, . . . , n such, that gn+1,i = gy,i = 0. The statement clearly
holds by standard local regularity away from the boundary, since Dg is strongly
elliptic there. Now fixing a point ξ ∈M and a cut-off function

η ∈ C∞
0 (B+

r2
(0),R+), η ≡ 1 on B+

r1
(0) for 0 < r1 < r2 � 1, where ξ ∼ 0 ∈ R

n,

we pass to g-normal Fermi-coordinates around ξ and estimate for some λ ≥ 2 and
α ∈ N

n

∫

R
n+1
+

y1−2γ |∇z(|∂αx u|
λ
2 η)|2 ≤2

∫

R
n+1
+

y1−2γ |∇z|∂αx u|
λ
2 |2η2 + 2

∫

R
n+1
+

y1−2γ |∂αx u|λ|∇zη|2

(24)

and
∫

R
n+1
+

y1−2γ |∇z|∂αx u|
λ
2 |2η2 =

λ2

4

∫

R
n+1
+

y1−2γ∇z∂
α
x u∇z∂

α
x u|∂αx u|λ−2η2

=
λ2

4(λ− 1)

∫

R
n+1
+

y1−2γ∇z∂
α
x u∇z(∂

α
x u|∂αx u|λ−2η2)

− λ2

2(λ− 1)

∫

R
n+1
+

y1−2γ∇z∂
α
x u∂

α
x u|∂αx u|λ−2∇zηη

≤ λ2

4(λ− 1)

∫

R
n+1
+

y1−2γ∇z∂
α
x u∇z(∂

α
x u|∂αx u|λ−2η2)

+
λ2

8

∫

R
n+1
+

y1−2γ |∇z∂
α
x u|2|∂αx u|λ−2η2 +

λ2

2(λ− 1)2

∫

R
n+1
+

y1−2γ |∂αx u|λ|∇zη|2.

Absorbing the second summand above this implies

∫

R
n+1
+

y1−2γ |∇z(|∂αx u|
λ
2 )|2η2 ≤ λ2

2(λ− 1)

∫

R
n+1
+

D(∂αx u)∂
α
x u|∂αx u|λ−2η2 + I

(25)

with

I =
λ2

(λ− 1)2

∫

R
n+1
+

y1−2γ |∂αx u|λ|∇zη|2

Due to D(∂αx u) = ∂αxDu, and the structure of the metric
∫

R
n+1
+

D(∂αx u)∂
α
x u|∂αx u|λ−2η2 =

∫

R
n+1
+

∂αx (Dgu)∂
α
x u|∂αx u|λ−2η2

−
∫

R
n+1
+

∂αx ((Dg −D)u)∂αx u|∂αx u|λ−2η2
(26)
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=

∫

R
n+1
+

∂αx [h+
∂p
√
g

√
g
y1−2γgp,q∂qu+ y1−2γ∂i((g

i,j − δi,j)∂ju)

− n− 2γ

2

∂y
√
g

√
g
y−2γu]∂αx u|∂αx u|λ−2η2 = I1 + . . .+ I4.

We may assume |∇k
zη| ≤ C

εk
for k = 0, 1, 2, where ε = r2 − r1. Then

|I1| ≤ C

∫

R
n+1
+

|∇|α|
x h||∇|α|

x u|λ−1η2. (27)

Using integrations by parts and (15)

|I2| ≤|
∫

R
n+1
+

y1−2γ∂q∂
α
x (
∂p
√
g

√
g
gp,qu)∂αx u|∂αx u|λ−2η2|

+ |
∫

R
n+1
+

y1−2γ∂αx (∂q(
∂p
√
g

√
g
gp,q)u)∂αx u|∂αx u|λ−2η2|

≤|
∫

R
n+1
+

y1−2γ∂y∂
α
x (
∂y

√
g

√
g
u)∂αx u|∂αx u|λ−2η2|

+
C|α|
λ

∑

m≤|α|

∫

R
n+1
+

y1−2γ |∇m
x u||∂αx u|

λ−2
2 |∇x|∂αx u|

λ
2 |η2

+ C|α|
∑

m≤|α|

∫

R
n+1
+

y1−2γ |∇m
x u||∂αx u|λ−1[|∇xη|η + η2]

≤C|α|
λ

∑

m≤|α|

∫

R
n+1
+

y1−2γ |∇m
x u|

λ
2 |∇z|∂αx u|

λ
2 |η2

+ C|α|
∑

m≤|α|

∫

R
n+1
+

y1−2γ |∇m
x u|λ[|∇zη|η + η2].

(28)

Using integration by parts and recalling i, j = 1, . . . , n

|I3| ≤
C

λ

∫

R
n+1
+

y1−2γ |∂αx ((gi,j − δi,j)∂ju)||∂αx u|
λ−2
2 |∂i|∂αx u|

λ
2 |η2

+ C

∫

R
n+1
+

y1−2γ |∂αx ((gi,j − δi,j)∂ju)||∂αx u|λ−1|∂iη|η

≤ C

λ2
sup
B+

r2

|gi,j − δi,j |
∫

R
n+1
+

y1−2γ |∂i|∂αx u|
λ
2 ||∂j |∂αx u|

λ
2 |η2

+
C|α|
λ

∑

m≤|α

∫

R
n+1
+

y1−2γ |∇m
x u||∂αx u|

λ−2
2 |∇x|∂αx u|

λ
2 |η2

(29)
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+
C

λ
sup
B+

r2

|gi,j − δi,j |
∫

R
n+1
+

y1−2γ |∂j |∂αx u|
λ
2 ||∂αx u|

λ
2 |∂iη|η

+ C|α|
∑

m≤|α

∫

R
n+1
+

y1−2γ |∇m
x u|λ|∇xη|η.

Using (15)

|I4| ≤ C|α|
∑

m≤|α|

∫

R
n+1
+

y1−2γ |∇m
x u|λη2 (30)

Applying Hölder’s and Young’s inequality to (27)-(30) we obtain

4
∑

i=1

|Ii| ≤
C supB+

r2
|g − δ|

λ2

∫

R
n+1
+

y1−2γ |∇z|∂αx u|
λ
2 |2η2 + C|α|

ε2

∑

k≤|α|
‖∇k

xu‖λLλ

y1−2γ (B+
r2

)

+ C‖y2γ−1∇|α|
x h‖Lλ

y1−2γ (B+
r2

)‖∇|α|
x u‖λ−1

Lλ

y1−2γ (B+
r2

)
.

We may assume C supB+
r2
|g − δ| < 1

2 , whence in view of (25) and (4.1)

∫

R
n+1
+

y1−2γ |∇z|∂αx u|
λ
2 |2η2 ≤C|α|λ

ε2

∑

k≤|α|
‖∇k

xu‖λLλ

y1−2γ (B+
r2

)

+ Cλ‖y2γ−1∇|α|
x h‖Lλ

y1−2γ (B+
r2

)‖∇|α|
x u‖λ−1

Lλ

y1−2γ (B+
r2

)
,

so (24) implies
∫

R
n+1
+

y1−2γ |∇z(|∂αx u|
λ
2 η)|2 ≤C|α|λ

ε2

∑

k≤|α|
‖∇k

xu‖λLλ

y1−2γ (B+
r2

)

+ Cλ‖y2γ−1∇|α|
x h‖Lλ

y1−2γ (B+
r2

)‖∇|α|
x u‖λ−1

Lλ

y1−2γ (B+
r2

)
.

(31)

The weighted Sobolev inequality of Fabes-Kenig-Seraponi [10] Theorem 1.2 with
κ = n+1

n
then shows

r
−n+2γ

n+1

2 ‖∂αx u‖λLκλ

y1−2γ (B+
r1

)
≤C|α|λ

ε2

∑

k≤|α|
‖∇k

xu‖λLλ

y1−2γ (B+
r2

)

+ Cλ‖y2γ−1∇|α|
x h‖Lλ

y1−2γ (B+
r2

)‖∇|α|
x u‖λ−1

Lλ

y1−2γ (B+
r2

)
.

By rescaling we may assume for some 0 < ε0 � 1, that

‖u‖L2
y1−2γ

+

|α|
∑

k=0

‖y2γ−1∇k
xh‖L∞

y1−2γ (B+
(2+|α|)ε0

) = 1, (32)

and putting λi = 2(n+1
n

)i and ρi = ε0(1 +
1
2i ) we obtain

‖∇|α|
x u‖

L
λi+1

y1−2γ (B+
ρi+1

)
≤ λi

√

C|α|,ε0λi2
2i×

sup
m≤|α|

[‖∇m
x u‖Lλi

y1−2γ (B+
r2

)
+ ‖∇m

x u‖
1
2

L
λi

y1−2γ (B+
r2

)
],
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where we have used 1
2 ≤ λi−1

λi
< 1. Iterating this inequality then shows

‖∇|α|
x u‖L∞

y1−2γ (B+
ε0

) ≤ Cα,ε0(1 + sup
m≤|α|

‖∇m
x u‖L2

y1−2γ (B+
2ε0

)) ≤ Cα,ε0 ,

where the last inequality follows from iterating (31) with λ = 2 and (32). Rescaling
back we conclude

m
∑

k=0

‖∇k
xu‖L∞

y1−2γ (B+
ε0

) ≤ Cm,ε0 [‖u‖L2
y1−2γ

+
m
∑

k=0

‖y2γ−1∇k
xh‖L∞

y1−2γ
]. (33)

Note, that D(∂αx u) = ∂αxh+ ∂αx ((D −Dg)u), where

∂αx ((D −Dg)u)

=∂αx [
∂p
√
g

√
g
y1−2γgp,q∂qu+ ∂i(y

1−2γ(gi,j − δi,j)∂ju)−
n− 2γ

2

∂y
√
g

√
g
y−2γu]

=∂q∂
α
x (
∂p
√
g

√
g
y1−2γgp,qu)− ∂αx (∂q(

∂p
√
g

√
g
y1−2γgp,q)u)

+ ∂i∂
α
x (y

1−2γ(gi,j − δi,j)∂ju)−
n− 2γ

2
∂αx (

∂y
√
g

√
g
y−2γu).

(34)

In particular, since −∂p(y1−2γgp,q∂qv) = Dv− ∂i(y
1−2γ(gi,j − δi,j)vj) we may write

∂p(y
1−2γgp,q∂q∂

α
x u) = ∂αxh+ hα +

∑

∂ph
α
p ,

where hα, hαp depend only on x−derivatives of u of order up to |α|, and due to
(15), (33), there holds

m
∑

|α|=0

‖ hα

y1−2γ
,
hαp

y1−2γ
‖L∞

y1−2γ (B+
ε0

) ≤ Cm,ε0 [‖u‖L2
y1−2γ

+

m
∑

k=0

‖y2γ−1∇k
xh‖L∞

y1−2γ
],

for all m ∈ N. Then Zamboni[33] Theorem 5.2 shows Hölder regularity, i.e. for all
m ∈ N

m
∑

k=0

‖∇k
xu‖C0,α(B+

ε0
2

) ≤ Cm,ε0 [‖u‖L2
y1−2γ

+

m
∑

k=0

‖y2γ−1∇k
xh‖L∞

y1−2γ
]. (35)

This allows us to integrate the equation directly. Indeed from (34) we have

D(∂αx u) = ∂αxh+ ∂αx ((D −Dg)u) = ∂αxh+ ∂y(y
2−2γfα1 ) + y1−2γfα2 ,

where by definition fα1 = ∂αx (
∂y

√
g

y
√
g
u) and

fα2 =∂i∂
α
x (
∂j
√
g

√
g
gi,ju)− ∂αx (y

2γ−1∂q(
∂p
√
g

√
g
y1−2γgp,q)u)

+ ∂i∂
α
x ((g

i,j − δi,j)∂ju)−
n− 2γ

2
∂αx (

∂y
√
g

y
√
g
u).

This implies

−∂y(y1−2γ∂y∂
α
x u) = ∂y(y

2−2γfα1 ) + y1−2γ(fα2 +∆x∂
α
x u+ y2γ−1∂xαh)

and we obtain

∂αx u(y, x) = y2γ ūα0 (x)−
∫ y

0

σf̃α1 (σ, x)dσ −
∫ y

0

σ2γ−1

∫ σ

0

τ1−2γ f̃α2 (τ, x)dτdσ, (36)
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where by definition we may write with smooth coefficients fi,β

f̃α1 =
∑

|β|≤|α|
f1,β∂

β
xu and f̃α2 =

∂αxh

y1−2γ
+

∑

|β|≤|α|+2

f2,β∂
β
xu. (37)

Let h ∈ yCl,λ′

. Then (35) shows

∀|α| ≤ l : ∇|α|
x u ∈ C0,λ,

whence ∀ |α| ≤ l − 2 : f̃αi ∈ C0,λ due to (37). In particular (36) implies

∂αx u(y, x) = y2γ ūα0 (x) + o(y2γ),

so ūα0 ∈ Cl+2,λ anyway by interior regularity. We define

ūα = y−2γ∂αx u, f̄α1 = y−2γfα1 , f̄α2 = y−2γ f̃α2 . (38)

We then find from (36), that

ūα(y, x) =ūα0 (x)− y−2γ

∫ y

0

σ1+2γ f̄α1 (σ, x)dσ − y−2γ

∫ y

0

σ2γ−1

∫ σ

0

τ f̄α2 (τ, x)dτdσ

=ūα0 (x) + ūα1 (y, x) + ūα2 (y, x),

(39)

where according to (37), (38) we may write with smooth coefficients fi,β

f̄α1 =
∑

|β|≤|α|
f1,β ū

β and f̄α2 =
∂αxh

y
+

∑

|β|≤|α|+2

f2,β ū
β . (40)

Then (36) and ∀ |α| ≤ l − 2 : f̃αi ∈ C0,λ already show

∀|α| ≤ l − 2 : ūα ∈ C0,λ

and we may assume ∀|α| ≤ l−2−2m : ∂2my ūα ∈ C0,λ inductively, whence according
to (40)

∀|α| ≤ l − 2− 2(m+ 1) : ∂2my f̄αi ∈ C0,λ.

Then (39) implies via Taylor expansion

∀|α| ≤ l − 2− 2(m+ 1) : ∂2m+2
y ūαi , ∂

2m+2
y ūα ∈ C0,α.

Thus we have proven ∀ |α| ≤ l−2−2m : ∂2my ∂αx u ∈ C0,λ for some λ > 0. However,

since there are only even powers in the y-derivative, we only find u ∈ Cl−3,λ for
l ∈ 2N. The proof is thereby complete.

4.2. Green’s function for Dg under weighted Neumann boundary condi-

tion. In this subsection we study the Green’s function Γg. As in the previous one
we consider the existence and asymptotics issue. To do that we use the method
of Lee-Parker[22] and have the same difficulties to overcome as in the previous
subsection. We first note that on R

n+1
+

Γ(y, x, ξ) = Γγ(y, x, ξ) =
gn,γ

(y2 + |x− ξ|2)n−2γ
2

, (y, x) ∈ R
n+1

+ , ξ ∈ R
n (41)

for some gn,γ > 0 is the Green’s function to the dual problem
{

Du = 0 in R
n+1
+

−d∗γ limy→0 y
1−2γ∂yu(y, ·) = f on R

n,
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i.e.
{

DΓ(, ξ) = 0 in R
n+1
+ , ξ ∈ R

n

−d∗γ limy→0 y
1−2γΓ(y, x, ξ) = δξ(x), x, ξ ∈ R

n.

We will construct the Green’s function Γg for the analogous problem
{

Dgu = 0 in X

−d∗γ limy→0 y
1−2γ∂yu(y, ·) = f on M

for Dg = −divg(y1−2γ∇g( · )) + Eg, i.e. for z ∈ X and ξ ∈M
{

DgΓg(·, ξ) = 0 in X

−d∗γ limy→0 y
1−2γΓg(z, ξ) = δξ(x),

(42)

where z = (y, x) ∈ X in g-normal Fermi-coordinates close to M . To that end we
identify

ξ ∈M ∩ U ⊂ U ∩X with 0 ∈ BR
n+1

ε (0) ∩ R
n ⊂ BR

n+1

ε (0) ∩ R
n+1

+

as in the previous subsection, and write Γ(z) = Γ(z, 0). On BR
n+1

ε (0) ∩ R
n+1
+ we

then have

DgΓ = − ∂p√
g
(
√
ggp,qy1−2γ∂qΓ) + EgΓ = f ∈ y1−2γH−n+2γ−1C

∞. (43)

Again we may solve homogeneous deficits homogeneously.

Lemma 4.2. For 1
2 6= γ ∈ (0, 1) and fl ∈ y1−2γHl+2γ−1, l ∈ N − n there exists

Γ1+2γ+l ∈ H1+2γ+l such, that

DΓ1+2γ+l = fl in R
n+1 and lim

y→0
y1−2γ∂yΓ1+2γ+l = 0 on R

n \ {0}.

Proof. This time we use

〈Qk
l (y, x) = y2kPl(x) | k, l ∈ N and Pl ∈ Πl〉 ⊂

dense
C0(B

R
n+1

1 (0) ∩ R
n+1
+ ),

to obtain a orthogonal basis E = {eik} for L2
y1−2γ (Sn

+) consisting of D-harmonics

of the form

eik = AmbSn
+
, Am(y, x) =

∑

y2lPk−2l(x), DAm = 0

and we have DSn
+
eik = k(k+n− 2γ)y1−2γeik. Then for homogeneous f, u of degree

λ, λ+ 1 + 2γ solving
{

Du = f ∈ L2
y2γ−1(R

n+1
+ ) in R

n+1
+

limy→0 y
1−2γ∂yu = 0 on R

n

is, when writing u =
∑

ai,ke
i
k , y

2γ−1f =
∑

bj,le
j
l , equivalent to solving

∑

ai,k(k(k + n− 2γ)− (λ+ 1 + 2γ)(λ+ n+ 1))eik =
∑

bj,le
j
l

and the latter system is always solvable in case

k(k + n− 2γ)− (λ+ 1 + 2γ)(λ+ n+ 1) 6= 0 for all k, n, λ ∈ N. (44)

As for proving the lemma there holds

deg(fl) = λ = m− n and deg(eik) = k = m′ for some m, m′ ∈ N
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and plugging this into (44) we verify for 1
2 6= γ ∈ (0, 1)

m′(m′ + n− 2γ)− (m− n+ 1 + 2γ)(m+ 1) 6= 0 for all n ,m, m′ ∈ N.

This shows homogeneous solvability, whereas regularity of the solution follows from
Proposition 3.

Analogously to the case of the Poisson kernel we may solve (42) successively using
Lemma 4.2 and obtain

Γg = ηξ(Γ +

m
∑

l=−n

Γ1+2γ+l) + γm

for m ≥ 0, where ηξ is as in (23) and a weak solution
{

Dgγm = −Dg

(

ηξ(Γ +
∑m

l=−n Γ1+2γ+l)
)

= y1−2γhm in X

limy→0 y
1−2γ∂yγm = 0 on M

with hm ∈ Cm,α. As in the previous subsection a weak regularity statement is
sufficient for our purpose.

Proposition 3. Let h ∈ y1−2γC2k+3,α(X) and u ∈ W
1,2
y1−2γ (X) be a weak

solution of
{

Dgu = h in X

limy→0 y
1−2γ∂yu = 0 on M.

Then u is of class C2k,β(X), provided Hg = 0.

As in the previous subsection, putting these facts together before presenting the
proof of Proposition 3, we have the existence of Γg and can describe its asymptotics.

Corollary 2. Let 1
2 6= γ ∈ (0, 1). Then Γg exists and we may expand in g-normal

Fermi-coordinates around ξ ∈M

Γg(z, ξ) ∈ ηξ(z)

(

gn,γ

|z|n−2γ
+

2m+3
∑

l=−n

H1+2γ+l(z)

)

+ C2m,α(X)

with Hl ∈ C∞(Rn+1
+ \ {0}) being homogeneous of order l and gn,γ is as in (41),

provided Hg = 0.

Proof of Proposition 3. As in the previous subsection we use the Moser iteration
argument. Indeed by exactly the same arguments as the ones used when proving
Proposition 2 we recover Hölder regularity (35) and integrating the equation directly
we find the analogue of (36), namely

∂αx u(y, x) =u
α
0 (x)−

∫ y

0

σf̃α1 (σ, x)dσ −
∫ y

0

σ2γ−1

∫ σ

0

τ1−2γ f̃α2 (τ, x)dτdσ

=uα0 (x) + uα1 (y, x) + uα2 (y, x),

(45)

where f̃1, f̃2 are given by (37). Let h ∈ y1−2γCl,λ′

. Then (35) and (37) show

∀|α| ≤ l − 2 : f̃αi ∈ C0,λ.

In particular (45) implies

∂αx u(y, x) = uα0 (x) +O(y),

so uα0 ∈ Cl+2,λ anyway by interior regularity and we may assume inductively

∀|α| ≤ l − 2− 2m : ∂2my ∂αx u ∈ C0,λ,
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whence according to (37)

∀|α| ≤ l − 2− 2(m+ 1) : ∂2my f̃αi ∈ C0,λ.

Then (45) implies via Taylor expansion

∀|α| ≤ l − 2− 2(m+ 1) : ∂2m+2
y uαi , ∂

2m+2
y ∂αx u ∈ C0,λ

Thus we have proven ∀| α| ≤ l−2−2m : ∂2my ∂αx u ∈ C0,λ for some λ > 0. However,

since there are only even powers in the y-derivative, we only find u ∈ Cl−3,λ for
l ∈ 2N. The proof is thereby complete.

4.3. Green’s function for the fractional conformal Laplacian. In this short
subsection we study the Green’s function G

γ
h of P γ

h . We derive its existence and
asymptotics as a consequence of the results of the previous subsections and formula
(16).

Corollary 3. Let 1
2 6= γ ∈ (0, 1). Then Gh exists and we may expand in

h-normal-coordinates around ξ ∈M

Gh(x, ξ) ∈ ηξ(x)

(

gn,γ

|x|n−2γ
+

2m+3
∑

l=−n

H1+2γ+l(x)

)

+ C2m,α(M)

with Hl ∈ C∞(Rn \ {0}) being homogeneous of order l, provided Hg = 0.

To end this section, we give the proof of Theorem 1.1.

Proof of Theorem 1.1. It follows directly from Corollary 1, Corollary 2, and Corollary
3.

5. Locally flat conformal infinities of PE-manifolds. In this section we sharpen
the results of Section 4 in the case of Poincaré-Einstein manifold (X, g+) with
locally flat conformal infinity (M, [h]).

5.1. Fermi-coordinates in this particular case. By our assumptions we have
a geodesic defining function y splitting the metric

g = y2g+, g = dy2 + hy near M and h = hybM
and for every a ∈ M a conformal factor as in (10), whose conformal metric

ha = u
4

n−2γ
a h close to a admits an Euclidean coordinate system, ha = δ on

Bha
ε (a). As clarified in subsection 3.2 and recalling Remark 1, this gives rise to a

geodesic defining function ya, for which

ga = y2ag
+, ga = dy2a + ha,ya

near M with ha = ha,ya
bM and δ = habBha

ε (a),

(46)
the boundary (M, [ha]) is totally geodesic and the extension operator Dga is
positive. As observed by Kim-Musso-Wei[21] in the case n ≥ 3, cf. Lemma 43 in
[21], and for n = 2 due to Remark 1 and the existence of isothermal coordinates
we have

ga = δ +O(yna ) on Bga,+
ε (a) (47)

in ga-normal Fermi-coordinates around afor some small ε > 0. Therefore the
previous results on the fundamental solutions in the case of an asymptotically
hyperbolic manifold with minimal conformal infinity of Section 4 are applicable. We
collect them in the following subsection.
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5.2. Fundamental solutions in this particular case. In this subsection we
sharpen the results of Section 4 in the case of a Poincaré-Einstein manifold (X, g+)
with locally flat conformal infinity (M, [h]).

To do that let us first recall that Ka = Kga(·, a), Γa = Γga(·, a) and Ga =
Gha

(·, a). From (47) we then find

DgaKa ∈ yH−2γ−2C
∞, DgaΓa ∈ y1−2γH2γ−2C

∞

for the lowest order deficits in (19) and (43). Then in view of Lemmas 4.1, 4.2 the
corresponding expansions given by Corollaries 1, 2, 3 are

Ka(z) ∈ ηξ(z)

(

pn,γ
y2γ

|z|n+2γ
+

2m+6
∑

l=0

y2γHl−2γ(z)

)

+ y2γC2m,α(X)

Γa(z) ∈ ηξ(z)

(

gn,γ

|z|n−2γ
+

2m+4
∑

l=0

Hl+2γ(z)

)

+ C2m,α(X)

Ga(x) ∈ ηξ(x)

(

gn,γ

|x|n−2γ
+

2m+4
∑

l=0

Hl+2γ(x)

)

+ C2m,α(M).

Recalling (20) there holds y2γHl−2γ ⊂ Cm,α for l > m and Hl+2γ ⊂ Cm,α for
l ≥ m. We have therefore proven the following result.

Corollary 4. Let (X, g+) be a Poincaré-Einstein manifold with conformal infinity

(M, [h]) of dimension n = 2 or n ≥ 3 and (M, [h]) is locally flat. If

1

2
6= γ ∈ (0, 1) and λ1(−∆g+) > s(n− s) for s =

n

2
+ γ,

then the Poison kernel Kg and the Green’s functions Γg and Gh respectively for
{

DgU = 0 in X

U = f on M
{

DgU = 0 in X

−d∗γ limy→0 y
1−2γ∂yU = f on M

and
{

P
γ
h u = f on M

are respectively of class y2γC2,α and C2,α away from the singularity and admit

for every a ∈M locally in ga-normal Fermi-coordinates an expansion around a

Ka(z) ∈ pn,γ
y2γ

|z|n+2γ
+ y2γH−2γ(z) + y2γH1−2γ(z) + y2γH2−2γ(z) + y2γC2,α(X)

Γa(z) ∈ gn,γ

|z|n−2γ
+H2γ(z) +H1+2γ(z) + C2,α(X)

Ga(x) ∈ gn,γ

|x|n−2γ
+H2γ(x) +H1+2γ(x) + C2,α(M),

where ga is as in (46) and Hk ∈ C∞(Rn
+ \ {0}) are homogeneous of degree k.

Finally, we give the proof of Theorem 1.2.

Proof of Theorem 1.2. It is exactly the statement of Corollary 4.
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