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ABSTRACT. Motivated by recent progress in data assimilation, we develop an
algorithm to dynamically learn the parameters of a chaotic system from partial
observations. Under reasonable assumptions, we supply a rigorous analytical
proof that guarantees the convergence of this algorithm to the true parameter
values when the system in question is the classic three-dimensional Lorenz
system. Such a result appears to be the first of its kind for dynamical parameter
estimation of nonlinear systems. Computationally, we demonstrate the efficacy
of this algorithm on the Lorenz system by recovering any proper subset of
the three non-dimensional parameters of the system, so long as a correspond-
ing subset of the state is observable. We moreover probe the limitations of
the algorithm by identifying dynamical regimes under which certain parame-
ters cannot be effectively inferred having only observed certain state variables.
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In such cases, modifications to the algorithm are proposed that ultimately result
in recovery of the parameter. Lastly, computational evidence is provided that
supports the efficacy of the algorithm well beyond the hypotheses specified by
the theorem, including in the presence of noisy observations, stochastic forcing,
and the case where the observations are discrete and sparse in time.

1. Introduction. A fundamental concern when using any mathematical model
is the need to precisely specify parameters that describe the physical situation in
question. Although the fundamental physics that underlie these models are typically
not a matter of debate, it is often difficult to precisely identify the various parameters
that describe a particular setting of interest. A topic of immense importance is then
to accurately determine the parameters of a model given a limited set of observations
of the system. At the far extreme, one may try to identify fitting parameters that
match the available data via a neural network or similar data-fitting algorithm.
Although this works remarkably well in many settings, it is often not informative
of the underlying physics of the problem (see [4, 41, 52, 61, 69, 76] for just a few
examples of this and similar approaches). This article is not a discussion on the
phenomenological benefits of using data versus modeling via first principles, but we
note that most modeling approaches fall somewhere along the spectrum between
purely data-driven techniques, such as standard neural networks, and models built on
differential equations or other mathematical constructs that assume a deterministic
evolution of the system. Just as the construction of such models falls on this
spectrum, so does the identification of parameters that specifically fit such a model.
In this light, we note that the approach described below lies closer to the classical
approach of modeling via first principles, but incorporates limited observational data
as well in order to learn the parameters of the relevant dynamical model.

Purely data-driven approaches to parameter learning and estimation have their
relevance and are useful in many contexts, but also have some drawbacks. First,
most machine learning approaches require a substantial amount of data to train
on, which may not always be available for a given dynamical system of interest.
Second, these approaches are typically applied after the data is collected. In other
words, the data is observed and then a surrogate model (such as a neural network) is
trained to model the data; the surrogate is then used for future predictions. We will
instead present an approach that relies on existing knowledge of the equations which
generates the dynamical system, but where various components of the system may
not be known. We present an algorithm that will learn the parts of the governing
equations that are either unknown or uncertain, concurrently as data is collected.
Colloquially, we call this ‘on-the-fly’ learning of parameters. Although we only present
algorithms for certain types of observable data, the methods are very promising
in their applicability to a variety of physically interesting systems, including the
one-dimensional (1D) Kuramoto-Sivashinsky equation [67], two-dimensional (2D)
incompressible Navier-Stokes equations [16], and related systems.

The current investigation is to study the accurate estimation of parameters based
on restricted observational data. The most straight-forward such method would be
to run a series of model simulations using all potential parameter combinations, as
is done in, e.g., [22], and then use linear regression to fit the estimated parameters
to, e.g., the previously collected observational output. However, such brute force
approaches can often be cost prohibitive. Other techniques have been proposed
and tested in various settings (see [7, 27, 65, 71, 74, 79, 80] for a small number of
examples). These approaches range from Bayesian-based methods such as Markov
Chain Monte Carlo (see, e.g., [24]) — which require a significant number of forward
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simulations of the model system in order to collect comparative data relative to the
observations — to various modifications of the Kalman filter suited for parameter
learning/estimation (see, e.g., [32, 77]), and even to particle filters (see, e.g., [82]).
The Kalman filter approach is most similar to our current investigation in practice
because it is capable of reproducing the state of the system and the relevant
parameters simultaneously with a limited number of observations and evaluations of
the forward model. Nevertheless, the algorithm presented below is quite different
from the Kalman filter.

Variations on the parameter learning algorithm presented here are also demon-
strated in a different context in [16] and [67]. All of these results, including the current
investigation, are motivated by the continuous data assimilation approach pioneered
by [5]. The approach was originally presented for the 2D Navier-Stokes equations but
has since been generalized to settings beyond the Navier-Stokes system where only a
subset of the prognostic variables are observable [2, 3, 11, 9, 10, 12, 13, 17, 19, 20, 25,
23, 26, 33, 35, 34, 36, 37, 38, 42, 43, 44, 45, 46, 50, 51, 53, 55, 56, 60, 62, 63, 68, 72, 81].
Further extensions of this approach to discrete-in-time observations [40, 49, 57], and
the presence of stochastic noise in the observations [8, 14] have been made with
completely rigorous justification. The basic premise of this form of data assimilation
is to include a feedback control term that “nudges” the modeled system toward the
observed true state (see Section 2). Dissipation is then crucially used to prove that
the system converges not only to the observed projection of the true state, but in
fact to the full true state. It was noted in [16, 33, 54] for different systems that if
the parameters of the model are not that of the true state, then the system will
converge to a finite amount of unrecoverable error. This remaining error is a direct
consequence of the parameter error, and hence provides an avenue to estimating the
true value of the parameter.

As illustrated in [16, 67] and below, these parameter learning methods are robust
across a variety of settings. Computational evidence is given in [16] that the viscosity
of the 2D Navier-Stokes system can be recovered, and [67] accurately identifies several
different parameters simultaneously for the 1D Kuramoto-Sivashinsky equation.
However, neither of the works [16, 67] were able to provide a completely rigorous
justification for the success of these methods, despite some clear algorithmic hints
that such a proof is available. In order to focus on a setting where rigorous results are
more readily achievable, we study the classical set of ordinary differential equations
given by the Lorenz ‘63 system from [59]. Indeed, in the context of the Lorenz
equations, it has been rigorously proven that the feedback control approach results
in synchronization of the modeled system with the true state. This has been
accomplished in various setups, such as time-averaged observations, enforcing a
nonlinear feedback control, or in the presence of observational error [14, 30, 58].
While the Lorenz system is finite-dimensional and hence of a much simpler nature
than even the Kuramoto-Sivashinsky equation, it is highly nonlinear and has often
been used as the basis for investigations of nonlinear and chaotic phenomena such
as turbulence (see, e.g., [1, 28, 39, 47, 75]). Just as in [39, 75], we anticipate that
the analysis outlined below can later be extended to infinite dimensional dissipative
systems such as the Navier-Stokes or Kuramoto-Sivashinsky equations

The remainder of this article proceeds as follows. Section 2 provides a heuristic
derivation of the update formula, then reviews some key prior results for the Lorenz
system, and finally states the main mathematically rigorous results as theorems, the
proofs of which are relegated to Section 4. Afterwards, an alternative approach for
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parameter recovery via ‘direct-replacement’ is provided for the sake of an analytical
comparison. Section 3 describes the computational experiments that were performed
on the Lorenz system. These results demonstrate our parameter learning algorithms
under various circumstances that are substantially more robust than the convergence
regimes identified in the theorems stated in Section 2 (see, for instance, (2.9) and
(2.11)). The authors have made the code for this work freely available on Github
(see Section 3.1).

2. Multi-parameter recovery. In this section, we derive formulas that recover
any subset of the parameters of the Lorenz ‘63 system provided that a certain
subset of its state variables are known (Section 2.1). These formulas are ultimately
inspired by the recent work [16], which leverages a data assimilation algorithm for
PDEs, developed by Azouani, Olson, and Titi (AOT) in [5], to recover the unknown
viscosity from partial observations of the velocity field. The AOT algorithm modifies
the original PDE using a feedback control term that incorporates observations of
the original, “true” system. More specifically, it appropriately interpolates the
observations to the phase space of the original system in such a way that the state
variables of the resulting model system are driven towards the observed variables
of the original system. Dissipative effects in the systems then drive the simulated
solution to the true solution. For many of the systems studied in hydrodynamics,
the solution of the AOT system asymptotically synchronizes with the solution
of the original system when all of the system parameters are perfectly known
[3, 11, 12, 13, 25, 23, 33, 35, 34, 36, 37, 38, 50, 51, 62, 68]. In the case where the
parameters are not exactly known, however, we extract a formula from the AOT
system that dynamically updates the unknown parameters. We further identify
rigorous conditions under which these updates eventually converge to the true value
of the parameter.

In the context of finite-dimensional systems, the AOT algorithm coincides with a
classical data assimilation algorithm known as nudging [48]. The difference between
the AOT and nudging algorithms at the level of PDEs has recently been studied
in detail for a large-scale comparison test case [18]. For the Lorenz system, the
AQT algorithm can be reduced to the classical nudging-based algorithm by selecting
the observation-interpolating operator to be a diagonal matrix with non-negative
coefficients—the coefficients representing the strength of nudging in each component
of the observations. These coefficients ultimately determine the rate at which the
model variables relax to the true variables. We will prove that the update rules
derived from the AOT algorithm eventually recover the parameters, assuming certain
algorithmic stipulations are met. We derive the formulas in Section 2.1 and supply
the proofs in Section 4. A precise statement of the main results are presented
in Section 2.2). We conclude the section by briefly comparing the nudging-based
approach with an alternative direct-replacement approach in Section 2.3.

2.1. Derivation of parameter recovery formulas. The system of interest is the
Lorenz ‘63 system [59], which is given by

i=o(y—x)
Y=pr—y— T2 (2.1)
Z=uxy— Bz

where o, p, 8 > 0. Consider the problem where a subset of the system parameters
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{0, p, B} is unknown and we want to learn the true values of those unknown param-
eters by leveraging the known dynamics, i.e., (2.1), along with partial observations
of the state variables x,y, z and estimates of the true parameter values.

The nudged system corresponding to (2.1) is given by

F=5{[—%) —m@—2)
y=pF—§— 3% — pa(i — y) (2:2)
=37 - B — ps(Z - 2).

where &,5,8 > 0 and g1, 2, i3 > 0. The nudged system (2.2) possesses the
following synchronization property when the parameters are known exactly, i.e.,
oc=0,p=p, and B = B: for puy, e, uz sufficiently large, one has & — x, y — v,
Z — z — 0 exponentially fast as ¢ — oco. The reader is referred to, e.g., [14], for
additional details.

The parameter recovery problem we consider for (2.1) is stated as follows: suppose
that a subset of the system parameters, o, p, 8, is unknown; the goal is to infer the
unknown parameters, assuming that a subset of the state variables is observed. For
example, if ¢ is not known precisely but the continuous time series O = {z(¢)}+>0
is observed, then the goal is to recover o using the values from O and the nudged
system (2.2) corresponding to p; > 0 and us = us = 0. Based on the synchronization
that is expected to occur between (z,y,x) and (Z,%,Z) when the parameters are
actually known, we heuristically derive an update formula that provides increasingly
accurate estimates of the unknown parameter(s) of interest.

Denote the differences between the nudged variables and original variables by

u=IT—x, vI=y—y, w:=2—2, (2.3)
and the parameter errors by
Aoc:=G—0, Ap:=p—p, AB:=[-8. (2.4)
Then the system governing the evolution of the error vector (u,v,w) is given by
w = (y—2)Ao+ov— (u +o)u,
v = ApT+ pu—uz—Tw— (1+ p2)v, (2.5)
W =—ABZ+uy + v — (u3 + Bluw.

Multiplying each equation in (2.5) by u, v, and w respectively, we obtain

sl = (AG) (7 — T)u+ o(v — w)u — pyu?,

1d

5%1)2 = Apzv + puv — v? — (uz + Tw)v — pgv?,
Ld

—w? = (uy + Tv)w — fw? — AFZw — pzw?.

Now suppose that g1, po, s > 1. Due to the relaxation effect of the nudging
system, we anticipate that the parameter errors, Ao, Ap, AS, will become small as
u,v and w become small. In particular, when u,v,w are small, quadratic terms
should be negligible unless they are multiplied by w1, p2, 3. On the other hand,
provided that the parameter errors are not identically zero, the differences, u, v, w,
are expected to relax towards a value proportional to the size of these parameter
errors since these errors effectively enter the equation as inhomogeneous terms. We,
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therefore, anticipate the associated time-derivatives of the differences to become
negligible after a transient time interval. To leading order, we deduce that

0~ Ac(y — T)u — pyu?,
0~ ApZv — pov?,
0~ —ABZw — psw?,

which formally reduces to

~ w
BB+ M3 =
In particular, we propose the following rules for updating the parameters
U

On+1 = Onp _Mlg_ga

v
P+l = Pn = P2=, (2.6)

w
Br+1 = Bn + 3=

where it is understood that z, ¥,z and u, v, w are evaluated at the “final time” of
the previous “epoch”. This time delineates the period between the (n — 1)-st and
n-th updates. These parameter updates are only performed at instances when the
differences u, v, w have relaxed to a (non-zero) near constant value. The process is
restarted afterwards by solving the nudging equations forward-in-time with the new
parameter values. As this process is iterated, we find that the parameters converge
to the true values.

2.2. Statements of main theorems. In this section, we identify sufficient condi-
tions under which the formulas (2.6) converge to the true values of the corresponding
parameters. A rigorous proof of this statement is supplied in Section 4, but we
provide precise statements of these theorems now. In order to do so, we will make
reference to the following well-known properties of the Lorenz system, which can be
found in, e.g., [29, 73].

Theorem 2.1. Let o,p, 5 > 0. Then there exists an absorbing ball for (2.1), that
is, there exists R > 0 such that for any r >0

|(x(t),y(t),z(t) —p—0)| <R, foralt>T, (2.7)

whenever |(z(0),y(0),2(0) — p —o)| <, for some T = T(r). Moreover, this ball is
forward invariant in the sense that (2.7) holds, whenever |(x(0),y(0), 2(0) —p—0)| <
R. In particular, (2.1) has a global attractor, of = o/ (o, p, ).

In the following, we denote the ball of radius » > 0 centered at x € R? by %(r, x).
Then the absorbing ball of (2.1) may be denoted by #(R, (0,0, p+ o)), where R > 0
is given as in Theorem 2.1. For convenience, we will often simply write %, , 5 to
denote the absorbing ball of (2.1) corresponding to parameters o, p, 8, or simply 2
whenever o, p, 8 is understood to have been fixed. Lastly, the fact that absorbing
balls are forward invariant will allow us to simplify our analysis by allowing us to
assume that the system has evolved sufficiently long for the observations to already
belong to A.
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Given (xg,y0,20) € %, we denote the corresponding global solution of (2.1)
evaluated at time ¢t > 0 by (z(¢;z0), y(¢;y0), 2(t; z0)). For convenience, we suppress
the dependence on the initial data and simply write (z(t),y(t), z(¢)). Given n > 0
and t,, > 0, we use the notation

Tn = x(tn)v Yn = y(tn)v Zn = Z(tn)
For a sequence of discrete times {t,, }n>0, let I, = [tn,tny1) where tg = 0. Then
given positive sequences of the parameters {o,}, {pn}, {8} updated as described

above, we consider the unique solution (z(™, (™), Z(") of (2.2) over the interval I,,
corresponding to initial data (Z(t,,),y(tn), Z2(tn)) and parameters & = o, p = pn,

B = pn, ie.,

7™ =g, (5™ — ™)) — 4y (3 — 2), T () = T,
g™ = p,z) — ) —FZ0) (G — ), (D) = G, (2.8)
z() = g _ g 3 _ (3 — ), F0 () = 2,

for t € I, and n > 0, where p1, g, 3 > 0 are fixed. Note that when n = 0, we
simply let ¢, = 0. We also have the corresponding systems (4.1) (evolution of
the differences u(™ = 7" — z(™ () = () _ () and w = z(") — 2(M)) and
(4.9) (evolution of @™, ¥ and @), denoted 4™, §( and 1™, respectively)
defined over I,,. Since we will be making parameter updates sequentially in time, we
emphasize that the “final values” of (2.8) over I,,_; specify the initial value over the
“current interval” I,,, while the corresponding evolution for the time-derivative of the
state of (2.8) (see (4.9)) accordingly specifies its “initial value” by right-hand limits
at the left-hand endpoint ¢ = ;" of I,,. This slight modification of the typical “gluing
procedure” for differential equations is necessary to allow for jumps in the time-
derivatives at each instance of the parameter updates, while maintaining continuity
in the state variables.

Finally, for n > 1, we will suppose that t,, > 0 represents the time at which the
n-th update for the triplet (o, p, §) is made. We then claim the following.

Theorem 2.2. Let p = p, 5 =p, and puo = pu3 = 0. Let M > 1 and og > 0 such
that |og — o] < M, and choose a tolerance € > 0. There exist constants C,C" > 0
such that if p1 satisfies

p>C(+a+p+B8+R)>, (2.9)
and
O/
>, (2.10)
then if there exists a sequence of N update times 0 < t; <ty < --- <ty where
. c= s .
o) Un — Zn| > ¢, (2.11)
then
1 — 1
qup 1Zmrr=ol 1 (2.12)
0<n<N |0n — 0| 2

Moreover, o, >0, foralln=1,...,N + 1.

An immediate consequence of Theorem 2.2 is that if (2.11) holds for all N > 0,
then (2.12) enforces exponential convergence to the true parameter value. As
previously mentioned, the proof of Theorem 2.2 is provided in Section 4. We
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emphasize, however, that similar statements for any of the other combinations of
parameters are also available provided that the appropriate datum is also supplied. In
particular, one may recover (o, 3) provided that (z, z) is observed or (p, 8), provided
that (y, z) is observed. The choice to supply the proof of Theorem 2.2 is one of
convenience. Of course, all three parameters, (a, p, 8) can also be recovered provided
that each of the variables (z,y, z) are known. As this latter situation represents a
trivial case, however, one need not apply the proposed algorithm. We point out
that a proof can nevertheless be supplied for this trivial case in the same spirit as
all the other cases. Since the statements analogous to Theorem 2.2 for the other
combinations of parameters can be found by making straight-forward adjustments of
the analysis that implies the single-parameter case represented by Theorem 2.2, we
simply provide the statement for one of the other combinations here and refer the
reader to Remark 4.7 for additional details. Indeed, our analysis has been organized
in such a way to accommodate these other combinations.

Theorem 2.3. Suppose that us = 0 and that E =p. Let M > 1 and og, po > 0 such
that |0 — ool + |p — po| < M, and choose a tolerance e > 0. There exist C,C’ >0
such that if py, po satisfy

pipe > C(l+o+p+B+R)>, (2.13)
and
C/
pas 2 = =2 (2.14)
then if there exists a sequence of N update times 0 < t1 <ty < --- <ty such that
inf UYp — T T > 2.1
0§7L12N+1{|yn xn|a|xn|} 2, ( 5)
then
n - n - 1
sup |U +1 0" + |p +1 pl < -, (2.16)
0<n<N |Un - U‘ + |pn - P‘ 2

Moreover, 0., pn >0, for alln=1,... ;N + 1.

2.3. Comparison with direct-replacement data assimilation. Rather than
inserting observations into the system via feedback control as in (2.2), one may
instead directly substitute the observed quantity into the equations themselves. As
a data assimilation algorithm, this was first studied for the Lorenz equations and
2D Navier-Stokes equations in [47]. We can extend these ideas in an analogous way
to the feedback control-based approach developed earlier to parameter recovery.

To fix ideas, assume that {z(t)}+>¢ is given and consider the problem of recovering
o from this information alone. Let ¢ represent a guess for o. Then the corresponding
modeled system is given by

r=2x
y=pr—§—a% (2.17)
z = a7 — Bz

Note that the first equation in (2.17) has no time derivative since we simply replace T
by z directly. From (2.1), we see that o = i@(y — )™, so we make the approximation
- T
c==—.
y—x
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It follows that
|Ac| < e,
provided that
_Ellg =yl
ly—ally—a| =

Several remarks are in order. Firstly, (2.18) may be viewed as an analog to
the non-degeneracy condition (2.11). In order for the parameter error |Acg| to be
small using the direct-replacement approach, either y must be sufficiently close to
y or otherwise, the product of the distance between y and x or y and z must be
sufficiently large. When (2.1) exhibits non-trivial dynamics, |Z| is typically large,
potentially making (2.18) more difficult to satisfy. From this point of view, the
feedback control-based approach provides a degree of flexibility through the tunable
parameter p that is not present in the direct-replacement approach.

Secondly, the effectiveness of the direct-replacement approach appears to rely on
having a sufficient density of observations in time to approximate the time-derivative,
2. Of course, this is not an issue when observations are collected continuously in time.
In practical scenarios where measurements are taken at discrete times, however, the
time-derivative may be difficult to accurately approximate. The feedback control-
based approach, on the other hand, does not require knowledge of time derivatives.
Information on the time derivatives of the state variables can be quite powerful.
Indeed, it was proved in [78] that knowledge of & and z at a single point in time are
sufficient to reconstruct y and z at that time.

In spite of these remarks, the direct-replacement approach to parameter recovery
warrants further study, both analytically and numerically, especially as a basis of
comparison to the feedback control-based approach that is the main focus of this
article.

(2.18)

3. Computational results. We present a computational study of the parameter
learning algorithm described above in Section 2. First we conduct a sweep of
the Lorenz system’s three-dimensional parameter space with observations collected
continuously in time (see Figure 4). These results illustrate the dependence of the
parameter learning algorithm on the dynamical behavior of the reference solution.
They additionally demonstrate the robustness of the algorithm to variations of the
system parameters. We then proceed to investigate situations beyond those captured
in Theorem 2.2 and Theorem 2.3. In particular, we introduce aspects of the problem
that are closer to reality, including discrete observations in time, noisy observations,
and stochastic forcing in the underlying system. Partial observations with stochastic
errors have previously been studied in the setting of the Navier—Stokes equations
[8, 15], but under the assumption that the viscosity parameter was already known.
The demonstrated effectiveness of the parameter learning algorithm in the presence
of stochastic observation error (see Figure 6 and 7) motivates future work to develop
a rigorous justification, perhaps by amending the proof of Theorems 2.2 and 2.3. We
refer the reader to [21] for an analytical study of parameter estimation for the 2D
stochastically perturbed Navier-Stokes equation, where only finitely many Fourier
modes are observed.

Note that data assimilation for the Lorenz equations with sampling of only the x
variable was studied both analytically and computationally in [47] using a replacement
scheme rather than a nudging scheme ([47] also studied model replacement strategies
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for 2D Navier-Stokes). In [47], it was assumed that the parameters o, p, and
were known exactly. Of course, the goal of the present work is to show that even if
the parameters are unknown, the true parameters can be learned from observations
using the schemes described above. Here, we only study parameter learning using a
nudging scheme, but parameter learning using replacement schemes will be studied
in a future work.

3.1. Numerical methods. The code/data used to run simulations and produce
the figures is available at the following repository.

https://github.com/unis-ing/lorenz-parameter-learning

3.1.1. Setup for continuous sampling (Sections 3.2-3.4). The Lorenz system (2.1)
and the assimilating system (2.2) were solved using LSODA, which is a variant of
the Livermore Solver for Ordinary Differential Equations (LSODE). The LSODA
routine switches between nonstiff (Adams type) and stiff (backward differentiation)
methods. Upon initialization, LSODA begins with a nonstiff method and then tracks
the nature of the underlying ODE to determine whether the stiff or nonstiff solver is
more appropriate. The time-step in LSODA is adaptive and chosen to minimize the
local error [70]. We ensure that the Lorenz system is initialized within the absorbing
ball for every simulation reported here by integrating it forward 5 time units from
the position (x,y, z) = (60,60, 10). The assimilating system is always initialized at
(Z,9,2) = (0.1,0.1,0.1).

3.1.2. Setup for sparse sampling (Sections 3.5 and 3.6). The Lorenz system (2.1)
and the assimilating system (2.2) were simulated using the explicit first order Euler
method. For these experiments, we avoided using higher-order Runge-Kutta methods
because such multi-stage methods, when applied to nudging-based schemes, violate
the principle of having so-called “identical discrete dynamics” and can misrepresent
the error (see, e.g., the discussion in Section 4 of [66]). In addition to the forward
Euler method, we also treated the linear terms implicitly using an exponential
time-differencing (ETD) method, but saw no significant differences in the results.
Hence, for simplicity, only the explicit forward Euler time-stepping simulations are
reported here.

3.2. Single-parameter learning with continuous sampling. As the first point
of comparison, we suppose that only ¢ is unknown (both 3 and p are known exactly)
and that x(t) is continuously observed; i.e., z(¢) is known for all values of ¢. This is
precisely the situation hypothesized in Theorem 2.2 above. Recall from Section 2.1
that % was implicitly assumed to be negligible in deriving the parameter update
formulas. This suggests that one must ensure this property holds prior to making
an update to the parameter. In principle, it is possible to enforce this property in
the numerical setting by approximating ‘é—;‘ ~ 0 via finite differences, although we
have observed parameter convergence from simply requiring u /=~ 0. To enforce the
latter condition, we implement thresholds on u of the form |u(t)| < 6, where 0 is
systematically decremented after each parameter update. An example approach
for decrementing # would be to fix a geometric constant 0 < d < 1 and update
the threshold as 6 — df after each parameter update. However, “thresholding” in
this way requires detailed tuning of d and the initial value of . We propose an
alternative method for threshold selection that leverages the observational data and
does not introduce additional algorithmic parameters.


https://github.com/unis-ing/lorenz-parameter-learning
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Let ¢,, represent the time of the previous update and t > ¢,, represent the current
time. Let by, m, € R be a linear fit of the dataset {log|u(s)| : t, < s < t}. That is,
by, M, minimize the mean squared error over {log |u(s)| — (mps+by) : t, < s <t}
The threshold 6 at time ¢ is then defined to be

O(u, tn,t) = exp{mnt + by }. (3.1)

By requiring |u(t)| to be bounded by 6 as defined, one eliminates candidates for the
next update time ¢,11 in which |u(t,41)| is a local maximum. Since the formula
was derived implicitly assuming that both u and % are small, the best candidate
times for updates are expected to be in neighborhoods of local minima of u. Further
comments regarding the threshold 6 can be found in [64].

The entire procedure for estimating o with continuous observations in z(t) is
given in Algorithm 1. The algorithm is robust to a wide range of initial estimates,
provided that p; and T are taken large enough (see [64]). We were able to recover
o from the reference values ¢ = 10, p = 28, 8 = 8/3 up to an error of magnitude
O (10’13) with an initial parameter error of magnitude O (103). In Figure 1, we
apply Algorithm 1 and observe the evolution of the “position error”, i.e., || (u,v,w) ||,
and “velocity error”, i.e., H (7v,9,1m) H The analytically derived upper bounds on both
position and velocity error (Corollary 4.2 and Corollary 4.4) hold as they should.
On the other hand, the restriction (2.9) specified for 1 was calculated to be on the
order of O(107), which we found to be quite excessive; in practice, a sufficient value
for py to accurately infer o is ©(102). It should be noted that y; is an algorithmic
parameter, not a physical one, so it may be tuned as the user prefers, so long as
solutions remain stable. For example, for rapid convergence, it is often desirable to
choose it as large as linear stability will allow, that is, u1 < 2/At, where At is the
(largest) time-step.

3.3. Dependence on dynamical behavior. As we might anticipate for any type
of inverse problem with a complicated forward map, the o-learning problem does
not always have a unique solution. For example, if x ~ y for all ¢ > 0, then there is
no unique value of o which satisfies ‘(%’ = o(y — x) ~ 0. This is exactly the scenario
that occurs when one of two nontrivial fixed points of the Lorenz equations is stable,

since the nontrivial fixed points

Py = (.’lﬁi, Y+, Zi) = (i\/ B(p_ 1), + B(p_ 1), P 1)'

satisfy x4+ = y+. Note that the stability of the Lorenz equations can be analyzed
using the usual linearization technique (see [59]). The origin is a fixed point for all
parameters and is stable for 0 < p < 1. The fixed points at P4 exist for p > 1 and
are linearly stable up to a critical value p = p., where stability is lost in a subcritical
Hopf bifurcation. This critical value is given by p. =o(0c+ 8+ 3)/(c — 5 —1).

Thus as long as there is a time ¢ where x(t) % y(t), the issue of non-uniqueness is
not expected to play a role. Indeed, the purpose of the non-degeneracy condition
(2.11) in Theorem 2.2 is to exclude such a pathological scenario. Note, however, that
in the algorithm this non-degeneracy is only enforced on the nudged system, and
not on the observations; we believe that this allows an additional layer of flexibility
in our algorithm.

A parameter sweep of the (p, o)-plane, with the third parameter fixed at 8 = 8/3,
confirms that the algorithm implementing the update formula (2.6) performs notice-
ably worse or altogether fails precisely when a stable fixed point exists (see Figure
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FIGURE 1. The parameter learning algorithm is applied to the
true parameters o = 10, p = 28, § = 8/3 with p, 5 known and o
recovered from continuous observations in x(t). The initial guess is
oo = 0 + 100 and the algorithm parameters were set to p; = 500,
Tr = 1. The analytically derived upper bounds on position and
velocity error from Corollary 4.2 and Corollary 4.4 are shown to
hold remarkably well.
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FIGURE 2. Schematic of the threshold defined by (3.1).

3). The same experiment demonstrates that the algorithm is robust to variations in
the (p, o)-plane, as long as p; is sufficiently large and the reference solution exhibits
chaotic or at least presents non-degenerate dynamics. Comprehensive computational
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FIGURE 3. (Left) The parameter learning algorithm is used to
recover o from 1,000 randomly sampled pairs (p,o) € [0,150]2,
with 8 = 8/3 fixed. The initial estimate used is o9 = o + 10, and

the algorithm parameters are fixed at u; = 10,000 and T = 5.

Each simulation is run to ¢ = 75 time units. The color corresponds
to the resulting absolute parameter error |0 — o|: red signifies
|6 — 0| > |og — ol; white signifies |0 — 0| = |o¢g — o|; blue signifies
|0 —o| < |og—o]|. The period of each solution is computed using the
Poincaré surface of section method described in [31]. (Right) For
each (p, o) where Py are stable, instead of observing x we observe
the translated variable z, = z — o — p and use the alternate formula
(3.2) to recover o.
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Algorithm 1: Recovering ¢ from continuous observa-
tions {l‘(t)}tzo
Inputs: Initial estimate og; relaxation period Ty > 0;
relaxation parameter p; > 0
11+ 0;
2 t, < 0; // Time of last update
3 0 < 0p;
4 fori=0,1,...do
5 if |z(t) — x(t)| > 0 then
6 if Z(t) #y(t) and t — t,, > Tr and
|Z(t) — x(t)| < 0(u,t,,t) then
& & — pu(t) / (5(t) — 3(1));
t, <+ t;
9 end
10 end
11 t <+ t+ At
12 | Integrate (2.1), (2.2) forward to ¢;
13 end
2.5 1404 2.5
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studies such as [6] and [31] show that a nontrivial global attractor exists for an
unbounded subset of the full three-dimensional Lorenz parameter space, and the
current investigation indicates that the parameter learning algorithm developed here
should work for all of these parameters.

All this suggests that the non-uniqueness of the inverse problem plays a pronounced
role depending on which parameter is being inferred and which variable(s) of the
Lorenz system is (are) being observed. The particular case described above, where
o is being inferred and the xz-variable is being observed, is an explicit scenario in
which the non-uniqueness appears to play a significant role. If one instead observes
the z-variable, an alternative update formula for ¢ may be used in place of the
one proposed in (2.6), which eliminates the non-uniqueness. Indeed, consider the
‘translated’ state variable z; = z—o—p. If one were to observe {z- () };>o rather than
{z(t)}+>0, then o could be learned using the following equation for the translated
fixed points:

Pi,T = ('ri,‘f'v Yt,7) Zi,T) = (i\//@(p - 1)7 i\/ﬂ(ﬂ - 1)7 —0 — 1)
When Py . are stable, the Py ; equation yields the alternate recovery formula

oc=—z1,— 1=~ —z(t) — 1. (3.2)

In this situation, the corresponding nudged equation is given by (2.2) with p = p,
3 =B, up = po = 0, and pg > 0, that is, nudging is only implemented in third
variable. We see that for each pair (p, o) where Py is stable, applying the modified
update formula results in the successful recovery of o (see Figure 3).

3.4. Multi-parameter learning with continuous sampling. So far we have
only seen that the algorithm described in Section 2.1 with the update formula (2.6)
is effective for estimating a single parameter, namely o. It can just as easily be
adapted to recover two parameters simultaneously provided that the appropriate
state variables are observed. In particular, each of the system parameters o, p, and
B, in any combination, can be estimated from continuous observations in xz(t), y(t),
and z(t) respectively. We modify the update condition by defining 61,6, 63 using
the log-linear fit procedure in the x, y, and z coordinates. Depending on which two
parameters are unknown, the two corresponding conditions among

[u(@®)] < 01(u,tn,t), |v@)| < O2(v,tn,t), |w(t)] < O5(w,tn,t),

are enforced. As before, we perform a sweep of the parameter plane where the
remaining third parameter is fixed. We observe that recovery distinctly fails in both
parameters when a stable fixed point occurs, in accordance with what was observed
in Section 3.3 (see Figure 4).

3.5. Multi-parameter recovery with sparse sampling. In this section, we
demonstrate that the parameter learning algorithms discussed above also work with
sparse-in-time observations. That is, we observe the state of the system (2.1) at
discrete times that are widely spaced in comparison to other time scales in the
system, including the numerical time-step. This modification is non-trivial and leads
to some surprising differences from the case of continuous-in-time observations, as
discussed below.

Several issues arise at the implementation level, perhaps unexpectedly, from
combining intermittent observations with dynamical parameter correction via (2.6).
In particular, a balance must be struck between three distinct time scales: the time
between observations Atgps, the time between parameter updates Atparam, and the
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FIGURE 4. Two parameters are recovered simultaneously. When
applicable, the third parameter is fixed at o = 10, p = 300, 5 = 8/3.
The initial parameter estimate is always set to 10 above the true
value. The two relaxation parameters, which correspond to the two
unknown parameters, are set to 10,000, and the relaxation period
is Tp = 5. Each simulation is run out to t = 50 time units.

length of time that the nudging algorithm is applied Atpor (this does not include
the time-step for the ODE, for which we used At = 0.0001). For instance, in our
simulations, we observe every 500 At, but update the parameter(s) every 20,000 At
(i.e. Atops = 0.05 and Atparam = 2.0). In particular, we found that the values of
wi (i =1,2,3) used in the parameter update formulas (2.6) needed to be smaller
than those used in (2.2) by several orders of magnitude. Otherwise, the simulation
was not stable. Denoting pA9T for the y; used in (2.2), and pP*™™ for those used
in (2.6), we used pP*™*™ = pAOTA¢t. This is an unexpected observation! that has
important implications for real-world implementations; hence, it will be the subject
of a future larger-scale investigation.

The primary results of our investigations are shown in Figure 5. We see that in
all cases except when only z is observed with the unknown parameter 3, the true
solution and unknown parameters were recovered exponentially fast to near machine
precision. We note that the results displayed here hold qualitatively for a variety

n the case of continuous observations (or, more accurately, Atyps = At), numerical instability

did not arise when pP**™ = pAOT, Hence, the condition pP*™*™ < pAOT is only needed in the

1
case of intermittent observations.
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FIGURE 5. (Log-linear plots) Parameter recovery with observations
every 500 time-steps. o = 10, p = 28, § = 8/3, , At = 0.0001,
pAOT = 1.8/At = 1,800, P¥*™ = 1.8. (A) Observations only on
z, (B) Observations only on y, (C) Observations only on y and z,
(D) Observations only on z and z, (E) Observations only on = and
y, (F) Observations on z, y, and z. Note: observations only on
z with an unknown (8 parameter did not converge and hence are
not shown. In (A), the solution and the o parameter momentarily
converged to the exact value for roughly 97.4 < ¢t < 109.7; hence
the gap in the plot.

of different choices of the true parameters o, p and 3, including large values of p
which lead to much more chaotic dynamics. For the sake of brevity, we only present
results with the standard Lorenz parameters o = 10, p = 28, § = 8/3, and the
initial guesses of the parameters given by o = 0.8, p = 0.8p, E = 0.88. However,
we emphasize that the results reported here are relatively independent of the initial
guess for each of the parameters.

3.5.1. Additional details of numerical methods. For reference, all of the input param-
eters are given in the MATLAB code, which can be found in the link provided in the
beginning of Section 3.1. We describe the basic outline here for clarity. Time-stepping
for all algorithms was done via fully explicit Euler time-stepping (see the discussion
in Section 3.1). Parameter updates were done at fixed time intervals, rather than
using the analytical conditions provided in the theorems above. (We regard this as
a testament to the robustness of our algorithms; namely, parameter update times
do not need to be as precisely determined as our analysis might indicate). To avoid
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dividing by zero in the parameter update formulas, a simple ad-hoc tolerance value
was used; namely, if the denominator was within 0.0001 of zero, a parameter update
would not be performed. Our results did not seem to depend very strongly on this
tolerance value, and nearly identical results were observed even after increasing or
decreasing this value by several orders of magnitude. To initialize our simulations
on or near the global attractor of the system, the initial condition in this section is
found by first running the Lorenz system out to time ¢ = 100 starting from (1,1, 1)
resulting in initial data

(0, Y0, 20) = (8.15641407246436, 10.8938717856828, 22.3338694390332). (3.3)

In our tests, starting with significantly different, randomly generated initial conditions
did not yield qualitatively different results; hence we only display results using initial
data (3.3).

3.6. Multi-parameter recovery with sparse sampling, stochasticity, and
noisy observations. In this section, we demonstrate that our algorithms work
with not only unknown parameters and discrete sampling in time, but also with
noisy observations and/or stochastic forcing on the underlying equation. Rigorous
analysis of these cases is of fundamental interest, but for brevity is relegated to
future work. The simulations reported in this section are meant to indicate that
the parameter learning algorithms developed here are robust to situations of greater
physical interest.

For instance, the algorithms are not particularly dependent on having exact
observational data, nor continuous-in-time observations, and the underlying model
can even have stochastic forcing. Of course, there is a price to pay for these
additional sources of uncertainty. Exponential convergence rates still occur, but the
error reaches a minimum value determined by the magnitude of the noise in the
observations (denoted 1 > 0) and the magnitude of the stochastic forcing (denoted
€ > 0). The results are shown in Figure 6 and 7, where observations are sparse-
in-time and o, p, and [ are all unknown. Here, we see that even in the presence
of either observational noise (6B) or stochastic forcing (6C), the error still decays
exponentially but the minimal error is larger. We then increase both € and n together
from 1072 (7A) up to 1072 (7F) and see that exponential decay persists, but the
minimal error correspondingly increases. It is notable that in Figure 7f, even with
sparse-in-time observations, strong stochastic forcing, strongly noisy observations,
and all parameters unknown, our algorithms still converge to within 1-2 decimal
places of the right answer.

Finally, although we do not show the results here, we note that longer times
between observations were observed to decrease convergence rates as one might
expect, although rates remained exponential in all cases we tested until observation
times became so separated that no convergence was observed.

3.6.1. Additional details of numerical methods. Except for the stochastic forcing
and noisy observations, the computational setup was identical to that described in
Section 3.5.1. Again, the details can be found in the MATLAB code, which can be
obtained from the link provided in the beginning of Section 3.1, but we describe the
basic implementation here for clarity. To implement stochastic forcing of amplitude
€ > 0, a standard white-noise term, i.e., independent Gaussian-normal distributions
with mean zero and standard deviation ev/At, were added to the right-hand side
of the Lorenz system at each time-step (with seed initialized via rng(0) before the
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FIGURE 6. Parameter recovery with observations every 500 time-
steps and either (A) stochastic forcing (of amplitude €) or (B) noisy
observations (of amplitude 7). The case where neither is present is
included for comparison (C). o = 10, & = 0.80, p = 28, p = 0.8p,
B=18/3, B =0.88, At = 0.0001, zAOT = 1.8/At, pParam = 1.8,
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FIGURE 7. Parameter recovery with observations every 500 time-
steps and both stochastic forcing (of amplitude €) or noisy ob-
servations (of amplitude n). The initial estimates and algorithm
parameters are the same as in Figure 6.

time loop). To simulate noisy measurements, the observations of the Lorenz system
had Gaussian noise of mean zero and standard deviation n added to them before
they were used to update/nudge the assimilated solution.



LEARNING PARAMETERS OF A CHAOTIC SYSTEM VIA PARTIAL OBSERVATIONS 3827

4. Proofs of main results. We now prove the convergence of the parameter
learning algorithm under the conditions that were precisely stated in Theorem 2.2
and Theorem 2.3. To do so, we must first develop a priori estimates, which we do in
Section 4.1. The proofs of the main theorems are then provided in Section 4.2.

4.1. A priori estimates. First, let us recall the notation (2.3), (2.4). For our
analysis, it will be useful to rewrite (2.5) as

U= (y—x)Ao+ov— (11 +0)u
0 =xAp+ pu—uw —uz —zw — (1 + po)v (4.1)
i = —2AB 4w + uy + xv — (s + Bw.
We then define
K(u,v,w) := %(u2 + 0% 4+ w?), (4.2)
and
= min{u1+5,u2+l,u3+5}. (4.3)
We will first establish the following estimate on (u,v, w).

Proposition 4.1. Let (xo,y0,20 — p — 0) € B, 1, 2, 3 > 0, and 5,,5,3 >0. Let
u be given by (4.3). Suppose that u1, po satisfy

2 2 2 2 2
(Ao) +3(c +p) +2F° R 134 By

e pe 1 2(u3 + B) o +o
Then for 0 <ty < ¢, we have
K(t) < K(to)e™ 50710 4 K2(1 — = 5(tt0)),
where
K* = 2 { 2R2~ (Ao)® + AR (Ap)? + LR+ + o)’] (Aﬁ)z} @5
Ko\ H1t+o po + 1 st B

In particular, if t > to + %log (IC(tO)/KQ), then K(t) < 2K2.

We immediately deduce the following in the special case p = p, B = (3, and
po = p3 = 0.

Corollary 4.2. Let (zo,y0,20 —p—0) € B and p be given by (4.3). Suppose & > 0,
p=p, B=0, u2 =0, uz =0, and that py > 0 satisfies (4.4). Then

< — L (t—to) 2! 2
K(1) < K(to)e 5079 4+ —Ce(80)?

for some constant c¢; > 0, depending only on R, p,o, .
Proof of Proposition /.1. We calculate
K =uvAo + wvAp + ouv + puv — zuv + yuw
+ (y — 2)ulo + 2vAp — 2wAB — (1 + F)u® — (1 + p2)v® — (us + B)w?
=K1+ Ko+ + Ko+ K + K. (4.6)
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We treat K1—Ko with Young’s inequality and the absorbing ball bounds for (2.1) to
estimate

4 p2+1 5

~ Ap)2
(Ao ) u? + T K2gﬂl+gu2+( p) 02

po +1 4 p1+o
42

a u2+H2+1v2, < u2—|—u2+1v2,
o+ 1 16 s+ 1 16

S8R+ (p+0)? 1 2R?
Ks < [ (p )]u2+,u2+ 02 u2+ﬂ3+ﬂw2

p2 + 1 16 S s+ 8

K <

K3

and

IN

_ )2 =~ 2R? ~
M(AU)2+H1+0u2§ N(A0)2+MU2,
/L1+O' 4 M1+U 4
422 w41 4R? po +1
M2+1(Ap)2+ T M+1<Ap)2+ v’

Ko = (2= p— aYwhB+ (p+o)wAp
(Aﬂ)i I H3 + sz

K7

Kg <

§4[(z—p—a)2+(p+a)2}

ps + B 8
(AB)? | ps +B
S4[R2—|—(p+a)2} — 553 w?.

Upon returning to (4.6) and applying the estimates above, we obtain

K< (A0)* +3(0 +p)* +2R? = R >

po + 1 2(us + )

DN |

By (4.4), it follows that

4R?
pz + 1 ps + B

2R?
w1 +o

K< —g/c + (Ac)? +

Hence, Gronwall’s inequality yields
K(t) < e 207K (1) (4.7)

2 { 2R? AoY? + AR? (B 4+ A[R +(p+0)7]
ps + B

p1+o po +1
as desired. O

I

(Aﬁ)2} (1—e 5071,

Now let us denote the derivatives of the differences in (4.1) by

yi=4, 0: =0, n:=w. (4.8)
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The evolution of (v, d,n) is governed by
Y=06+(y—2)Ac — (u1 +0)y
§=py+2Ap —yw —un — vz — u — gw — xn — (ug + 1)8 (4.9)

n=—2AB+yv+ud + vy + yu + iv+x6 — (u3 + B)n.

Similar to (4.2), we consider the functional

L) = %(72 46 4 1). (4.10)

We prove the following.

Proposition 4.3. Let (xg,y0,20 — p — 0) € B. Suppose that ui, o, ug > 0 satisfy
(4.4). Suppose, moreover, that pi satisfies

1 +o
32 [(Ac)? + (Ap)2 + R?+2 2 1 1 16R2
. [(Ac)? + (Ap)* + R? + (p+0)]+64 N |2y 6R~’
p2 +1 p2tl s+ ps + B
(4.11)

where K is given by (4.5). Then given tg > 0
L(t) <e 2t L(tg) + L2,

provided that t > to + %log (lC(to)/Kz), where p is given by (4.3), and L is defined
by

12 128 R*+ (B2 4 02)R? + B2(p + 0)? +3R2 [R® 4+ 2(p+ o) + 1] .
o pr 1 s+ B
2 2 2
+2{24R (R +(p+0) +1] (A0)2+802R2(Ap)2
H prto pe +1
4. 32p2 4 B2 2
ws + B

In particular, if t additionally satisfies t > to + %log(ﬁ(to)/lﬁ), then L(t) < 2L2.
As before, we immediately deduce the following in the special case p = p, B =0,
and pg = pug = 0.

Corollary 4.4. Let (x9,y0,20 — p — 0) € B. Suppose p = p, E: B, o = pu3z =0,
and that py > 0 satisfies (4.4) and (4.11). Then
L(t) < Lto)e™ 510 4 2 _(Ag)?,
(t) < Llto)e 2 _(a0)

for some constant co > 0, depending only on R, p,o,B.

Proof of Proposition 4.3. We calculate

L =(Ac+ Ap)yd + (0 + p)yd — wyd + vyn + yyn — 276 — 2ud — Twd + yun + tvn

+ (= &)yAT + 26Ap — EnAB — ( + &)y — (2 + 1)8% — (u + B
=Ly + Lo+ -4 Lia+ L5 + L. (4.13)
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Before estimating the terms L;, we first collect bounds for #,y, Z by making use of
the absorbing ball bounds for (2.1). Indeed, we have

i? < 20%(2? +y?) < 20°R?,
§* <3 (02332 +y* +20%(z—p—0)® + 207 (p + 0)2)
<12 (R2 +(p+0)’+ 1) R?, (4.14)
32 <2 (:c2y2 +26%(z —p—0)2 +26%(p + 0)2>
<4 (R4 + B2R2 + B2(p + 0)2) .
By assumption, ¢ has been taken sufficiently large so that Proposition 4.1 guarantees,
K(t) < 2K2. We then treat L;—Li3 with Young’s inequality, the absorbing ball
bounds for (2.1), and this bound to estimate
$[(A0) + (Anf o +pP] 5+l
po +1 8

2 2, M2+l
0° < = -
PP e TR i R B T?

4 g 16
L4§7~0272+M3+6n2§ _K22 B3P
ps+ B 16 ps+ B 16

4 4R?

Ls < ~y2'72+'u3+5772_ ~72+M3+ﬁ 2

ps+ 16 ps+f 16

8 2 2 2 2

z—p—0)"+(p+o } + =9 4.15

el (R R (R M b (415)

<8[R2+(p+0)2] 2, B2t

o po +1 i 16

Li+ Ly <

L3 <

N

52,

Moreover, making use of (4.14), we obtain the following estimates for L7—L1g
422, a1

64 R4+ 2R2+ 2 + 2 1
Lr < u? + 5 < SR +P Flo+0l] oo | 12t
pg + 1 16 [z + 1 16
) 2 p2
L < 43 w2+u2+152§320RK2+u2+1
pa + 1 16 fo + 1 16
492 3 192R2 [R2+ (p+0)2 +1 5
Lo < Y ~u2+u3+ﬁn2§ [ (p~ U) ]K2+ﬂ3+ﬁn2’
ps+ B 16 ps + B 16
4 3 3202 R2 3
L10§7~$2v2+wn2§ a ~K2+M3+ﬁn2.
ps+ B 16 ps + 16

Lastly, we treat L11—L13 similar to above and obtain

52

62

o+ o ly—af 2
— (A

2 ! Jr2(/11-1-0)( )

cto 2+24R2 [R2+ (p+0)?+1]
> 2 Y =

p1+o

2 o M2+l 80%R?
A 0° <

A+ e S T

L <

(Ac)?, (4.16)

p2 +1
16

(Ap)? + 5%, (4.17)
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4 Bt B,
ps + B 6"
16 [R* + B2R? + B2(p + 0)?]

s+ B

L13 <

2 (AB)? +

M3+E 2
Bree

(AB)* + T

(4.18)

Combining these, we arrive at

o1 { _ 16 [(A0)?+ (Ap)? + R?+2(p+ 0)?]
-2 [z + 1

1 1
+

srRz |
= Y
N2+1 'ug‘i’ﬂ

K? — _
w3 + 8

-32

po+1, ps+pB o,
_ 52 _
2 5

2 [p2 2
+64{R4+(52+02)R2+52(P+‘7)2+3R [R?+2(p+0) +1]}K2

pe +1 ps + B

24R? [R? 4 (p+0)? +1
+ |: (p~ U) }(AU)2+
p+o

| 16[R*+ B°R? + B2(p + )]
ps + B

(AB)2.

By (4.11) and Grénwall’s inequality, it follows that
R+ (B° +0*)R? + (p + 0)?
po +1
+3R2 [R?+2(p+0)* +1] K2y 2 24R? [R* + (p+0)% +1]
ps+ B p+o

b 12
L(t) < e 70T L(tg) + 78 {

(Ao)?

802 R?

1
p (Ap)” +

+

6 [R! + B2R* + B(p+ 0)’] (AB)Q} |
ps +p

as desired. O

Recall the notation introduced in (4.8) and define the functionals

G(r) == 37% D) i= 58 En) = 5o (4.19)

Proposition 4.5. Let (xg,yo,20 — p — 0) € B. Suppose that u1, 2, g > 0 satisfy
(4.4), (4.11), and let p be given by (4.3). Then given to > 0, it holds that

G(t) < e—(u1+&')(t—to)g(t0) + G2,
D(t) < e~ W2tV D(1) + D?,
E(t) < e_(”3+E)(t_tU)5(t0) + E?,
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provided that t > to + %log (K(to)L(to)/(KL)?), where K, L are given by (4.5),
(4.12), respectively, and

24R? [R* 4+ 2(p+0)? + 1] 452
G? = - Ao)? 4+ ——— P 4.20
I A T 20
D? — 80°R? (Ap)? + 128 K2L2 4 A8(R* + (p + 0)2)L2
p2 + 1 p2+1 p2 +1
128 R4 2 2 R2 2 2
LIRS +Jil 0+ o] e (4.21)
M2
oo SR PR ot 0]\ go B4 papa, 16 1
ps + 8 ps+ 8 ps+ 8
48 [R2+2 241 R4
L, (p+%) TR e (4.22)
H3 +

Proof. We calculate
G =507+ (§ — #)yAc — (u1 +5)y* = G1 + G2 + G,
D = pyd 4+ #0Ap — (yw +un)d — (yz + 1) — (Gu + dw)d — (ug + 1)62

— Dy +---+ Dg,
E=—inAB + (vy +ud)n + (yy + x8)n + (Ju + iv)n — (us + B)n°
— B+ + Bs.

By assumption, ¢ has been taken sufficiently large, so that Proposition 4.3 guarantees
L(t) < 2L%. By Young’s inequality and (4.14), we estimate
M1+5,y2 52~52§M1+572 452~L2

4 w1 +o 4 w1 +o
2(y* + @) 2 Mt+0T o

[+ 0 (Ao) 1 !
24R? [R?*+2(p+0)* +1 &

w1 +o 4

G <

Go <

Hence
24R* [R? +2(p+ 0)* + 1] 452,
p1+o H1+0o
so that by Gronwall’s inequality, we deduce
24R? [R? 4+ 2(p+0)? + 1]
(b1 +0)?

G<—(m+a)G+

g(t> < e—(m+’&)(t—to)g(t0> =+

Similarly, for D, we have
45 1 16p 1
4 ,yz+ﬂ2+ 52 < PL2+M2+
po + 1 16 pig + 1 16
412 +1 802 R? +1
B2 (ap)? < (Ap)? + 2
pro + 1 16 fig + 1 16
Dy < 4(wy? +un?) s+ Lo 128
o po +1 8 T2 +1
4202 (z = p—0)* +29%(p +0)* + 2°p°) L Hetl
o +1 8

D, < 52

D> 52

IN

K2L? +

N

p2 + 1
—
8 )

Dy < 52
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2 2
AR (o)t
po +1 8
2:2 4 52,2
D5§8uz + 7w po +1
po +1 16
12 4 2 2) R2 2 2
- 8 [R* + (B + 0?) +5(p+0)]K2+u2+1
po +1 16

62

52,

Hence

802 R?

D< —(us+1)D+ Ap)?
< —(p2+1) M2+1( p)

2 2

N 128 K2L2+48(R +(p+0)°)
po +1 po +1

N 128 [R* + (8% + 02)R?* + B%(p + 0)?]

po +1

L2

K2

)

so that

802R?

D(t) <e~(2tD=to)D(4,) + Ap)2

(t) <e (o) u2+1( p)
128 59 N 48(R* + (p+0)?)

po +1 po +1
L 128 [R*+ (8% +0*)R* + 5°(p + 0)?]
po +1

+ L?

K2.

Lastly, we treat £ and estimate

22 (M)2+u3+5 ) _ 8[R'+ R+ F(p+0)*]
— n° < —

s+ 8 pz + B

A(12~2 252 2 4 3

(v*y +7i5)+ﬂ3+5n2§ 6 ~K2L2+'M3+ﬁ772,
ps+ B 8 ps + 8

A(22~2 252 2 16R2 2

(y*y +f5)+u3+ﬁn2 GR~L2+M3+6772,
ps + 8 8 ps + 8 8

AP +3%0%)  ps+ B, B[R 2o+ o) + 1] RY

— n° < —

uz + B 8 ps + 8 8

It follows that

(apy + 12

Fi <

Es

A

Es

IN
IN

E,

IN

SR+ PR + 2o+ 0]\ gy
ps + B
4 16 R? 48 [R* 42 Z+1] R
L 64 ey 16R 5 [R? + (p+0)*+ ]
ps + B ps + B ps + B
An application of Gronwall’s inequality yields
8 [R*+ B%R? + B%(p+0)?
8 = Ly
ps+ B
16R? 48 [R* +2 Z+1]R*
ps+ B ps + B ps + 83
which completes the proof. O

E<—(ps+B)E+

K2

g(t) Se_(“3+§)(t_t0)5(to)
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Remark 4.6. Several Lyapunov functionals are known to exist for the Lorenz
system (see [29]). In the above estimates, Lyapunov-type functionals for the systems
in (u,v,w) and in (@, 0,w), given by their Euclidean distance to the origin, were
crucially exploited. It is possible that one can exploit the other Lyapunov functionals
of the Lorenz system, appropriately adjusted for the (u,v,w) and (u, 0, w)-systems,
in order to provide a more efficient proof or sharper bounds than the ones that were
deduced above; this warrants further investigation. In the present work, however,
we prefer to emphasize the elementary nature of the argument.

4.2. Proof of Theorem 2.2. We will employ the rule given by (2.6) for updating
values of the unknown parameters o, p, 8. From (2.5), we thus observe that over the
interval I,,, the derivative of the differences, %, can be rewritten as

W= (op—0)(y—2)+o(v—u)— pu, (4.23)
where we recall (u,v,w) to be defined by (2.3). We then rearrange this to obtain
w—o(v—u)+ puu

n— 0= —— 4.24
Opn— 0 T (4.24)

Upon evaluating at t = ¢, ;, substitution into the parameter recovery formulas (2.6)
then yields the following identity:

ﬂn-s-l - U(Un+1 - Un+1) (4 25)

Op+1 — 0 = = =
Yn+1 — Tn+1

where we make use of the notation
T, =2"(), Gu=5") 2= ),
Up = u ™M), v =0 (D), w, =w™(t]),
i = 0™ (), O, =0 (¢ b, = w™(t),
Proof of Theorem 2.2. We proceed by induction. Let N = 1 and define
po = min {1, pp + 1, 3z + B} .

For convenience, we let ps = ug = 0. Consider any oo > 0 such that |og — | < M.
Observe that u > po, where p is given by (4.3). Suppose that p; satisfies

2
M2+3(J+p)2+2R2+%

(1 > max ¢ 16

b

B B
Then py satisfies (4.4) and (4.11). Let ¢y = 0 and suppose also that

2 2
n > log, (K(0)L0)/(KL)?)

1 16 R?
32[M2+R2+2(p+a)2}+64(1+)K2+ }

where IC, £ are defined by (4.2), (4.10), respectively, and all quantities involving
u are replaced by po therein. Observe that 7 > t3. Now by Corollary 4.2 and
Corollary 4.4, we have

Kt) < Llog — o2, L(t) < Zlog— o],
H1 H1

for all t > 7.
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Choose any t; > 71. Upon returning to (4.25), it now follows that
2(y/c1 + /e2) |og — o]
V1 e

where we have applied the hypothesis (2.11). By choosing puy sufficiently large
satisfying (2.10), we obtain

o1 — o] <

lo1 — o] < €log — o,

where € = (0 A1)/(2M) < 1/2. Notice that this implies o3 > 0. This establishes
the base case.

Now suppose that (2.12) holds for N > 1. Choose p; as in the base case and
Tn+1 such that

2
TN4+1 > tN + ; 10g+ (’C(tN)ﬁ(tN)/(KL)Q) ,
1
so that 741 > tny. Then by Corollary 4.2 and Corollary 4.4, it follows that
K(t) < Moy —o?, L(t) < Zlon - of?,
M1 Ha
for all ¢ > 7x41. We now choose any ty1 such that ty11 > 7n41. Then from
(4.25) and the induction hypothesis, we obtain
lons1 — o] < elony —a| < N Tlog —al.
By definition of €, we again have on1 > 0. This completes the proof. O

Remark 4.7. A similar argument to the one presented above for Theorem 2.2 can
also be provided for the proof of Theorem 2.3 and, in fact, all other combinations.
With slight modifications to the estimates made in Propositions 4.1, 4.3, and 4.5,
we may obtain statements analogous to Corollary 4.2 and 4.4, which are adapted to
the case of the particular combination of interest, e.g., recovering (o, p), etc. Indeed,
the apriori estimates in Section 4.1 have been performed for all variables precisely
to accommodate all possible combinations for parameter recovery. For these other
combinations, in addition to (4.23), one considers

0= (pn — P)T + pu —uw —uz — zw — (1 + ps)v
o = —(Bn — BYF + uv + uy + 20 — (s + B)w.
One then derives identities analogous to (4.24) for p, and S, given by

U — pu+ uw + uz + zw + (1 + p2)v
z
—w + fw + uv + uy + Tv — pzw
5 .

Pn—pP=

)

Bn_ﬁ:

Ultimately, one then considers

’[}nJrl — PUnp+1 + Up4+1Wn+1 + Up+12n+1 + Tp+1Wn+1 + Un+1
z
=Wl + Un 1Vl + Unt1Ynt1 T Tnp1Vnt1 — BWntr
ﬁnJrl - ﬁ - Z )
which play roles analogous to the one played by (4.25) in the proof of Theorem
2.2. The only major technical differences are that the time derivatives are to be
estimated with Proposition 4.5 and treatment of the terms which are quadratic in
the difference variables, u, v, w. The quadratic terms, however, present no difficulties

whatsoever, as the estimates supplied in Section 4.1 ultimately provide sufficient

Pnt+1 — P =

b
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control over these terms. Specifically, our estimates allow them to be treated in such
a way as if they were linear in the difference variables to begin with; from this point,
the proof then proceeds as in the one provided for Theorem 2.2 above.
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