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Abstract. This paper proposes a deep unfitted Nitsche method for solving elliptic in-
terface problems with high contrasts in high dimensions. To capture discontinuities
of the solution caused by interfaces, we reformulate the problem as an energy min-
imization problem involving two weakly coupled components. This enables us to
train two deep neural networks to represent two components of the solution in high-
dimensional space. The curse of dimensionality is alleviated by using the Monte-Carlo
method to discretize the unfitted Nitsche energy functional. We present several numer-
ical examples to show the performance of the proposed method.
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1 Introduction

In this paper, we continue our previous studies on elliptic interface problems [11, 14,
15], arising in many applications such as fluid dynamics and materials science, where
the background consists of rather different materials on the subdomains separated by
smooth curves (or surfaces) called interfaces. We aim to address the high-dimensional
challenge, which is well known as the curse of dimensionality leading to unaffordable
computational time in traditional numerical methods (e.g., finite difference and finite el-
ement methods).

Deep neural networks have been shown as a powerful tool to overcome the curse
of dimensionality [4, 6, 9, 37], and have been applied to solve partial differential equa-
tions (PDEs), e.g., the deep BSDE method [8, 16], the deep Galerkin method (DGM) [33],
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the physics-informed neural networks (PINNs) [31], the deep Ritz method (DRM) [7],
and the weak adversarial networks (WAN) [38]. The deep BSDE reformulates the time-
dependent equations into stochastic optimization problems. DGM and PINNs train neu-
ral networks by minimizing the mean squared error loss of the equation residual, while
DRM trains networks by minimizing the energy functional of the variational problem
equivalent to the PDEs. WAN uses the weak formulation and trains the primary and
adversarial network alternatively using the min-max weak formulation. Moreover, the
convergence of DRM was studied in [5, 27], and the deep Nitsche method was proposed
in [26], which enhanced the deep Ritz method with natural treatment of essential bound-
ary conditions. In a recent work [32], Sheng and Yang trained an additional neural net-
work to impose the Dirichlet boundary conditions. However, in general, these neural
network-based methods require the smoothness of the solutions to the PDEs. They thus
can not be directly used to solve the elliptic interface problems, where the solutions are
only piecewise smooth.

In literature, there are some recent works of solving elliptic interface problems using
neural networks. For example, [36] proposed a network architecture similar to the deep
Ritz method [7], and solved the equivalent variational problem with the boundary con-
ditions approximated by a shallow neural network. [19] used different neural networks
to approximate the solutions in disjoint subdomains. They reformulated the interface
problem as a least-squares problem and solved it by stochastic gradient descent. [23]
proposed the discontinuity capturing shallow neural network (DCSNN) to approximate
piecewise continuous functions and solved elliptic interface problems by minimizing the
mean squared error loss consisting of the residual of the equation, boundary and inter-
face jump conditions.

In this paper, we propose a deep learning method for interface problems based on the
minimization of the unfitted Nitsche energy functional, inspired by our previous stud-
ies [11–13] on the unfitted Nitsche method. One of the most significant differences be-
tween the unfitted Nitsche method [2, 12, 13, 17, 21] and other numerical methods for
interface problems (e.g., the immersed type numerical methods [25, 34, 35, 39]) is that
the unfitted Nitsche finite element functions can be discontinuous inside elements. This
is possible by adopting two different sets of basis functions on the interface elements
(i.e., the elements cut by the interface) which are weakly coupled together using Nitsche
methods. Based on the unfitted Nitsche formulation, we can define the so-call unfitted
Nitsche energy functional (see equation (2.11) ). It turns out that the weak formulation of
unfitted Nitsche method is just the Euler-Lagrange equation of unfitted Nitsche energy
functional. To address the challenges of the curse of dimensionality, we naturally use
deep neural networks to represent functions in high dimensions. Following the idea of
classical unfitted Nitsche method [2, 12, 13, 17], we use two deep neural networks: one
for the part inside the interface and the other one for the region outside the interface.
These two parts are weakly connected using Nitsche method. The deep unfitted Nitsche
method trains the two neural network functions independently using the same unfitted
Nitsche energy functional.
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The rest of the paper is organized as follows. In Section 2, we introduce the model
setup of the elliptic interface problems and its unfitted Nitsche weak form. In Section 3,
we describe the formulation of deep unfitted Nitsche method with details. We present
numerical examples in Section 4, and make conclusive remarks in Section 5.

2 Model equation

Let Ω be a bounded Lipschitz domain in R
d. Furthermore, we assume there is a smooth

closed curve (or surface) Γ separating Ω into two parts: Ω1 and Ω2. In general, Γ can
be described as a zero level set of some level set function φ. Then we have Ω1 = {x ∈
Ω|φ(x)<0} and Ω2={x∈Ω|φ(x)>0}.

In this paper, we shall consider the following elliptic interface problem

−∇·(β(x)∇u(x))= f (x), in Ω1∪Ω2, (2.1a)

u= g, on ∂Ω, (2.1b)

JuK= p, on Γ, (2.1c)

Jβ∂nuK=q, on Γ, (2.1d)

where ∂nu=(∇u)·n with n being the unit outward normal vector of Γ and the jump JwK
on Γ is defined as

JwK=w2|Γ−w1|Γ, (2.2)

with wi=w|Ωi
being the restriction of w on Ωi. The diffusion coefficient β(x) is a piecewise

constant, i.e.,

β(x)=

{

β1 if x∈Ω1,

β2 if x∈Ω2,
(2.3)

which has a finite jump of function value at the interface Γ. Without loss of generality, we
assume β0=min(β1,β2)>0. An illustration of the domain Ω with the interface Γ is given
in Fig. 1.

To prepare the presentation of Nitsche weak formulation, we introduce two weights

κ1 =
β2

β1+β2
and κ2=

β1

β1+β2
, (2.4)

which satisfy that κ1+κ2=1. Then, we define the weighted averaging of a function w on
the interface Γ as

{{w}}=κ1w1|Γ+κ2w2|Γ, (2.5)

and also its dual weighted averaging as

{{w}}∗=κ2w1|Γ+κ1w2|Γ. (2.6)
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Figure 1: An illustrative example of a domain Ω with a circular interface Γ in two dimension. Here n stands
for the outer normal direction of the inner domain Ω1. Ω2 is the outer domain.

Let H1(Ω1∪Ω2) be the function space consisting of piecewise Sobolev functions w such
that w|Ω1

∈H1(Ω1) and w|Ω2
∈H1(Ω2), whose norm is defined as

‖w‖1,Ω1∪Ω2
=
(

‖w‖2
1,Ω1

+‖w‖2
1,Ω2

)1/2
, (2.7)

where ‖·‖1,Ωi
is the H1-norm of a function in H1(Ωi). Similar notations are used for

piecewise L2 space and its corresponding norm. In addition, let H1
g(Ω1∪Ω2) be the subset

of H1(Ω1∪Ω2) such that u|∂Ω2
= g. In particular, H1

0(Ω1∪Ω2) is the subspace of H1(Ω1∪
Ω2) with homogeneous Dirichlet boundary conditions.

The unfitted Nitsche weak formulation [2,11,17] of the interface problem (2.1a)-(2.1d)
is to find u∈H1

g(Ω1∪Ω2) such that

a(u,v)= ℓ(v), ∀v∈H1
0 (Ω1∪Ω2), (2.8)

where the bilinear form a(·,·) is defined as

a(u,v)=
2

∑
i=1

(β∇ui,∇vi)Ωi
−〈JuK,{{β∂nv}}〉Γ

−〈JvK,{{β∂nu}}〉Γ+γ f 〈JuK,JvK〉Γ , (2.9)

and the linear functional ℓ(·) is defined as

ℓ(v)=
2

∑
i=1

( f ,vi)Ωi
−〈p,{{β∂nv}}〉Γ+γ f 〈p,JvK〉Γ+

〈

q,{{v}}∗
〉

Γ
, (2.10)
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with γ f >0 being the stability parameter and 〈·,·〉Γ being the L2-inner product on Γ.
To adopt the deep neural network, we reformulate the variational problem (2.8) as

an energy minimization problem. To this end, we define the unfitted Nitsche energy
functional Ln as

Ln(v) :=
1

2
a(v,v)−ℓ(v)

=
1

2

2

∑
i=1

∫

Ωi

βi∇vi ·∇vidx+
γ f

2

∫

Γ
(JvK−p)2 ds

+
∫

Γ
(p−JvK){{β∂nv}}ds−

∫

Ω
f vdx

−
∫

Γ
q{{v}}∗ds−

γ f

2

∫

Γ
p2ds. (2.11)

Then, we can show the variational problem is equivalent to the following energy mini-
mization problem:

u=arg min
v∈H1

g(Ω)
Ln(v). (2.12)

In other words, Eqs. (2.1a)-(2.1d) is the Euler-Lagrangian equation of (2.12).

Remark 2.1. To simplify the presentation of this paper, we only consider inhomogeneous
Dirichlet boundary conditions. For Neumann and Robin boundary conditions, they can
be absorbed into the variational formulation. Other types of boundary conditions such
as mixed Dirichlet and Neumann boundary conditions can be handled similarly.

Remark 2.2. We choose to impose the Dirichlet boundary condition strongly by building
it into the solution space. Alternatively, we can impose the Dirichlet boundary condition
weakly as in [26].

3 Deep unfitted Nitsche method

In this section, we shall take advantage of the universal approximation property of deep
neural network and flexibility of the unfitted Nitsche weak form to develop the deep
unfitted Nitsche method for solving elliptic interface problem (2.1a)-(2.1d). In the first
subsection, we briefly introduce the deep neural networks used in this paper. In the
second subsection, we describe the details of the deep unfitted Nitsche formulation.

3.1 Deep neural network

One of the critical ingredients for using deep learning to solve partial differential equa-
tions is to select a deep neural network as the ansatz function for trial functions. The com-
monly used deep neural networks to approximate the solutions to PDEs include feedfor-
ward neural network [10,28], and residual neural network (ResNet) [7,20]. Similar to the
deep Ritz method in [7], we choose the ansatz function to be the ResNet.
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For each integer i and some positive integer m, let W [ij] ∈ R
m×m be the matrix of

weights and b[ij]∈R
m be vector of biases for j=1,2. Then, the ith block of ResNet with m

neurons can be written as

fi(s)=σ(W [i2 ]σ(W [i1]s+b[i1 ])+b[i2])+s, (3.1)

where σ is the activation function [10, 22]. To avoid the problem of vanishing gradient,
smooth functions like sigmoid and hyperbolic tangent can be adopted.

Similarly, let W [0]∈R
m,d (or W [n+1]∈R

1,m) be the matrix of weights in the first (or last)
layer and b[0] ∈R

m (or b[n+1]∈R
1) be the vector of biases in the first (or last) layer. The

ResNet with n blocks can be viewed as the composition of fi’s

uθ(x)=W [n+1]
(

fn◦ fn−1◦···◦ f1(W
[0]x+b[0])

)

+b[n+1], (3.2)

where θ denotes the set of parameters, i.e.,

θ=
{

W [0],b[0],W [11],b[11],W [12 ],b[12],··· ,W [n1],b[n1],W [n2],b[n2],W [n+1],b[n+1]
}

.

In Fig. 2, we plot the architecture of the ResNet with four blocks.

3.2 Deep unfitted Nitsche formulation

The main advantage of the unfitted Nitsche method lies in the ability to use meshes in-
dependent of the location of the interface. This is possible by employing two different
ansatz functions on the interface elements (elements cut through by the interface): one is
for the interior domain, and the other one is for the exterior domain. Those two different
ansatz functions are discontinuous across the interface Γ and patched together by Nitsche
method. In the traditional unfitted Nitsche methods, the ansatz functions are piecewise
polynomials. Following this line, we adopt two different deep neural network functions
as the two ansatz functions to minimize the unfitted Nitsche energy functional (2.11).

Let uθi
be the ansatz function in Ωi (i=1,2) and denote uΘ(x)=(uθ1

(x),uθ2
(x)). where

Θ=(θ1,θ2). Before we proceed, we should make sure uΘ satisfies the Dirichlet boundary
condition (2.1b). For such purpose, we introduce an additional boundary penalty term
as

Lb(uΘ)=
∫

∂Ω
|uΘ−g|2ds. (3.3)

Ideally, we expect Lb close to zero. We define the extended unfitted Nitsche functional L
as

L(uΘ)= Ln(uΘ)+γbLb(uΘ), (3.4)

where γb>0 is the boundary penalty parameter.
Then, our deep unfitted Nitsche method is equivalent to the following optimization

problem
min

Θ
L(uΘ). (3.5)
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Figure 2: We present a diagram of ResNet with four blocks where FC layer denotes fully connected layer. Similar
to the deep Ritz method in [7], we choose the ansatz function to be the ResNet.

Remark 3.1. In the literature, there are several alternative methods to impose the Dirich-
let boundary conditions by building the Dirichlet boundary condition into the loss func-
tion [26] and training another deep neural network [32]. For the sake of simplicity, we
choose to impose the Dirichlet boundary condition for deep neural network functions
using the penalty method as in [7]. Interested readers are referred to [3] for a comparison
study of different methods handling boundary conditions.

To solve the optimization problem using stochastic gradient descent type algorithms
(e.g., SGD [10] or ADAM [24]), we approximate the integrals by using the Monte-Carlo
method, where the number of integral points is independent of the dimension of the

underlying domain. Suppose {xi
k}

Ni

k=1 are the uniformly sampled points in the domain

Ωi for i=1,2. Similarly, let {x
f
k }

N f

k=1 and {xb
k}

Nb

k=1 be the randomly sampled points on the

interface Γ and the domain boundary ∂Ω, respectively. The loss function L̂ is defined as

L̂(uΘ)=
|Ω1|

N1

N1

∑
k=1

(

β1

2
∇uθ1

(x1
k)·∇uθ1

(x1
k)− f (x1

k)uθ1
(x1

k)

)
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+
|Ω2|

N2

N2

∑
k=1

(

β2

2
∇uθ2

(x2
k)·∇uθ2

(x2
k)− f (x2

k)uθ2
(x2

k)

)

+
|Γ|

N f

N f

∑
k=1

(

γ f

2
(JuΘ(x

f
k )K−p(x

f
k ))

2−
γ f

2
p(x

f
k )

2

)

+
|Γ|

N f

N f

∑
k=1

(

(p(x
f
k )−JuΘ(x

f
k )K){{β∂nuΘ(x

f
k )}}

)

−
|Γ|

N f

N f

∑
k=1

(

q(x
f
k ){{β∂nuΘ(x

f
k )}}

∗
)

+
|∂Ω|

Nb

Nb

∑
k=1

γb

(

uθ2
(xb

k)−g(xb
k)
)2

, (3.6)

where |Ωi| is the measure of Ωi in R
d (i=1,2) and |Γ| (or |∂Ω|) is the measure of Γ (or ∂Ω)

in R
d−1. Then, the discrete counterpart of the optimization problem (3.5) reads as

min
Θ

L̂(uΘ). (3.7)

The discrete optimization problem (3.7) actually involves the training of two deep neu-
ral network functions uθ1

and uθ2
. Those two neural networks can be trained indepen-

dently using the same loss function L̂. The gradient of deep neural network function can
be efficiently calculated using automatic differentiation functionality [29] in the modern
machine learning platform.

In the loss function(3.6), we need to compute the measure of each Ωi. For problems
with simple geometric shapes, we can compute them analytically. In general, we can use
Monte-Carlo simulation like the hit-or-miss method to estimate the measure. Similarly,
we can estimate the measure of Γ and ∂Ω.

4 Numerical experiments

In this section, we present several numerical examples to illustrate the performance of the
proposed deep unfitted Nitsche method. The proposed algorithm is implemented using
the machine learning platform Pytorch [30]. In the following numerical experiments, we
choose uθ1

and uθ2
have the same neural network architectures and select the activation

function σ = tanh. Both deep neural networks are initialized by Xavier initialization to
prevent from exploding or vanishing and are trained independently using ADAM [24].
In all the following numerical experiments, we choose the learning rate lr = 0.001 and
generate new mini-batches every 10 epochs. To provide a qualitative description of train-
ing results, we use the following relative L2-error

Error=
‖u−uΘ‖0,Ω1∪Ω2

‖u‖0,Ω1∪Ω2

. (4.1)
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The relative L2-error is computed using Monte-Carlo methods with 10,000 uniformly
sampled points. The relative L2 errors are computed and recorded every 100 epochs.
Similarly, we record the loss every 100 epochs.

4.1 Flower shape interface problem in 2D

In our first example, we consider the flower shape interface problem in the domain Ω=
(−1,1)×(−1,1) as in [11,14]. The flower shape interface Γ is given by the following polar
coordinate

r=
1

2
+

sin(5θ)

7
. (4.2)

The piecewise diffusion coefficient are β1=1 and β2=10. We choose the right hand side
function to fit the exact solution

u(x)=







e(x2
1+x2

2), if x=(x1,x2)∈Ω1,

0.1(x2
1+x2

2)
2−0.01ln(2

√

x2
1+x2

2), if x=(x1,x2)∈Ω2.

The nonhomogeneous jump conditions (2.1d) and (2.1c) can be calculated from the above
exact solution.

In this case, one can compute |Ω1|=
51

192 π and |Ω2|=4− 51
192 π. To generate uniformly

distributed random points in Ω1 and Ω2, we firstly generate uniformly distributed ran-
dom points in the whole domain Ω. Then, we count the random points inside the inter-
face Γ as the randomly sampled points in Ω1 and the rest random points are in Ω2. The
randomly sampled points on Γ is produced by generating the uniformly sampled points
on the interval (0,2π) and then mapping them onto the interface Γ using (4.2).

In this numerical test, we choose ResNet with 3 blocks and m = 10 for each ansatz
function, as illustrated in Fig. 2. Each ansatz function has 701 parameters. We uniformly
sample 1024 points in the domain Ω. It turns out that there are 219 points inside the
interface Γ. In other words, N1 =219 and N2 =805. In addition, we just choose N f =256
and Nb=128. We choose γb=5000 and γ f =1000. The corresponding decay of errors and
loss functions during the training process are plotted in Fig. 4. We can see the error decays
rapidly at the initial several thousand epochs and then fluctuate. After 50000 epochs, the
relative L2-error is reduced to 4.6%. In Fig. 3, we present a comparison between the deep
unfitted Nitsche method (DUNM) solution and the exact solution. We can see the DUNM
solution match well with the exact solution even though there is an inhomogeneous jump
in the function values.

4.2 High-contrast interface problem in 2D

In this example, we consider the high contrast interface problem with homogeneous
jump conditions in the domain Ω = (−1,1)×(−1,1) as in [11, 14, 15]. The interface Γ
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(a) (b)

Figure 3: Comparison of solutions for flower shape interface problem: (a) Deep unfitted Nitsche solution; (b)
Exact solution. Although there is an inhomogeneous jump of function values at the interface, both solutions
match well.

(a) (b)

Figure 4: Training process of flower shape interface problem: (a) Decay of the relative L2-error; (b) Decay of
the loss.

is a circle with radius r0 centered at the original. The exact solution is

u(x)=







r3

β1
if x∈Ω1,

r3

β2
+
(

1
β1
− 1

β2

)

r3
0 if x∈Ω2,

where r= |x| is the Euclidean norm of x.

In this example, we consider the circle with radius r0 = 0.5. We also use the ResNet
with 3 blocks and 10 outputs in each block to represent each function. The uniformly
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(a) (b)

Figure 5: Training process of circular interface problem with β1 = 1 and β2 = 1000: (a) Decay of the relative

L2-error; (b) Decay of the loss.

(a) (b)

Figure 6: Training process of Training process of circular interface problem with β1 = 1 and β2 = 100000: (a)

Decay of the relative L2-error; (b) Decay of the loss.

randomly sampled points are generated by the same method as in previous example.
Again, we generate 1024 randomly sampled points in Ω. In that case, N1=212 points are
inside Γ and N2=812 points are outside Γ. Similarly, N f =256 and Nb =128. The penalty
parameters γb =5000 and γ f =1000 are the exactly the same as previous case.

In the following numerical tests, we focus on the training of high contrast interface
problem by considering the following four typical different jump ratios: β1/β2 =1000/1
(large jump), β1/β2 =1/1000 (large jump), β1/β2 =100000/1 (huge jump), and β1/β2 =
1/100000 (huge jump). The training processes are described in Figs. 5-7 for each cases,
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(a) (b)

Figure 7: Training process of circular interface problem with β1 = 1000 and β2 = 1: (a) Decay of the relative

L2-error; (b) Decay of the loss.

Table 1: Relative L2 errors for high contrast interface problems.

β1/β2 1000/1 1/1000 100000/1 1/100000

Error(%) 2.29 0.62 2.36 0.63

respectively. In these figures, we notice that the errors quickly decay to some specific
errors and then oscillate around them. The relative L2 errors after 200000 epochs are
summarized in Table 1, where one can observe that the errors are not influenced by the
jump ratios.

In Figs. 9 and 10, we plot the DUNM solution and the exact solution for the case
β1/β2 = 1000/1 and β1/β2 = 1/1000, respectively. It is clear to see that the DUNM so-
lutions match well with the corresponding exact solutions. We have also compared two
other cases and observed the same phenomena.

4.3 High-dimensional interface problems

In this example, we consider the d-dimensional interface problem in the unit cube Ω=
[−0.5,0.5]d. The unit cube is divided into two parts Ω1 and Ω2 by a d-dimensional sphere
with radius r0=0.4 centered at the origin. The diffusion coefficients are β1=1 and β2=10.
The exact solution is

u(x)=

{

r3 if x∈Ω1,
r3

10+0.0576 if x∈Ω2,

where r= |x|=
√

∑
d
j=1 x2

j . Therefore, we have homogeneous jump conditions. The right

hand side function and boundary condition can be obtained from u.
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(a) (b)

Figure 8: Training process of circle interface problem with β1 = 100000 and β2 = 1: (a) Decay of the relative

L2-error; (b) Decay of the loss.

(a) (b)

Figure 9: Comparison of solutions for circular interface problem with β1 =1 and β2 =1000: (a) Deep unfitted
Nitsche solution; (b) Exact solution. The solutions match well for this high-contrast interface example.

In this case, the measure of Ω1 =
πd/2rd

0

Γ(d/2+1)
and the measure of Ω2 = 1−

πd/2rd
0

Γ(d/2+1)
. The

measure of the interface is Γ=
2πd/2rd−1

0

Γ(d/2)
. We approximate each component of the solution

by ResNet with 3 blocks and 20 neurons for each fully connected layer. In total, there
are 2621 parameters for each deep neural network. To generate uniformly random points
on d dimensional spheres, we use the sample_hypersphere function in BoTorch [1]. To
guarantee there are enough randomly sampled points in Ω1. We first generate 102 (about
1/10 N=N1+N2) uniformly random points inside the d-dimensional ball with r0 using
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(a) (b)

Figure 10: Comparison of solutions for circular interface problem with β1=10000 and β2=1: (a) Deep unfitted
Nitsche solution; (b) Exact solution.

Table 2: Relative L2 errors for high dimensional interface problems.

d 3 5 10 20

Error(%) 3.90 2.14 4.43 7.04

the dropped coordinates method [18]. In specific, we first generate 102 points on d+2
sphere with radius r0 using the sample_hypersphere function in BoTorch [1] and drop
the last two coordinates to get the uniform randomly sampled points. Then, we generate
912 random points in Ω which may also contain points in Ω1. So we have N1 ≥102 and
N2 =1024−N1. We take N f =256 and Nb =256d. In the following test, we take γb =3000
and γ f =500.

We consider four different high dimensional cases: d=3,5,10,20. Fig. 11 displays the
decay of the relative L2 errors during the training process. Similar to the previous two
examples, we can see that the errors decay quickly at the first few epochs and then fluc-
tuate around some specific levels. In Table 2, we report the relative L2 errors after 50000
epochs. We can see that we get almost the same level of relative L2 errors independent of
the dimensionality of the space even though we use the same number of points.

5 Conclusion

As a continued study of our previous works on elliptic interface problems [11,14,15], we
propose a deep unfitted Nitsche method to address the high-dimensional challenge with
high-contrasts. The challenge is also known as the curse of dimensionality. The classical
numerical methods such as finite difference and finite element methods require unaf-
fordable computational time. The proposed method deploys the deep neural network to
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(a) (b)

(c) (d)

Figure 11: Decay of loss functions in high-dimensional interface problems: (a) d=3; (b) d=5; (c) d=10; (d)
d=20.

solve the equivalent high-dimensional optimization problem. To address the high con-
trasts of the solution, we introduced a so-called unfitted Nitsche energy functional, which
utilizes different deep neural networks to represent different components of the solution
in the high dimensional case. Different deep networks are patched together weakly by
Nitsche method and can be trained independently using the unfitted Nitsche functional.
The unfitted Nitsche energy functional is approximated by the Monte-Carlo methods. An
additional penalty term is added to the discrete energy functional to handle the Dirichlet
boundary conditions. The proposed method is easy to be implemented and mesh-free,
which is illustrated by several numerical examples including high contrasts and high
dimensional cases.
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