This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

PT-CapsNet: A Novel Prediction-Tuning Capsule Network Suitable for Deeper
Architectures

Chenbin Pan and Senem Velipasalar
EECS Department, Syracuse University, Syracuse, NY 13244
{cpanl4, svelipas}@syr.edu *

Abstract

Capsule Networks (CapsNets) create internal represen-
tations by parsing inputs into various instances at differ-
ent resolution levels via a two-phase process — part-whole
transformation and hierarchical component routing. Since
both of these internal phases are computationally expen-
sive, CapsNet have not found wider use. Existing varia-
tions of CapsNets mainly focus on performance compari-
son with the original CapsNet, and have not outperformed
CNN-based models on complex tasks. To address the limita-
tions of the existing CapsNet structures, we propose a novel
Prediction-Tuning Capsule Network (PT-CapsNet), and
also introduce fully connected PT-Capsules (FC-PT-Caps)
and locally connected PT-Capsules (LC-PT-Caps). Differ-
ent from existing CapsNet structures, our proposed model
(i) allows the use of capsules for more difficult vision tasks
and provides wider applicability; and (ii) provides better
than or comparable performance to CNN-based baselines
on these complex tasks. In our experiments, we show ro-
bustness to affine transformations, as well as the lightweight
and scalability of PT-CapsNet via constructing larger and
deeper networks and performing comparisons on classifica-
tion, semantic segmentation and object detection tasks. The
results show consistent performance improvement and sig-
nificant parameter reduction compared to various baseline
models. Code is available at https://github.com/
Christinepan881/PT—-CapsNet.git.

1. Introduction

Convolutional Neural Networks (CNNSs) [4][12][27] can
capture features of objects similar to human visual system
by assembling a set of small kernels looking for different
patterns. Their ability to learn rich feature representations

*The information, data, or work presented herein was funded in part by
National Science Foundation (NSF) under Grants 1739748 and 18167325
and by the Advanced Research Projects Agency-Energy (ARPA-E), U.S.
Department of Energy, under Award Number DE-AR0000940. The views
and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof.

from data have allowed them to find a wide range of appli-
cations for various vision tasks.

When looking at an object, humans deconstruct it into
hierarchical sub parts, and tend to develop a relationship
between object parts [10]. This parsing process aligns well
with the capsule networks (CapsNets) [26]. Capsules rep-
resent distinct types of parts/instances, and each capsule is
a collection of neurons, encapsulating different attributes of
a part/instance, e.g. scale, orientation etc. A capsule layer
consists of multiple capsules. A special agreement/routing
mechanism between subsequent capsule layers is used for
parsing different levels of capsules. Encapsulation of dif-
ferent attributes and the agreement mechanism encourage
each capsule to be responsible for capturing how an entity
is represented, instead of only indicating its presence as in
traditional neuron activations.

However, existing CapsNet variants have several limi-
tations preventing them from being as widely adopted as
CNN:s. Firstly, the fully pairwise connection between cap-
sules focuses more on global information, but is not that
conducive to capturing diverse local relationships. Sec-
ondly, while stacking capsule layers, the fully pairwise con-
nection between every capsule tends to increase the number
of parameters exponentially, thereby decreasing the gener-
alization ability and causing the overfitting problem dur-
ing training. Thirdly, the routing-by-agreement mecha-
nism [26] is computationally expensive and time consum-
ing. Due to these limitations, current CapsNets cannot be
generalized to a wider range of more complicated computer
vision tasks and datasets involving deeper networks.

In order to utilize all the benefits of CapsNets and realize
their full potential, we propose a novel Prediction-Tuning
Capsule Network (PT-CapsNet) to overcome the limitations
of previous CapsNets. We show that PT-CapsNet is a scal-
able and equivariant model for capsule networks, and has
more sparse projections from the input capsule to output
capsule space, providing better robustness and generaliza-
tion ability. Different from the existing CapsNets vari-
ants, our contributions include the following: We (i) pro-
pose a novel PT-CapsNet, which is lightweight and effi-
cient; (ii) introduce two instance layers—fully connected PT
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capsule layer (FC-PT-Caps) and locally connected PT cap-
sule layer (LC-PT-Caps)— to make the PT-CapsNet appli-
cable to various deep learning architectures; (iii) conduct
ablation studies to investigate the best combination to build
the PT-CapsNets; (iv) design a PT-CapsNet architecture for
classification, which is composed of multiple FC-PT-Caps
and LC-PT-Caps; (v) conduct experiments to validate the
robustness of PT-CapsNet to affine transformations, and
achieve much better results by using 29 times less number
of parameters compared to previous CapsNets; (vi) scale
our model to larger deep learning architectures for classifi-
cation, semantic segmentation, and object detection tasks,
and achieve better or comparable performance to CNN-
based baselines using much less number of parameters.

2. Related Work

Considering the rich information stored in capsules, sev-
eral works have been proposed to improve CapsNets. Build-
ing on the original CapsNet [26], EM-Caps [13] uses a ma-
trix to represent the pose, and Expectation-Maximization-
based routing algorithm for better performance. Deep-
Caps [20] aim to improve the performance of CapsNets [26]
on CIFARI1O0 [16] dataset, and achieves 3% accuracy im-
provement. SOVNET [32] uses a degree-centrality routing
to get an equivariant model for CapsNets. GCaps [18] is a
group equivariant capsule network. Although the aforemen-
tioned CapsNets variants achieve improvement compared to
original CapsNets, they can not reach a performance com-
parable to commonly used CNNs, and are only applicable to
simple image classification tasks. The inverted dot-product
attention capsule network (IDACapsNet) [29] with ResNet
backbone provides 95.14% accuracy, compared to 95.11%
of ResNet, on CIFAR10 by using sequential iterative rout-
ing and layer normalization. When IDACapsNet uses a
simpler CNN backbone (0.56M params), it only provides
85.17% accuracy. The SR-CapsNet [ 1] achieves competi-
tive performance on adversarial defense and viewpoint gen-
eralization, but still has scalability issues and higher com-
putation cost. In [17], a local routing algorithm is proposed
with an encode-decode capsule architecture for medical im-
age segmentation. This model provides a slight improve-
ment of 0.03% compared to U-Net [24], which is not the
SOTA for semantic segmentation. In [23], attentive group
convolution is introduced to highlight meaningful relation-
ships among symmetries. SubSpace CapsNet [8] is applied
on GAN, achieving SOTA performance in semi-supervised
classification. In [33] and [1], the authors apply CapsNet
on font style verification and COVID-19 identification, re-
spectively. 3D CapsNets are introduced in [2],[ 15] for vol-
umetric object classification, and a 3D point cloud cap-
sule network is proposed [37] for object classification, part-
segmentation and object reconstruction. Yet, these models
only adopt 1-2 capsule layers as a small composition.

3. Proposed Models

In a CapsNet, each capsule is a collection of neu-
rons, which represent different attributes of the pose of a
part/instance, e.g. location, scale, orientation etc. Differ-
ent ways have been employed to represent the pose, and
indicate the presence probability of a part/instance. Also,
a non-linearity is used in CapsNets to normalize the cap-
sules. Sabour et al. [26] use vectors as the pose structure
to represent a capsule, the 12 norm of vectors to indicate
the instance presence probability, and squash function as
the non-linearity. Hinton et al. [13], use a 4 x 4 matrix to
represent a part’s pose, and EM routing to determine the
logistic unit and non-linearity. In our work, we propose a
Prediction-Tuning Capsule Network (PT-CapsNet), which
is more efficient and lightweight than the previous CapsNet
structures. PT-CapsNet uses the vector-form to represent the
capsule pose. To be able to handle bigger and more com-
plex datasets, and make the proposed PT-CapsNet applica-
ble to wider range of challenging tasks, we also propose a
fully connected PT-Capsule layer in Sec. 3.2 and a locally
connected PT-Capsule layer in Sec. 3.3. Then, using these
two types of capsule layers, we construct a novel deep PT-
CapsNet architecture for classification in Sec. 3.4.

3.1. Preliminaries

Let X € R%n:Nin denote the input capsule map at layer
I, where C},, is the number of the input capsule types, and
N;,, is the dimension of the input pose vector. The func-
tion of layer [ is to transfer X to higher-level capsules,
Y € RC%ut:Nout at layer [ + 1. Existing CapsNet struc-
tures first apply C\,.-many different transformation matri-
ces, M € RNin:Nout o each of C;,-many input capsules,
generating Cj,,, Co¢-many predictions (@ € RMNewt) for
Cout-many higher-level capsules. The goal is to explore
the pair-wise relationships between the capsules in two
consecutive layers. The produced predictions are typically
called intermediate votes, which are then forwarded into the
routing-by-agreement mechanism. In this phase, the part-
whole relationships are further evaluated by considering the
importance/contribution of the intermediate votes for each
higher-level capsule. Cj, x Cy,,-many weights/coupling
coefficients (w) are calculated as the agreement values be-
tween the pairs. Finally, each output capsule is produced
by computing the weighted sum of the intermediate predic-
tions made, for that output capsule, by capsules in layer /.
This two-step process can be described by:

Ujj =T - M )]
Cln,
U= wig Xt @

where i € [1,C;,,] and j € [1, Cyy,y] indicate the IDs of the
it" input capsule and j*" output capsule, respectively.
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Thus, for previous CapsNets, it is necessary to train a
large number of parameters for modeling the pairwise rela-
tionships between capsules in two consecutive layers. For
the fully connection, a typical example is [26], wherein the
total number of parameters for the transformation matrices
is Cin X Coyr X Nijp x Noye. Yet, after the weight distribution
of the routing process, only some of the prediction vectors
are emphasized, while others are compressed. The com-
pressed vectors with less weight will not have much contri-
bution for the higher-level capsules. This is due to the fact
that, in general, not all the entities in one layer represent the
components of one specific object, i.e. not all pairs of cap-
sules have significant relationships. Hence, the pair-wise
projection causes excess computation providing unneces-
sary or redundant information. Also, the typical dynamic
routing algorithm can be easily influenced by the vectors
with longer lengths regardless of whether their predictions
are reliable or not. The details of this limitation are provided
in the supplementary material. Thus, the large number of
parameters and inefficiency of workflow inhibit stacking of
many capsule layers to scale up to large architectures.

3.2. Fully Connected PT-Caps

To address the aforementioned limitations, we introduce
the fully connected prediction-tuning capsule (FC-PT-Caps)
layer . For the FC-PT-Caps layer, instead of having each in-
put capsule make predictions for all output capsules, we first
transform the low-level capsules, X € RCmNin with low-
level pose to the capsules with high-level pose by employ-
ing C;,-many transformation matrices (M’ € RNin:Nour)
to perform matrix multiplication with the corresponding in-
put capsules. We refer to the resulting capsules with high-
level pose as hidden capsules, H € RCn:Nou: . The goal
is to learn the relationships between the low-level and high-
level poses of the input capsules. Then, to probe the rela-
tionships between low-level and high-level capsule types,
we use vector-form weights, instead of scalar weights, to
refine the hidden capsules. We refer to this process as
the vector-tuning process. More specifically, when deriv-
ing each high-level capsule, there will be C;,,-many vector-
form weights (7 € RNewt), which are used to perform
element-wise multiplication with the corresponding Cjy,-
many hidden vectors. After multiplication, the weighted
hidden vectors in R%eus:Cin:Noue dimensional space, are
summed along the Cj, axis to obtain the final capsules
Y’ € R%ue:Nout The figure illustrating this process is pro-
vided in the supplementary material. The overall procedure
can be expressed by Eq. (3) and Eq. (4):

hi g Zi- M} 3)

.T;’;j Zzﬁc,j x hy, 4)
where 7 € [1,Cjp] and 7 16 [1, Cout] indicate the IDs of
the i*® input capsule and j®* output capsule, respectively.

0

Hence, in the first phase, each capsule undergoes pose trans-
formation independently, while in the second phase, each
feature in the pose renders high-level capsules indepen-
dently. When parsing the object relationship, if two in-
stances are mutually exclusive, then they will not be con-
nected, which means that there is no need for one to predict
the other, and generate the paired prediction. With this in
mind, we only make one prediction for each input instance.
In other words, we perform advanced pose transformation
on each input instance, instead of making each instance pre-
dict all high-level instances. In the second stage, the tun-
ing mechanism will extract the required information from
the hidden capsules, and fuse it to synthesize the high-level
instances. In this way, we provide significant savings in
memory and computational requirements, which are other-
wise wasted on generating invalid pairs and redundant infor-
mation. Also, the vector-form weights, used in the tuning
phase, ensure that each feature in the pose of higher-level
capsule is inferred from the corresponding feature in the
pose of the hidden capsules, and is not impacted by other
kinds of features, while in previous CapsNets, the features
in each middle capsule are given the same weights when
predicting outputs. In our proposed structure, the parame-
ters in both phases are trainable, so that they can accumulate
knowledge during training. In the previous CapsNets, only
the first step is trainable to serve this function.

In general, different from the previous CapsNets with
pair-wise transformation and routing, our FC-PT-Caps first
performs capsule-wise prediction followed by feature-wise
tuning. Following the above notation, the total number of
training parameters for FC-PT-Caps can be calculated as
follows: For the capsule-wise prediction phase, C;j,-many
transformation matrices result in Cj, x N, % Nyyp pa-
rameters; then for the feature-wise tuning phase, Cj, X
Cout-many vector weights lead to Cip, X Cour X Noye-
many parameters. Thus, FC-PT-Caps has a total of Cj, X
Nout X (Nin + Coue)-many parameters compared to the
Cin X Cout X Nin X Noy-many parameters in previous
CapsNets. It can be seen that the difference in the num-
ber of parameters of FC-PT-Caps and previous CapsNets is
only affected by the values of N;p, and Coyye. In this work,
we empirically choose the number of capsule-types (C') to
be 2%, where a € [4,9], and the dimension of capsule vec-
tors (N,,,) is chosen from [4,8,16]. Both of these hyper-
parameter choices correspond to the setup commonly used
by previous CapsNets. Based on these choices, it is evident
that our FC-PT-Caps is much more lightweight than others.
We list the exact number of parameters for comparison in
Sec 4.2 to demonstrate that our model has far less parame-
ters than others.

While providing significant reduction in the number of
parameters, our proposed model does not lose any of the
functionalities of an original CapsNet, and can still parse
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the hierarchical component structure of visual objects. To
prove this, let us consider the same input X, and denote
the outputs from previous CapsNets and our FC-PT-Caps
by Y and Y, respectively. If both outputs can be derived
from the same composition structure based on X, we can
say that it is possible for the previous CapsNets and FC-PT-
Caps to explore an equivalent feature space. This definition
preserves the transformation from input to output space,
meaning that the information in the hierarchical composi-
tion structure will not be lost.

For previous CapsNets, when Eq. (1) and Eq. (2) are
combined, we obtain g‘j as shown in Eq. (5):

yj—zwajx(-ra' ij) (3)

Based on the commutative property and associative prop-
erty, the terms of summation above can be written as:

wij X (Ti - Mij) = Zi - (wi; X Mij). (©)
We can set T; ; = w;; x M; ;, where the matrix T’ €
RNin:Nout has two components coming from routing-by-
agreement and voting procedure, respectively. Then, Eq. (5)
can be rewritten as follows:

C:’n

y_:f :Zfi 'Ti,,j- )

Similarly, for our FC-PT-Caps, when Eq. (3) and Eq. (4)
are combined, y'; can be written as in Eq. (8):

Cin
v = iy x (T M) ®)
We can then write 1
iy x (Ti - Mi) = % - (V] ; x M), )
where
Vi ; = tile(extend(7; ;)), (10)

ie., V' € RNinNows is obtained by first extending & €
RNeut into matrix V' € RYNeut and then tiling V along
the first axis by Nj, times. Then, we use matrix 7" €
RN:n-Nows such that T} ; = V;/; x M. It is apparent that T’
is composed of parameters from the prediction phase and
the vector-tuning phase. Thus, Eq. (8) can be rewritten as:

Cin

vy =2 % T an
i

Comparing Eq. (7) and (11), it is clear that both % and g,?
are constructed by projecting input capsules Z into RNout
space, via matrices in R™i»:Nout dimensional space, and
then summing the transferred vectors. Thus, we can reach

the conclusion that although the processes are different,

and 3/ can be projected into similar feature space through

previous CapsNets and FC-PT-Caps, respectively. In addi-
tion, our FC-PT-Caps can reach the same destination using
less parameters, which means that our projection from in-
put to output space is more sparse. Hence, the overfitting
problem, which usually affects the previous CapsNets, can
be properly avoided, making our model more flexible to be
generalized to more complex datasets. We also validate the
robustness of our model in Sec. 4.2.

3.3. Locally Connected PT-Caps

Fully connected (FC) capsule layers focus more on ex-
tracting global information, but are not that conducive to
capturing diverse local relationships between adjacent loca-
tions, which are very important for many computer vision
tasks. Stacking only the FC layers for CapsNet will also
generate a large amount of parameters, requiring extensive
memory and computational resources, and leading to weak
generalization ability and the overfitting problem. Hence,
to address these issues, and further enhance the applicabil-
ity of our model, we also propose a locally connected PT-
CapsNet, which is referred to as the LC-PT-Caps layer.

Instead of one capsule-type corresponding to a single
capsule like in an FC layer, in locally connected layer,
one capsule-type encloses a map of capsules. Therefore,
to represent the flow between different LC-PT-Caps lay-
ers, the capsule tensor domain also contains location axes,
in addition to the capsule-type axis and capsule dimen-
sion axis. Let XI¢ g RCnNinHinWin apnd YIC ¢
RCut:Noue:Hou:-Wour denote the input and output feature
maps, respectively, for the LC-PT-Caps layer [. Simi-
lar to the FC-PT-Caps layer, we first evolve the low-level
pose of an input capsule map to high-level pose. For each
type of capsule map, we use a sliding window of matrices
in RNin:Noue - ith the reception field of [K7, K;] shared
among different locations, to do the matrix multiplication
with each capsule vector within the reception field. The re-
sulting vectors in one field are summed to get the hidden
capsule vector at the corresponding location and capsule-
type. Concatenating the hidden vectors based on capsule-
type, we get the hidden map HLC € R Nout:-Hnia:Whia,
This process can be expressed as:

K, K,

m—ZZ 2 by Migg (12)

where hLCb and Z[C , indicate the evolved hidden vector
at [a b] position, and the capsule vector at [ap, by position
of i*" input capsule-type, respectively, and MLC denotes
the matrix at [p, g] position of the sliding wmdow for the

th input capsule-type. This operation is capsule-type-wise,
so with the shared matrices, one type of input capsules will
make predictions for one type of hidden capsules. Then,
there will be Cj,-many groups of sliding matrices, which
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generate Cip, X Ky X K1 X N X Noy-many parameters
for the first prediction stage.

For the second stage of LC-PT-Caps, similar to the tun-
ing step in FC-PT-Caps, we adjust and fuse information
from hidden capsules to get the higher-level capsules. To
produce each output capsule map in RVous:Hout.Woue - e
use a sliding cube of weights, VL€ ¢ REz:Kz2:Nou: (o
perform element-wise multiplication at positions of each
type of hidden capsule map, where [Ka, K3] represents
the window size (reception field size), and N,y repre-
sents the weights of the N,,; features at each position.
Then, to exploit the features from each capsule type, the
weighted hidden capsule vectors are summed together to
get the high-level capsule vector at the corresponding lo-
cation. By concatenating the resulting capsule maps based
on output capsule-type, we can get the final map Y€ €
[Couts Nout, Hout, Woue]- This process can be expressed as:

Cin K2 K3
_L.C SLC 7LC
Yjabp = ZZ Z”&‘,%‘,p‘.q X hia, b, (13)
i P oq
where 7], , is the vector weights at [p, g] position of the

sliding cube for i*" hidden capsule map to produce ;™
output capsule map, ;. p is the capsule vector at [a, b]

position of the j® output capsule map, and Ei‘fp.bq is
the capsule vector at [ay,b,] position of the i*" hidden
capsule group. The second stage is feature-wise adjust-
ment, such that for predicting one type of capsule map,
Cin-many shared cubes will be required, which leads to
Cout X Cin x K3 x K3 x Ngy-many parameters. There-
fore, the total number of parameters for LC-PT-Caps layer
i8 (Cin x K1 x K1 X Nijp X Nyt ) +(Cout X Cin x Ko x Ko %
No'u.t) = Cin XNout X (Kl X JK—I XNz‘n‘l'K‘Z XKZ XOo'u.t)-
The figure illustrating this process is provided in the sup-
plementary material. The procedure in LC-PT-Caps is sim-
ilar to that in FC-PT-Caps, which is also a prediction-tuning
process. For both phases in the LC-PT-Caps layer, K deter-
mines the reception field size when capturing local features,
and due to the shared weights among locations, it is also a
lightweight structure compared to previous CapsNets.

3.4. PT-CapsNet for Classification

We now propose a novel PT-CapsNet architecture for
classification by using our FC-PT-Caps and LC-PT-Caps
layers. The model shown in Fig. 1 is composed of six main
blocks: one convolution block, four LC-PT-Caps blocks,
and one FC-PT-Caps block. The convolution block is used
to extract the initial features from the input images. It con-
tains a 3 x 3 convolution layer, followed by a batch normal-
ization (BN) layer and a ReLU activation layer. To transfer
the initial features to capsule domain, we add an additional
axis to the feature map, representing the capsule vector di-
mension, so that the initial capsule vector dimension is 1.

For each LC-PT-Caps block, there are five capsule units
and one concatenation unit as shown in Fig. 1. For each
capsule unit, we adopt BN right after one LC-PT-Caps layer
and before the non-linearity function. We set K; = 1 and
K, € [1,3] for all the LC-PT-Caps layers. The first capsule
unit in each block (purple squares) is treated as a transi-
tion unit to process the input capsule maps from the previ-
ous block. The transition unit in the first LC-PT-Caps block
has K = 3, while the rest has K> = 1. The second cap-
sule unit is used to change the size of the capsule feature
maps by modifying the stride of the sliding cube at the sec-
ond phase, hence it is referred to as the down-sampling unit
(blue squares). We do not change the feature map size in the
first LC-PT-Caps block, where the stride is set to be 1. For
the remaining three blocks, we set the stride to be 2. The
third and fourth capsule units (pink squares) are used to fur-
ther process the capsule outputs from the down-sampling
block. We set K5 to 3 and 1 for these blocks, and stride
equal to 1. The down-sampling unit and the following two
units together form a sequential structure to study a map-
ping for the outputs from the transition unit. The fifth unit,
referred to as the inception unit (green squares), is used to
learn a different mapping for the outputs from the transition
unit. K5 is set to be 1, and to match the feature map size for
this connection, we set the stride equal to the stride in the
parallel down-sampling unit. The concatenation unit is used
to merge the outputs from the sequential block and the in-
ception unit along the capsule-type axis. This architecture is
a combination of the two mappings with their outputs con-
catenated into a single capsule output domain. In this way,
we scale the CapsNet width by widening the capsule-type
channel for the feature maps to make the model capture var-
ious instances and easier to train.

After four LC-PT-Caps blocks, we have the FC-PT-Caps
block as the final classification block. For the feature map
generated from the last LC-PT-Caps block, we concatenate
the H, W axes with the capsule-type axis to reshape it into
the FC capsule domain, which only has the capsule-type
and feature-dimension axes. The resulting feature map is
in REXWxCEN Then, we adopt one FC-PT-Caps layer fol-
lowed by BN and a non-linearity function to project the fea-
ture map into the class space R'%:16, where cls represents
the number of class. To find the best way of acquiring the fi-
nal logits of the class capsules, we conduct an ablation study
to compare the typical 12 norm logits and ‘generated logits’,
which refer to using an additional FC-PT-Caps layer to gen-
erate capsules with only one element representing the clas-
sification probability. Since our experimental results show
that the ‘generated logits’ perform better than the 12 norm
logits, we add another FC-PT-Caps layer, in which the out-
put capsule domain is R[] to get the final prediction.
Visualization of focus of capsules in the 2nd transition unit
are provided in Fig. 2 to illustrate the semantic information
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Figure 1. A novel PT-CapsNet constructed for image classification. Purple and blue squares represent the transition unit and the down-
sampling unit, respectively, pink squares are the units further processing the capsules, and green square represents the inception unit. The
LC-PT-Caps units are described by (K71, stridel), (K2, stride2) in the figure.

represented by each level of capsules.
hidden high

Figure 2. Visualization of different levels of capsules.

4. Experiments

Our experiments have three parts: (i) to investigate the
effects of different factors on the model performance and
show the effectiveness of our model, we first conduct an
ablation study; (ii) to demonstrate the robustness of PT-
CapsNet, we compare its performance with six different
previous CapsNet models under affine transformations on
CIFARI1O0 [16]; (iii) to show the lightweight, scalability and
wider applicability of PT-CapsNet, we scale it up to larger
deep learning architectures for different tasks, namely clas-
sification on CIFAR10, CIFAR100 [16], and FashionM-
NIST datasets, semantic segmentation on ISIC2018 [6][30]
dataset, and object detection on PASCAL VOC dataset [9].

4.1. Ablation Study

Our ablation study focuses on three aspects of the PT-
CapsNet. First, we investigate on the prediction and tun-
ing type/order. For the PT-CapsNet introduced in Sec. 3,
the capsule-wise prediction for high-level pose is performed
first, followed by the feature-wise tuning for the higher-
level capsule-type. Yet, it is also reasonable to first perform

feature-wise prediction for higher-level capsule-type, fol-
lowed by the capsule-wise tuning for higher-level pose. The
second aspect of ablation study is about the logits. 12 norm
is used most commonly to calculate the logits for vector-
form capsules [26]. We argue that it is also sensible to apply
an additional capsule layer to generate class logits for each
capsule. The third aspect of the ablation study is related to
the non-linearity functions. In original CapsNet [26], the
squash function is used to normalize capsules. In [3],
ReLU function is employed as the non-linearity for the pri-
mary capsules. The swish function [21] is also proved to
work well with large architectures and advanced tasks [28].

To investigate the best prediction and tuning type/order,
the logit generation method, and the non-linearity func-
tion, we conduct experiments on MNIST [7], FashionM-
NIST [35], and KMNIST [5] datasets covering 12 com-
binations shown in Tab. 1. We use a simpler architecture
for this part, which is composed of two convolution layers
as backbone, and two PT-Capsule layers—one LC-PT-Caps
and one FC-PT-Caps layer—as the capsule part. The con-
volution layers are followed by BN and ReLU activation,
and the capsule layers are followed by BN and the choice
of non-linearity. The number of channels for the two convo-
lution layers are 64 and 128, and the kernel size and stride
for both layers are 3 x 3 and 2, respectively. The number
of capsule types and capsule dimension for the LC-PT-Caps
and FC-PT-Caps are [32, 8] and [10, 16], respectively. The
LC-PT-Caps has a reception field of 3 x 3 with cubic stride
of 2. Each model is trained for 100 epochs with SGD opti-
mizer, and the batch size and initial learning rate are equal
to 128 and 0.1, respectively. The learning rate decay is 0.1
for every 50 epochs. We perform 4-pixel zero padding at
all sides, and do horizontal flip with a probability of 0.5 for
data augmentation. The testing error in Tab. 1 is calculated
as the average value of 5 runs. It can be seen from Tab. 1 that
(1) models with capsule-wise prediction for high-level pose
and the feature-wise tuning for the higher-level capsule-type
perform better than the models with feature-wise prediction
for higher-level capsule-type and the capsule-wise tuning
for higher-level pose in most cases; (ii) ’Generated log-
its’ (GL) consistently outperforms the 12-norm based logits
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method; and (iii) although the squash function works well
with 12-norm based method, it cannot surpass the perfor-
mance of ReL.U function used with the GL method. Thus,
to construct the best PT-CapsNet, we have combined the
most promising options—pose prediction, GL method, and
ReLU-for the remainder of the experiments.

Models Testing error
Prediction | Logits | Activation | MNIST | F-MNIST [ KMNIST
ReLU 0.75 8.29 435
GL Squash 0.81 8.42 5.13
Feature- Swish 0.76 8.12 4.2
wise ReLU 88.65 90 90
prediction | L2 Squash 1.66 10.68 10.39
Swish 42.26 21.76 10.36
ReLU 0.63 7.77 347
GL Squash 0.74 7.84 5.02
Capsule- Swish 0.64 8.1 3.58
wise ReLU 88.65 90 90
prediction | L2 Squash 1.52 10.44 9.54
Swish 89.9 74.4 66.06

Table 1. Ablation study on MNIST, Fashion-MNIST, and KM-
NIST datasets.

4.2. Robustness to Affine Transformations

We compare our classification model, which has 0.29M
parameters and is described in Sec. 3.4, with six CapsNet-
based methods with respect to robustness to affine trans-
formations for classification on CIFAR10. The methods
we compare with and their number of training parame-
ters are CapsNet (8.5M) [26], EM-Caps (0.32M) [13], G-
Caps (7.8M) [18], SR-CapsNet (3.2M) [11], DeepCaps
(8.5M) [20], and SOVNET (7.3M) [32].

Our affine transformation methods are the same as in
[32]. We created five variations of the training and test sets
by randomly transforming data. We consider the combina-
tion of translation and rotation. We choose the translation
extent and the rotation degree from the following 5 combi-
nations: [0 pixel, 0°], [2 pix., 30°], [2 pix., 60°], [2 pix.,
90°], and [2 pix., 180°]. We train each model on the five
transformed versions of the training set separately, and then
test them on all five transformed versions of the test set.
Thus, for each model, there are 25 robustness evaluation re-
sults summarized in Table 2. Our PT-CapsNet outperforms
others in most of the cases, indicating that PT-CapsNet is
more robust. In only eight out of 25 cases, SR-CapsNet,
SOVNET, and DeepCaps provide better accuracy, but their
number of parameters are much higher than ours (by almost
11, 25, and 29 times). Furthermore, the performance of PT-
CapsNet on the un-transformed dataset is much better than
the other CapsNet baselines. PT-CapsNet having the least
number of parameters among others further demonstrates
that the robustness mostly comes from the framework and
the sparse projection space.

Training on Untransformed CIFAR-10
Models | (0,0°) | (2,30°) | (2,60°) | (2,90°)
1 | 6828 | 5557 43.55 37.48 30.89
]| 6285 | 49.28 41.27 34.73 29.9
1| 49.54 | 3845 31.89 30.88 27.7
SR[I1] | 91.49 | 62.25 42.18 36.89 30.26
1
1

(2,180°)

76.76 | 67.97 53.56 45.22 35.67
88.34 | 47.57 42.24 43.75 43.52
Ours 91.21 | 70.18 50.41 46.79 40.56

Training on Affine Transformation by (2,30°)
Models | (0,0°) | (2,30°) | (2,60°) | (2,90°) | (2,180°)
CN[26] | 7345 | 69.87 61.17 52.29 45.58
EM[13] | 70.24 | 66.63 59.10 50.93 42.26
GC[18] 49.5 48.88 45.75 42.93 38.74
SR[11] | 90.36 | 89.15 78.07 65.37 50.07
DC[20] | 84.24 | 82.54 74.63 63.54 48.63
SN[32] | 86.58 | 85.35 82.51 79.14 69.64
Ours 90.16 | 88.41 85.2 78.5 70.7

Training on Affine Transformation by (2,60°)
Models | (0,0°) | (2,30°) | (2,60°) | (2,90°) | (2,180°)
CN[26] | 70.26 | 67.69 66.62 60.04 47.99
EM[13] | 66.53 | 65.09 63.21 58.04 47.61

GC[18] | 49.63 | 50.31 48.84 4743 43.11
SR[11] | 86.18 | 87.78 84.68 80.21 60

DC[20] | 83.92 | 83.63 82.79 78.09 60.02
SN[32] | 82.86 | 83.63 83.57 83.06 80.89

Ours 87.34 | 86.82 85.49 84.97 81.7

Training on Affine Transformation by (2,90°)
Models | (0,0°) | (2,30°) | (2,60°) | (2,90°) | (2,180°)

CN[26] | 67.81 | 65.64 65.46 64.35 52.79
EM[13] | 64.33 63.0 62.7 61.42 52.08
GC[18] | 4998 | 51.24 50.63 49.95 46.59
SR[I1] | 85.17 | 83.97 83.26 82.15 67.73
DC[20] | 82.91 | 82.78 82.66 82.62 68.34
SN[32] | 83.33 | 82.76 82.58 82.79 82.22

Ours 8542 | 84.77 83.85 82.84 7591

Training on Affine Transformation by (2,180°)
Models | (0,0°) | (2,30°) | (2,60°) | (2,90°) | (2,180°)

CNI[26] | 61.08 | 59.53 60.04 59.85 59.9
EM[13] | 57.57 | 55.89 56.85 56.35 552
GC[18] | 39.09 | 41.03 41.43 41.25 41.08
SR[I1] | 82.32 | 81.17 81.02 80.88 80.35
DC[20] | 81.12 | 80.81 80.64 81.05 80.92
SN[32] | 82.50 | 81.80 81.78 81.95 81.82

Ours 82.76 | 82.72 82.68 82.02 82.51

Table 2. Affine transformation experiments on CIFAR-10 dataset.

4.3. Comparison with CNN-based Networks on Ad-
vanced Vision Tasks

We conduct image classification, semantic segmenta-
tion, and object detection experiments to compare the pro-
posed PT-CapsNets with several CNN-based models on
various datasets. To perform a commensurate compari-
son, we reproduced all the models in PyTorch framework
[19], and report our reproduced results. For image clas-
sification, we use CIFAR-10 [16], CIFAR-100 [16], and
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Models top-1 acc. MAC. # params
ResNet 92.69 255.27TM 1.73M

PT-CapsResNet 93.59 225.7M 1.12M

WRN 95.95 5.25G 36.48M
PT-CapsWRN 95.98 3.51G 19.21IM
DenseNet 95.33 296.48M  769.16K
PT-CapsDenseNet 95.71 262.38M  727.11K

Table 3. Image classification results on CIFAR10 dataset.

Models top-1 acc. MAC. # params
ResNet 70.32 255.28M 1.74M

PT-CapsResNet 71.39 225.79M 1.16M

WRN 81.09 5.25G 36.54M
PT-CapsWRN 81.58 3.51G 19.23M
DenseNet 77.12 296.51M  800.03K
PT-CapsDenseNet 78.36 261.03M  655.28K

Table 4. Image classification results on CIFAR100 dataset.

Models [ top-1 acc. MAC. # params ‘
ResNet 94.36 195.22M 1.73M
PT-CapsResNet 95.28 171.5M 1.12M
WRN 95.34 4.02G 36.48M
PT-CapsWRN 95.57 2.68G 19.21M
DenseNet 95.39 226.66M  768.73K
PT-CapsDenseNet 95.99 200.37M  726.45K

Table 5. Image classification results on FashionMNIST dataset.

Fashion-MNIST [35] datasets, and adopt ResNet-110 [12],
WRN-28-10 [36], and DenseNet-100 [14] as our base-
line models. For semantic segmentation, we use ISIC2018
dataset [6][30], and adopt U-Net [24] and DeepLabv3+ [4]
as the baselines. For object detection, we use PASCAL
VOC dataset [9], and compare with YOLO-v5 [31, 22].

We replace the convolution layer and the FC layer in the
baselines with LC-PT-Caps layer and FC-PT-Caps layer, re-
spectively, to build our PT-CapsNet-based models. For PT-
DeepLabv3+ and PT-YOLO-v5, we adopt ResNet-101 pre-
trained on ImageNet [25] and CSPNet [34], as the back-
bones, respectively. For the capsule network, both the num-
ber of capsule types and the capsule dimension need to be
considered. The hyperparameters used for the PT-CapsNets
are provided in the supplementary material together with all
the implementation details and some visualization results.

The results for image classification are summarized in
Tables 3, 4 and 5 for three different datasets. We report
the top-1 accuracy, to validate the effectiveness, and the
total number of parameters (#params) and the total num-
ber of multiply-and-accumulates (MAC.) to show the com-
pactness of our PT-CapsNets. It can be seen that, the PT-
CapsNet slightly outperforms all three of the CNN base-
lines, while providing considerable reduction in the number
of parameters and the amount of computation at the same
time. The segmentation results are summarized in Table
6, listing the mean Intersection over Union (mloU) and the
number of parameters for each model. PT-CapsNets can

Models mloU  # params
Unet 65.57 31.1IM
PT-Caps-Unet 66.86 19.8M
DeepLabv3+ 82.85 59.3M
PT-Caps-DeepLabv3+ | 83.12 44.6M

Table 6. Semantic segmentation results on the ISIC2018 dataset.

[ Models [ mAP1 mAP2  Prec. Recall # param ]

YOLO-v5 78 52.21 5428  83.27 7.3M
PT-Caps 78.2 52 61.2 81 6.3M

Table 7. Object detection results on PASCAL VOC dataset

not only improve the mloU of UNet and DeepLabv3+ by
1.31% and 0.27%, but also provide 36% and 25% parame-
ter reduction, respectively. For object detection, mean av-
erage precision (mAP) is used as the performance metric,
and the results are evaluated for mAP @.5 (mAP1), mAP
@ [.5:.95] (mAP2), precision, and recall in Table 7. We can
see that PT-CapsNet based detection model provides higher
precision and comparable mAP with respect to YOLO-v5,
with less number of parameters.

Across all different tasks and comparison experiments,
the PT-CapsNet not only achieves better or on-par perfor-
mance compared to baselines, but also provides significant
parameter reduction, indicating that the performance en-
hancement and robustness is mostly due to the effective
feature descriptor and proposed PT-capsule structure. This
shows the great potential for PT-CapsNet to be adopted in
wider range of applications. Example output images are
presented in the supplementary material.

5. Conclusion and Future Work

We have presented a novel capsule network structure
with prediction-tuning mechanism (PT-CapsNet) to utilize
the rich information capacity of capsule networks, and ad-
dress their limitations. To make the PT-CapsNet widely
applicable, we have introduced fully and locally connected
PT-Capsule layers, and used them to build a PT-CapsNet ar-
chitecture for classification. We have compared its robust-
ness to affine transformations with several CapsNets base-
lines. To show the scalability of PT-CapsNet, we have built
large deep learning architectures for classification, segmen-
tation, and object detection tasks, and compared the perfor-
mance with CNN-based baselines. This is among the first
works demonstrating a capsule network-based architecture
can outperform or achieve on-par performance to the CNN-
based models on various tasks with challenging datasets and
larger image sizes, and simultaneously reduce the number
of network parameters. The promising results combined
with significant parameter reduction indicate that improve-
ments are due to the proposed effective structure. Since we
focused on the framework and structure, the research related
to the choice of receptor field size will be future work.
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