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Abstract— Studying the relationship between the brain and finger tapping motions can contribute towards an improved
understanding of neuromuscular impairment. Furthermore, acquiring brain data signals non-intrusively during finger
tapping exercises, and building a robust classification model can aid in the field of human computer interaction. In
this paper, we present a promising approach for spatially descriptive multi-labeling of spatiotemporal functional Near
Infrared Spectroscopy (fNIRS) data to autonomously detect different finger tapping levels in different regions of the
brain simultaneously. Our multi-class multi-labeling technique assigns labels to the left and right index fingers, and a
given label describes one of three different finger tapping frequencies (rest, 80bpm, and 120bpm) to be monitored in the
corresponding contralateral spatial location in the brain’s motor cortex. We train a CNN/LSTM-based network to classify
the aforementioned finger tapping levels spatially and simultaneously. The evaluation, based on simultaneous multi-label
predictions for two brain regions, is performed with a metric commonly used in multi-labeling, Hamming Loss, along with
confusion matrix-based measurements. Promising testing results are obtained with an average Hamming Loss of 0.185,
average F-Score of 0.81, and average Accuracy of 0.81. Moreover, we explain our model and novel multi-labeling approach
by generating Shapley Additive Explanation values and plotting them on an image-like background, which represents the
fNIRS channel layout used as data input. Shapley values help to add interpretability to our deep learning model and by
confirming expected results, offer a pathway to the future development of complex deep learning models that attempt to
predict social-cognitive-affective states.

Index Terms— CNN, finger tapping, fNIRS, Hamming Loss, LSTM, machine learning, multi-labeling, spatially descriptive,
spatiotemporal

I. INTRODUCTION

Research in Human Computer Interaction (HCI) and Brain-
Computer Interfacing (BCI) continues to make strides in the
advancement of machines as an aid to people with disabilities
and for rehabilitation. Gathering brain data through non-
intrusive mediums along with finding robust ways of inter-
preting the data have been an integral part of this research.
For instance, through image processing, a nose tracking cursor
and an eye gazing interface give people with impaired motor
function the ability to communicate with others [1], [2]. In
another work, a classification model was presented based on
the use of Electroencephalogram (EEG) data to distinguish
between mental counting and wrist rotations [3]. EEG data was
also used by León [4] to classify combinations of hand and feet
movement imagery for robotic arm control. Other examples
include utilizing a hybrid set of data, such as a combination
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of EEG and Functional Near Infrared Spectroscopy (fNIRS),
to detect different types of motor imagery. Such experiments
included classifying the motor imagery related to the force
and speed of right hand clenching [6] and motor imagery of
left and right hand grasping [7]. Another area of interest in
HCI/BCI is to explore the separate ability of fNIRS signals
to represent movement and imagery. Three right foot soccer
playing motion imageries (i.e. passing, stopping, shooting)
were classified by Li et al. [5] with an average accuracy of
approximately 79%. Right thumb and little finger physical
tapping were distinguished with a validation accuracy of
97.17% by Woo et al. [8]. All the aforementioned studies
offer ways of helping those who have compromised motor
abilities by providing possible means of communication with
the outside world. Moreover, increasing our knowledge of the
brain and how to best capture and classify its signals gives
hope to those who suffer from locked-in syndrome.

Functional magnetic resonance imaging (fMRI) represents
the gold standard for brain measurement in cases where it is
possible to place participants in the fMRI magnet with minimal
motion permitted. Although fNIRS cannot measure deep brain
structures like fMRI, it can take comparable measurements
of hemodynamic responses across the brain cortex, and it
can do so in naturalistic real-world environments due to
portability, ease of set up, and decreased sensitivity to a
subject’s motion [9]. Thus, fNIRS could be a suitable device
for BCI applications, where target users can wear the non-
invasive device in their naturalistic environments. The motion



2 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

sensitivity of fNIRS sensors is also smaller than that of EEG
sensors and fNIRS can provide greater spatial resolution [10].
Although its acquisition of neural information is restricted to
1 cm below the surface of the brain, fNIRS has been a popular
way of collecting brain data signals as it is capable of capturing
hemodynamic information in a non-restrictive and practical
way while providing ample spatial and temporal resolution.

The classification of finger tapping activities with the use
of fNIRS data is a popular area of research [10], [16]. Finding
a suitable interpretation of data collected by fNIRS sensors as
it relates to a subject’s physical or mental activity is key to
making the data useful for HCI/BCI. In this paper, we propose
an approach that aims at capturing the spatiotemporal nature of
the fNIRS data with a robust deep learning algorithm, which
combines a Convolutional Neural Network (CNN) and Long
Short Term Memory (LSTM). Moreover, assigning labels to
the data, which represent the spatial nature of the fNIRS
probe configuration can yield information about the location
of activation. Therefore, by handling the readings acquired
by the fNIRS probe channels similar to video frames, we
can apply our novel spatially descriptive multi-label/multi-
class deep learning classifier, which we first introduced to
detect different activity levels in various regions of interest
simultaneously in video data [17]. In this case, finger tapping
data would be formatted to represent two regions of interest
in the brain, namely, the left and right motor cortices. Channel
readings, based on the corresponding probe locations, would
be formatted to represent these two sides of the brain.

The data used in this study was collected at a University in
the Western United States. The dataset contains 51 sessions
of index finger tappings from the right and left hands at
three different frequencies from 12 participants. Each session
included sequences of both index fingers tapping at the same
frequencies, single index finger tappings and rest periods.
The different levels of finger tapping frequency (rest, 80bpm,
and 120bpm) lend themselves well to a multi-class labeling
schema.

Then, applying our novel spatial multi-labeling technique of
designating two labels to the two sides of the brain, each of
which is assigned a finger tapping frequency level, classifica-
tion would be based on a multi-label/multi-class schema. This
is a novel approach to multi-labeling since in most studies,
binary labels are used for the presence (1) or absence (0) of
each class in a multi-label [18], [19]. Moreover, in these cases,
the multi-label does not provide spatial information the way
that our schema does.

We propose a unique and promising approach to classifying
various frequency levels of index finger tapping simultaneously
with the use of a multi-label/multi-class labeling schema. Our
novel multi-labeling approach provides a concurrent detection
of different levels of brain activation in the two sides of the
brain.The spatiotemporal nature of the fNIRS signal acquired
during finger tapping trials is captured during the training and
validation of a Convolutional LSTM model. Different from our
previous work [17], which focuses on video data, in this work
(i) the labels are assigned to fNIRS data formatted to represent
the probe configuration for the two sides of the brain; (ii) we
employ and generate Shapley Additive Explanation values [56]

to help explain the spatial characteristics of our Convolutional
LSTM model; (iii) we plot the Shapley values on an image-
like background, which represents the fNIRS channel layout
used as data input. Applying Shapley values is notable as it
can be used to view the structure of deep learning models
(and these deep learning ’black boxes’ can often be difficult to
interpret) and to show the regions of the brain that were most
important for different model predictions. Finger tapping has
been heavily studied in the brain measurement domain, and
there are known brain activations in the contralateral primary
motor cortices, based on which finger is being tapped (left
finger activates right primary motor cortex, and vice versa).
We use our Shapley values to show that the most predictive
channels in our deep learning model align with known spatial
characteristics of the brain during finger tapping. By using
our model explainability techniques on a benchmark finger
tapping task, we demonstrate the potential of applying this
approach to more complex classification tasks (e.g. classifying
types of workload or emotional states from fNIRS data), where
the use of Shapley values can help to explain the model,
while also having the potential to add to the field of cognitive
neuroscience, whereby complex interactions between intercon-
nected brain regions could be identified with an explainability
technique.

The organization of this paper is as follows: We discuss
the related work in Section II. We then describe our network
model and illustrate the formatting of our dataset, and labeling
structure in Section III. We present our experimental results
along with further analysis of our proposed method with
Shapley Additive Explanations (SHAP) values in Section IV.
We then conclude the paper in Section V.

II. RELATED WORK

Finger tapping abilities have been studied as a way of
determining the progression of Parkinson’s Disease [22], [23].
Similarly, other neuromuscular disabilities caused by cerebral
palsy and stroke can be better understood with finger tapping
exercises [24], [25]. This means that studying the relationship
between the brain and finger tapping motions can contribute
towards an improved understanding of neuromuscular im-
pairment. Furthermore, by acquiring brain data signals non-
intrusively during finger tapping exercises and building a ro-
bust classification model, can aid in the fields of HCI and BCI
for people with compromised motor function. Training BCI
applications on real, or imagined, finger tapping motions has
been heavily studied in part because finger tapping has been
found to result in consistent patterns of activation in brain areas
involved in motor function. Specifically, right finger tapping
shows reliable activation in the left primary motor cortex, and
vice versa. Tapping both fingers simultaneously will result in
both left and right primary cortices being activated (amongst
a host of other regions that are implicated in the execution of
motor function) [4], [57].

The classification of brain signals, which show greatest ac-
tivation during finger tapping motions, can also lead to estab-
lishing a brain mapping based on sensor locations [27] thereby
assisting in motor skill rehabilitation [26]. Moreover, the study
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of finger tapping motor imagery is instrumental in the fields of
HCI/BCI [30], [31]. Neural correlates exist between imagined
motor movements and real motor movements [68], [69]. Also,
neural correlates of different finger tapping frequencies can
be detected through hemodynamic responses [70]. Therefore,
being able to detect areas of brain activation during physical
finger tappings at different frequencies can impart a better
understanding of brain activity during imagined finger tappings
which could offer a means of communication through BCI
for locked-in patients. Moreover, classifying brain activation
patterns during finger tapping activities can help measure
improvements gained through BCI stroke rehabilitation [26]
and assess the progression of Parkinson’s Disease [70].

Since hemodynamic response is correlated to finger tapping
imagery and execution [28], [32], the study of fNIRS signals
evoked during this type of activity is fitting. In general,
research based on fNIRS signals has gained popularity over
the last several years [33], [34]. Using optical wavelengths
between 650 nm and 1000 nm produced by the emitter
probes, the detector probes detect the reflected light due to
changes in oxygenated (OXY) and deoxygenated (DEOXY)
hemoglobin concentrations at the cerebral cortex. The changes
in hemoglobin oxygenation are a result of neural activity
elicited by stimuli.

The study of neural activation due to finger tapping using
fNIRS signals has shown interesting results. Bak et al. [11]
performed a ternary classification of left index finger, right
index finger tapping, and foot tapping with an SVM model,
and obtained an average accuracy of about 70.4%. Woo et
al. [8] used a deep convolutional generative neural network
to augment their data, and trained a CNN model, which
produced a validation accuracy of 97.17% for thumb tapping
and little finger tapping classifications. Nazeer et al. [12] used
vector-based phase analysis features and a Linear Discriminant
Analysis (LDA) model to distinguish between left index finger
tapping, right finger tapping, and rest. The results, based on a
sample size of seven, were 85.4 +/- 1.4% for this three-class
distinction.

It is difficult to compare the results of the aforementioned
studies since different models were used, and different finger
tapping exercises were conducted. All were based on fNIRS
data, and reported robust classification accuracies. However,
the disadvantage of using shallow learning (i.e. SVM, LDA)
is the need to choose features that best fit the nature of the
data. Nazeer et al. [12] reported robust classifications results
with LDA with a small sample size of seven subjects. Woo et
al. [8] reported their robust results based on a sample size of
11 subjects and with a deep learning CNN model. The latter
study along with research by Trakoolwilaiwan et al. [36] and
Wickramaratne at al. [37] have demonstrated that CNN-based
algorithms are suitable for learning patterns in raw fNIRS
data, thereby eliminating the need for generating handcrafted
features. Additionally, recent research has been conducted
to support the use of LSTM networks in the classification
of fNIRS data [38], [39]. Although the data was not finger
tapping related, improvements in classification results were
shown as the algorithm was able to capture the temporal
characteristics of the data.

The monitoring of simultaneous activity based on spatiotem-
poral data has been studied for a variety of applications.
For example, a Convolutional LSTM was used to predict the
simultaneous demands of different modes of transportation in
an urban environment [21]. Also, using magnetoencephalog-
raphy (MEG) and SVM, four types of simultaneous bilateral
hand movements were classified with average accuracies of
75% and 70% for physical and imagined movements, re-
spectively [20]. Classification of concurrent events offers a
snapshot view of the output states through time providing
additional information related to the correlation of these ac-
tions. For example, this provides a means of exploring the
neural correlates of finger tapping performed by fingers on
different hands. Our interest in detecting simultaneous activity
in spatiotemporal data necessitates the use of multi-labels.
Multi-labeling has been used in video and other spatiotemporal
data classification [40], [41]. However, most multi-labeling
schemas in current research are based on selecting one of
more descriptors (classes) and then referring to them as a
multi-label. For example, the multi-labels in the YouTube-
8M database [42] are annotations, which describe the con-
tents of the video. Similarly, in combating noise pollution,
environmental sounds, which include simultaneous sounds
from different sources, are tagged, thereby forming the multi-
labels [43]. In the medical field, multi-labels have been used in
classifying motor execution and imagery. For example, Olsson
et al. [44] classified compound hand movements based on high
density surface electromyography (HD-sEMG) recordings us-
ing a series of labels that describe the basic movements (i.e.:
individual finger movements) needed to attain the final com-
pound movement (i.e.: fist). Therefore, the basic movements
defined the individual labels, which were used to build the
multi-labels. León [4] used multi-labels to represent different
combinations of hand and feet motor imagery captured by
EEG data. One of the labels would be assigned a ‘1’ based on
the motion(s) detected, and all other labels would then receive
a ‘0’. The previously mentioned examples utilize a pool of
classes to choose from in building multi-labels. To the best
of our knowledge, the spatially descriptive multi-label/multi-
class approach that we employ in our research has not been
attempted. In our case, the labels represent spatial regions of
interest. Each region of interest gets assigned one of many
classes depending on the activity level in the area that is
monitored.

Ensuring that labels are balanced is important to avoid
classification skew, which can impact results. Multi-labeling
can magnify the problem of label imbalance [40]. Data
augmentation is a technique, which increases the number of
samples, and helps balance labels [8], [45]. For example,
when classifying different levels of activity in surveillance
videos [17], we augmented the video data by creating addi-
tional videos through rotation of frame quadrants to increase
samples of minority labels. Additionally, another approach to
label and class balancing is to use resampling techniques,
such as Random Undersampling (RUS) and Synthetic Minority
Oversampling Technique (SMOTE). SMOTENN [47], [59], an
interesting balancing technique, combines both oversampling
and undersampling. More specifically, it combines SMOTE
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oversampling (for the minority classes) with Edited Nearest
Neighbors undersampling (for the majority classes). This
balancing technique is utilized in our proposed method.

III. PROPOSED METHOD

By considering the two sides of the brain as the two regions
of interest, we use the fNIRS probe layout shown in Fig. 1.
Paying attention to the channels in between the sources (in red)
and detectors (in blue), the OXY and DEOXY data channels
in our fNIRS readings were separated into the two sections of
interest, namely, left primary motor cortex and right primary
motor cortex. Then, the channels in each respective region
were rearranged to reflect the proximity of detectors to the
sources. The final configuration is shown in Table I. The two
distinct spatial regions each correspond to a label assigned to
an index finger as part of our multi-label. With this set-up,
we are able to determine the types of activation taking place
in each side of the brain simultaneously during index finger
tappings.

Fig. 1. fNIRS probe layout, with regions on the left and right primary
motor cortex covered

LEFT MOTOR CORTEX RIGHT MOTOR CORTEX
CH 1 CH 14 CH 20 CH 6 CH 11 CH 24 CH 45 CH 31 CH 27 CH 40 CH 42 CH 28
CH 2 CH 15 CH 17 CH 3 CH 16 CH 23 CH 44 CH 30 CH 34 CH 47 CH 36 CH 29
CH 7 CH 21 CH 9 CH 4 CH 18 CH 12 CH 38 CH 25 CH 37 CH 48 CH 35 CH 41

CH 13 CH 22 CH 8 CH 5 CH 19 CH 10 CH 32 CH 26 CH 39 CH 46 CH 33 CH 43

TABLE I: Channel order format to reflect probe configuration
in the left and right regions of interest

In our labeling schema, each spatial region corresponds to
an index finger which gets assigned one of three possible finger
tapping frequencies: rest, 80bpm, and 120bpm. Our spatially
descriptive multi-labels enable the recognition of concurrent
finger tappings by the right and left index fingers simulta-
neously, and the identification of different rates of tapping
through a multi-class descriptor for each label. Our labeling
schema, like most multi-labeling schemas, is more prone to
label imbalance. That is why we chose SMOTENN [47], [59],
which uses hybrid oversampling/undersampling, to balance
our labels. The effect of SMOTENN on the class sample
distributions for our two labels is shown in Table II.

Our network model, dataset and the labeling structure are
described in detail in the following subsections.

Before SMOTENN Label #1 Label #2
Class ’0’ 45.9% 47.1%
Class ’1’ 27.2% 26.3%
Class ’2’ 26.8% 26.6%
After SMOTENN
Class ’0’ 34.5% 33.8%
Class ’1’ 32.9% 32.5%
Class ’2’ 32.6% 33.7%

TABLE II: Class distribution before and after label balancing
with SMOTENN

A. Network Model
Since the fNIRS signals acquired during index finger tap-

pings are spatiotemporal, we chose to base our network model
on a Convolutional LSTM to be able to detect the spatial and
temporal properties of the data. The structure of our network
model is shown in Fig. 2. The fNIRS input data is formatted
into two regions of interest and labeled with our multi-labels.
The network contains two 2D convolutional layers, with the
first followed by a max pooling layer. Then, following a
dropout layer, there is an LSTM layer and a dense layer, which
leads to a final output layer. An adaptive learning rate, which
decreased by a factor of 2 to a minimum of 10−6, was used
along with binary cross-entropy loss and rmsprop optimiza-
tion. Since the class values in our multi-labels are one-hot
encoded and the multi-output layer uses sigmoid activation,
binary cross-entropy was the suitable choice. The adaptive
learning rate and early stopping monitor validation loss so
that adjustments are made to the learning rate if the validation
loss does not decrease after two epochs and consequently,
training automatically stops if the validation loss has stopped
decreasing after three epochs. After training, the model was
tested on unseen fNIRS finger tapping sessions formatted the
same way as our training/validation data (detailed next).

As illustrated in Fig. 2, the input to our proposed network
model is formatted into two sections, wherein the left and
right include the channels, which capture the changes in
hemoglobin concentrations for the left and right motor cortices
for each participant. Specifically, the channels for each region
of interest were grouped into chunks of 50 samples with a
sliding window of 10 samples. Batches of these groups were
then used to train and validate our model.

B. Dataset
Our fNIRS data was collected with a NIRx NirsSport2 de-

vice at a sampling rate of 10.2 Hz. We used the standard NIRX
montage that covers the right and left primary motor cortices.
Channel readings of changes in light intensity corresponding
to changes in OXY and DEOXY hemoglobin concentrations
at the cerebral cortex were recorded by the Aurora fNIRS
software. Data was bandpass filtered from 0.01 Hz and 0.5
Hz to remove noise. The modified Beer-Lambert Law was
applied to convert the light intensities into data representative
of relative change in OXY and DEOXY hemoglobin. Z-score
normalization was applied to each channel. For each sample
(OXY and DEOXY), the channels belonging to the left motor
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Fig. 2. Proposed deep learning model structure

cortex were rearranged and reshaped to correspond to the
probe layout. Subsequently, after the channels for the right
motor cortex were formatted accordingly, the two sets of data
were concatenated as illustrated in Table I. The final format of
the data files included a layer of 4x12 channel-ordered OXY
data followed by 4x12 channel-ordered DEOXY data.

Each session included sequences of the following finger
tapping combinations: both index fingers at rest; one index
finger at rest and the other tapping at either 80bpm or 120bpm,
both index fingers tapping at 80bpm, and both index fingers
tapping at 120bpm. Due to the complexity of tapping index
fingers at two different frequencies simultaneously, the com-
binations, namely [80bpm, 120bpm] and [120bpm, 80bpm],
were not included in the trials. Therefore, there were seven
possible multi-labels. Using two labels to spatially represent
the left and right motor cortices, one of three classes char-
acterizing the tapping frequency was assigned to each label.
The SMOTENN [47], [59] label balancing algorithm was
applied to the training and validation data before samples were
grouped in sets of 50 with a sliding window of 10 samples.
During the grouping process, the label of the middle sample
in each group at each location (region of interest), i.e. the
label of the 25th sample in this case, was used as part of the
multi-label. With a total of 51 finger tapping data acquisition
sessions from 12 participants, we initially tested our design
by setting aside 10% of the data sessions for testing and
trained/validated a model on the remaining part of the data
using a random 80% training / 20% validation split. This
process was repeated several times. The testing sessions were
chosen so that each participant appeared at least twice in the
total of all testing trial runs. Likewise, we also conducted a
leave-one-subject-out 11-fold cross-validation with a similar
process. For each run, a participant’s session was set aside
for testing. Remaining sessions, not including the subject’s
other trials, were partitioned in a random 80% training / 20%
validation split. One participant was excluded from testing due
to an imbalance in the distribution of the number of trial runs.

C. Proposed Multi-Labeling Structure
Given two spatial regions of interest, namely, the left and

right motor cortices, we established a novel approach to multi-
labeling. Due to the contralateral relationship between an index

finger’s tapping motion and motor cortex activation [58], the
left index finger was assigned a label which represents the
right motor cortex. The right index finger was assigned a
label that represents the left motor cortex. The three tapping
frequencies in our data were rest, represented with a ‘0’,
80bpm, represented with a ‘1’, and 120bpm, represented with
a ‘2’. The definition for each type of finger tapping frequency
that was used in our labeling schema is shown in Table III.

LEVEL OF TAPPING DEFINITION
0 rest (No tapping)
1 Index finger tapping at 80bpm
2 Index finger tapping at 120bpm

TABLE III: Three different types of finger tapping frequencies
are to be detected in each of the two sides of the brain

As we rearranged and reshaped our fNIRS data into our
two regions of interest for each input file (for both OXY and
DEOXY layers), we combined the corresponding labels (left
index and right index finger) for our multi-labels. For example,
suppose that for a particular sample of finger tapping data, the
right and left regions of the brain are labeled to have left
index finger tapping at 120bpm (level of tapping = ‘2’); and
right index finger tapping is at rest (level of tapping = ‘0’),
respectively. Then, the multi-label of [120bpm(2), rest(0)]
would be assigned to the pertinent sample of fNIRS data as
shown in Table IV.

LABEL #1
Left Index Finger
Level of Tapping

LABEL #2
Right Index Finger
Level of Tapping

2 0

TABLE IV: Example of our spatially and tapping-level descrip-
tive multi-label schema

The finger tapping combinations in our fNIRS database
resulted in seven possible multi-labels, namely, [rest, rest],
[rest, 80bpm], [rest, 120bpm], [80bpm, rest], [120bpm, rest],
[80bpm, 80bpm], and [120bpm, 120bpm]. For each cross-
validation run, testing was performed on the five finger tapping
sessions that were not in the training and validation set. After
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testing, predictions were made, and each type of finger tapping
level was assigned a probability for the respective region of
interest. The class of the finger tapping frequency (rest(0),
80bpm(1), or 120bpm(2)) with the highest probability was then
chosen as part of the predicted multi-label.

D. Evaluation Criteria

We report our results based on the micro metrics of F-Score
and Accuracy. Additionally, we use the measure of Hamming
Loss, which is a common metric used in multi-label research,
and offers an overall look at a classifier’s prediction error [48].
It is an instance-based metric, since it is based on the entire
multi-label prediction for each time period of testing data.
This metric is often used in BCI and HCI applications. For
example, Kalansooriya et al. [46], reported Hamming Loss
scores between 0.198 and 0.311 when comparing classifiers
to detect emotion from EEG signals retrieved during video
game playing. Devlaminck et al. [60] sought to minimize
Hamming Loss when comparing classification methods in a
BCI application. Reported values between 0.17 and 0.57 were
correlated with changes in accuracy measurements. Therefore,
to provide a complete picture of our model’s performance , we
also report micro-averaged F-score and Accuracy, label-based
metrics, to consider the label assigned to each region of
interest in the testing results separately [48], [49], [50].

i) Hamming Loss. For each instance, we compared the
group of two predicted classes of finger tapping in our
multi-label with the ground truth label assignments. The
average Hamming Loss for each testing finger tapping trial
was calculated as shown in Eq. (1), where S represents the
number of seconds in a testing finger tapping trial, and pi,j
and gi,j indicate the predicted level of tapping and the ground
truth level of tapping, respectively. Therefore, for each label
within a multi-label, a mismatch is assigned a 1. These
values are then added and averaged over the product of the
number of labels (2) in a multi-label and the time span of the
recording in seconds (S).

1

2S

S∑
i=1

2∑
j=1

[if(pi,j = gi,j , 0, 1)] (1)

ii) Micro-Averaged F-Score and Accuracy. In order to pro-
vide a complete set of performance criteria, we also consider
label-based (i.e. single side of the brain) metrics, such as
Micro-averaged F-Score and Accuracy.

Since our labels can be assigned one of three classes (0,1,
or 2) to represent three levels of finger tapping frequency,
it is best to perform a micro-average of these parameters.
For instance, instead of taking an average of the calculated
Accuracy for each level of finger tapping, we determine the
overall Accuracy for all levels of tapping at once. The calcu-
lations of Micro-Averaged F-score (µA Fscore), and Micro-
Averaged Accuracy (µA Accuracy) are shown in Eq. (2), and
(3), respectively.

µA FScore =

∑2
i=0(2 ∗ TP )i∑2

i=0((2 ∗ TP )i + (FP )i + (FN)i)
(2)

µA Accuracy =

∑2
i=0((TP )i + (TN)i)∑2

i=0((TP )i + (TN)i + (FP )i + (FN)i)
(3)

IV. EXPERIMENTAL RESULTS

Our goal was to detect different levels of finger tapping
in two different spatial sides of the brain simultaneously.
Through our novel multi-labeling schema and deep learning-
based algorithm, we built a model to be able to perform
automated classification of spatiotemporal finger tapping data
and determine the simultaneous types of tapping taking place
by both index fingers. Initially, we tested our design by setting
aside 10% of the 51 data acquisition sessions for testing and
trained/validated a model on the remaining part of the data.
Since the SMOTENN [47], [59] algorithm was applied to
this data, the number of instances for different classes, was
void of skew and imbalance. After balancing, approximately
200 minutes of multi-labeled fNIRS finger tapping data was
available for training and validation using a random 80%
training / 20% validation split. Optimal results have been
obtained with a window size of 5 seconds and a 1 second
sliding window. During training and validation, we monitored
training to make sure that validation loss was always smaller
than training loss to prevent any possible overfitting. Once
the validation loss did not improve for three epochs with
an adaptable learning rate, training/validation would end. An
overall validation accuracy of 99.52% for both labels supports
the validity of our classification schema.

A summary of training and validation metrics is presented
in Table V. Average validation losses were always smaller than
Average training losses.

Run
#

No. of
Epochs

Average
Training

Loss

Training
Accuracy
Label #1

Training
Accuracy
Label #2

Average
Validation

Loss

Validation
Accuracy
Label #1

Validation
Accuracy
Label #2

1 27 0.0351 0.9940 0.9942 0.0178 0.9948 0.9947
2 35 0.0214 0.9969 0.9969 0.0064 0.9962 0.9948
3 43 0.0221 0.9963 0.9965 0.0063 0.9941 0.9948
4 19 0.0644 0.9894 0.9887 0.0593 0.9919 0.9932
5 34 0.0197 0.9975 0.9975 0.0106 0.9974 0.9979
6 30 0.0327 0.9941 0.9944 0.0198 0.9953 0.9949
7 39 0.0250 0.9965 0.9965 0.0114 0.9967 0.9959

TABLE V: Training and Validation metrics for 7 cross-
validation runs

After training and validation, our classifier is then tested
on unseen similarly configured finger tapping session files.
Results were compared to the database’s ground truth label
annotations. We determined the overall Hamming Loss using
Eq. (1) by calculating the average for all groups of two
labels for the unseen testing finger tapping sessions. We
repeated this process seven times and our results are shown in
Table VI. These values indicate that our classifier is capable
of making correct predictions for both sides of the brain on
the testing finger tapping data an average of about 80% of
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the time. Additional metrics, namely Micro-Averaged F-score
and Accuracy values, were also calculated for each region of
interest (i.e. side of the brain), and the results are presented
in Table VII.

Cross-Validation
Run 1 2 3 4 5 6 7

Average
Hamming Loss 0.185 0.209 0.235 0.217 0.161 0.211 0.188

TABLE VI: Average Hamming Loss of fNIRS finger tapping
sessions set aside for testing for 7 cross-validation runs

Cross -
Validation

Micro-Averaged
F-Score

Micro-Averaged
Accuracy

Run # Label #1 Label #2 Label #1 Label #2
1 0.819 0.823 0.810 0.818
2 0.803 0.787 0.790 0.786
3 0.775 0.748 0.750 0.752
4 0.793 0.819 0.804 0.812
5 0.838 0.839 0.829 0.841
6 0.760 0.783 0.765 0.759
7 0.827 0.803 0.814 0.811

Average 0.802 0.800 0.796 0.797

TABLE VII: Right (Label #1) and Left (Label #2) sides of the
brain average label metrics for 7 cross-validation runs

This type of testing provided a general representation of
our classifier’s ability to classify three different finger tapping
frequencies from the two sides of the motor cortex simultane-
ously. In order to further support our approach, we performed
additional testing with a leave-one-subject-out 11-fold cross-
validation. For each run, a participant’s session was set aside
for testing. The remaining sessions, not including other tri-
als performed by the subject, were partitioned in a random
80% training and 20% validation split. One participant was
excluded from testing due to an imbalance in the distribution
of the number of trial runs. Average Hamming Loss results
are shown in Table VIII. This metric displays our classifier’s
ability of making correct predictions for both sides of the brain
on the testing finger tapping data an average of about 83% of
the time. Also, Micro-Averaged F-score and Accuracy values,
were also calculated for each region of interest (i.e. side of the
brain), and the results are presented in Table IX. A discussion
of all results is provided in Sec. IV-B.

Subject 1 2 3 4 5 6 7 8 9 10 11
Average

Hamming
Loss

0.176 0.159 0.158 0.109 0.164 0.188 0.210 0.181 0.182 0.175 0.144

TABLE VIII: Average Hamming Loss of 1-vs-all cross-
validations for 11 participants

A. Visualizing our Proposed Method with SHAP
Motivated by our promising Hamming Loss, Micro-

Averaged F-Score and Micro-Averaged Accuracy values, our

Cross -
Validation

Micro-Averaged
F-Score

Micro-Averaged
Accuracy

Subject # Label #1 Label #2 Label #1 Label #2
1 0.824 0.735 0.822 0.723
2 0.824 0.853 0.834 0.846
3 0.868 0.809 0.844 0.817
4 0.956 0.824 0.933 0.814
5 0.810 0.862 0.809 0.867
6 0.809 0.838 0.813 0.838
7 0.779 0.794 0.812 0.799
8 0.797 0.75 0.825 0.764
9 0.779 0.853 0.821 0.818

10 0.825 0.825 0.827 0.844
11 0.864 0.848 0.876 0.855

Average 0.830 0.817 0.838 0.817

TABLE IX: Right (Label #1) and Left (Label #2) sides of
the brain label metrics for leave-one-subject-out 11-fold cross-
validations

next goal was to gain further understanding of our network
model with Shapley Additive Explanations (SHAP) values.
SHAP, with its basis in game theory [56], is a way of
illustrating model interpretation by assigning impact values on
learned features (in the case of deep learning) as they relate
to a model’s predictions [51], [52]. Using the deep explainer,
which is specialized for neural network models, we generated
the SHAP values to visualize how our model handles the
channel readings when making predictions. The SHAP values
reflect a channel’s marginal contribution to the output class
predictions.

SHAP values are determined based on our deep learning
model and testing data. More specifically, in our CNN/LSTM
model, an instance (window size = 5 seconds) is represented
by the continuous changes in OXY and DEOXY hemoglobin
measurements, collected across 48 channels over the Left and
Right motor cortices. Thus, when SHAP evaluates a given
test instance, it is looking at the value of each of the 96
features/inputs in that instance in the channels shown in Fig. 1.
Twenty-four channels are over the left motor cortex and 24
channels are over the right motor cortex. If we consider Fig. 3,
we have taken our pretrained CNN/LSTM model, along with
each sample representing the condition of [rest(0), rest(0)] and
used SHAP to see how the pre-trained model evaluates the
OXY and DEOXY features in each instance to ultimately make
the final prediction of [rest(0), rest(0)]. We repeat this process
for every single [rest(0), rest(0)] 5 second long instance,
treating it as a test instance, and using SHAP to evaluate its
features. The resulting figure displays the average of the SHAP
values for all instances of the target condition. In Fig. 3, the
values for ‘0’(rest) that have the highest impact are shown in
red and represent the channels on the right side (top right)
and also left side (bottom left) of the layout background from
Table I.

A large body of research has found that real, or imagined,
finger tapping has reliably been found to activate the primary
motor cortices. Tapping the right finger activates the left
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Fig. 3. SHAP values for multi-label [rest(0), rest(0)]

primary motor cortex, and vice versa for the left finger.
Tapping of both fingers has been found then to activate both
regions simultaneously [4], [57].

When comparing these SHAP values to the channel layout
in Table I, we can locate the specific channels with the largest
positive impact. This is shown in Fig. 4. Therefore, this allows
us to visualize the channels with the highest positive prediction
impact on the probe layout as shown in Fig. 5.

Fig. 4. Mapping SHAP values to specific channels for multi-label
[rest(0), rest(0)]

Fig. 5. Highlighting channels with highest positive SHAP values on
probe layout for multi-label [rest(0), rest(0)]

SHAP values, based on the other finger tapping combi-
nations were similarly generated. Subsequently, the SHAP
values for the multi-labels [rest(0), 80bpm(1)] and [rest(0),
120bpm(2)] are shown in Fig. 6 and Fig. 7, respectively.
In Fig. 6, the multi-label [rest(0), 80bpm(1)] represents the
simultaneous action of the right index finger tapping at 80bpm
while the left index finger is at rest. Similarly, in Fig. 7, the
multi-label [rest(0), 120bpm(2)] represents the left index finger
at rest while the right index finger is tapping at 120bpm. In
both results, as expected, a greater number of positive SHAP
values are shown in the right side channels for a prediction
of ‘0’ for Label #1. The second label shows the brightest

positive SHAP values in the left side channels for predictions
of ‘1’ and ‘2’ for multi-labels [rest(0), 80bpm(1)] and [rest(0),
120bpm(2)], respectively. It is interesting to note the difference
in scale between Fig. 6 and Fig. 7, which seems to indicate
that the activation levels for the simultaneous detection of an
index finger at rest while the other one is tapping at 80bpm
is lower than when the tapping is at a higher rate, 120bpm.

Fig. 6. SHAP values for multi-Label [rest(0), 80bpm(1)]

Fig. 7. SHAP values for multi-label [rest(0), 120bpm(2)]

A similar difference in scale persists when comparing the
SHAP values for the multi-labels [80bpm(1), rest(0)] and
[120bpm(2), rest(0)] as shown in Fig. 8 and Fig. 9, respec-
tively. In Fig. 8, the left finger is tapping at 80bpm while
the right finger is at rest. In Fig. 9, the left finger is tapping
at the higher rate, 120bpm, and the right finger is at rest.
Corresponding channels from the two sides of the motor
cortices show the brightest SHAP values, as expected.

Fig. 8. SHAP values for multi-label [80bpm(1), rest(0)]

Fig. 9. SHAP values for multi-label [120bpm(2), rest(0)]
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Finally, the SHAP values for the multi-labels, which rep-
resent both index fingers tapping at the same rate, namely
[80bpm(1), 80bpm(1)] and [120bpm(2), 120bpm(2)], are
shown in Fig. 10 and Fig. 11, respectively. As anticipated,
simultaneous activation is seen in the channels representing
both sides of the motor cortices for the same classes in the
two figures.

Fig. 10. SHAP values for multi-label [80bpm(1), 80bpm(1)]

Fig. 11. SHAP values for multi-label [120bpm(2), 120bpm(2)]

Overall, the SHAP values support the well-established
contralateral correlation between the sides of motor cortex
activation and finger tapping hand [58]. Also, higher levels
of activation are exhibited when one finger is at rest and the
other finger is tapping at a class level of ‘2’ as compared
to a class level of ‘1’ as seen in Fig. 6 through Fig. 9. The
smaller scale for the resulting 80bpm SHAP values (Fig. 6
& Fig. 8) as compared to the 120bpm (Fig. 7 & Fig. 9)
supports this. Therefore, this study reinforces the use of SHAP
values as a way of understanding a deep learning ’black box’
model. The locations of the brightest positive SHAP values
provide an affirmative backing of León’s [4] statement that:
“During the preparation of a motor task certain cortical and
subcortical regions are activated; contrarily, in the course of
motor imageries most of the activity is found within the
primary motor cortex over the corresponding contralateral
hemisphere.”

By showing that SHAP produces expected results on finger
tapping data, where we have known a priori hypotheses about
the patterns of activation expected during different finger
tapping conditions, we propose that SHAP can and should
be further explored on more complex deep learning models
that attempt to predict a variety of social-cognitive-affective
states (e.g., workload, attention, trust, frustration). With a
growing body of literature using machine learning to predict
these mental states from brain data, there is a growing need
to evaluate and interpret these models [61], and SHAP can
provide one additional means of interpretation. Furthermore,
with new wearable biotechnology developments, we are seeing

more models that are trained from data collected in operational
settings [62] - [67]. These models may make predictions
of complex social-cognitive-affective states and SHAP can
be used on those models to add to the neuroscience of
human information processing, shedding light on the neural
correlates and interconnected brain regions underlying these
highly complex states.

B. Further Discussion of Results

We have presented all seven of our multi-labels using SHAP
values, and were able to demonstrate that the positive impact
values (in red) were located in corresponding sides of the
brain. For example, the SHAP values for the multi-label
[120bpm(2), rest(0)] are showing the highest activation on
the right motor cortex for class ‘2’ and left motor cortex for
class ‘0’. These map correctly to the left index finger tapping
label of ‘2’ and the right index finger tapping label of ‘0’.
This supports our model’s weight assignments for the learned
features after training and validation.

Our Hamming Loss results show that on average, for the
first and second testing trials, correct predictions were made
80% and 83% of the time, respectively. The corresponding
micro-averaged F-score and accuracy metrics were also close
to these results in both cases. These outcomes are better than
the accuracy obtained by Bak et al. [11] who obtained an
average accuracy of about 70.4% when classifying fNIRS
data based on left index finger tapping, right index finger
tapping, and foot tapping with an SVM model. Their model
was meant to distinguish between the three types of tapping
separately and not simultaneously, as in our approach with a
multi-label. Moreover, classification was binary and not multi-
class. Another study as reported by Woo et al. [8] showed
that augmentation followed by training a CNN model resulted
in a validation accuracy of 97.17% for thumb tapping and
little finger tapping. Once again, a binary classifier was used
to distinguish the tappings of two different fingers but, in
this case, the fingers were on the same hand. Although these
results are based on a simpler classification than ours, for a
more commensurate comparison, we tested the classification
network employed by Woo et al. [8], AlexNet, on our dataset.
We tested the AlexNet algorithm using the training/validation
data from our first set of testing trials. Resulting validation
metrics (AlexNet) are presented next to the ones extracted
from Table V (Our Network) in Table X. The resulting overall
average AlexNet validation accuracy of 87.8% falls short of
our network’s results, thereby supporting our network model as
presented in Fig. 2. AlexNet does not include an LSTM layer,
which is important to capture label dependency in our multi-
labels. This is supported with our network’s overall average
validation accuracy of 99.52% presented in Tables V and X.

Nazeer et al. [12] used a sample size of seven subjects
in support of classification accuracy results of 85.4 +/- 1.4%
when distinguishing between left finger tapping, right finger
tapping, and rest. This result, although based on a three-
class classification like ours, does not include different tapping
frequencies and multi-labels. Our approach goes one step
further where discerning between left index finger tapping and
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Run
#

Average
Validation

Loss
(AlexNet)

Validation
Accuracy
Label #1
(AlexNet)

Validation
Accuracy
Label #2
(AlexNet)

Average
Validation

Loss
(Our Network)

Validation
Accuracy
Label #1

(Our Network)

Validation
Accuracy
Label #2

(Our Network)
1 0.2675 0.8626 0.8821 0.0178 0.9948 0.9947
2 0.2302 0.8954 0.8872 0.0064 0.9962 0.9948
3 0.2579 0.8458 0.8543 0.0063 0.9941 0.9948
4 0.1911 0.8876 0.8623 0.0593 0.9919 0.9932
5 0.1355 0.8974 0.8743 0.0106 0.9974 0.9979
6 0.1901 0.8907 0.8767 0.0198 0.9953 0.9949
7 0.1080 0.8750 0.8951 0.0114 0.9967 0.9959

TABLE X: A comparison of validation metrics for 7 cross-
validation runs based on AlexNet and our network

right finger tapping is embedded in our multi-labeling schema
allowing us to be able to successfully differentiate between
three different tapping frequencies simultaneously for each
time step. It eliminates the need to distinguish between right
and left finger tapping while providing the ability to classify
more complex information.

Our proposed approach introduces a novel spatially descrip-
tive multi-labeling schema, which uses two labels to represent
the two sides of the brain. As both labels are classified
simultaneously, one of three finger tapping frequencies can
be assigned to each label. As our SHAP values illustrate, our
model is able to learn the correct features of the fNIRS data,
which contribute to the class predictions of our multi-labels.
Finally, our multi-labeling classification was able to benefit
from the use of the LSTM, known for its ability to detect
label dependencies [53]–[55].

V. CONCLUSION

Providing a means of communicating with the outside
world for those who have compromised motor function has
played an important role in HCI/BCI research. Gaining a
better understanding of how to capture the information in
fNIRS brain signals to autonomously detect different levels of
simultaneous index finger tapping frequencies can contribute
to this endeavor. For example, being able classify physical
finger tappings at different frequencies can impart a better un-
derstanding of brain activity during imagined finger tappings,
offering a path of communication through BCI for locked-in
patients. Also, understanding brain activation patterns during
finger tapping activities can assist in stroke rehabilitation and
assess the severity of Parkinson’s Disease. We have presented
a promising approach to multi-labeling spatiotemporal data to
detect different classes in two regions of interest concurrently.
In this case, we have applied our approach to detect three
different levels (rest, 80bpm, and 120bpm) of finger tapping
for both index fingers at the same time. The spatial aspect of
our fNIRS data, formatted to reflect probe layout, is captured
with CNNs and the temporal one is captured with an LSTM.
Our novel multi-labeling technique enables us to classify
activity on both sides of the brain simultaneously with our
network. Our network’s SHAP values support its ability to
choose appropriate spatial features (which importantly aligns
with the known spatial characteristics of finger tapping on the
primary motor cortices) when making predictions. By using
Shapley’s model explainability technique on these benchmark
finger tapping tasks, we demonstrate the potential of applying
this approach to the more complex neuroscience classification

of human information processing tasks, where the use of
Shapley values can help to explain the model, while also
having the potential of shedding light on the neural correlates
and interconnected brain regions underlying highly complex
social-cognitive-affective states.
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