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Graphical Abstract

Abstract

A general and fast convolution-based method (FCBM) for peridynamics (PD) is introduced. Expressing the PD integrals
n terms of convolutions and computing them by Fast Fourier Transform (FFT), the computational complexity of PD models
rops from O(N 2) to O(N log2 N ), with N being the number of discretization nodes. Initial neighbor identification and storing
eighbor information is not required, and this means memory allocation scales with O(N ) instead of O(N 2), common for
xisting methods. FCBM is applicable to bounded domains with arbitrary shapes and boundary conditions via an “embedded
onstraint” (EC) approach. The formulation is shown for certain bond-based and state-based, linear and nonlinear, PD models
f elasticity and dynamic brittle fracture, as applications. The method is verified on a 3D elastostatic problem and it is
hown that the FCBM-PD reduces the computational time from days to hours and from years to days, compared with the
riginal meshfree discretization for PD models. Large-scale computations of PD models are feasible with the new method,
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and its versatility is demonstrated by simulating, with ease, the difficult problem of cascading crack branching in a brittle
plate.
© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

Peridynamics (PD) is a nonlocal extension of classical continuum mechanics used with great effect in modeling
f fracture and damage [1,2]. In contrast with classical (local) models described by partial differential equations
PDEs), governing equations in PD are integro-differential equations. In PD, nonlocal interactions are considered
etween points within a certain distance, replacing the usual spatial derivatives with integral operators. Because of
his, the usual requirements of continuity and smoothness for displacements are eliminated, allowing one to model
he emergence and evolution of discontinuities, such as cracks and damage, as natural parts of the solution to the
overning equations [3,4].

However, when usual discretization methods are used, nonlocality increases the cost for a PD model, relative to
he cost of numerically approximating local models. The meshfree method with one-point Gaussian quadrature [5]
from now on, in this study we refer to it as “meshfree PD”) and finite element methods (FEM) [6–9] have been used
o compute numerical solutions to PD equations. For such equations, for a fixed finite range of nonlocal interaction
the horizon size), these methods scale as (N 2), where N is the total number of nodes in the discretization. For

large scale problems in 3D, the cost is prohibitive, even on massively parallel computers.
Various attempts have been made to reduce the cost of peridynamic simulations. Coupling the local theory with

PD is one approach that uses a local model for parts of the domain, and uses the PD model only at locations near
cracks/damage as necessary [10,11]. This approach does not work well for problems in which damage/cracks are
(or become) widely distributed throughout the domain, such as in problems like impact fragmentation, etc. [12,13].

The natural convolutional structure of PD formulations can be exploited using Fourier transforms as recently
shown in [14,15]. Using Fast Fourier Transform (FFT) algorithms, the new scaling for PD computations drops
to O(N log2 N ) [16,17]. These methods, however, are restricted to periodic domains. Fourier spectral methods
have been used for nonlocal Allen–Cahn equation [18], fractional-in space reaction diffusion [19], and peridynamic
diffusion and wave operators [14,20–22], all in periodic domains. Another class of O(N log2 N ) methods was also
introduced for 1D and 2D problems in [23–25], but these are still restricted to simple geometries and certain horizon
shapes. Additionally, extension of these methods to 3D is not straightforward [23–25].

In [26,27], we have introduced a fast convolution-based method (FCBM) for peridynamic diffusion problems.
Two different techniques have been proposed in order to adapt the approach to problem sets on arbitrary domains
and with general boundary conditions: the volume penalization (VP) [26] and the embedded constraint (EC) [27]
techniques. The method has been validated in 1D, 2D, and 3D against exact nonlocal (manufactured) solutions
and against local FEM-based solutions for problems in bounded domains with Dirichlet and Neumann boundary
conditions [26,27]. A diffusion problem in a 3D domain with an insulated cutout with billions of degrees of freedom
was solved, over tens of thousands of time steps, in a matter of hours on a single processor. The same problem, if
solved using the meshfree PD method, would have required years [27].

In this study, we extend the FCBM to the PD equation of motion with examples on elastic deformations and
fracture. We describe the class of constitutive models that have convolutional structures and can benefit from the
remarkable efficiency of the method. Moreover, we demonstrate how to setup nonlinear problems like dynamic
fracture in a brittle material as a convolution structure amenable to the FCBM treatment. This work also aims
to serve as guide to demonstrate how one can construct material models with convolutional structures, and how to
discretize different types of PD governing equation with this new method. As numerical examples, we formulate the
FCBM-EC for linearized bond-based and linearized state-based PD isotropic solids, a nonlinear rotation-invariant
model example, and a dynamic fracture problem. For brevity, the FCBM for PD correspondence models is presented
in a separate study [28]. We validate the proposed damage model by comparing our simulation results against the
published fracture PD simulations that use a popular critical bond strain criterion [5] for bond failure and the

meshfree PD method for discretization.
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Fig. 1. A generic point x, its horizon region Hx , and its family points x′ in a peridynamic body Ω .

This article is organized as follows: first a brief review of peridynamics equations of motion is provided, as
ell as concepts and notations related to PD constitutive modeling. Next, we discuss the convolutional from of
D material models through several examples. We describe the Fourier-based method for solving PD problems in
eriodic domain first, and then its extension to general bounded domains with arbitrary volume constraints/boundary
onditions, using the EC method. We demonstrate the efficiency and validity of the introduced method by a 3D
tatic and a 2D dynamic brittle fracture problems.

. Peridynamics

We briefly describe the peridynamic formulation for elasticity and brittle fracture. Peridynamics is a nonlocal
xtension of continuum mechanics that unifies the governing equations for continuous media, media with discontinu-
ties, and discrete media [1]. In this theory, each spatial point can interact with other points within its neighborhood
p to a finite size distance. The shape of this neighborhood is arbitrary. In applications, however, for simplicity, for
point denoted by its position vector x, the finite size neighborhood is taken as a sphere in 3D (a disk in 2D, or
segment in 1D) centered at x of radius δ [2]. This neighborhood, denoted by Hx , is referred to as the horizon

region of x and δ is called the horizon size. Spatial points located inside Hx are referred to as the family of x and
are denoted by x′. The bond vector for each family pair is defined as ξ = x′

− x. Fig. 1 shows the schematic of a
peridynamic body and the horizon of a generic point in the body.

In this work, we employ the following notation to distinguish between different types of quantities: plain (non-
bold) italic letters denote scalars, boldface italic letters denote vectors, and boldface non-italic letters denote tensors.
Peridynamic states, discussed in Section 2.2.2, are denoted by underlined letters.

2.1. Peridynamic equation of motion

In continuum mechanics, the equation of motion can be expressed as:

ρ
∂2u(x, t)

∂t2 = L (x, t) + b (x, t) (1)

here ρ is mass density, u(x, t) is the displacement field at point x and time t , L (x, t) is the internal force density,
and b is the external body force density. In the classical (local) theory, L = LC (x, t) = ∇ ·σ (the divergence of the
tress tensor) and the stress tensor dependency on strains/displacements is defined via a constitutive relationship.
he superscript C denotes the classical definition of L.

In peridynamics, L (x, t) is expressed with a nonlocal term instead: an integral which sums up all of the pair-wise
orces between x and its family points x′:

LPD (x, t) =

∫
Hx

f
(
x, x′, t

)
dVx′ (2)

The function f
(
x, x′, t

)
is called the dual force density and describes the net force between the unit volume at x

′
and the unit volume at x [1]. The specific form of f is determined by the chosen peridynamic constitutive model.

3
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The superscript PD denotes the peridynamics definition of L. In the rest of the manuscript, we drop the superscript
D and use L to denote the PD internal force density.

As noted in the introduction, contrary to the local formulation, the PD operator L (x, t) has no continu-
ity/smoothness requirements on the displacement field, allowing for cracks (as discontinuities in the displacement
field) to naturally emerge and propagate in peridynamic solutions.

2.2. Peridynamic elastic and brittle fracture constitutive models in bond-based and state-based formulations

The original PD model was a “bond-based” model ( [3]), which was later generalized to the state-based
formulation of PD ( [29]). Next, we review these formulations for describing elasticity and brittle failure.

2.2.1. Bond-based models
In bond-based materials, the dual force density between two family points depends only on deformation of their

ond, and is independent of the deformation of other bonds in the same family. For example, in an elastic bond-
ased solid, dual force density depends only on the displacements of the family pair, i.e. f = f

(
x, x′, u, u′, t

)
here u′

= u(x′, t). Bond-based models suffer from certain restrictions on the material responses they produce.
or example, Poisson ratio in bond-based isotropic elastic solids is restricted to a fixed number. To overcome
uch limitations, PD theory was extended to the state-based formulation by introducing the notion of peridynamic
tates [29].

.2.2. State-based models
Peridynamics states are nonlinear (in general) operators, defined at a point and time, that map bonds into scalars

r vectors, resulting in scalar-states or vector-states, respectively. A vector state is a generalization of the concept
f a second-order tensor, which are linear mappings. Here, scalar-states are denoted by underlined italic lowercase
etters, and vector-states are denoted by underlined boldface uppercase letters. The square bracket, [·], in front of

state encloses the point and the time at which the state is defined. The angle bracket ⟨·⟩, if used, encloses the
ond on which the state is operating. A state with the angle brackets in front of it then refers to the particular value
ssociated with the enclosed bond. Here are some of the frequently used states in PD models:

X [x], the identity state at point x which returns back the bond vector for any given bond:

X [x] ⟨ξ⟩ = ξ (3)

[x, t], the deformation state and returns the deformed bond vector at time t :

Y [x, t] ⟨ξ⟩ =
(
x′

+ u′
)
− (x + u) = ξ + η (4)

here η = u′
− u is the relative displacement.

The extension state (e) is a scalar state defining bond elongation:

e =
⏐⏐Y⏐⏐ −

⏐⏐X⏐⏐ , i.e. e [x, t] ⟨ξ⟩ = |ξ + η| − |ξ | (5)

The identity scalar-state (x) and the deformation scalar-state (y) are used to define the length of the bonds in
reference and deformed configurations, respectively:

x =
⏐⏐X⏐⏐ , and y =

⏐⏐Y⏐⏐ , i.e. x [x] ⟨ξ⟩ = |ξ | , and y [x, t] ⟨ξ⟩ = |ξ + η| (6)

T [x, t] is the force state and returns the bond force t for a given bond:

T [x, t] ⟨ξ⟩ = t (7)

here t is the force vector that the unit volume at x′ exerts on a unit volume at x.
The dual force density f in state-based PD is defined as follows:

f
(
x, x′, t

)
= T [x, t] ⟨ξ⟩ − T

[
x′, t

]
⟨−ξ⟩ (8)

ccording to Eq. (8), dual force density is equal to the force density that the unit volume at x′ exerts on x, minus
he force density that unit volume at x exerts on x′, i.e. it is the net force between the two unit volumes.

In classical continuum mechanics, constitutive models are tensorial equations, connecting a stress tensor to the
train tensor or the deformation gradient. In state-based PD, constitutive models similarly define the relationships
4
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between force states and deformation states. For example, an elastic state-based constitutive model is defined by
T = T

(
Y

)
, meaning that the force state is a function of the deformation state only. In state-based PD, the force

ensity of a bond depends on the deformation of all other bonds inside the horizons of its two end-nodes [30].
ond-based PD can be viewed as a special case of the state-based theory.

A frequent mathematical operation on PD states is the inner product of the states. Let a and b to denote two
generic scalar states, and A and B to be two generic vector states. The inner product for scalar and vector states
then are defined as follows [1]:

a • b =

∫
Hx

a ⟨ξ⟩ b ⟨ξ⟩ dVx′ , A • B =

∫
Hx

A ⟨ξ⟩ · B ⟨ξ⟩ dVx′ (9)

here (•) denotes the inner product operation on PD states, and (·) denotes the dot product of two vectors.

.2.3. Modeling of damage and fracture in peridynamics
One common way to describe fracture and damage in a peridynamic model is using the “bond breaking”

pproach [5]. In this approach, a history dependent binary scalar function µ is inserted in the PD constitutive
odel:

L (x, t) =

∫
Hx

µ
(
x, x′, t

)
f

(
x, x′, t

)
dVx′ , (10)

where

µ
(
x, x′, t

)
=

{
1

(
x′

− x
)

bond is intact at time t

0
(
x′

− x
)

bond broken at time t
. (11)

Being “broken” or “intact” is determined by a certain failure criterion. The critical bond strain is one of such
criterion [2,5], which sets µ to 0 if the bond strain exceeds a critical value. Such critical values can be defined in
several different ways [31]. In these models, cracks emerge as outcomes of cascading bond breaking events under
loading. One way to monitor the evolution of damage in these models is the damage index, defined at a point:

d (x, t) = 1 −

∫
Hx

µ
(
x, x′, t

)
dVx′∫

Hx
dVx′

(12)

hich counts the “number” of broken bonds relative to the total number of bonds for that point at a given time
nstant. Note that the damage index is not the “definition” of damage in PD, it is merely one way to represent
amage in PD. Damage in these bond-breaking PD models is determined by the individual bond failure events,
hich is a much richer quantity than, for example, the scalar or even tensor variables defined in continuum damage
echanics (see [32]). In some sense, PD damage is a mapping, not necessarily continuous, from the vector space of

onds at a point x to a vector space of dimension equal to the number of bonds at a node. In its discretized version,
D damage can be therefore considered a vector state. The damage index in Eq. (12) is a scalar representation that
oes not carry the complete information of PD damage. For example, consider these two cases: (1) a point has lost
0% of its bonds uniformly and symmetrically in all directions; and (2) a point has lost 50% of its bonds, but all
n one side. In both cases d = 0.5, but in the first case the solid is uniformly degraded (distributed damage), and
he second case is a split in solid (a through crack).

. Obtaining convolutional structures for peridynamic models

Many linearized peridynamic models, featuring integral operators, can naturally be expressed via convolutions.
ertain nonlinear models are also shown to have a convolutional structure [27,33]. We observe that in general, the

ollowing form of a possibly nonlinear PD integrand (e.g. the dual force density in equation of motion):

f
(
x, x′, t

)
=

p∑
an (x, t) bn

(
x′, t

)
cn

(
x − x′, t

)
(13)
n=1

5
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where an, bn and cn are functions, and p is arbitrary positive integer, leads to a PD model that possesses a
convolutional structure. Indeed, we can express:∫

Hx

f
(
x, x′, t

)
dVx′ =

∫
Hx

[ p∑
n=1

an (x, t) bn
(
x′, t

)
cn

(
x − x′, t

)]
dVx′

=

p∑
n=1

an (x, t)
∫
Hx

cn
(
x − x′, t

)
bn

(
x′, t

)
dVx′ =

p∑
n=1

an (x, t) [bn ∗ cn] (x, t)

(14)

he operator (∗) denotes the convolution integral.
This observation allows for the development of efficient numerical techniques that utilize Fourier transforms.

n this section we discuss setting up bond-based and state-based PD models in convolutional structures, for linear
lastic materials. Moreover, we show how to obtain a convolutional structure for important nonlinear elastic models,
nd even for fracture problems. Obtaining the convolutional form for PD correspondence models, with applications
o plasticity, is discussed in [28]. For the fracture case, we introduce a new damage model as an alternative to models
hat use the critical bond strain criterion for describing bond failure and does not have a convolutional structure.

.1. Linear elastic bond-based PD model

The force density for an elastic bond-based PD material can be expressed in the form [3]:

f
(
x, x′, t

)
= f (|ξ + η| , ξ)

ξ + η

|ξ + η|
(15)

onsider the well-known homogeneous isotropic elastic bond-based material [2] as an example:

f
(
x, x′, t

)
= αω (|ξ |) (|ξ + η| − |ξ |)

ξ + η

|ξ + η|
(16)

here α is a scalar and ω is a radially symmetric function of the bond, called the influence function, and is zero
utside of the horizon: ω = 0 for |ξ | > δ. Although this model is linear in terms of the bond extension, it is

nonlinear in terms of displacements. The model in Eq. (16) can be linearized in terms of displacement if needed.
According to the linearization carried out in [34], one can rewrite Eq. (16) for small displacements as:

f
(
x, x′, t

)
= αω (|ξ |)

ξ ⊗ ξ

|ξ |
2 η = C (ξ) η (17)

here (⊗) denotes the tensor product operator, and C is a tensor-valued symmetric function of the bond.
To obtain the convolutional form in Eq. (14), we opt to proceed with the indicial notation (including Einstein

ummation convention) for expressing vector and tensor quantities.
We substitute Eq. (17) into Eq. (2) to obtain the convolutional form for this model:

L i (x, t) =

∫
Hx

fi
(
x, x′, t

)
dVx′ =

∫
Hx

Ci j
(
x′

− x
) [

u j
(
x′, t

)
− u j (x, t)

]
dVx′

=

∫
Hx

Ci j
(
x′

− x
)

u j
(
x′, t

)
dVx′ −

[∫
Hx

Ci j
(
x′

− x
)

dVx′

]
u j (x, t)

=

∫
Hx

Ci j
(
x − x′

)
u j

(
x′, t

)
dVx′ − Pi j u j (x, t)

=
[
Ci j∗u j

]
(x, t) − Pi j u j (x, t)

(18)

or i, j = 1, 2, 3 in 3D. Note that Eq. (18) is consistent with the general form in Eq. (14), because one can write
i j = Ci j∗1. In this model, since we investigate homogeneous materials, C is only a function of ξ and is independent
f x. As a result P is a constant tensor. From a computational point of view, P can be computed once and stored as
preprocessing step. The linear term Pi j u j (x, t) is then just a multiplication at each node which is much cheaper

han computing a volume integral.
This linearized model in Eq. (17) is based on the “small displacements” assumption, and therefore, cannot be
sed for large displacements, including rigid body rotations. In general, the nonlinear model in Eq. (16) is used

6
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more frequently [35–37] because it is valid for large rotations due to the geometrical nonlinearity of the model. We
could not obtain the convolutional form for the nonlinear model in Eq. (16) directly. However, in the next section
we introduce an alternative nonlinear bond-based model which has a convolutional structure, and is invariant under
arbitrary rigid body rotations.

3.2. Nonlinear elastic bond-based PD model

Here, we introduce a particular nonlinear elastic bond-based model and show how to express it using multiple
onvolutions. Consider the bond-based constitutive model:

f
(
x, x′, t

)
= αω (|ξ |) |ξ |

(
s +

3
2

s2
+

1
2

s3
)

ξ + η

|ξ + η|
(19)

here

s =
|ξ + η| − |ξ |

|ξ |
(20)

is the bond strain. This nonlinear model is invariant to rigid body motions and approximates the model in Eq. (16) for
s ≪ 1. Therefore, it can be used for linear elastic materials undergoing small strains and arbitrarily large rotations.
Examples for such situations include brittle or quasi brittle fracture of slender beams undergoing deformations that
feature large rotations but small strains.

To express L (x, t) in its convolutional form, we first simplify f in terms of displacements and bond vectors:

f
(
x, x′, t

)
= αω (|ξ |) |ξ |

(
s +

3
2

s2
+

1
2

s3
)

ξ + η

|ξ + η|
=

=
αω (|ξ |) |ξ |

2

[
(s + 1)2

− 1
]
(s + 1)

ξ + η

|ξ + η|

=
αω (|ξ |) |ξ |

2

[(
|ξ + η|

|ξ |

)2

− 1

]
|ξ + η|

|ξ |

ξ + η

|ξ + η|

=
αω (|ξ |)

2 |ξ |
2

(
|ξ + η|

2
− |ξ |

2) (ξ + η) =
αω (|ξ |)

2 |ξ |
2 (2ξ · η + η · η) (ξ + η)

(21)

gain, we use the indicial notation for f in Eq. (21):

fi
(
x, x′, t

)
=

αω
(√

ξpξp
)

2ξqξq

(
2ξ jη j + η jη j

)
(ξi + ηi )

=
αω

(√
ξpξp

)
2ξqξq

(
2ξ j u′

j − 2ξ j u j + u′

j u
′

j − 2u′

j u j + u j u j
) (

ξi + u′

i − ui
)

=
αω

(√
ξpξp

)
2ξqξq

(
2ξiξ j u′

j − 2ξiξ j u j + ξi u′

j u
′

j − 2ξi u′

j u j + ξi u j u j

+ 2ξ j u′

j u
′

i − 2ξ j u j u′

i + u′

j u
′

j u
′

i − 2u′

j u j u′

i + u j u j u′

i − 2ξ j u′

j ui

+2ξ j u j ui − u′

j u
′

j ui + 2u′

j u j ui − u j u j ui
)

(22)

ubstituting ξi = −
(
xi − x ′

i

)
, one can write L (x, t) as:

L i =

∫
Hx

fi dVx′ =

∫
Hx

αω
(√

(x p − x ′
p)(x p − x ′

p)
)

2(xq − x ′
q )(xq − x ′

q )

[
2

(
xi − x ′

i

) (
x j − x ′

j

)
u′

j

− 2
(
xi − x ′

i

) (
x j − x ′

j

)
u j −

(
xi − x ′

i

)
u′

j u
′

j + 2
(
xi − x ′

i

)
u′

j u j

−
(
xi − x ′

i

)
u j u j − 2

(
x j − x ′

j

)
u′

j u
′

i + 2
(
x j − x ′

j

)
u j u′

i + 2
(
x j − x ′

j

)
u′

j ui

− 2
(
x j − x ′

j

)
u j ui + u′

j u
′

j u
′

i − 2u′

j u j u′

i + u j u j u′

i − u′

j u
′

j ui + 2u′

j u j ui]
(23)
−u j u j ui dVx′

7
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with i, j, p, q = 1, 2, 3 in 3D. Let the tensor C, the vector a, and the scalar c denote the following functions of ξ :

C (ξ) =
αω (|ξ |)

|ξ |
2 ξ ⊗ ξ , a (ξ) =

αω (|ξ |)

|ξ |
2 ξ , c (ξ) =

αω (|ξ |)

|ξ |
2 (24)

and let P, q, and p to be the integrals of C, a, and c over the horizon respectively. Since C, a, and c are functions
f ξ and independent of x, their integrals can be computed at any x. We can then compute the integrals once at

x = 0 for example, where ξ = x′:

P =

∫
Hx=0

C
(
x′

)
dVx′ , q =

∫
Hx=0

a
(
x′

)
dVx′ , p =

∫
Hx=0

c
(
x′

)
dVx′ (25)

sing the definitions in Eqs. (24) and (25), Eq. (23) can be reorganized as follows:

L i = Ci j ∗ u j −

(∫
Hx

Ci j dVx′

)
u j − ai ∗

(
u j u j

)
+

(
ai ∗ u j

)
u j −

1
2

(∫
Hx

ai dVx′

)
u j u j − a j

∗
(
u j ui

)
+ u j

(
a j ∗ ui

)
+

(
a j ∗ u j

)
ui −

(∫
Hx

ai dVx′

)
ui u j +

1
2

c ∗
(
u j u j ui

)
−

[
c ∗

(
ui u j

)]
u j +

1
2

(c ∗ ui ) u j u j −
1
2

[
c ∗

(
u j u j

)]
ui +

(
c ∗ u j

)
u j ui

−
1
2

u j u j ui

(∫
Hx

cdVx′

)
= Ci j ∗ u j − Pi j u j − ai ∗

(
u j u j

)
+

(
ai ∗ u j

)
u j −

1
2

qi u j u j − a j ∗
(
u j ui

)
+ u j

(
a j ∗ ui

)
+

(
a j ∗ u j

)
ui − qi ui u j +

1
2

c ∗
(
u j u j ui

)
−

[
c ∗

(
ui u j

)]
u j

+
1
2

(c ∗ ui ) u j u j −
1
2

[
c ∗

(
u j u j

)]
ui +

(
c ∗ u j

)
u j ui −

1
2

u j u j ui p

(26)

Eq. (26) shows the convolutional form of the L integral for the nonlinear model (rigid body rotation invariant)
introduced in Eq. (19).

3.3. State-based linear elastic and isotropic PD solid

In this example we discuss a well-known state-based linear elastic model, known as the linear isotropic
peridynamic solid [34]. The force state for this material is given by:

T =

(
3κ − 5µ

m

)
ωxϑM +

15µ

m
ωe M (27)

here κ and µ are the bulk and the shear moduli, ϑ is the nonlocal dilatation defined at each point by:

ϑ (x, t) =
3
m

ωx • e =
3
m

∫
Hx

ω ⟨ξ⟩ x ⟨ξ⟩ e ⟨ξ⟩ dVx′ , (28)

is a normalization factor:

m (x, t) = ωx • x =

∫
Hx

ω ⟨ξ⟩ x ⟨ξ⟩ x ⟨ξ⟩ dVx′ , (29)

is the influence function scalar state:

ω ⟨ξ⟩ = ω (|ξ |) , (30)

is a unit vector state, giving the direction of the deformed bond:

M ⟨ξ⟩ =
Y ⟨ξ⟩⏐⏐Y ⟨ξ⟩

⏐⏐ =
ξ + η

|ξ + η|
, (31)

nd e is the extension state defined in Eq. (5). Note that we can express Eq. (27) in terms of ξ and η as follows:

T ⟨ξ⟩ =

(
3κ − 5µ

)
ω (|ξ |) |ξ | ϑ

ξ + η
+

15µ
ω (|ξ |) (|ξ + η| − |ξ |)

ξ + η
. (32)
m |ξ + η| m |ξ + η|

8
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w

The linearized version of this material for small displacements is [34]:

T ⟨ξ⟩ =

(
3κ − 5µ

m

)
ω (|ξ |) ϑξ +

15µ

m
ω (|ξ |)

ξ ⊗ ξ

|ξ |
2 η (33)

with

ϑ =
3
m

∫
Hx

ω (|ξ |) ξ · ηdVx′ (34)

and

m =

∫
Hx

ω (|ξ |) |ξ |
2 dVx′ (35)

Based on this constitutive model, the internal force density is:

L (x, t) =

∫
Hx

f
(
x, x′, t

)
dVx′ =

∫
Hx

{
T [x, t] ⟨ξ⟩ − T

[
x′, t

]
⟨−ξ⟩

}
dVx′

=

∫
Hx

{(
3κ − 5µ

m

)
ω (|ξ |) ϑξ +

15µ

m
ω (|ξ |)

ξ ⊗ ξ

|ξ |
2 η

−

(
3κ − 5µ

m

)
ω (|−ξ |) ϑ ′ (−ξ) +

15µ

m
ω (|−ξ |)

(−ξ) ⊗ (−ξ)

|−ξ |
2 (−η)

}
dVx′

=

∫
Hx

{(
3κ − 5µ

m

)
ω (|ξ |)

(
ϑ + ϑ ′

)
ξ + 2

15µ

m
ω (|ξ |)

ξ ⊗ ξ

|ξ |
2 η

}
dVx′

(36)

here ϑ ′
= ϑ

(
x′, t

)
. Let

C (ξ) =
30µ

m
ω (|ξ |)

ξ ⊗ ξ

|ξ |
2 , a (ξ) =

(
3κ − 5µ

m

)
ω (|ξ |) ξ . (37)

Replacing ξ and η in Eq. (36) with x′
− x and u′

− u respectively, one gets:

L i =

∫
Hx

ai
(
x′

− x
) (

ϑ + ϑ ′
)

dVx′ +

∫
Hx

Ci j
(
x′

− x
) (

u′

j − u j
)

dVx′

= ϑ

∫
Hx

ai
(
x′

− x
)

dVx′ −

∫
Hx

ai
(
x − x′

)
ϑ ′dVx′ +

∫
Hx

Ci j
(
x − x′

)
u′

j dVx′

+

(∫
Hx

Ci j
(
x′

− x
)

dVx′

)
u j

= ϑ

(∫
Hx

ai
(
x′

− x
)

dVx′

)
− (ai ∗ ϑ) + Ci j∗u j

+

(∫
Hx

Ci j
(
x′

− x
)

dVx′

)
u j

= ϑ

(∫
ai dVx

)
− (ai ∗ ϑ) + Ci j∗u j +

(∫
Ci j dVx

)
u j

= ϑqi − (ai ∗ ϑ) + Ci j∗u j + Pi j u j

(38)

To use the numerical method presented in this work, all volume integrals involved in the PD model should have
convolutional structure, otherwise the FFT cannot be used to compute them and the proposed method’s efficiency
is lost. Therefore, ϑ (x, t) needs to be written as a convolution as well:

ϑ =
3
m

∫
Hx

ω (|ξ |) ξiηi dVx′ =
−3
m

∫
Hx

ai
(
x − x′

) (
u′

i − ui
)

dVx′

=
−3
m

∫
Hx

ai
(
x − x′

)
u′

i dVx′ −
3
m

(∫
Hx

ai
(
x′

− x
)

dVx′

)
ui

=
−3

[(ai ∗ ui ) + qi ui ]

(39)
m
9
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Eqs. (38) and (39), provide the convolutional form for the linearized PD state-based elastic model described in
Eq. (33).

3.4. Peridynamic correspondence models

PD state-based models can be divided into two types: native PD models and PD correspondence models. In native
odels, the constitutive relationship between the force state and the deformation state is directly derived/defined in

he nonlocal setting, while PD correspondence models attempt to directly import existing classical (local) constitutive
odels into a PD formulation. While PD correspondence models may seem convenient, there are several important

rawbacks of involving deformation gradients (therefore spatial derivatives that native PD models do not use) from
he classical constitutive models: (1) instabilities appear due to existence of zero energy modes [38,39]; (2) relatively
igher computational cost compared to native models; and (3) damage models loose the generality available in
ative PD formulations. A number of solutions have been proposed to reduce/eliminate zero energy modes from
D correspondence models. For example see [38,40].

The derivation of the convolutional structure needed for the use of the FCBM in the correspondence models
ntroduced in [29] is presented in [28,41].

.5. An energy-based failure model that leads to a convolution structure for fracture problems

The failure model in PD based on the critical bond strain does not have a convolution structure. To be able to
use the fast convolution-based method in fracture problems, we introduce a new damage model based on critical
strain energy density at a point.

3.5.1. Damage model based on critical strain energy density at a point
The strain energy density for the model in Eq. (16) is [34]:

W (x, t) =
1
2

∫
Hx

αω (|ξ |) (|ξ + η| − |ξ |)2 dVx′ (40)

and for the linearized model in Eq. (17) is [42]:

W (x, t) =
1
2

∫
Hx

η · [C (|ξ |) η] dVx′ (41)

The formula for W depends, obviously, on the particular constitutive model chosen. We define a critical strain energy
density Wc at a point by calibrating it to Griffith’s critical fracture energy for brittle fracture (see Section 3.5.3).
Once W at a point reaches Wc, that point loses all of its bonds irreversibly, and it is completely detached from the

ody. Translating this into the bond damage function defined in Eq. (11), we find:

µ
(
x, x′, t

)
=

{
1, if W

(
x, t̃

)
and W

(
x′, t̃

)
≤ Wc

0, if W
(
x, t̃

)
orW

(
x′, t̃

)
> Wc

, for all 0 ≤ t̃ ≤ t (42)

here W
(
x, t̃

)
denotes the strain energy density at point x and time t̃ .

Eq. (42) states that a bond is broken and no longer carries load if the strain energy density at either of its end
oints exceeds Wc.

To obtain the convolutional form for this brittle failure model, we define the integrity index λ (x, t) at each point
s:

λ (x, t) =

{
1 W

(
x, t̃

)
≤ Wc

0 W
(
x, t̃

)
> Wc,

for all 0 ≤ t̃ ≤ t (43)

ith this definition, we observe that we can write Eq. (42) in the equivalent form:

µ
(
x, x′, t

)
= λ (x, t) λ

(
x′, t

)
= λλ′ (44)

ext, we show how this new damage model leads to a convolutional structure.
10
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3.5.2. Convolutional structure of the new damage model
In general, we show that a PD damage model with L (x, t) =

∫
Hx

µ f dVx′ has a convolutional structure if f
and µ are both in the form described by Eq. (13):

L (x, t) =

∫
Hx

µ
(
x, x′, t

)
f

(
x, x′, t

)
dVx′

=

∫
Hx

[ p∑
n=1

an (x, t) bn
(
x′, t

)
cn

(
x − x′, t

)] [ q∑
m=1

ym (x, t) wm
(
x′, t

)
zm (x

−x′, t
)]

dVx′ =

∫
Hx

[ p∑
n=1

q∑
m=1

an ym (x, t) bnwm
(
x′, t

)
cnzm

(
x − x′, t

)]
dVx′

=

p∑
n=1

q∑
m=1

an ym (x, t)
∫
Hx

bnwm
(
x′, t

)
cnzm

(
x − x′, t

)
dVx′

=

p∑
n=1

q∑
m=1

an ym (x, t) [(bnwm) ∗ (cnzm)] (x, t)

(45)

The new µ = λλ′ is in the form of Eq. (13). As a result, it can be used with any of the described constitutive models
in Section 3. For the linearized bond-based model described in Section 3.1 for example, according to Eq. (10),
Eqs. (18) and (44) we can write:

L i =

∫
Hx

λλ′ fi dVx′ =

∫
Hx

λ (x, t) λ
(
x′, t

)
fi

(
x, x′, t

)
dVx′

= λ (x, t)
∫
Hx

λ
(
x′, t

)
Ci j

(
x′

− x
) [

u j
(
x′, t

)
− u j (x, t)

]
dVx′

= λ

∫
Hx

Ci j
(
x − x′

)
λ′u′

j dVx′ − λu j

∫
Hx

Ci j
(
x − x′

)
λ′dVx′

= λ
[
Ci j ∗

(
λu j

)]
− λu j

[
Ci j ∗ λ

]
(46)

The strain energy density for this material model can be written as:

W (x, t) =
1
2

∫
Hx

λλ′η ·
[
C

(
x′

− x
)
η
]

dVx′ =
1
2

∫
Hx

λλ′ηi Ci j
(
x′

− x
)
η j dVx′

=
1
2

∫
Hx

λλ′Ci j
(
x′

− x
) (

u′

i − ui
) (

u′

j − u j
)

dVx′

=
1
2

∫
Hx

λλ′Ci j
(
x′

− x
) (

u′

i u
′

j − u′

i u j − ui u′

j + ui u j
)

dVx′

=
1
2
λ

[∫
Hx

Ci j
(
x′

− x
)
λ′u′

i u
′

j dVx′ − u j

∫
Hx

Ci j
(
x′

− x
)
λ′u′

i dVx′

−ui

∫
Hx

Ci j
(
x′

− x
)
λ′u′

j dVx′ + ui u j

∫
Hx

Ci j
(
x′

− x
)
λ′dVx′

]
=

1
2
λ

{[
Ci j ∗

(
λui u j

)]
− u j

[
Ci j ∗ (λui )

]
− ui

[
Ci j ∗

(
λu j

)]
+ ui u j

[
Ci j ∗ λ

]}

(47)

The damage index in Eq. (12) can also be written in terms of convolutions if needed, as shown below. By defining
a characteristic influence function with its support equal to the horizon region:

ω0 (ξ) =

{
1 |ξ | ≤ δ

, (48)

0 |ξ | > δ

11
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Fig. 2. Schematics of how through cracks form based on the new damage model in 2D, for a case with δ = 2∆x . Consecutive nodal failure
esults in a δ-thick layer of nodes with d = 1 (all of their bonds are broken). The black arcs in (a) and (c), show the horizons for nodes 4
nd 3, respectively.

ne can write:

d (x, t) = 1 −

∫
Hx

µdVx ′∫
Hx

dVx ′

= 1 −

∫
Rn λλ′ω0

(⏐⏐x′
− x

⏐⏐) dVx ′∫
Rn ω0 (|x′ − x|) dVx ′

= 1 −

∫
Rn λλ′ω0

(⏐⏐x − x′
⏐⏐) dVx ′

β0

1 −
λ

∫
Rn λ′ω0

(⏐⏐x′
− x

⏐⏐) dVx ′

β0
= 1 −

λ (λ ∗ ω0)

β0

(49)

.5.3. Calibrating the failure model to Griffith’s critical energy release rate
To use this model for predicting fracture, the failure threshold Wc in Eq. (42) needs to be calibrated to a

easurable fracture property of the material like Griffith’s critical fracture energy. Inspired by the calibration method
or the critical bond strain criterion [5], we perform the calibration by considering a “through” planar crack in a
ody and find a relationship between the PD failure threshold (here Wc) and the critical energy release rate G0,
hich is a measurable quantity.
A through crack is one that splits the body into two completely separated parts. In peridynamics, this implies

hat no bridging bond should exist across the crack surface. For the pointwise criterion given by Eqs. (42) and (43),
through crack contains a δ-thick layer with points that lost all of their bonds. In Fig. 2 we show schematically
hy this is the case.
To understand the evolution of nodal damage and how it leads to crack formation, consider the emergence and

ropagation of a crack along the red horizontal line in Fig. 2. For clarity, we show the case with δ = 2∆x , which
as fewer bonds to plot.

Let node No. 4 be the first node where the strain energy density reaches Wc (Fig. 2a). As a consequence of
he new point-wise damage criterion, the node loses all of its bonds. After failure of node 4, forces carried by its
onds will be redistributed to the bonds of nearby nodes. These bonds, especially the ones that are bridging over
he forming crack (e.g., bond 3–5 in Fig. 2b), will likely be stretched sufficiently to cause the strain energy density

W at one or more adjacent nodes to also become critical (e.g., node 3 in Fig. 2c). For the horizon size shown in
ig. 2, once nodes 3 and 4 fail (as shown in Fig. 2c), no bridging bonds will exist across the red dashed line and
through crack will start forming, along with a δ-thick layer of fully damaged nodes (d = 1). Note that with this

damage model, if a region of thickness δ is not totally damaged along a crack path, bridging bonds will continue
to exist.

In general, a through crack with the new model has a damage region of thickness 3δ: a δ-thick layer in the middle

with the damage index d = 1 and two δ-thick layers on the sides with partially damaged nodes, 0 < d < 0.5. This

12
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Fig. 3. Schematic comparison between the damage corresponding to a through crack in a peridynamic body in 2D for the new critical strain
nergy density damage model, and the critical bond strain model commonly-used with the meshfree PD model.

s different from the case for the critical bond strain criterion where a through crack has a 2δ-thick damaged region
of partially damaged nodes (with 0 < d < 0.5). Fig. 3 schematically compares a straight through crack in the

ew damage model with the one in the critical bond strain damage model in terms of thickness and damage profile
cross the crack.

Note that the blank channel in Fig. 3a is not because of separation of the split parts, but shows the δ-thick fully
damaged layer along the crack. One important observation in the model is the mass loss in this middle layer with
d = 1. It is reasonable to argue that as long as δ is small relative to the geometry, the mass loss effect is negligible.
In the numerical examples in Section 5.2, the performance of the new model is tested against the critical bond strain
meshfree PD model in a dynamic fracture problem that involves multiple crack branching events.

To find a relationship between Wc and the critical energy release rate G0 for model calibration, we consider that
all points inside the middle δ-thick layer of a through crack have reached the critical strain energy Wc. G0 is the
energy released for the crack to advance a unit crack area. Let A to denote the crack surface area. We enforce the
equality between the strain energy required to grow the crack and create the new crack surface area A, and the
corresponding critical energy release rate:

AδWc = AG0 (50)

This results in:

Wc =
G0

δ
(51)

e observe that this calibration is valid for brittle failure and is independent from the deformation model. Moreover,
he calibrated threshold is identical for 2D and 3D.

We verify the proposed damage model in Section 5.2 by comparing the model’s predictions in dynamic crack
ranching against published results obtained with the meshfree PD damage model, based on critical bond-strain.

Note that the discussion following Fig. 2 explains how a potential through crack (no bridging bonds) forms. This
oes not mean that in the new model damage can evolve only as through cracks. Different loading conditions may
ead to distributed/diffuse damage. There could be instances where individual nodes, scattered through the domain,
re fully damaged, causing their neighboring nodes to experience partial damage, but without leading to the growth
f a through crack.

For damage growing as depicted in Fig. 2 in mode I opening, it is likely that nodes connected by bridging
onds will eventually reach W , and lose all of their bonds as a consequence; in special cases (e.g. mixed-mode
c

13
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fracture), however, crack opening may be small and temporary (see [43]) and a necessary through crack might not
form with the new damage model, as some bonds may continue to bridge the crack. This is not surprising, since
even the original PD damage model based on critical bond strain has the same limitation (see [43] for a possible
workaround this problem).

Similar to the critical bond-strain criterion, the new damage model does not need to define cracks per se, instead,
amage self-organizes (as part of the solution to the problem) into cracks or more diffuse damage, depending on the
articular material system and loading conditions. As with the critical bond-strain PD damage model, in the new
odel one post-processes the damage data (failed bonds and nodes) to visualize the emergent cracks, fragments,

tc. An example for tracking cracks in PD is found in [44].

. The fast convolution-based method for peridynamic models in elasticity and fracture

In this section, we first discuss the convolution-based Fourier method for peridynamic models in elasticity and
racture in 3D periodic domains. Then we introduce the Embedded Constraint formulation to extend the method to
roblems on bounded domains of arbitrary shape and general nonlocal boundary conditions.

.1. Fourier-based method for periodic domains

Let x = {x1, x2, x3} be the position vector in 3D and the box T = [0, L1] × [0, L2] × [0, L3], be a periodic 3D
omain with 0 being “identified” with L1, L2, and L3 in all three directions due to periodicity of the box. We first
niformly discretize the domain, using N1, N2, and N3 number of nodes in the Cartesian coordinate directions 1,
, and 3 respectively:

xnmp = {(n − 1)∆x1, (m − 1)∆x2, (p − 1)∆x3} , where∆x1 =
L1

N1
;∆x2 =

L2

N2
;∆x3 =

L3

N3

where n = {1, 2, . . . , N1} ; m = {1, 2, . . . , N2} ; p = {1, 2, . . . , N3} .

(52)

he total number of nodes is then N = N1 N2 N3.
We approximate the vector-valued displacement field u (x, t) with the following N/2 -degree trigonometric

approximation, also known as the discrete Fourier series. Given the discretized periodic domain [45,46], we
write:

uN
i

(
xnmp, t

)
=

1
N3 N2 N1

N3
2∑

k3=−
N3
2 +1

N2
2∑

k2=−
N2
2 +1

N1
2∑

k1=−
N1
2 +1

ûi (k, t) e2πζ
(

k1x1
L1

+
k2x2
L2

+
k3x3
L3

)
;

and i = 1, 2, 3

(53)

where k = {k1, k2, k3} is the integer vector of Fourier modes, ζ =
√

−1, and:

ûi (k, t) =

N3∑
p=1

N2∑
m=1

N1∑
n=1

uN
i

(
xnmp, t

)
e−2πζ

(
k1n
N1

+
k2m
N2

+
k3 p
N3

)
; i = 1, 2, 3 (54)

are the discrete Fourier coefficients of uN
i . The operation on uN

i in Eq. (54) is called the discrete Fourier transform
DFT), and the inverse operation on ûi in Eq. (53) is called the inverse discrete Fourier transform (iDFT) [45,46].
ote that this definition of DFT maps one-to-one between N values of uN

i , and N values of ûi , meaning that the
umber of Fourier basis functions used in the trigonometric approximation in Eq. (53) is equal to the total number
f spatial nodes.

From the computational point of view, the DFT and iDFT operations are carried out via efficient Fast Fourier
ransform (FFT) algorithms, and the inverse (iFFT), which have complexity N log2 N [16,17].

Note that if the spatial discretization is non-uniform, non-uniform DFT and iDFT [47] can be used instead of
qs. (53) and (54). Non-uniform fast Fourier transform (NUFFT) algorithms exist (see, e.g., [47–50]) for computing

he non-uniform versions of DFT and iDFT at the same complexity of the uniform FFT. In this study, however, we
ave only employed uniform discretizations.
14
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4.1.1. Fourier-based discretization of peridynamics operators
To use the fast convolution-based method for PD equations, we first approximate the PD integrals via, for

xample, the one-point Gaussian quadrature rule (mid-point integration) on the periodic domain using the discrete
odes given by Eq. (52). Note that computing this quadrature directly, as done in the meshfree PD method [5], leads
o a O(N 2) complexity for each time step. Instead, for PD operators that can be expressed with the convolutional

form of Eq. (14), we reorganize the quadrature summation and express it as convolution sums. To compute each
convolution, we discretize the convolving functions by using their trigonometric series approximation (see Eq. (53));
we use the FFT to obtain the discrete Fourier coefficients of the convolving functions; we multiply the Fourier
coefficients of these functions, and transform back the product into physical space by using the iFFT. Adding up
these computed convolution terms returns the value of the PD integral.

Here we show the procedure for the PD operators discussed in Section 3:
(1) The linearized bond-based elastic PD model
As described above, we first approximate the integral in Eq. (18) with Gaussian quadrature, and reorganize it to

each the convolutional structure. The convolutional forms in this section are identical to the continuous versions
n Section 3, but in a discrete version. For conciseness, we denote the triple sum

∑N3
q=1

∑N2
s=1

∑N1
r=1 by

∑N3,N2,N1
q,s,r=1 ,

and let ∆V = ∆x1∆x2∆x3:

L i (x, t) ∼= L N
i

(
xnmp, t

)
=

N3,N2,N1∑
q,s,r=1

CN
i j

(
xrsq − xnmp

) [
uN

j

(
xrsq , t

)
− uN

j

(
xnmp, t

)]
∆V

=

N3,N2,N1∑
q,s,r=1

CN
i j

(
xnmp − xrsq

)
uN

j

(
xrsq , t

)
∆V

−

⎡⎣N3,N2,N1∑
q,s,r=1

CN
i j

(
xnmp − xrsq

)
∆V

⎤⎦ uN
j

(
xnmp, t

)
= ∆V

[
CN

i j ⊛N uN
j

] (
xnmp, t

)
− PN

i j u
N
j

(
xnmp, t

)

(55)

where CN
i j is the discrete Fourier series approximation of Ci j in Eq. (17), and ⊛N denotes the circular convolution

sum (convolution sum on a periodic domain, see, e.g., [51]). PN
i j is a constant matrix, computable by the numerical

integration of CN
i j using the 1-point Gaussian quadrature rule on the same discretized domain:

PN
i j =

N3,N2,N1∑
p,m,n=1

CN
i j

(
xnmp

)
∆V (56)

Note that when we use square grids and a spherical horizon, there are nodes near the horizon edge whose volumes are
only partially covered by the horizon [52,53]. Using a fixed ∆V for all nodes in a family introduces some quadrature
error as it also leaves out contributions to the integral coming from nodes just outside the horizon region but whose
volumes are partially covered by it. This error can be reduced by using small grid size (large m = δ/∆x), partial
volume correction algorithms, or using decaying influence functions [53]. Partial volume correction algorithms
like [52,54], replace ∆V in Eq. (55) with a ∆V (|ξ |) which in computations can be viewed as a part of CN

i j (|ξ |),
and therefore would preserve the convolutional structure. In the examples shown below, we use the constant ∆V
algorithm, while being aware of its quadrature error.

To reduce notational complexity, we drop the superscript N for discretized quantities and eliminate the argument
brackets

(
xnmp, t

)
by replacing with the superscript (nmp, t). We use F and F−1 to denote FFT and iFFT operations.

Using FFT and iFFT, the PD integral operator can be computed as:

L N
i

(
xnmp, t

)
= Lnmp,t

i = F−1 [
F

(
Ci j

)
F

(
u j

)]⏐⏐nmp,t
∆V − Pi j u

nmp,t
j (57)

Note that j on the righthand side is a dummy index and denotes summations over j = 1, 2, 3 for each i . For
demonstration, we expand Eq. (57) for i = 1:

Lnmp,t
1 = F−1 [F (C11) F (u1) + F (C12) F(u2) + F (C13) F(u3)]

⏐⏐nmp,t
∆V − P11unmp,t

1
nmp,t nmp,t (58)
− P12u2 − P13u3
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Similar relationships are obtained for Lnmp,t
2 , and Lnmp,t

3 by expanding Eq. (57) for i = 2 and 3, and summing over
he dummy index j .

(2) The nonlinear bond-based elastic material
We follow the same discretization procedure for the PD nonlinear operator provided in Eq. (23), which yields:

Lnmp,t
i = F−1 [

F
(
Ci j

)
F

(
u j

)]⏐⏐nmp,t
∆V − Pi j u

nmp,t
j − F−1 [

F (ai ) F
(
u j u j

)]⏐⏐nmp,t
∆V

+ F−1 [
F (ai ) F

(
u j

)]⏐⏐nmp,t
∆V unmp,t

j −
1
2

qnmp,t
i unmp,t

j unmp,t
j

− F−1 [
F

(
a j

)
F

(
u j ui

)]⏐⏐nmp,t
∆V + unmp,t

j F−1 [
F

(
a j

)
F (ui )

]⏐⏐nmp,t
∆V

+ F−1 [
F

(
a j

)
F

(
u j

)]⏐⏐nmp,t
∆V − qnmp,t

i unmp,t
i unmp,t

j

+
1
2

F−1 [
F (c) F

(
u j u j ui

)]⏐⏐nmp,t
∆V − F−1 [

F (c) F
(
ui u j

)]⏐⏐nmp,t
∆V unmp,t

j

+
1
2

F−1 [F (c) F (ui )]
⏐⏐nmp,t

∆V unmp,t
j unmp,t

j

−
1
2

F−1 [
F (c) F

(
u j u j

)]⏐⏐nmp,t
∆V unmp,t

i

+ F−1 [
F (c) F

(
u j

)]⏐⏐nmp,t
∆V unmp,t

j unmp,t
i −

1
2

unmp,t
j unmp,t

j unmp,t
i p

(59)

where Ci j , a j , and c are discrete Fourier series approximations of the functions given in Eq. (24). Pi j , qi , and p
are the numerical integrations of Ci j , a j , and c respectively, similar to the quadrature in Eq. (56).

(3) The linearized state-based elastic solid
According to the convolutional form derived in Eq. (38), the discrete version of L i (x, t) for this material is:

Lnmp,t
i = ϑnmp,t qnmp,t

− F−1 [F (ai ) F (ϑ)]
⏐⏐nmp,t

∆V + F−1 [
F

(
Ci j

)
F

(
u j

)]⏐⏐nmp,t
∆V − Pi j u

nmp,t
j (60)

Where Ci j and a j are discrete Fourier series approximations of the functions given in Eq. (37). Pi j and qi are
numerical integrations of Ci j and a j respectively. The discrete version of ϑ given in Eq. (39) is:

ϑnmp,t
=

−3
mnmp,t

{
F−1 [F (ai ) F (ui )]

⏐⏐nmp,t
∆V + qi u

nmp,t
i

}
(61)

(4) The damage model:
Here we show the discretization for the damage model introduced in Section 3.5. According to Eq. (46) one can

rite:

Lnmp,t
i = λnmp,t

{
F−1 [

F
(
Ci j

)
F

(
λu j

)]⏐⏐nmp,t
− F−1 [

F
(
Ci j

)
F (λ)

]⏐⏐nmp,t
unmp,t

j

}
∆V (62)

where

λnmp,t
=

⎧⎨⎩
1 W nmp,t−∆t

≤
G0

δ

0 W nmp,t−∆t >
G0

δ

(63)

nd W nmp,t−∆t is the nodal strain energy density at node xnmp and the previous time step t −∆t . From Eq. (47):

W nmp,t
=

1
2
λnmp,t∆V

{
F−1 [

F
(
Ci j

)
F

(
ui u jλ

)]⏐⏐nmp,t
− unmp,t

j F−1 [
F

(
Ci j

)
F (uiλ)

]⏐⏐nmp,t

− unmp,t
i F−1 [

F
(
Ci j

)
F

(
u jλ

)]⏐⏐nmp,t

+unmp,t
i unmp,t

j F−1 [
F

(
Ci j

)
F (λ)

]⏐⏐nmp,t
} (64)

ccording to Eq. (49), damage is computed by:

dnmp,t
= 1 −

λnmp,t F−1 [F (ω0) F (λ)]
⏐⏐nmp,t∑N3,N2,N1

p,m,n=1 ω
nmp
0

(65)

By obtaining the PD operators in discrete form, we proceed to the full discretization of the PD equation of motion
for dynamic problems, and the PD equilibrium equation for static problems.
16
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4.1.2. Discretization of peridynamic equation of motion and equilibrium
Once the PD integral operator is obtained in discrete form via the FFT-based quadrature (examples shown in

ection 4.1.1), one can write the PD integro-differential equation of motion (see Eq. (1)) as a system of second
rder ODEs:

ρ
d2ui

dt2

⏐⏐⏐⏐nmp,t

= Lnmp,t
i + bnmp,t

i ; for i = 1, 2, 3 (66)

where bnmp,t
i is the body force density evaluated at the node nmp at time t . The ODE system can be solved via

standard second-order ODE solvers. In the case of velocity-Verlet time integration [13] for example:

v
nmp,t+∆t

2
i = v

nmp,t
i +

∆t
2ρ

(
Lnmp,t

i + bnmp,t
i

)
u

nmp,t+∆t
2

i = unmp,t
i + ∆t

(
v

nmp,t+∆t
2

i

)
v

nmp,t+∆t
i = v

nmp,t+∆t
2

i +
∆t
2ρ

(
Lnmp,t+∆t

i + bnmp,t+∆t
i

) (67)

here vnmp,t
=

{
v

nmpt
1 , v

nmp,t
2 , v

nmp,t
3

}
denotes the discrete velocity field, and ∆t is the time-step.

The described Fourier-based discretization in space and velocity-Verlet time integration can be used to solve PD
quation of motion for dynamic problems in period domains. In Section 4.2 we extend the method for arbitrary
omains and boundary conditions.

For static problems in periodic domains we need to solve the equilibrium equation:

L (x) + b (x) = 0 (68)

hich is a special case of Eq. (1), without the time dependency. Repeating the same Fourier-based discretization
rocess given by Eqs. (52) to (66), and discarding the time variable t results in:

Lnmp
i + bnmp

i = 0; for i = 1, 2, 3 (69)

q. (69), in general, can be a linear or nonlinear system of equations in terms of the unknown uN . We define the
ector-valued residual function R

(
uN)

:

Ri
(
uN )

= Lnmp
i + bnmp

i ; fori = 1, 2, 3 (70)

ne can use an iterative solver that finds uN such that R
(
uN)

= 0. In this framework, when using an iterative
olver that involves matrix–vector products, one should not compute such products directly in order to maintain
he complexity of O

(
N log2 N

)
. The matrix–vector products in these solvers are in fact, the PD integrals operating

n quantities represented by vectors. Therefore, one can use the FFT-based description of the system (L formulas
iven in Section 4.1.1) to compute the matrix–vector products at the cost of

(
N log2 N

)
.

The FFT-based method described in this section so far, is only applicable to the PD problems defined over
eriodic domains. Next, we discuss the extension of this method to bounded domains with arbitrary shapes and
olume constraints using the embedded constraint approach introduced in [27] for scalar problems (diffusion), which
s extended here to vector problems (elasticity).

.2. Embedded constraints for enforcing boundary conditions

Before we describe the embedded constraint method we briefly discuss boundary conditions in PD nonlocal
ettings.

.2.1. Boundary conditions in peridynamics
In the classical (local) theory, boundary conditions (BC) restrict the solution for boundary-value problems in

n the boundary around the domain. These boundaries are lower dimensional manifolds compared to the domain’s
imension. For example, a 3D domain has a 2D boundary, and a 2D domain has a 1D boundary.

In PD, the nonlocality requires the constraints to be defined over a “thick boundary”, which has the same
imension as the domain. The constraints are defined over a chunk of the domain with the thickness of at most δ
see Fig. 4) [55].
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Fig. 4. A 2D peridynamic body (B), consisting of the domain Ω1 and Ω2, where u1 and u2 are unknown and the boundary layer/constrained
volume (Γ1 and Γ2) where u1 and u2 are independently prescribed.

In many applications it is usually desired/needed to apply local boundary conditions. The reason is that empirical
measurements mostly provide the data on surfaces, rather than on a chunk of the domain. One approach to apply
a local BC in a PD problem, is to extend the domain by a “fictitious region” to specify certain volume constraints
such that the desired local BC is effectively enforced. These types of methods are usually referred to as the fictitious
nodes methods (FNM) and are extensively discussed in [56]. There are other types of methods for applying local
BC to PD problems as well (see, e.g., [57–59]).

For mechanical problems in 2D and 3D, displacement constraints may be assigned over different portions of
the boundary for different components. In this study we regard the domain and all constrained volume as the PD
body and denote it by B. For each component ui , Ωi is the domain where ui is unknown and Γi is where ui is
given. In the 3D case, one can write B = Ω1 ∪ Γ1 = Ω2 ∪ Γ2 = Ω3 ∪ Γ3. Fig. 4 shows a generic 2D PD body
consisting of domains and constrained volumes. Note that in this study we only consider cases where u1, u2, u3 are
independently prescribed over their corresponding constrained volumes: Γ1, Γ2, Γ3 respectively. The interdependent
type constraints where a region requires certain relationship to hold between u1, u2, u3 is not studied here.

In this study, when we intent to use FNM to apply local BCs, the fictitious regions are regarded as Γi and
therefore are viewed as part of the PD body.

Dynamic problems within PD theory are often formulated as initial-value volume-constrained PD problems
[60]: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ρ
∂2ui (x, t)

∂t2 = L i (x, t) + bi (x, t) x ∈ Ωi , t > 0

ui (x, 0) = u0
i ; vi (x, 0) = v0

i (initial conditions) x ∈ Ωi

G i (ui ) = 0 (volume constraints) x ∈ Γi , t ≥ 0

; and i = 1, 2, 3 (71)

tatic problems are then defined as volume-constrained PD problems:{
L i (x, t) + bi (x, t) = 0 x ∈ Ωi , t > 0

G i (ui ) = 0 (volume constraints) x ∈ Γi , t ≥ 0
; and i = 1, 2, 3 (72)

G i in Eqs. (71) and (72), denotes known (given) functions of ui defined on Γi , as generic volume constraints.
eumann-type volume constraints are handled, as usual in PD models, as body forces. We use such conditions in

he dynamic crack branching example in Section 5.2.

.2.2. Embedded constraint method
In order to solve general (initial value) volume-constrained PD problems via the fast convolution-based method,

he first step is to enclose the whole PD body (B) within a periodic box (Td) where the superscript “d” denotes the
patial dimension. Fig. 5 shows an enclosed generic body within T2 (compare with Fig. 4).

Note that B needs to be at least at δ-distance from the edges of Td to avoid any undesired nonlocal interactions
etween the body and the periodic extensions.
18
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Fig. 5. Extension of a bounded peridynamic body to a 2D periodic box.

We define the following characteristic functions:

χB (x) =

{
1 x ∈ B

0 x ∈ Td
\B = Λ

(73)

and

χΩi (x) =

{
1 x ∈ Ωi

0 x ∈ Td
\Ωi = Γi ∪ Λ

(74)

B (x) allows us to modify the L (x, t) formula for Eq. (2) and “cut” all the bonds that connect B to Λ,
.e. eliminating any interaction between the PD body and the rest of the box Td:

L i (x, t) =

∫
Hx

χB (x) χB
(
x′

)
fi

(
x, x′, t

)
dVx′ =

∫
Hx

χBχ ′

B fi dVx′ (75)

ote that χBχ ′

B is always zero for bonds that have one end in B and one end in Λ. With this modification, any
onlocal interaction between the point inside and outside the body (B) is filtered by χBχ ′

B = 0. This effectively
eans that the body is mechanically cut out from the rest of Td.
Similar to the case for µ = λλ′ discussed in Section 3.5.2, one can show that convolutional structure of L i (x, t)

s preserved after it is modified with χBχ ′

B in Eq. (75).
Note that the uniformity/nonuniformity of the grids does not affect the embedded constraint approach, since χB

s defined based on the nodal coordinates, regardless of the nature of the grid spacing.

.2.3. FCBM-EC for dynamic problems
In the case of PD dynamic problems consider the following initial value volume-constrained problem where

i (x, t) are explicitly specified on Γi :⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ρ

∂2ui (x, t)
∂t2 = L i (x, t) + bi (x, t) x ∈ Ωi , t > 0

ui (x, 0) = u0
i ; vi (x, 0) = v0

i (initial conditions) x ∈ Ωi

ui (x, t) = gi (x, t) (volume constraints) x ∈ Γi , t ≥ 0

; and i = 1, 2, 3 (76)
19
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We use χΩi (x) and χB (x) to replace Eq. (76), which is a problem on the bounded domain B, with the following
equivalent problem on the periodic domain Td:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ρ
∂2ui

∂t2 = χΩi

(∫
Hx

χBχ ′

B fi dVx′ + bi

)
+

(
1 − χΩi

)
ρ

∂2wi

∂t2 x ∈ Td, t > 0

ui (x, 0) = χΩi

(
u0

i

)
+

(
1 − χΩi

)
wi (x, 0) x ∈ Td

vi (x, 0) = χΩi

(
v0

i

)
+

(
1 − χΩi

) ∂wi (x, 0)

∂t
x ∈ Td

(77)

here wi (x, t), is a function which is equal to volume constraints on Γi , and zero elsewhere:

wi (x, t) =

{
gi (x, t) x ∈ Γi

0 x ∈ Td
\Γi

(78)

he values of wi on Ωi do not participate in the computation as they are masked out from the solution (see
q. (77)), and therefore can be chosen arbitrarily. In our examples, we chose the value zero. The values of wi

n Λ, do participate in the computation, but cannot influence the results because of the presence of the χBχ ′

B
actor in the integral operators which renders all of the contributions from Λ zero. Consequently, wi on Λ can be

chosen arbitrarily, and we have set those values to be zero. With these choices, however, the field variable ui (x, t)
becomes discontinuous at the Ωi − Λ interface. In the numerical examples shown below we did not encounter any
Gibbs-type phenomenon associated with the FFT operations on ui . Nevertheless, the influence of the extension’s
(wi ’s) smoothness for the field variable ui on convergence rates is worthy of investigation, and this is planned for
the future.

Since the problem in Eq. (77) is defined over a periodic domain, we can use the Fourier-based quadrature for
computing Lnmp,t

i and write:

ρ
d2ui

dt2

⏐⏐⏐⏐nmp,t

= χ
nmp
Ωi

(
Lnmp,t

i + bnmp,t
i

)
+

(
1 − χ

nmp
Ωi

)
ρ

d2wi

dt2

⏐⏐⏐⏐nmp,t

; for i = 1, 2, 3 (79)

ccording to the definition of χΩi in Eq. (74), one can rewrite Eq. (79) as:

ρ
d2ui

dt2

⏐⏐⏐⏐nmp,t

=

⎧⎨⎩
Lnmp,t

i + bnmp,t
i , xnmp ∈ Ωi

ρ
d2wi

dt2

⏐⏐⏐⏐nmp,t

, xnmp ∈ T\Ωi
; for i = 1, 2, 3 (80)

e use the velocity-Verlet method for temporal integration (see Section 4.1.2) of the upper branch of Eq. (80) (on
i ), as there is no need for temporal integration of the lower branch, since the unmp,t

i values are already known (on
\Ωi ). Substituting the first relation in Eq. (67) into the second relation in the same equation, and applying that to
q. (80), we find:

unmp,t+∆t
i =

⎧⎨⎩unmp,t
i + ∆t

[
v

nmp,t
i +

∆t
2ρ

(
Lnmp,t

i + bnmp,t
i

)]
; xnmp ∈ Ωi

w
nmp,t+∆t
i ; xnmp ∈ Td

\Ωi

(81)

pplying the third relation from Eq. (67) to Eq. (80) gives:

v
nmp,t+∆t
i =

⎧⎨⎩v
nmp,t
i +

∆t
2ρ

[(
Lnmp,t

i + bnmp,t
i

)
+

(
Lnmp,t+∆t

i + bnmp,t+∆t
i

)]
; xnmp ∈ Ωi

0 (value not used) ; xnmp ∈ Td
\Ωi

(82)

sing the characteristic function χΩi , Eqs. (81) and (82) can be re-written as:

unmp,t+∆t
i = χ

nmp
Ωi

{
unmp,t

i + ∆t
[
v

nmp,t
i +

∆t
2ρ

(
Lnmp,t

i + bnmp,t
i

)]}
+

(
1 − χ

nmp
Ωi

)
w

nmp,t+∆t
i (83)

and

v
nmp,t+∆t
i = χ

nmp
Ωi

{
v

nmp,t
i +

∆t [(
Lnmp,t

i + bnmp,t
i

)
+

(
Lnmp,t+∆t

i + bnmp,t+∆t
i

)]}
(84)
2ρ
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4.3. FCBM-EC for static and quasi-static problems

For static and quasi-static problems, consider the following PD volume-constrained problem where u (x) is
explicitly specified on the constrained volume:{

L i (x) + bi (x) = 0 , x ∈ Ωi

ui (x) = gi (x) (volume constraints) , x ∈ Γi
; and i = 1, 2, 3 (85)

Similar to the dynamic problem, we replace this description which is defined on the bounded domain B, with the
following equivalent problem on the periodic domain Td:

χΩi (x)

[∫
Hx

χB (x) χB
(
x′

)
fi

(
x, x′

)
dVx′ + bi (x)

]
+

[
1 − χΩi (x)

]
[ui (x) − wi (x)] = 0 (86)

here

wi (x) =

{
gi (x) x ∈ Γi

0 x ∈ T\Γi
(87)

iscretization of Eq. (86) leads to:

χ
nmp
Ωi

(
Lnmp

i + bnmp
i

)
+

(
1 − χ

nmp
Ωi

) (
unmp

i − w
nmp
i

)
= 0; for i = 1, 2, 3 (88)

here Lnmp
i is allowed to be computed using the Fourier-based quadrature due to the periodic reconstruction of

he problem. Note that the second term in Eq. (88) is already satisfied by setting uN
i = wN

i . As a result, we define
he following residual functions:

Rnmp
i

(
uN )

= χ
nmp
Ωi

(
Lnmp

i + bnmp
i

)
; fori = 1, 2, 3 (89)

ne can choose an appropriate iterative solver to solve R
(
uN

)
= 0 for uN . For the static example in Section 5.1,

e use a conjugate gradient method [61] to solve for the displacement field.

.4. Discussion on the accuracy and the spectral description of the method

The fast convolution based method introduced in this study for elasticity and fracture, and in [27] for diffusion
roblems, can be viewed as a meshfree discretization of peridynamics equations with FFT-accelerated quadrature.
CBM can also be viewed as a Fourier spectral method where the inner products with the Fourier basis functions are
omputed by quadrature approximation. In the Fourier spectral description of FCBM, one can assume the Fourier
eries expression of the convolving functions in Eq. (14) and write:∫

Hx

f
(
x, x′, t

)
dVx′ =

p∑
n=1

an (x, t) [bn ∗ cn] (x, t)

=

p∑
n=1

an (x, t)F−1 [L1L2L3F (bn)F (cn)] (x, t)
(90)

here F and F−1 are the exact Fourier transform and its inverse defined as:

F (M) =
1

L3L2L1

∫
T

M (x, t) e−2πζ
(

k1x1
L1

+
k2x2
L2

+
k3x3
L3

)
dx1dx2dx3

F−1
(

M̂
)

=

+∞∑
k3,k2k1=−∞

M̂ (k, t) e2πζ
(

k1x1
L1

+
k2x2
L2

+
k3x3
L3

) (91)

n Eq. (90), if we truncate the Fourier series at N1, N2, N3 modes in the three Cartesian directions, and approximate
he F integrals via midpoint quadrature, using the uniform grid spacing described by Eq. (52), we recover the
quations given in Section 4.1.1, having FFT-based quadrature operations.

Recall that, in general, Fourier spectral discretizations show spectral accuracy (exponential convergence rate) if
he solution is smooth on T, and if the Fourier multipliers [14] (Fourier transform of the kernels of PD operator,
.e. F c in Eq. (90)) are computed exactly. For example, the Fourier multipliers for the PD Laplacian operator
( n)
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Fig. 6. The specimen’s 3D configuration, YZ and XY mid-planes’ cross-sectional views, and the top/bottom view. Dimensions are given in
entimeters.

an be expressed in terms of hypergeometric functions [14,20]. While such analytical formulas for the Fourier
ultipliers lead to spectral accuracy, they depend on the kernels’ forms and may not be always easy to find. Note

lso that evaluating these analytical relationships can be challenging (see, e.g., [20]). The quadrature approximation
sed in this study bounds the FCBM accuracy to that of the quadrature, but it is a general approach and can be
asily used for any given kernel. Moreover, the EC method we use for incorporating boundary conditions leads to
orking with Fourier transforms of non-smooth functions (e.g. characteristic functions), which automatically would
rop the exponential convergence rate even when analytical formulas for the Fourier multipliers are known.

The convergence rate of FCBM in terms of spatial discretization size is expected to be polynomial, bounded by
uadrature’s accuracy and the rate of convergence for the Fourier series approximation of transformed functions.
n case of certain diffusion problems for example, the FCBM spatial rate of convergence has been shown to be
uadratic [27]. We show that FCBM’s spatial rate of convergence for a 3D linear elasticity example in Section 5.1
s superlinear. Rigorous error estimates and numerical analysis for FCBM is of significant interest and will be
tudied in the future.

Another concern with spectral methods is that aliasing errors might reduce the accuracy when a Fourier transform
f a product operation is involved. We did not encounter noticeable aliasing errors in the examples shown in this
tudy (see the convergence study in Section 5.1). However, if these errors become significant in a particular problem,
ne can use de-aliasing techniques such the 2/3rd rule [62] to remove them.

. Numerical examples

In this section we solve two example problems via FCBM-EC. First, we solve a 3D example for an elastic
eformation of a relatively complex geometry under static loading, using the state-based PD model. This allows
s to verify our FCBM-EC static formulation, and also the convolutional form of the state-based model. Then, we
olve a 2D brittle fracture problem where we verify our new damage model, as well as the FCBM-EC formulation
or PD dynamic problems, with the linearized bond-based model.

.1. Elastostatic deformations in a 3D body with a complex shape

In this example we compute the elastic deformation of a 3D semi-cylindrical dog bone specimen with two lateral
horough holes subjected to a static uniaxial tension. Fig. 6 shows the specimen’s 3D configuration, mid-plane cross-
ections and the top view, with the dimensions. The Young modulus and Poisson ratio considered are E = 60 GPa

and ν = 0.4.
We select the horizon size to be δ = 0.3 (sufficiently small relative to the size of the drilled holes, the smallest
geometrical feature of the sample, see [63]) and extend the specimen’s geometry by δ from the top and the bottom
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Fig. 7. Left: Specimen’s configuration with local boundary conditions; Middle: PD body B with Γ3 extensions for applying volume
onstraints/nonlocal BC; Right: further extension to the periodic box T3 for discretization with FCBM-EC.

s the fictitious domain for enforcing volume constraints. These extensions are referred to as Γ3, because u3 is
pecified on them. Then, we further extend the PD body B (including Γ3) in all directions by δ to form a box of
ize 6.6 × 6.6 × 14.2cm3 as the periodic domain T3 (see Fig. 7).

We perform two PD simulations using two different types of nonlocal BC for each on the top and bottom
oundary layers. In one simulation we set u3 = 0.005 cm for all the points in Γ3 on the top, and u3 = 0 for all
he points in the bottom layer. This approach is referred to as the naı̈ve fictitious nodes method (naı̈ve FNM) [56],
nd is one of the most convenient methods to determine volume constraints for approximating local BCs. In the
econd simulation we use the mirror-based FNM [56,64] to define the volume constraints on Γ3. In mirror-based
NM volume constraints on each point of Γ3 are determined from the desired local BC value and the solution
alue on an interior Ω point, referred to as the “mirror” point. The description of mirror-based FNM is provided
n the appendix. This approach is a better approximation of local BCs compared with the naı̈ve FNM. However,
ts implementation is not as easy as the naı̈ve approach, since the mirror-based FNM requires updating the volume
onstraints at each time step/iteration according to the computed solution at the previous time step/iteration. Mirror-
ased FNM are also more difficult to implement for curved geometries since one needs to know the normal to the
urface along the boundaries. For more details please see [56].

The rest of the body’s surface, which is traction-free, is treated the same in all PD simulations here, which is
y eliminating nonlocal interactions between B and the rest of the box using the χB characteristic function (see
ection 4.2.2 and Eq. (73)). This is identical to naı̈ve FNM for traction-free conditions [56].

Considering the state-based linear elastic model in Eq. (38) and the modification in Eq. (75) to remove the
onlocal interactions between the body B with the rest of the box (Λ), the PD operator is expressed as:

L i =

∫
Hx

χBχ ′

B fi dVx′ =

∫
Hx

χBχ ′

B

[
ai

(
x′

− x
) (

ϑ + ϑ ′
)
+ Ci j

(
x′

− x
) (

u′

j − u j
)]

dVx′

= χB

{
ϑ

∫
Hx

−ai
(
x − x′

)
χ ′

BdVx′ −

∫
Hx

ai
(
x − x′

)
χ ′

Bϑ ′dVx′

+

∫
Hx

Ci j
(
x − x′

)
χ ′

Bu′

j dVx′ +

(∫
Hx

Ci j
(
x′

− x
)
χ ′

BdVx′

)
u j

}
[ ( ) ( ) ]

(92)
= χB −ϑ (ai ∗ χB) − (ai ∗ χBϑ) + Ci j∗χBu j + Ci j ∗ χB u j
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Note that the disconnection between B and Λ via χB must be considered in computing ϑ and m as well, for
consistency. Therefore, we modify Eq. (39) as follows:

ϑ =
3
m

∫
Hx

χBχ ′

Bω (|ξ |) ξiηi dVx′ =
−3χB

m

∫
Hx

ai
(
x − x′

)
χ ′

B

(
u′

i − ui
)

dVx′

=
−3χB

m

∫
Hx

ai
(
x − x′

)
χ ′

Bu′

i dVx′ −
3
m

(∫
Hx

ai
(
x′

− x
)
χ ′

BdVx′

)
ui

=
−3χB

m
[(ai ∗ χBui ) + (ai ∗ χB) ui ]

(93)

here

m =

∫
Hx

χBχ ′

Bω (|ξ |) |ξ |
2 dVx′ = χB

∫
Hx

ω
(
x − x′

) ⏐⏐x − x′
⏐⏐2

χ ′

BdVx′ = χB
(
ω |x|

2
∗ χB

)
(94)

imilar to L i , including χBχ ′

B in calculation of ϑ and m preserves the convolutional structure of the integrals and
llows one to compute them by FFT at the cost of O

(
N log2 N

)
.

To perform the simulations, we need to choose an influence function ω. Here, we use ω =
1
|ξ |

as one of the most
sed options [2,65].

We discretized the domain considering N1 = N2 = 27 and N3 = 28, in the three Cartesian directions. The m-
actor (ratio of horizon to grid size) for this example happens to be the same for all directions: δ/∆x1 = δ/∆x2 =

δ/∆x3 = 5.82. Note that the m-factor can be different along different directions, if grid spacing is not identical in
all directions (see the example in Section 5.2).

Following the FCBM discretization described in Section 4.1.1, we can write the discretized version of the
equations above as:

Lnmp
i = χ

nmp
B

{
−ϑnmp F−1 [F (ai ) F (χB)]

⏐⏐nmp
− F−1 [F (ai ) F (χBϑ)]

⏐⏐nmp

+ F−1 [
F

(
Ci j

)
F

(
χBu j

)]⏐⏐nmp
+ F−1 [

F
(
Ci j

)
F (χB)

]⏐⏐nmp
unmp

j

}
∆V

(95)

where

ϑnmp
= −

3χ
nmp
B

mnmp

{
F−1 [F (ai ) F (χBui )]

⏐⏐nmp
+ F−1 [F (ai ) F (χB)]

⏐⏐nmp
unmp

i

}
∆V (96)

and

mnmp
= χ

nmp
B F−1 [

F
(
ω

(
x2

1 + x2
2 + x2

3

))
F (χB)

]⏐⏐nmp
∆V (97)

n order to use the FCBM-EC formulation for static problems given by in Eq. (89), we construct χΩi from Eq. (74),
nowing that Ω1 = Ω2 = B, and Ω3 = B\Γ3. In this study, we use a conjugate gradient algorithm to solve Eq. (89).

We also solve the local version of this problem using a commercial finite element package. To this aim, we
se Abaqus/Standard 6.19-1 solver with over 1 × 107 D3D4 linear tetrahedral elements and about 2 × 106 nodes,
hich is about the same number of degrees of freedom in ΩB in the FCBM-EC simulation.
All the simulations in this study are performed on a Dell-Precision T7910 workstation PC, Intel(R) Xeon(R)

PU E5-2643 W v4 @3.40 GHz logical processors, and 128 GB of installed memory.
Fig. 8 shows the displacement field obtained by FCBM-EC (using the Naı̈ve FNM boundary conditions) and by

baqus in 3D. A rotating view of the vertical displacement field (u3) obtained by FCBM is shown in Video 1.
As we observe from the displacement contours, the FCBM-EC solution of the PD model and FEM solution of

he classical model are visually very close. To investigate the difference quantitatively, we plot the absolute relative
ifference between the two solutions in the cross-sectional views in Fig. 9. The plotted differences are computed
rom:

Enmp
i =

⏐⏐⏐(unmp
i

)
FCBM −

(
unmp

i

)
Abaqus

⏐⏐⏐
maxall nodes

(
unmp

i

)
Abaqus

(98)

here Enmp
i is the absolute relative difference of unmp

i . We intentionally use “difference” instead of “error” for
nmp
eferring to Ei , because the governing equations in Abaqus are different from PD (one local and one nonlocal).
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Fig. 8. Displacement field (u1, u2, u3) in 3D, obtained from simulations of the static tension problem using FCBM-EC discretization of
eridynamics (left) and finite element solution of the classical equilibrium by Abaqus static analysis (right).

herefore, the difference in the results is not only attributed to the numerical methods’ error, but it also originates
rom the nature of the governing equations.
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Fig. 9. Absolute relative difference plotted in cross-sectional views for displacement fields obtained via FCBM-EC in comparison with the
solutions from the Abaqus static analysis (FEM solution of classical equilibrium). Top row: FCBM solver used Naïve fictitious nodes method
(FNM) for boundary conditions; Bottom row: mirror-based FNM was used for the top and the bottom boundaries. Differences for u3 and
u2 are plotted in YZ mid-plane and u1 is plotted in XZ mid-plane cross-section (see Fig. 6).

Note that the rectangular gaps present in the right column of Fig. 9 correspond to the holes in the sample. For
those figures we used a different cross-sectional view than for the other two sets of plots in Fig. 9, namely the
XZ mid-plane (see Fig. 6). The reason for this selection is that along the YZ mid-plane, which is used to plot the
displacement differences for u2 and u3, the u1 displacement is zero.

The maximum difference between PD and Abaqus solutions, as expected, is observed at the corners, and this
is the result of the differences between local and nonlocal BCs. Using mirror-based FNM on the top and bottom
boundaries has reduced the maximum difference between the local and the nonlocal solutions associated with BCs
at the corners. Mean differences for FCBM PD solutions with either FNMs, remain below 2% compared the FEM
(Abaqus) solution for the classical model.

Next, we compare the computational time between the FCBM-EC and the meshfree PD method (that uses direct
quadrature) for the same PD problem, using various discretization sizes. To this aim, we set N = 219, 222, 225, 228

for the FCBM simulation. Note that the N here is the total number of nodes within the box T. The number of
nodes within the body B with these numbers are NB = 0.25, 2, 15.9, 127.2 million nodes, respectively. To have a
air comparison, we use NB nodes for the meshfree PD simulations, since N − NB number of nodes locate within
he gap region in FCBM-EC, which are not needed in the meshfree PD method. We use naı̈ve FNM for enforcing
Cs on both the meshfree and the FCBM-EC simulations.

Table 1 compares the computational time required to perform the simulations using FCBM-EC and the meshfree
D method. We have also taken advantage of MATLAB’s built-in multi-threaded and GPU FFT functions. We
erformed our FCBM simulations on 1CPU, 8CPUs (using multi-threaded FFT), and on a GPU (using GPU enabled
FT) in separate tests. Multithreaded computation on more than 8 CPUs did not lead to further improvements.

Although the extra space in the FCBM-EC computational box has almost twice the number of nodes used by the

eshfree PD for the actual domain, FCBM-EC simulations are significantly faster. Due to the difference between
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Table 1
Computational time for solving the 3D example, using FCBM-EC and the meshfree PD with direct quadrature (DQ).

m-factor ∼3 ∼6 ∼12 ∼23

Number of nodes (NB) ∼250 × 103
∼2 × 106

∼16 × 106
∼127 × 106

Meshfree PD with DQ (1 CPU) 1 h 2.8 daysa 5.9 monthsa 31.1 yrsa

FCBM-EC (1 CPU) 5.5 min 53 min 7.5 h 3.9 days
FCBM-EC (8 CPUs) 2 min 16.9 min 2.5 h 1.4 days
FCBM-EC (GPU) 2.7 min 9.9 min out of memory out of memory

aTime is estimated, using the time for m = 3 and knowing that the computational time scales in O(N 2) for the method
with direct quadrature [27].

Table 2
Memory allocation required for solving the 3D example, using FCBM-EC and the meshfree PD with direct quadrature
(DQ).

m-factor ∼3 ∼6 ∼12 ∼23

Number of nodes in the body ∼250 × 103
∼2 × 106

∼16 × 106
∼127 × 106

Meshfree PD with DQ 5.1 GB 327 GBa 20.4 TBa 1,308 TBa

FCBM-EC 235 MB 1.8 GB 14.7 GB 117.5 GB

aEstimated, using the memory required for the case with m = 3, and knowing that memory allocation scales as O(N 2)
for the method with direct quadrature [23]. The memory of the computer system here was 128 GB.

he computational complexity of the methods, as the number of nodes increases, the efficiency gain of FCBM-EC
ecomes higher. The new method reduces PD computations from hours to minutes and from years to days. From
able 1, computations that were impossible to conduct using a single CPU with the meshfree PD method, are now
asily achievable via FCBM-EC. Bulit-in Matlab’s FFT functions allowed us to benefit from parallel computations
y adding a few lines of codes in the FCBM solver. In this example, using more than 8 CPUs does not lead to
uch more efficiency.
Another significant advantage of FCBM-EC compared with the meshfree PD is the memory allocation. In

imulations provided in Table 1, the memory allocation required by the meshfree PD only allowed for the lowest
esolution (NB = 250×103). The computational time for higher spatial resolutions are estimated, knowing that they
cale with O(N 2) for the meshfree PD [27]. Most meshfree implementations initially find and store family nodes for
ach node to improve efficiency during the quadrature [66,67]. Without this initialization, family search is required
or each node at each time step/iteration which can potentially add a significant amount of time. However, storing
amily information requires allocating arrays of N ×M where M is the maximum number of family nodes. Knowing
hat for a fixed δ, M scales with N , memory allocation in the meshfree PD scales with O(N 2). In contrast, FCBM-EC
oes not need to search and store family information. The integrals are computed in Fourier space, without explicitly
dding individual interactions between family nodes. As a result, the variables in FCBM are arrays of size of N ×1
nd their storage scales as O(N ). Table 2 shows the memory allocation required by FCBM and the meshfree PD
or our 3D example.

We also plot the FCBM convergence of displacement field with respect to the spatial discretization (m-
convergence, for the horizon mentioned in the problem setup above) for this 3D elasticity problem. Since the
exact analytical nonlocal solution for this 3D example is not known, we use the following error measure for the
convergence study:

relative error =
|Unew − Uold|L2

|Unew|L2

(99)

where U is the nodal displacements vector: a vector containing displacements in the three directions for all nodes
(unmp

i for all i, n, m, p). The “old” and “new” subscripts denote two simulations with ∆xnew =
1
2∆xold. We use

the coarser grid nodal coordinates (from the “old” simulation) to compute the L2 norms in Eq. (99). Again, we
have used naı̈ve FNM for enforcing BCs in these simulations. Notice that the boundary conditions treatment affects
convergence rates, but in this manuscript we did not study this issue.

In Fig. 10 we plot this relative error versus the discretization size (∆x) in log–log scale.
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Fig. 10. Convergence of FCBM-EC solution for displacements with respect to spatial discretization size for the 3D elasticity example. The
dashed line is a linear fit of the data.

We observe a superlinear rate of convergence for this 3D elasticity example. This rate is similar to what was
reported in [68], where an alternate version of this method (FCBM with volume penalization [26]) was used for
a PD wave equation with discontinuous initial conditions in 2D. As discussed in Section 4.4, the accuracy of the
FCBM in the present form is bounded by the quadrature and the finite Fourier series approximation errors.

In the next section, we solve a 2D fracture example and compare the results with the published meshfree
PD solution to show the new method’s efficiency and versatility in modeling dynamics brittle fracture problems,
including those that involve multiple crack branching events.

5.2. Dynamic brittle fracture and crack branching in 2D

In this section we test the damage model introduced in Section 3.5 and its FCBM-EC implementation and
verify it against published dynamic brittle fracture simulations obtained by the meshfree PD model that uses critical
bond-strain for bond breaking [36].

The problem description is as follows: A thin plate of 10 × 4 cm 2 soda-lime glass with a precrack of length
5 cm is subjected to sudden stresses that are distributed uniformly on the top and bottom boundaries and remain
constant during the simulations. The sample geometry and loading conditions are shown in Fig. 11.

(b) Peridynamics problem
In the peridynamic version of the problem (Fig. 11b), we impose the body force density b = σ/δ on the δ-

thick top and bottom layers of the body to enforce the desired load-controlled BCs. As noted earlier the method to
impose/approximate local BCs in PD models is not unique and one may choose other approaches [56,57,69]. In this
example, we used the body force approach, in order to have a similar loading as in [36], but our method can handle
other approaches as well. Because of the through crack definition in the new damage model (see Section 3.5.3), the
pre-crack in our PD model is thicker than the one used in [36] with the meshfree PD. The influence of the crack
width difference in the two models is discussed after presenting the results.

The glass has the Young modulus E = 72 GPa, density ρ = 2440 Kg/m3, and critical fracture energy
(critical energy release rate) G0 = 3.8 J/m2 [36]. We conduct three simulations with three different stress values:
σ = 0.2, 2, 4 MPa. These three tests are shown to result in different fracture patterns and branching behavior in [36].
We choose δ = 0.1 cm as in [36].

In order to use FCBM-EC, we first extend the domain by δ in all directions to construct the periodic box (see
Fig. 12).

Note that unlike the example in Section 5.1, there are no fictitious domain in this simulations since we apply
the load as a body force directly on the top and the bottom layers of the plate. Considering the damage model in
28
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Fig. 11. Classical problem description (a), and the corresponding peridynamics version (b).

Fig. 12. Domain extension to be used in the FCBM-EC PD solver.

Eq. (46) and the modification in Eq. (75) to disconnect the body from the rest of the gap region, the PD operator
can be expressed as:

L i =

∫
Hx

χBχ ′

Bλλ′ fi dVx′ = χBλ

∫
Hx

χ ′

Bλ′Ci j
(
x − x′

) (
u′

j − u j
)

dVx′

= χBλ
{[

Ci j ∗
(
χBλu j

)]
− u j

[
Ci j ∗ χBλ

]} (100)

To compute Ci j , we need to choose an influence function ω and calibrate the constant α to the classical elasticity
constants. We use a common influence function ω =

1
|ξ |

, which results in α =
9E
πδ3 for plane stress (Poisson ratio is

restricted to ν =
1
3 ) [2].

We discretized the domain considering N1 = 29 and N2 = 28. The m-factor (ratio of horizon to grid size) is then
/∆x1 = 5.02 and δ/∆x2 = 6.10 in x1 and x2 directions respectively. By comparing Eq. (100) with Eq. (46), one
an write the discretized version by replacing λ with χBλ in Eq. (62):

Lnmp,t
i =χ

nmp
B λnmp,t

{
F−1 [

F
(
Ci j

)
F

(
χBλu j

)]⏐⏐nmp,t

− F−1 [
F

(
Ci j

)
F (χBλ)

]⏐⏐nmp,t
unmp,t

j

}
∆V

(101)

To conduct the simulations, we use the FCBM-EC formulation for dynamic problems given by Eqs. (83) and (84).
We choose a time step of ∆t = 5×10−8 s which is the same as the one used by the meshfree PD simulations in [36].
In general, one can choose any ∆t that satisfies the stability condition given in [5]. At each time step λnmp,t+∆t

is updated using Eq. (63). This requires computing W nmp,t . Similar to the process for obtaining the internal force
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Fig. 13. Damage maps from PD simulations obtained from (left column) the new damage model (pointwise energy-based bond-breaking)
olved via FCBM-EC, and from (right column) the meshfree PD solution with the critical bond-strain criterion [36].

ensity PD operator in Eq. (100), W nmp,t formula is found by replacing λ with χBλ in Eq. (64):

W nmp,t
=

1
2
χ

nmp
B λnmp,t∆V

{
F−1 [

F
(
Ci j

)
F

(
ui u jχBλ

)]⏐⏐nmp,t

− unmp,t
j F−1 [

F
(
Ci j

)
F (uiχBλ)

]⏐⏐nmp,t

− unmp,t
i F−1 [

F
(
Ci j

)
F

(
u jχBλ

)]⏐⏐nmp,t

+unmp,t
i unmp,t

j F−1 [
F

(
Ci j

)
F (χBλ)

]⏐⏐nmp,t
} (102)

Damage is computed from Eq. (65). Fig. 13 shows the crack patterns predicted by the new FCBM-EC PD model
in comparison with the published results [36] obtained via the meshfree PD discretization of the bond-based model
in Eq. (16) that uses a critical bond strain criterion, for three different loadings, at times when the cracks are about
the fully split the sample.

The new damage model and solution method match, in each case, the crack patterns obtained by the meshfree PD
model, including the multiple crack branching scenario. It takes the FCBM-EC model seconds to solve a problem
that requires hours with the meshfree PD model.

The slight differences observed between the two simulations are expected because the two models are slightly
different: the FCBM-EC discretizes the linearized bond-based PD model, while the meshfree PD solution is for the
regular bond-based model; in addition, there is some difference between the damage models used. The meshfree PD
simulations use the critical bond strain criterion while the FCBM solutions employ the new energy-based criterion.
As discussed in Section 3.5.3, the new model shows cracks with “thickness” 3δ, with the middle δ-thick layer having
fully failed nodes (d = 1), whereas the meshfree PD model leads to 2δ-thick cracks (see Fig. 3). This difference,
however, does not seem to have a significant effect on the predicted fracture patterns. From Fig. 13 it is noticed
that the meshfree PD results show a slight crack thickening just before crack branching while the FCBM results
show constant thickness for all crack paths. However, a closer look at the fracture kinetics at the crack tip at the
time of branching in the FCBM simulation, reveals that the “physics of branching” are similar between the two
methods/models. Fig. 14 shows zoom-in views of several snapshot during the branching process in the test with
σ = 2 MPa for the FCBM-EC PD model.

We observe that the three-phase process of branching reported in [36] is observed here as well. Phase I:
propagation (Fig. 14a and b); Phase II: wave pile-up and thickening of damage (Fig. 14c and d); Phase III: damage
migration and branching (Fig. 14e and f). Before branching (Fig. 14a and b), while the crack grows in a straight
line, damage progression happens as follows: nodes near the crack tip get damaged, which leads to the removal of
30
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v
h

Fig. 14. Dynamics of crack branching around the crack tip with the new energy-based nodal damage model. Arrows show the velocity
ector field while the contours show the damage index value. The damage contour colors are associated with the legend in Fig. 13. The PD
orizon used, is plotted, to scale, in the top left picture.
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Fig. 15. An m-convergence study in terms of fracture patterns for the example with suddenly applied load σ = 4 MPa.

ll of their bonds. As the crack advances, bonds for nodes near the crack tip may still bridge the developing crack,
nd therefore increase the strain energy for these nodes. The strain energy density for nodes on the top and bottom
rack surfaces with bridging bonds reach now the critical value and they also get removed, reaching damage index
qual to one. This is why there is a widening of the crack past a horizon-length of the “process zone”. This can
ontinue as a steady state crack growth, but when the energy delivered at the crack tip is larger, then (Fig. 14c and
) the material in front of the crack tip moves more forcefully towards the advancing crack and leads to a pile-up
f strain energy on the banks of the process zone, meaning that nodes on these banks reach critical strain energy
ot due to increased straining of their bridging bonds, but of all of their bonds: consequently, they fail sooner. This
orresponds to the thickening of damage just before branching of a crack that is observed experimentally [70–72].

hen this thickening reaches the tip of the process zone, (Fig. 14e and f), damage has to migrate from the center
ine and create the pathways for the crack to branch, since the strain energy concentration is no longer along the
ymmetry line, but at the corners of the thicker damage zone.

What we see, is that the FCBM PD model also captures the thickening of the crack just before branching, but this
s partly obscured by the model’s limitation to simulating cracks that are thinner than a thickness of 3δ, compared
ith the meshfree PD model in which the limit is 2δ (see Fig. 3).
One of the important advantages of FCBM, is that one can now easily perform m-convergence studies (refining the

rid size with a fixed horizon size) up to high values of m, which was previously not practical, or even impossible,
ith the meshfree PD method. Note that m-convergence studies for fracture problems are particularly important

ince studies have shown that a grid independent crack path is obtained only when using larger m values [73] than
hat normally have been employed in most applications.
Here we performed an m-convergence study for the 2D fracture problem described above with σ = 4 MPa. We

ept the horizon fixed δ = 0.1 cm, and changed the number of nodes in the x1 and x2 directions. Six simulations were
onducted with (N1, N2) =

(
27, 26

)
,
(
28, 27

)
,
(
210, 29

)
,
(
210, 210

)
,
(
211, 210

)
, and

(
212, 211

)
, leading to the m-factors:

(m1, m2) ≈ (2.5, 3), (5, 6), (10, 12), (10, 24), (20, 24), and (40, 48) respectively. The case with (m1, m2) ≈ (10, 24)

is chosen to test whether discretization anisotropy influences the results. Fig. 15 shows the m-convergence results.
We observe that fracture patterns converge at a value of m ≈ 10. This is consistent with a study that concluded

m-values higher than 7 are needed to have a correct crack path [73]. For m-values higher than 10, we also notice
that grid spacing anisotropy does not alter the results.
In Fig. 16, we show how the simulations’ run-time on a single CPU scales with the problem size.
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Fig. 16. Computational complexity of FCBM for this 2D fracture problem. Simulations’ run-time is plotted versus N log2 N .

As expected, the simulations’ time scales with N log2 N . The largest simulation here with (m1, m2) ≈ (40, 48)

took only 88 min on a single CPU, while the meshfree PD solver would have needed several months to complete the
same simulation (knowing that its run-time scales with O

(
N 2

)
). This is an important finding: with the new model,

we can now efficiently solve problems that were not accessible/feasible before: dynamic brittle fracture problems
in which the fracture patterns require high m-values.

Evolution of displacement and velocity fields, as well as strain energy density and damage index during fracture
re provided in Video 2 for the converged case with m ≈ 10. The velocity components (v1 and v2) in this video,
how some wave emissions created, in spurts, along the newly formed crack surfaces as the cracks grow. We
nvestigated the discretization effect on the frequency and amplitude of these wavelets and found that these features
re independent of the discretization. They are dependent then only on the damage models used, including the
orizon size. Effectively, these spurts are a result of the kinetics of bond-breaking in the damage model we used
ere: in a dynamic process, crack propagation happens one/a few nodes at the time; i.e. one or a few nodes at the
rack tip suddenly lose all of their bonds when reaching their critical strain energy density, and instantly change
he force balance for their family nodes, for the next time step. This node-by-node failure process, releases kinetic
nergy in small packets at the crack tip, causing these small fluctuations in the velocity field.

Experimental evidence confirms that crack growth in dynamic brittle fracture happens through consecutive bursts
nd not in a completely smooth fashion. This is seen in fracture experiments often, as Hull states in [74], page 262:
crack growth often occurs in a series of jumps”.

Similar wavelets along growing cracks, can also be observed in the videos from simulation in [36], where the
eshfree PD method with the critical strain criterion was used. These wavelets are much “shaper” and better

organized” in the current FCBM PD simulations compared to the “noisier” ones from [36], and that is mainly
ecause of the difference in the damage models: in FCBM PD, one removes a node and all of its bonds suddenly,
nce the node’s strain energy density reaches the critical value; in the meshfree PD model, individual bonds are
emoved once they reach their critical value.

. Conclusions

A general and fast convolution-based method (FCBM) for peridynamics was introduced. In this method, one tries
o write the PD integrals in the form of convolutions. When this is possible, one then uses the one-point Gaussian
uadrature over the domain and transforms the discretized convolution-based PD equations into products of discrete

ourier coefficients. Following these transformations, the PD integrals are computed with the FFT and its inverse

33



S. Jafarzadeh, F. Mousavi, A. Larios et al. Computer Methods in Applied Mechanics and Engineering 392 (2022) 114666

m
a
n
T
(
t

c
e
l
f
e
l
c

t
a
f
c
t
h
t

D

h

A

1
u
R

A

R

operation at the cost of O(N log2 N ), instead of O(N 2) needed by commonly-used meshfree or FEM discretization
ethods of PD models. For time-dependent problems, a time-marching scheme is used. Since the integrals involved

re now computed in the Fourier space, neighbor identifications and storing neighbor information is no longer
eeded. As a result, the memory allocation becomes of O(N ) in FCBM while other methods need O(N 2) storage.
o extend the applicability of the method to arbitrary domains and boundary conditions, the embedded constraint
EC) approach, previously used for PD diffusion problems, was extended here to the general setting that includes
he PD equations of motion.

The method introduced here is general and can be used for any nonlocal model as long as a convolutional structure
an be identified for it. In this study, the procedure was applied to the PD equations of motion and problems in
lasticity and dynamic fracture were solved. A convolutional structure for several material models was obtained:
inearized bond- and state-based elastic materials, and a nonlinear elastic bond-based model. The convolutional form
or PD correspondence models can also be obtained and details and examples are provided in a separate study. To
xploit the FCBM efficiency for fracture problems, a new energy-based damage model was introduced so that it
ed to a convolutional structure for such problems. The method was verified on a 3D elastostatic problem over a
omplex geometry and a 2D dynamic brittle fracture problem with crack branching cascades.

Comparisons between the computational efficiency of the new FCBM-EC method for PD models with that of
he original meshfree discretization of PD formulations showed that problems requiring years of computations (on

single processor) with the latter method can be executed in a matter of days (on the same processor) with the
ormer. Memory allocation was also two orders of magnitude less than what was required by the meshfree PD. One
an now easily reach crack paths independent of the grid used because choosing a large number of nodes inside
he PD horizon is no longer a major computational obstacle. Fast simulation of complex fracture problems with
igh accuracy are now possible via the FCBM-EC method for PD models, as the efficiency gains compared with
he original meshfree discretization method can reach a factor of 103–104 or more.

eclaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could
ave appeared to influence the work reported in this paper.

cknowledgments

This work has been supported by the National Science Foundation, USA under CMMI CDS&E Award No.
953346, and by a Nebraska System Science award from the Nebraska Research Initiative. This work was completed
tilizing the Holland Computing Center of the University of Nebraska, which receives support from the Nebraska
esearch Initiative.

ppendix A. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.cma.2022.114666.

eferences
[1] S.A. Silling, R. Lehoucq, Peridynamic theory of solid mechanics, in: Advances in Applied Mechanics, Elsevier, 2010, pp. 73–168.
[2] F. Bobaru, J.T. Foster, P.H. Geubelle, S.A. Silling, Handbook of Peridynamic Modeling, CRC Press, 2016.
[3] S.A. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids 48 (2000) 175–209.
[4] Z. Chen, F. Bobaru, Peridynamic modeling of pitting corrosion damage, J. Mech. Phys. Solids 78 (2015) 352–381.
[5] S.A. Silling, E. Askari, A meshfree method based on the peridynamic model of solid mechanics, Comput. Struct. 83 (2005) 1526–1535.
[6] X. Chen, M. Gunzburger, Continuous and discontinuous finite element methods for a peridynamics model of mechanics, Comput.

Methods Appl. Mech. Engrg. 200 (2011) 1237–1250.
[7] X. Tian, Q. Du, Asymptotically compatible schemes and applications to robust discretization of nonlocal models, SIAM J. Numer.

Anal. 52 (2014) 1641–1665.
[8] X. Tian, Q. Du, Nonconforming discontinuous Galerkin methods for nonlocal variational problems, SIAM J. Numer. Anal. 53 (2015)

762–781.
[9] B. Ren, C. Wu, E. Askari, A 3D discontinuous Galerkin finite element method with the bond-based peridynamics model for dynamic

brittle failure analysis, Int. J. Impact Eng. 99 (2017) 14–25.
[10] M. Zaccariotto, T. Mudric, D. Tomasi, A. Shojaei, U. Galvanetto, Coupling of FEM meshes with peridynamic grids, Comput. Methods
Appl. Mech. Engrg. 330 (2018) 471–497.

34

https://doi.org/10.1016/j.cma.2022.114666
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb1
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb2
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb3
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb4
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb5
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb6
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb6
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb6
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb7
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb7
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb7
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb8
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb8
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb8
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb9
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb9
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb9
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb10
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb10
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb10


S. Jafarzadeh, F. Mousavi, A. Larios et al. Computer Methods in Applied Mechanics and Engineering 392 (2022) 114666
[11] M. D’Elia, X. Li, P. Seleson, X. Tian, Y. Yu, A review of local-to-nonlocal coupling methods in nonlocal diffusion and nonlocal
mechanics, J. Peridynamics Nonlocal Model. (2021) http://dx.doi.org/10.1007/s42102-020-00038-7.

[12] W. Hu, Y. Wang, J. Yu, C.-F. Yen, F. Bobaru, Impact damage on a thin glass plate with a thin polycarbonate backing, Int. J. Impact
Eng. 62 (2013) 152–165.

[13] G. Zhang, G.A. Gazonas, F. Bobaru, Supershear damage propagation and sub-Rayleigh crack growth from edge-on impact: A
peridynamic analysis, Int. J. Impact Eng. 113 (2018) 73–87.

[14] B. Alali, N. Albin, Fourier spectral methods for nonlocal models, J. Peridynamics Nonlocal Model. 2 (2020) 317–335.
[15] M. D’Elia, Q. Du, C. Glusa, M. Gunzburger, X. Tian, Z. Zhou, Numerical methods for nonlocal and fractional models, Acta Numer.

29 (2020) 1–124.
[16] J.W. Cooley, J.W. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Comp. 19 (1965) 297–301.
[17] M. Frigo, S.G. Johnson, The design and implementation of FFTW3, Proc. IEEE 93 (2005) 216–231.
[18] Q. Du, J. Yang, Asymptotically compatible Fourier spectral approximations of nonlocal Allen–Cahn equations, SIAM J. Numer. Anal.

54 (2016) 1899–1919.
[19] A. Bueno-Orovio, D. Kay, K. Burrage, Fourier spectral methods for fractional-in-space reaction–diffusion equations, BIT Numer. Math.

54 (2014) 937–954.
[20] Q. Du, J. Yang, Fast and accurate implementation of Fourier spectral approximations of nonlocal diffusion operators and its applications,

J. Comput. Phys. 332 (2017) 118–134.
[21] G.M. Coclite, A. Fanizzi, L. Lopez, F. Maddalena, S.F. Pellegrino, Numerical methods for the nonlocal wave equation of the

peridynamics, Appl. Numer. Math. 155 (2020) 119–139.
[22] B. Alali, N. Albin, Fourier multipliers for nonlocal Laplace operators, Appl. Anal. (2019) http://dx.doi.org/10.1080/00036811.2019.

1692134.
[23] H. Wang, H. Tian, A fast Galerkin method with efficient matrix assembly and storage for a peridynamic model, J. Comput. Phys. 231

(2012) 7730–7738.
[24] H. Wang, H. Tian, A fast and faithful collocation method with efficient matrix assembly for a two-dimensional nonlocal diffusion

model, Comput. Methods Appl. Mech. Engrg. 273 (2014) 19–36.
[25] N. Du, X. Guo, H. Wang, A fast state-based peridynamic numerical model, Commun. Comput. Phys. 27 (2020) 274–291.
[26] S. Jafarzadeh, A. Larios, F. Bobaru, Efficient solutions for nonlocal diffusion problems via boundary-adapted spectral methods, J.

Peridynamics Nonlocal Model. 2 (2020) 85–110.
[27] S. Jafarzadeh, L. Wang, A. Larios, F. Bobaru, A fast convolution-based method for peridynamic transient diffusion in arbitrary domains,

Comput. Methods Appl. Mech. Engrg. 375 (2021) 113633.
[28] F. Mousavi, S. Jafarzadeh, A. Larios, F. Bobaru, The FCBM for peridynamic correspondence models: applications to plasticity and

ductile fracture, in preparetion.
[29] S.A. Silling, M. Epton, O. Weckner, J. Xu, E. Askari, Peridynamic states and constitutive modeling, J. Elasticity 88 (2007) 151–184.
[30] G. Sarego, Q.V. Le, F. Bobaru, M. Zaccariotto, U. Galvanetto, Linearized state-based peridynamics for 2-D problems, Internat. J.

Numer. Methods Engrg. 108 (2016) 1174–1197.
[31] D. Dipasquale, G. Sarego, M. Zaccariotto, U. Galvanetto, A discussion on failure criteria for ordinary state-based peridynamics, Eng.

Fract. Mech. 186 (2017) 378–398.
[32] S. Murakami, Continuum Damage Mechanics: A Continuum Mechanics Approach to the Analysis of Damage and Fracture, Springer

Science & Business Media, 2012.
[33] L. Lopez, S.F. Pellegrino, A spectral method with volume penalization for a nonlinear peridynamic model, Internat. J. Numer. Methods

Engrg. 122 (2021) 707–725.
[34] S.A. Silling, Linearized theory of peridynamic states, J. Elasticity 99 (2010) 85–111.
[35] Y.D. Ha, F. Bobaru, Studies of dynamic crack propagation and crack branching with peridynamics, Int. J. Fract. 162 (2010) 229–244.
[36] F. Bobaru, G. Zhang, Why do cracks branch? A peridynamic investigation of dynamic brittle fracture, Int. J. Fract. 196 (2015) 59–98.
[37] F. Mousavi, S. Jafarzadeh, F. Bobaru, An ordinary state-based peridynamic elastoplastic 2D model consistent with J2 plasticity, Int. J.

Solids Struct. 229 (2021) 111146.
[38] S.A. Silling, Stability of peridynamic correspondence material models and their particle discretizations, Comput. Methods Appl. Mech.

Engrg. 322 (2017) 42–57.
[39] M. Behzadinasab, J.T. Foster, On the stability of the generalized, finite deformation correspondence model of peridynamics, Int. J.

Solids Struct. 182 (2020) 64–76.
[40] M. Behzadinasab, J.T. Foster, A semi-Lagrangian constitutive correspondence framework for peridynamics, J. Mech. Phys. Solids (2020)

103862.
[41] S. Jafarzadeh, Novel and Fast Peridynamic Models for Material Degradation and Failure, The University of Nebraska-Lincoln, 2021.
[42] J. Trageser, P. Seleson, Bond-based peridynamics: A tale of two Poisson’s ratios, J. Peridynamics Nonlocal Model. 2 (2020) 278–288.
[43] Z. Xu, G. Zhang, Z. Chen, F. Bobaru, Elastic vortices and thermally-driven cracks in brittle materials with peridynamics, Int. J. Fract.

209 (2018) 203–222.
[44] N. Zhu, C. Kochan, E. Oterkus, S. Oterkus, Fatigue analysis of polycrystalline materials using peridynamic theory with a novel crack

tip detection algorithm, Ocean Eng. 222 (2021) 108572.
[45] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods, Springer, 2006.
[46] D.A. Kopriva, Implementing Spectral Methods for Partial Differential Equations: Algorithms for Scientists and Engineers, Springer

Science & Business Media, 2009.

[47] G. Plonka, D. Potts, G. Steidl, M. Tasche, Numerical Fourier Analysis, Springer, 2018.

35

http://dx.doi.org/10.1007/s42102-020-00038-7
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb12
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb12
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb12
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb13
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb13
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb13
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb14
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb15
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb15
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb15
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb16
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb17
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb18
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb18
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb18
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb19
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb19
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb19
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb20
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb20
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb20
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb21
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb21
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb21
http://dx.doi.org/10.1080/00036811.2019.1692134
http://dx.doi.org/10.1080/00036811.2019.1692134
http://dx.doi.org/10.1080/00036811.2019.1692134
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb23
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb23
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb23
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb24
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb24
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb24
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb25
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb26
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb26
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb26
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb27
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb27
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb27
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb29
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb30
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb30
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb30
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb31
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb31
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb31
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb32
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb32
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb32
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb33
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb33
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb33
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb34
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb35
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb36
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb37
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb37
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb37
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb38
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb38
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb38
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb39
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb39
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb39
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb40
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb40
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb40
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb41
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb42
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb43
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb43
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb43
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb44
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb44
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb44
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb45
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb46
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb46
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb46
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb47


S. Jafarzadeh, F. Mousavi, A. Larios et al. Computer Methods in Applied Mechanics and Engineering 392 (2022) 114666
[48] J.P. Boyd, A fast algorithm for Chebyshev, fourier, and sinc interpolation onto an irregular grid, J. Comput. Phys. 103 (1992) 243–257.
[49] A. Dutt, V. Rokhlin, Fast Fourier transforms for nonequispaced data, SIAM J. Sci. Comput. 14 (1993) 1368–1393.
[50] D. Potts, G. Steidl, Fast summation at nonequispaced knots by NFFT, SIAM J. Sci. Comput. 24 (2003) 2013–2037.
[51] M.C. Jeruchim, P. Balaban, K.S. Shanmugan, Simulation of communication systems: modeling, in: Methodology and Techniques,

Springer Science & Business Media, 2006.
[52] F. Bobaru, Y.D. Ha, Adaptive refinement and multiscale modeling in 2D peridynamics, Int. J. Multiscale Comput. Eng. 9 (2011)

635–660.
[53] P. Seleson, D.J. Littlewood, Convergence studies in meshfree peridynamic simulations, Comput. Math. Appl. 71 (2016) 2432–2448.
[54] M.L. Parks, R.B. Lehoucq, S.J. Plimpton, S.A. Silling, Implementing peridynamics within a molecular dynamics code, Comput. Phys.

Comm. 179 (2008) 777–783.
[55] Q. Du, M. Gunzburger, R.B. Lehoucq, K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal

balance laws, Math. Model. Methods Appl. Sci. 23 (2013) 493–540.
[56] J. Zhao, S. Jafarzadeh, Z. Chen, F. Bobaru, An algorithm for imposing local boundary conditions in peridynamic models of diffusion

on arbitrary domains, 2020, http://dx.doi.org/10.31224/osf.io/7z8qr, engrXiv Preprints.
[57] B. Aksoylu, F. Celiker, O. Kilicer, Nonlocal operators with local boundary conditions in higher dimensions, Adv. Comput. Math. 45

(2019) 453–492.
[58] B. Aksoylu, F. Celiker, O. Kilicer, Nonlocal operators with local boundary conditions: An overview, in: G.Z. Voyiadjis (Ed.), Handbook

of Nonlocal Continuum Mechanics for Materials and Structures, Springer International Publishing, 2018, pp. 1293–1330.
[59] Y. Yu, H. You, N. Trask, An asymptotically compatible treatment of traction loading in linearly elastic peridynamic fracture, Comput.

Methods Appl. Mech. Engrg. 377 (2021) 113691.
[60] Q. Du, M. Gunzburger, R. Lehoucq, K. Zhou, Analysis of the volume-constrained peridynamic Navier equation of linear elasticity, J.

Elasticity 113 (2013) 193–217.
[61] U.M. Ascher, C. Greif, A First Course on Numerical Methods, SIAM, 2011.
[62] S.A. Orszag, On the elimination of aliasing in finite-difference schemes by filtering high-wavenumber components, J. Atmos. Sci. 28

(1971) 1074.
[63] F. Bobaru, W. Hu, The meaning, selection, and use of the peridynamic horizon and its relation to crack branching in brittle materials,

Int. J. Fract. 176 (2012) 215–222.
[64] S. Oterkus, E. Madenci, A. Agwai, Peridynamic thermal diffusion, J. Comput. Phys. 265 (2014) 71–96.
[65] P. Seleson, M. Parks, On the role of the influence function in the peridynamic theory, Int. J. Multiscale Comput. Eng. 9 (2011)

689–706.
[66] D.J. Littlewood, Roadmap for Peridynamic Software Implementation, SAND Report, Sandia National Laboratories, Albuquerque, NM

and Livermore, CA, 2015.
[67] B. Vazic, C. Diyaroglu, E. Oterkus, S. Oterkus, Family member search algorithms for peridynamic analysis, J. Peridynamics Nonlocal

Model. 2 (2020) 59–84.
[68] L. Lopez, S.F. Pellegrino, A space–time discretization of a nonlinear peridynamic model on a 2D lamina, 2021, arXiv preprint

arXiv:2102.06485.
[69] Q. Le, F. Bobaru, Surface corrections for peridynamic models in elasticity and fracture, Comput. Mech. 61 (2018) 499–518.
[70] K. Ravi-Chandar, W. Knauss, An experimental investigation into dynamic fracture: III, on steady-state crack propagation and crack

branching, Int. J. Fract. 26 (1984) 141–154.
[71] E. Johnson, Process region changes for rapidly propagating cracks, Int. J. Fract. 55 (1992) 47–63.
[72] K. Ravi-Chandar, Dynamic Fracture, Elsevier, 2004.
[73] D. Dipasquale, G. Sarego, M. Zaccariotto, U. Galvanetto, Dependence of crack paths on the orientation of regular 2D peridynamic

grids, Eng. Fract. Mech. 160 (2016) 248–263.
[74] D. Hull, Fractography: observing, Measuring and Interpreting Fracture Surface Topography, Cambridge University Press, 1999.
36

http://refhub.elsevier.com/S0045-7825(22)00059-7/sb48
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb49
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb50
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb51
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb51
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb51
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb52
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb52
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb52
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb53
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb54
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb54
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb54
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb55
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb55
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb55
http://dx.doi.org/10.31224/osf.io/7z8qr
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb57
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb57
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb57
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb58
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb58
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb58
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb59
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb59
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb59
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb60
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb60
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb60
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb61
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb62
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb62
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb62
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb63
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb63
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb63
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb64
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb65
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb65
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb65
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb66
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb66
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb66
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb67
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb67
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb67
http://arxiv.org/abs/2102.06485
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb69
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb70
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb70
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb70
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb71
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb72
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb73
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb73
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb73
http://refhub.elsevier.com/S0045-7825(22)00059-7/sb74

	A general and fast convolution-based method for peridynamics: Applications to elasticity and brittle fracture
	Introduction
	Peridynamics
	Peridynamic equation of motion
	Peridynamic elastic and brittle fracture constitutive models in bond-based and state-based formulations 
	Bond-based models
	State-based models
	Modeling of damage and fracture in peridynamics


	Obtaining convolutional structures for peridynamic models
	Linear elastic bond-based PD model
	Nonlinear elastic bond-based PD model 
	State-based linear elastic and isotropic PD solid 
	Peridynamic correspondence models 
	An energy-based failure model that leads to a convolution structure for fracture problems 
	Damage model based on critical strain energy density at a point 
	Convolutional structure of the new damage model 
	Calibrating the failure model to Griffith's critical energy release rate 


	The fast convolution-based method for peridynamic models in elasticity and fracture
	Fourier-based method for periodic domains 
	Fourier-based discretization of peridynamics operators 
	Discretization of peridynamic equation of motion and equilibrium 

	Embedded constraints for enforcing boundary conditions 
	Boundary conditions in peridynamics 
	Embedded constraint method 
	FCBM-EC for dynamic problems 

	FCBM-EC for static and quasi-static problems 
	Discussion on the accuracy and the spectral description of the method 

	Numerical examples
	 Elastostatic deformations in a 3D body with a complex shape 
	Dynamic brittle fracture and crack branching in 2D 

	Conclusions 
	Declaration of competing interest
	Acknowledgments
	Appendix A. Supplementary data
	References


