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In this work, the gradient-enhanced multifidelity neural networks (GEMFNN) algorithm is

extended to handle multiple scalar outputs and applied to airfoil shape optimization. GEMFNN

is a multifidelity variant of the gradient-enhanced neural networks (GENN) algorithm and uses

both function and gradient information available at multiple levels of fidelity to yield accurate

high-fidelity predictions. GEMFNN construction is similar to the multifidelity neural networks

(MFNN) algorithm. GEMFNN is demonstrated on two test cases, a 20-variable analytical case,

and benchmark case II developed by the AIAA Aerodynamic Design Optimization Discussion

Group (ADODG). GEMFNN is compared to neural networks (NN), GENN, and MFNN in

terms of the computational cost required to reach a global accuracy. This accuracy is measured

using the coe�cient of determination metric. For both cases, GEMFNN outperformed all the

other ML algorithms to reach the target accuracy. For the 20-variable case, GEMFNN was

eight times cheaper than GENN. For the airfoil optimization, GEMFNN was 0.3 hours (2%)

cheaper than GENN. The resulting optimized airfoil had a 77.2 drag count (43.8%) di�erence

compared to the baseline shape.

Nomenclature

� = airfoil cross-sectional area, [-]
�10B4;8=4 = baseline airfoil cross-sectional area, [-]
0 = speed of sound in air, [m/s]
2 = chord length, [-]
⇠3 = drag coe�cient, 3

@12
, [-]

⇠; = lift coe�cient, ;
@12

, [-]
⇠< = pitching moment coe�cient, <

@122 , [-]
⇠? = pressure coe�cient, ?�?1

@1
, [-]

�⇠3 = drag count, 1E-4
�⇠; = lift count, 1E-2
3 = drag force, [N]
; = lift force, [N]
l = lower bounds of the design variables
< = pitching moment, [N/m]
"1 = freestream Mach number, +1

0 , [-]
=C = number of datasets
# = mini-batch size
#C = number of testing points
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? = static pressure on airfoil surface, [N/m2]
?1 = freestream static pressure, [N/m2]
@1 = freestream dynamic pressure, 0.5d1+2

1, [N/m2]
'

2 = Coe�cient of determination, [-]
'4 = Reynolds number, d1+12

`1
, [-]

u = upper bounds of the design variables
+1 = freestream air velocity, [m/s]
x = vector of design variables
xL = low-fidelity model input/design variables
xH = high-fidelity model input/design variables
X = sampling plan vector
y = observations of the sampling plan
yL = low-fidelity model response
yH = high-fidelity model response
yC = observations at testing point
ryL = gradient of low-fidelity model response with respect to inputs
ryH = gradient of high-fidelity model response with respect to inputs
ŷL = low-fidelity prediction
ŷH = high-fidelity prediction
ŷC = ML responses at testing points
H̄C = mean of the testing prediction
H
+ = non-dimensionalized first layer cell thickness, [-]

U = angle of attack, [deg]
V = learning rate hyperparameter
\ = parameters of the NN algorithms
`1 = freestream viscosity of air, [Ns/m2]
`'2 = mean of '2, [-]
d1 = freestream air density, [kg/m3]
f'2 = standard deviation of '2, [-]
fC⌘A4B⌘>;3 = global accuracy threshold

I. Introduction

Aerodynamic design optimization (ADO) is increasingly becoming an integral part of designing complex physical
systems, such as aeroplanes, cars, trains, and wind turbines. ADO has traditionally relied on expensive high-fidelity

simulations to calculate both the cost function and constraint values [1–3]. These methods typically require multiple
and repetitive high-fidelity model evaluations during the iterative design process. When combined with a large number
of design variables, the methods result in problems that can be di�cult to solve in a reasonable time frame.

To overcome these challenges, several di�erent surrogate modeling methods have been introduced. Surrogate
modeling methods can be broadly classified into either data-fit methods [4] or multifidelity methods [5]. Data-fit
methods include fitting a response surface through evaluated single-fidelity sample points. While multifidelity methods
include using low-fidelity data along with a limited number of high-fidelity data to augment the predictive capabilities
of single-fidelity surrogate models.

A variety data-fit methods exist in literature such as polynomial chaos expansions [6], Kriging [7] (also known as
Gaussian process regression) and its variants [8–10], and support vector machines [11]. Kriging is the most widely
used method in various engineering analysis and design tasks [12], amongst these methods. Kriging, however, su�ers
from a variety of issues such as being di�cult to implement [13], being poor at approximating discontinuous functions
[14], costly to use in the presence of a large number of data samples [12], and di�culty in handling high-dimensional
problems [15]. To overcome these challenges, several di�erent methods such as the use of gradient information [12, 16],
and the partial least-squares correlation functions [9, 10], have been introduced. These methods, however, still su�er
from some of the aforementioned important issues [13, 17].

Multifidelity methods use information from multiple levels of fidelities to enhance the prediction capabilities of
surrogate models constructed from a limited number of high-fidelity data, while reducing the overall cost associated
with constructing these surrogate models [5, 12]. Low-fidelity models are cheaper to evaluate, reducing the overall cost
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required in generating the data in order to construct the surrogate model. Cokriging [18], which is the multifidelity
version of Kriging, and its variants [19, 20], are becoming popular in design and analysis tasks. Cokriging, however,
still su�ers from the same issues associated with Kriging [13].

Neural networks (NN) [21] are becoming more prevalent in engineering design and analysis problems [13, 17]. NN
can handle high-dimensional datasets [17], are scalable with the number of data [21], are easy to implement [13], and
can approximate discontinuous data [13]. The biggest drawback of NN is that they require a large number of samples to
make accurate predictions [21], especially for high-dimensional problems [17]. Methods such as gradient-enhanced NN
(GENN) [17, 22], and multifidelity NN (MFNN) [13], have been recently introduced, to overcome these challenges.

In this work, the gradient-enhanced multifidelity NN (GEMFNN) algorithm proposed by Nagawkar and Leifsson [23]
is extended to handle multiple outputs and is applied to aerodynamic shape optimization. GEMFNN is a multifidelity
variant of GENN [22] and its construction is similar to MFNN. GEMFNN leverages both function and gradient
information available from low- and high-fidelity models to yield accurate high-fidelity predictions. In this work, the
GEMFNN algorithm is demonstrated on two problems, one analytical problem and the AIAA Aerodynamic Design
Optimization Discussion Group (ADODG) benchmark case II problem. Several works on using di�erent computational
fluid dynamics (CFD) solvers, shape parameterizations, and optimization algorithms have been reported for ADODG
case II [24–31]

The next section describes the GEMFNN algorithm. In the following section, this machine learning (ML) algorithm
is applied to two di�erent test cases and compared to other similar ML algorithms. Lastly, the conclusions and future
work are presented.

II. Methods

The construction of the GEMFNN ML algorithm is described in this section. First, an outline of the GEMFNN-based
analysis is introduced, followed by the sampling plan used to generate the training and testing data. The construction of
the GEMFNN algorithm is then discussed, followed by the validation metric to quantify its global accuracy. The final
section describes the application of the GEMFNN algorithm to aerodynamic design optimization.

A. Workflow

Figure 1 shows a flowchart of the GEMFNN algorithm. The design space is first sampled in order to generate the data
to train and test the GEMFNN model. Both the high- and low-fidelity models are evaluated along with their gradients
to generate the responses in order to train the ML model. Once trained, this model is tested using the testing data.
The coe�cient of determination ('2) error metric is used for validation. If the trained model has a '

2 value below
fC⌘A4B⌘>;3 , the previous steps are repeated with an increased number of samples in the training dataset. If '2 is above
fC⌘A4B⌘>;3 , the GEMFNN model is su�ciently accurate to be used for aerodynamic shape optimization. The choice of
fC⌘A4B⌘>;3 is case dependent.

B. Sampling plan

Sampling is the first set involved in constructing the ML algorithms. It is the process of selecting discrete samples in the
variable space [12]. The Latin Hypercube sampling (LHS) [32] plan is used in this work to generate both the high- and
low-fidelity training data as well as the testing data.

C. Gradient-Enhanced Multifidelity Neural Networks

NN are universal function approximators [21]. It contains a hierarchy of features, known as layers. Hidden layers
are layers in-between the input and output layers. The output and each hidden layer contain neurons, which are a
fundamental unit of computation. They contain an activation function [21]. An unconstrained optimization problem
is solved in NN, where the parameters, \, of the NN are tuned using a gradient-based optimizer [21]. In this study,
the Adaptive Moments (ADAM) [33] optimization algorithm is used. The backpropagation algorithm [34] is used to
compute the gradients for the gradient-based optimizer. The mean squared error (MSE) is used as the loss function in
the optimization problem, in this study, and is given by

L## =

Õ#
;=1 ( Ĥ

(;)
H � H

(;)
H )2

#

, (1)
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Fig. 1 Flowchart of the gradient-enhanced multifidelity neural network algorithm.

where # is the number of samples in a subset of the training data, called mini-batch [21]. It is used to minimize the
mismatch between the high-fidelity training data observations, HH, and the predicted values, ĤH, of the NN.

In GENN [17], the loss function in (1) is modified by adding the mismatch match between the high-fidelity training
data gradient, rHH, and the predicted gradient of the NN, rĤH, to it, and is given by

L⌧⇢## = L## +
Õ#

;=1
Õ⇡

:=1 (rĤ
(;)
H,: � rH

(;)
H,:)2

#

, (2)

where ⇡ is the input variable space dimension. This loss function minimizes the mismatch between both the function
and its tangent at a given training point to the corresponding true values, respectively.

Figure 2 shows a schematic of the MFNN [13] architecture. It contains three NN. ##! is used to approximate the
low-fidelity data. Its output is used as an additional input variable to two other NN, ##�1 and ##�2 . ##�1 captures
linear (H̃;) correlations between high- and low-fidelity data, while ##�2 captures nonlinear (H̃=;) correlations. The
weighted sum of the outputs of the linear and nonlinear layer gives the high-fidelity prediction of the MFNN as

ĤH = lH̃; + (1 � l) H̃=; , (3)

where l is an additional parameter of the MFNN, which is tuned along with the other parameters of the MFNN using
a gradient-based optimizer. It is important to note that NN and GENN are single-fidelity models and use only the
##�2 part of MFNN. They do not include ĤL as an additional input parameter since they directly make high-fidelity
predictions. The loss function of MFNN is given as

L"�## = L## +
Õ#

;=1 ( Ĥ
(;)
L � H

(;)
L )2

#

. (4)

The proposed GEMFNN algorithm is a novel multifidelity version of GENN [22] and is constructed similar to
MFNN [13]. It uses gradient information available at high- and low-fidelity data during training. The new and unique
loss function for GEMFNN is taken as

L⌧⇢"�## =L"�## +
Õ#

;=1
Õ⇡

:=1 (rĤ
(;)
L,: � rH

(;)
L,:)2

#

+
Õ#

;=1
Õ⇡

:=1 (rĤ
(;)
H,: � rH

(;)
H,:)2

#

.

(5)
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Fig. 2 Multifidelity neural network architecture (adapted from [13]).

The steps in the GEMFNN algorithm are the following:
1) Normalize the input, output and gradient of output with respect the inputs for all the data.
2) Perform forward propagation through ##! to get ĤL and through MFNN to get ĤH.
3) Calculate rĤL and rĤH using reverse mode automatic di�erentiation [35].
4) Use (5) to calculate L⌧⇢"�## .
5) Calculate the gradient of L⌧⇢"�## with respect to all the parameters in GEMFNN (rL⌧⇢"�## ) using the

backpropagation [34] algorithm.
6) Update the parameters of the MFNN model:

\  \ � VrL⌧⇢"�## , (6)

where V is the learning rate hyperparameter.
7) Iterate over steps 2 � 6 till all the mini-batches present in one epoch is used. One epoch is one iteration over an

entire training dataset [21].
8) Repeat steps 2 � 7 for all the epochs.
9) GEMFNN is now trained and ready to be used for aerodynamic shape optimization.

D. Validation

The coe�cient of determination is used to measure the global accuracy of the ML model in this work, and is given as

'
2 = 1 �

Õ#C
9=1 (H

( 9)
C � Ĥ

( 9)
C )2

Õ#C
9=1 (H

( 9)
C � H̄C )2

, (7)

where Ĥ
( 9)
C and H

( 9)
C are the ML model estimation and high-fidelity observation of the 9

th testing point, respectively, #C

is the total number of testing data samples in one dataset, and H̄C is the mean of H ( 9)C , given by

H̄C =

Õ#C
9=1 H

( 9)
C

#C
. (8)

'
2 is the measure of “Goodness of fit” [12] of an algorithm. A '

2 less than zero implies that the mean of the true
function is better than the algorithm at predicting the trend of the true function. '

2 = 0 implies that the algorithm
prediction is the same as the mean of the true function. If '2 = 1, the algorithm has approximated the true function
perfectly. This makes it easier to chose the global accuracy criterion. In this work, a value of '2 greater than fC⌘A4B⌘>;3

is considered an acceptable global accuracy. The choice of fC⌘A4B⌘>;3 is case dependent and its values can be found
under each case in Sec. III.
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In order to account for the variation in the training data used, each ML model is retrained with ‘=C ’ di�erent datasets.
Both the mean and standard deviations are plotted to quantify the e�ect of using di�erent datasets. The mean of '2 is
given by

`'2 =

Õ=C
:=1 '

2
:

=C
, (9)

and the standard deviation is given by

f'2 =

sÕ=C
:=1 ('2

: � `'2 )2

=C
. (10)

In this work, =C is set to ten for the analytical case. For the airfoil optimization, =C is set to one due to high computational
requirements involved in obtaining the data.

E. GEMFNN-based analysis

In this study, the GEMFNN algorithm is used as a surrogate model to prediction the lift, drag, and pitching moment
coe�cients of an airfoil parameterized using free-form deformation (FFD) [36]. The FFD design variables, as well as
the angle of attack, are the inputs to the GEMFNN algorithm and the aerodynamic coe�cients are the outputs. Once
this algorithm is trained with su�cient high-fidelity data to meet the global accuracy threshold, it is used along with the
sequential least squares programming (SLSQP) [37] gradient-based optimizer to solve the ADODG benchmark case II
problem.

III. Numerical examples

The GEMFNN ML algorithm is demonstrated on two di�erent cases. The first case is a 20-variable analytical function
and the second is the benchmark case II developed by ADODG. The GEMFNN ML algorithm is compared to other ML
algorithms, namely, NN, GENN, and MFNN.

A. Case 1: 20-dimensional analytical function

The 20-dimensional high-fidelity analytical function [13] is written as

5HF (x) = (G1 � 1)2 +
20’
8=2

(2G2
8 � G8�1)2

, (11)

where x 2 [-3,3]. The corresponding high-fidelity gradient is

r 5HF,1 (x) = 2(G1 � 1) � 2(2G2
2 � G1), (12)

r 5HF,8 (x) = 8G8 (2G2
8 � G8�1) � 2(2G2

8+1 � G8), (13)

for 8 = 2, 3, ..., 19, and
r 5HF,20 (x) = 8G20 (2G2

20 � G19). (14)

The low-fidelity model is written as [13]

5LF (x) = 0.8 5HF (x) �
19’
8=1

0.4G8G8+1 � 50, (15)

while the corresponding low-fidelity gradient is written as

r 5LF,1 (x) = 0.8r 5HF,1 (x) � 0.4G2, (16)

r 5LF,8 (x) = 0.8r 5HF,8 (x) � 0.4(G8�1 + G8+1), (17)

for 8 = 2, 3, ..., 19, and
r 5LF,20 (x) = 0.8r 5HF,20 (x) � 0.4G19. (18)
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The LHS plan was used to generate the training and testing datasets. The testing data contains 10, 000 samples.
##�1 contains one hidden layer with ten neurons, while ##�2 contains four hidden layers, with 64 neurons each, and
##! contains six hidden layers with 128 neurons each.

The tangent hyperbolic activation function is used in ##�2 and ##! . The batch size is fixed to a value of 64, while
the learning rate is set to 0.001, and the number of epochs is fixed with a value of 10, 000. No regularization is used in
this case. This setup is used for all the four ML algorithms.

The high-fidelity sampling cost required by each ML algorithm to reach fC⌘A4B⌘>;3 , is shown in Table 1. fC⌘A4B⌘>;3

for this case is set to a value of 0.99 '
2. GEMFNN required the least cost to reach this accuracy. GEMFNN required 600

samples (300 function plus 300 gradient), while GENN required 5, 000 samples (2, 500 function plus 2, 500 gradient).
NN and MFNN fail to meet the target accuracy, even with 10, 000 samples. Figure 3(a) shows the number of high-fidelity
samples required by each algorithm to meeting the target accuracy. This plot is generated by averaging the results over
ten di�erent datasets. Figure 3(b) shows the corresponding standard deviations of the algorithms. Increasing the number
of samples, decreases the standard deviations, resulting in algorithms that are less sensitive the the training data. This
case demonstrates the benefit of using both gradient and multifidelity information for a high-dimensional problem.

B. Case 2: ADODG benchmark case II

1. Problem formulation
In this case, the drag coe�cient (⇠3) of the RAE 2822 airfoil in viscous flow of freestream Mach number ("1) equal to
0.734, and a Reynolds number of 6.5 ⇥ 106, is minimized. This airfoil is subject to a fixed lift coe�cient (⇠;) of 0.824

Table 1 20-dimensional function modeling cost.

ML algorithm High-fidelity sample cost

NN >10,000

GENN 5,000⇤

MFNN >10,000⇤⇤

GEMFNN 600⇤,⇤⇤

⇤Function plus gradient evaluation cost
⇤⇤Plus 30,000 low-fidelity training samples

10 2 10 3 10 4

Number of high-fidelity samples

0

0.2

0.4

0.6

0.8

1

1.2

R
2

NN
GENN
MFNN
GEMFNN

R2 = 0.99

(a)

10 2 10 3 10 4

Number of high-fidelity samples

10 -4

10 -3

10 -2

10 -1

10 0

R
2

NN
GENN
MFNN
GEMFNN

(b)

Fig. 3 20-dimensional function results: (a) mean of '
2
, (b) standard deviation of '

2
.
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as well as constraints on the pitching moment coe�cient (⇠<) and the area constraints.
The optimization problem is stated as:

min
lxu

⇠3 (x) (19)

subject to the equality constraint
⇠; (x) = 0.824 (20)

and inequality constraints
⇠< (x) � �0.092 (21)

and
�(x) � �10B4;8=4 . (22)

x is the design variable vector, while l and u are the lower and upper bounds, respectively, of each design variable. � is
the cross-sectional area of the airfoil non-dimensionalised with the square of the chord length (2). �10B4;8=4 is the area
of the RAE 2822 airfoil.

2. Shape parameterization
Free-form deformation (FFD) [36], implemented by Kenway et al. [38], is used to parameterize the airfoil geometry and
is shown in Fig. 4. The FFD approach embeds the geometry into a volume that can then be manipulated by moving
points at the surface of that volume (the FFD points). Once an object is embedded into a FFD volume, a Newton search
is executed to determine the mapping between the FFD points (parameter space) and the surface geometry (physical
space). The FFD volume is a trivariate ⌫-spline volume such that the gradient of any point inside the volume can be
easily computed. The geometry parameterization is implemented in the pyGeo [38] module and allows for control of
the local shape of the geometry during optimization. In this study, a total of twelve FFD control points, six for the upper
surface and six for the lower, are used to parameterize the airfoil geometry, with locations shown in Fig. 4. The angle of
attack along with the FFD control points form the design variables for this case.

3. CFD modeling
To simulate the flow and compute the gradients, the finite-volume structured multiblock mesh solver ADflow [39],
is used. ADflow solves the compressible Reynolds-averaged Navier-Stokes (RANS) equations simultaneously. The
Spalart-Allmaras [40] turbulence model is used for this case, which ADflow solves in a segregated manner. An
approximate Newton-Krylov (ANK) [41] and a full Newton-Krylov (NK) approaches are used to converge the residuals.
The ANK solver is robust to act as a globalization scheme for the full NK solver and converges well even without
multigrid. The NK solver provides e�cient terminal convergence for all types of meshes once the solution is within the
Newton basin of attraction. ADflow uses a Jacobian-free discrete adjoint method [42] for gradient computation, which
is machine-precision accurate.

0 0.2 0.4 0.6 0.8 1

x/c

-0.1

-0.05

0

0.05

0.1

y/
c

FFD control points
RAE 2822

Fig. 4 Free-form deformation parameterization of the airfoil surface.
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(a) (b)

Fig. 5 O-grid for Case 2: (a) far-field, (b) surface.

An O-grid mesh, generated using pyHyp [43], is used for this case and is shown in Fig. 5. The far-field is set to a
distance of 100c from the airfoil. The H

+ is set to a value of less than one. The far-field Mach number is set to a value of
0.734, and the Reynolds number is set to a value of 6.5 ⇥ 106. A fixed angle of attack is used for the CFD simulations.
The convergence criteria for the flow residual norm, relative to its initial value, is set to a value of 10�14, and for the
adjoint residual norm, it is set to a value of 10�12.

A grid convergence study for the RAE 2822 airfoil is performed and shown in Table 2. This study is performed for a
fixed lift coe�cient of 82.4 lift counts and the corresponding angle of attack, drag and pitch moment coe�cients are
shown in Table 2. Mesh L1 is used as the high-fidelity model and Mesh L3 as the low-fidelity model. To calculate
the cost of the high- and low-fidelity flow and adjoint time, ten di�erent airfoil shapes were generated using LHS, for
di�erent angles of attack. The high- and low-fidelity flow time calculated was 140.6 and 9.0 seconds, respectively. The
low-fidelity model flow time is therefore 15.6 times cheaper than the high-fidelity model. The corresponding high- and
low-fidelity adjoint time was 101.9 and 10.2 seconds, respectively, making the low-fidelity adjoint time an order of
magnitude cheaper than the high-fidelity model. Note that the reported adjoint time is the total adjoint simulation time
for the three aerodynamic coe�cients, namely, the drag, lift, and pitching moment. The Mach number contour for the
high-fidelity model is shown in Fig. 6 (a). The shock wave can be seen where the contour changes color from red to
green. Figure 6 (b) shown the di�erences in the pressure coe�cient profile for the high- and low-fidelity models.

4. Results
The variation of the '

2 error metric with respect to the number of high-fidelity samples and computational cost is
shown in Fig. 7 for the di�erent ML algorithms. To calculate this error metric, a separate testing set containing flow
simulation results from 845 di�erent airfoil shapes, is used. Throughout this case, the testing set used is kept constant.

Table 2 Grid convergence study of the baseline shape for Case 2.

Mesh Number of cells U (deg) ⇠3 (d.c.) ⇠<,2/4 Flow time⇤ (s) Adjoint time⇤,⇤⇤ (s)

L3 8,000 2.55 186.6 -0.1088 7.9 9.6

L2 32,000 2.68 180.6 -0.1015 19.4 22.7

L1 128,000 2.70 177.1 -0.1000 127.9 95.3

L0 320,000 2.68 176.2 -0.1004 657.3 332.5
⇤Computed on a high-performance cluster with 16 processors.

⇤⇤Total time for three adjoint simulations.
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Fig. 6 CFD results for RAE 2822 airfoil: (a) Mach number contours (mesh L1), (b) pressure coe�cient profile

(low-fidelity: mesh L3, high-fidelity: mesh L1).
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Fig. 7 '
2

convergence history with respect to : (a) number of high-fidelity samples, (b) computing time, for all

ML algorithms.

A hyperparameter sweep was performed for all the ML algorithms and at each high-fidelity sample size used to train the
algorithms. The combination of hyperparameters which resulted in the highest global accuracy for each ML algorithm
and for each high-fidelity sample size was used to report the '

2 values in Figs. 7, 8, and 9. These hyperparameters
varied between each ML algorithm and for each high-fidelity sample size. The hyperparameters tuned included the
number of hidden layers, the number of neurons in each hidden layer, the activation function, the batch size, the total
number of epochs, the learning rate, the type a regularization used, and the value of the regularization coe�cient.

Figure 7 (a) shows that MFNN requires the least number of high-fidelity samples to reach the target accuracy
of 0.995 on the '

2 metric. Note that, for the gradient-enhanced cases, number of high-and low-fidelity sample cost
includes the cost of obtaining both the function and the gradients. In terms of computational cost required to obtain the
target accuracy, GEMFNN results the least time, just 0.3 hours lower than GENN. The cost of all the ML algorithms
is summarized in Table 3. To find the ideal number of low-fidelity samples for the multifidelity cases, the '

2 metric
convergence is studied for di�erent number of low-fidelity samples. The convergence for MFNN and GEMFNN are
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shown in Figs. 8 and 9, respectively. MFNN reaches the target accuracy fastest with 4, 000 low-fidelity samples, while
GEMFNN with 2, 000.

Once the target accuracy is met, the ML algorithms are used as surrogate models to find the optimum airfoil shapes.
On obtaining the optimum shapes, these airfoils are simulated in ADflow to obtain the objective and constraint values at
a lift coe�cient of 82.4 lift counts. The Mach number contours for the optimum shapes obtained using the di�erent ML
algorithms are shown in Fig. 10. The Mach number counters are look similar for the di�erent ML algorithms, however,
small variations can be seen around the airfoil surface. Figure 11 shows the optimized airfoil shapes and pressure
coe�cient profiles obtained from the di�erent ML algorithms compared to the RAE 2822 airfoil. The shock strength
has drastically reduced and the results are nearly shock-free. Table 4 reports the results of the optimized airfoil shapes.
GENN has the lowest drag of 97.6 drag counts, while GEMFNN has a slightly higher drag of 97.8 drag counts. Work
done by He et al. [24] suggests that the results for this benchmark case has a global optimum with a shock-free solution.
A shock-free solution is not obtained in this study. While the global accuracy of the ML algorithm is high, the local
accuracy at the global optimum is not high enough to capture the shock-free solution. Further work needs to be done to
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Table 3 Case 2 modeling cost.

ML algorithm High-fidelity sample cost Low-fidelity sample cost Computational cost (h)

NN 2,557 - 99.9

GENN⇤ 852 - 14.4

MFNN 429 4,000 26.8

GEMFNN⇤ 676 2,000 14.1
⇤Flow plus adjoint evaluation cost

address this issue. Table 5 shows the grid convergence study performed on the optimized airfoil shape, obtained using

(a) (b)

(c) (d)

Fig. 10 Mach number contours of the optimized designs using various surrogates: (a) NN, (b) GENN, (c)

MFNN, (d) GEMFNN.
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Fig. 11 Case 2 baseline vs optimized results: (a) airfoil shape, (b) pressure coe�cient profile.

Table 4 Optimization results for Case 2.

Parameter/Method Baseline NN GENN MFNN GEMFNN

⇠3 (d.c.) 177.1 99.0 97.6 100.2 97.8

⇠<,2/4 -0.1000 -0.0928 -0.0926 -0.091 -0.0930

� 0.07767 0.07768 0.07768 0.07768 0.07768

U (deg) 2.70 2.64 2.68 2.69 2.65

Table 5 Grid convergence study of the optimized shape (using GEMFNN) for Case 2.

Mesh Number of cells U (deg) ⇠3 (d.c.) ⇠<,2/4
L3 8,000 2.37 113.4 -0.1091

L2 32,000 2.52 99.1 -0.0993

L1 128,000 2.65 97.8 -0.0930

L0 320,000 2.68 99.0 -0.0918

GEMFNN algorithm. A total drag reduction of 77.2 drag counts is obtained using the GEMFNN algorithm.

IV. Conclusion

A gradient-enhanced multifidelity neural network (GEMFNN) algorithm is proposed for aerodynamic shape optimization.
The construction of GEMFNN is similar to multifidelity neural networks (MFNN) and it is a multifidelity extension of
gradient-enhanced neural networks (GENN). In addition to the mean squared error (MSE) loss function used by NN
in this study, GENN uses the MSE of the true and predicted gradient values. GEMFNN consists of three NN, one to
approximate the low-fidelity data (##!), which is then connected to two other NN, one with linear (##�1) and the
other with nonlinear (##�2 ) activation functions. This helps capture both linear and nonlinear correlations between the
high- and low-fidelity data.

GEMFNN is demonstrated on two cases, namely, a 20-dimensional analytical problem, as well as benchmark case II
developed by the AIAA Aerodynamic Design Optimization Discussion Group (ADODG). GEMFNN is compared to
NN, GENN, and MFNN. For both cases, the variation of the coe�cient of determination ('2) metric with the number
of high-fidelity samples is studied. GEMFNN is the most computationally e�cient for both cases. For the analytical
case, it is eight times cheaper than GENN. The benefit of using both gradient and multifidelity information in training
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the ML algorithms for the 20-dimensional cases is shown for this case. For the the airfoil case, however, it is just 0.3
hours cheaper than GENN. In terms of high-fidelity sampling cost, GEMFNN required 176 fewer samples than GENN.
Further cost reduction for the multifidelity ML algorithms can be achieved by using a di�erent low-fidelity model, such
as a coarse mesh with lower convergence criteria for the residuals, or by using a separate surrogate model in-place of
CFD. This, however, needs to be investigated. In this study, only twelve FFD points are used to parameterize the airfoil.
Future work will involve studying the e�ect of the number of design variables on the high- and low-fidelity sampling
cost and the resulting optimum shape.

Once the global target accuracy of the ML algorithm is met, it is used as a surrogate model to find the optimum
design. The resulting optimized shapes from all the ML algorithms had nearly shock-free solution. Small variations in
the shape of the optimized airfoil can be seen, which resulted in di�erent shock strengths and drag coe�cient values.
The optimum design using GEMFNN had a 77.2 drag count di�erence from the baseline airfoil shape.

While GEMFNN was the most cost e�cient method to reach the target accuracy for the airfoil optimization case,
it was only slightly cheaper than GENN. However, what is noticeable, is that, in the absence of a large number of
high-fidelity data, the multifidelity ML algorithms were significantly more accurate than the single-fidelity ones. If a
method to quantify uncertainty in these algorithms is developed, it is possible to perform e�cient global optimization
(EGO) starting with a small number of high-fidelity samples. This could also overcome the problem in local inaccuracy
while finding the optimum shape and could potentially find the shock-free global optimum. Both the uncertainty
quantification in ML as well as using EGO with these algorithms will be done in future work.
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