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ABSTRACT

Recent works have shown that neural networks are vulnera-
ble to carefully crafted adversarial examples (AE). By adding
small perturbations to original images, AEs are able to de-
ceive victim models, and result in incorrect outputs. Research
work in adversarial machine learning started to focus on the
detection of AEs in autonomous driving applications. How-
ever, existing studies either use simplifying assumptions on
the outputs of object detectors or ignore the tracking system
in the perception pipeline. In this paper, we first propose
a novel similarity distance metric for object detection out-
puts in autonomous driving applications. Then, we bridge
the gap between the current AE detection research and the
real-world autonomous systems by providing a temporal AE
detection algorithm, which takes the impact of tracking sys-
tem into consideration. We perform evaluations on Berkeley
Deep Drive and CityScapes datasets, by using different white-
box and black-box attacks, which show that our approach out-
performs the mean-average-precision and mean intersection-
over-union based AE detection baselines by significantly in-
creasing the detection accuracy.

Index Terms— Adversarial Attack, Neural Networks

1. INTRODUCTION

Significant progress in machine learning (ML) techniques,
such as Deep Neural Networks (DNN5), has enabled the de-
velopment of safety-critical ML systems like autonomous
vehicles. Neural network-based object detection models are
widely employed as an important part of autonomous driving
perception systems. Since the control successors are highly
dependent on the outputs of object detectors, the reliability
of object detection is very important for safe autonomous
driving. However, neural network-based object detectors
have been shown to be vulnerable to adversarial examples
(AEs) [1, 2, 3, 4],which are designed to deceive the models.
To address this problem, researchers have been focusing on
defending against adversarial attacks.
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Defense mechanisms aim to strengthen the DNN models,
and are classified into two broad categories [5]: adversarial
training and gradient masking. Kurakin et al. [6] introduced
the idea of adversarial training, which tries to integrate exist-
ing AE generation methods into the training process. How-
ever, this approach requires prior knowledge of possible at-
tacks, and the robustness of adversarially trained models usu-
ally overfits to the choice of norms [1]. The idea behind gradi-
ent masking is to enhance the training process by training the
model with small gradients so that it is not sensitive to small
changes in the input [7]. However, Papernot et al. [5] con-
cluded that controlling gradient information in training has
limited effects in defending against adversarial attacks.

Since attack approaches are more advanced compared to
defense techniques, some researchers have focused on ‘de-
tecting’ AEs, instead of hardening the model itself. One of the
successful AE detection methods is perturbation-based detec-
tion [8], which hypothesizes that, the robustness of DNNs to
local changes (e.g., squeezing, scale etc.) does not generalize
to the perturbations added by AEs. Therefore, researchers add
perturbations to an input image, then do inferences for both
the original and perturbed images. If the outputs are different,
the input image is concluded to be an AE.

Although existing AE detection methods provide promis-
ing results for image classification, much less attention has
been paid to object detection. One significant challenge is the
design/use of the right similarity metric for the object detec-
tor outputs. Unlike image classification, for which the out-
put is a 1-D vector representing probabilities of each class,
the output of object detection contains bounding box loca-
tion, label index and confidence scores. To handle this, some
prior work assumes that there is only one bounding box in
the image [9]. However, in real world, an image often con-
tains multiple objects of interest. Thus, the aforementioned
assumption cannot be made, especially in autonomous driv-
ing applications. Mean average precision (mAP) is the most
commonly used metric to evaluate the performance of object
detectors, such as in the Open Images 2019 challenge [10].
Some existing works directly employ mAP to calculate the
distance between the detection outputs of two images. How-
ever, when average precision is used, all bounding boxes are
treated the same. Also, when a perturbation-based AE detec-
tion method is used, adding perturbations to benign images



will cause differences in the output boxes as well, and this
will mostly affect the smaller objects. Thus, the mAP-based
metric is not suitable for perturbation-based AE detection.

In this paper, we present a unified framework to bridge the
gap between AE research and real-world autonomous driving
systems. Our framework extends the AE detection mecha-
nisms developed for image classifiers into the object detection
domain by designing a novel similarity metric to detect incon-
sistencies between dense object detection results of two video
frames, and by adding temporal information into the detection
pipeline to further improve accuracy. We first evaluate the
impact of AEs on end-to-end visual perceptual autonomous
driving systems, and then propose a defense leveraging the
evaluation results to effectively prevent the threat from AEs
in self-driving tasks. Our framework allows different aux-
iliary transformations, which have been demonstrated effec-
tive in unveiling AEs in image classification and face recog-
nition, to be easily transferred to the object detection domain
without sacrificing effectiveness. To evaluate our approach,
we perform adversarial attacks against state-of-the-art object
detectors by using the most effective attacks in the image
classification domain. We conduct a large scale evaluation
on diverse adversarial targets on different datasets, namely
Cityscapes [11] and Berkeley Deep Drive (BDD) [12]. The
results show high AE detection accuracy with only 2.86%
false positive (FP) and 3.16% false negative (FN) rates. The
code is available at: https://github.com/anony4papers/wAP.

2. REEVALUATION OF ADVERSARIAL THREAT

Autonomous driving systems employ tracking algorithms to
post-process the object detection results before using them
to produce control actions. A tracking algorithm creates a
unique ID for each detected object, and tracks them in a video.
An ideal tracking algorithm can handle cases of tracked ob-
jects ‘disappearing’, pick back up objects it has ‘lost’ in be-
tween frames, and is robust to merges and occlusions.

Kalman filter [13], also known as linear quadratic estima-
tion (LQE), is one of the most commonly used object tracking
algorithms, and employed by the popular open-source self-
driving platforms including Apollo [14] and Autoware [15].
The Kalman filter algorithm is recursive, and can run in real-
time, using only the present input measurements and previ-
ously calculated state and its uncertainty matrix.

Recent works [16] study adversarial ML attacks by
considering the complete visual perception pipeline in au-
tonomous driving, and taking both object detection and track-
ing into consideration. It was shown that [16], due to the exis-
tence of Kalman filter-based tracking system, which has been
proven effective in tolerating missed and occasionally inac-
curate object detection results [17], only temporal adversarial
attacks, which can successfully attack several consecutive
frames, can fool the perception pipeline in autonomous driv-
ing. However, current physical adversarial attack approaches
are not effective enough to generate high success rate AEs in

consecutive frames. Our threat reevaluation results suggest
that although object trackers like Kalman filter raise the bar
for adversarial attacks, strong and robust AEs can still fool
the detectors and cause wrong perception results.

3. PROPOSED METHOD

The overview of our proposed AE detection framework is
shown in Fig. 1. First, for each frame x; from time ¢, a trans-
formed image x} is generated using an auxiliary transforma-
tion T'(x;). This is based on a hypothesis that the robustness
of DNNs to local changes (e.g., squeezing, scale, position)
does not generalize to the perturbations added by AEs, which
has been validated by previous works [18, 19, 20]. Thus, if
x is an AE, it is highly likely that the object detection result
f(x) will be very different from that of f(z').

However, there is no suitable metric to describe/quantify
the similarity of two object detection results. Existing AE de-
tection methods, designed for image classification tasks, sim-
ply compare the predicted classes and their confidences. Yet,
in object detection, we need to deal with dense and sometimes
overlapping bounding boxes, and it is non-trivial to design a
metric, which provides a good balance between precision and
recall. As shown below, the number of false positives can be
prohibitively high when using traditional mAP as the distance
metric, since it assigns equal weights to all the detected ob-
jects regardless of their sizes and classes. Also, calculating
the mAP between two frames instead of a set of test images
provides no statistical significance.

Thus, we propose a novel distance metric, referred to as
the weighted average precision (WAP) and detailed in §3.1,
to describe and quantify the differences between two object
detection results. In addition, by monitoring the variance of
a temporal inconsistency metric I(D;), AEs can be detected
in real-time, and mitigation actions, such as requiring human
control, or rolling back to the predictions of Kalman filter, can
be taken on time. Intersection over Union (IoU) measures the
overlap between the predicted and the ground truth bounding
boxes. Mean IoU (mloU) is another metric we used in our ex-
periments for comparison purposes, where mloU is the mean
of all the IoU values across all classes.

3.1. Proposed Frame-wise Distance Metric

The pseudo code for the computation of our proposed frame-
wise distance metric D(x,y) is provided in Algorithm 1,
where x and y refer to the object detection results from the
original image and its transformation, respectively. Two im-
ages are run through an object detector to obtain bounding
boxes (bbox), confidence scores (cs) and bounding box pre-
dicted classes (cl) for each image. By considering = as the
ground truth, and based on the IoU value between the bound-
ing boxes of x and y and an overlap threshold (M1 Nyyeriap),
all bounding boxes are classified into true positive (TP), false
positive (FP) and false negative (FN) sets. Let tp be the set
of index pairs of TP bounding boxes, fp be the set of indices
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Fig. 1. The proposed framework for detecting AEs.
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The object detection model is used on both the original images and the images

generated from an auxiliary transformation 7°(-). Distance D(-) is calculated between the object detection results of each pair. The distances
from consecutive frames are used to obtain a temporal inconsistency metric (-), and the adversarial attack can be detected on-the-fly by

monitoring the variance of I over time.

Algorithm 1: Frame-wise Distance Metric D(x, y)

Data: x: {bounding boxes, confidence score, object class},
y: {bounding boxes, confidence score, object class}
tp=[f=[1;
for i <— O to N, do
for j < 0to N, do
IoU;j < getIoU (z;.bbox, y;.bbox);
if IOUL'J' > M[Nm,erlap && z;.cl == yj.cl then
tp append (7, j) ;
break;
end
end
fn append ¢ ;

end

fp={0,1, ..., Ny};

for i <— 0 to Ny, do
| del fp[tp[i,1]] ;

end
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of FP bounding boxes of y, and fn be the set of indices of
FN bounding boxes of x. The distance metric is composed
of area-based and confidence score-based distance. For the
bounding box pairs in the TP set, sum of the difference areas
(DA(A, B) = (A— B)U(B — A)) is calculated, and divided
by the sum of areas of bounding boxes of x and y. For FP
and FN set, sum of the bounding box areas are calculated
and divided by the sum of bounding boxes areas of y and z,
respectively. All the area-based values are fed into the weight
function F(m) = %~ to make small bounding boxes con-
tribute less. For confidence scores part, we obtain difference
of confidence scores of the TP pairs, confidence scores of
FP samples and FN samples. All the confidence score-based

values are multiplied by a constant weight parameter (7.s).
The weighted sum of Dy, D), Dyy, and D, is obtained
to get the final distance D(z, y).

3.2. Temporal Consistency

In a perception system, a tracker will be deleted if it cannot
be associated to an object for a duration of R frames. Thus,
for AE detection, only attacks that last longer than R frames
should be regarded as valid AEs. In other words, in a set of
R consecutive frames, AEs that can successfully attack all R
frames are regarded as an effective attack. Intermittent at-
tacks, which do not affect consecutive frames will likely fail,
since trackers save information from the benign samples, and
if attacks are not able to retain sufficient duration, trackers
will be calibrated back to benign objects. Motivated by this
fact, we propose a temporal detection approach, which can be

expressed as R

[T: = p), (1)
i=0

where 1(-) is the indicator function returning 1 if (D; — p) >
0, and 0 otherwise, and p is the threshold for the distance met-
ric D(-). This is an extension of single-frame distance metric
D(-) to a set of consecutive frames. Only when distance met-
ric values for all R single frame attacks are higher than the
threshold i, the temporal metric I(. .. ) outputs a 1.

I(Dy...Dy) =

4. EXPERIMENTAL RESULTS

We have performed evaluations by using BDD10k [12] and
Cityscapes [11] datasets, implemented both white-box and
black-box attacks, and inserted adversarial frames into the
videos to build our adversarial evaluation set. For white-
box attack, we used the CW;, ¢, which is a state-of-the-art
white-box attack approach. For black-box attacks, we em-
ployed momentum iterative fast gradient sign method (MI-
FGSM) [4], translation invariant momentum diverse inputs
(TI-DIM) [21], Momentum Diverse Inputs Fast Gradient Sign
Method (DIM) [22] and dispersion reduction (DR) [23]. For
auxiliary image transformation 7(.), we employ bit-wise
squeeze as one of the best performing feature squeezing
methods. For generating object detection outputs, we use



Yolo-v3 [24], which is widely employed in autonomous
driving perception systems. We compare the AE detection
performance of our proposed wAP-based method with that of
mAP and mloU baselines.

4.1. Evaluation on Single-frame AE Detection

For single-frame detection, we compute the distance D(-)
between an input image and its version transformed with 7°(),
and use a threshold to decide whether the image is an AE.
The results of single-frame AE detection are summarized
in Table 1 for BDD10k and CityScapes datasets. We used
Bit-wise (4, 5, 6, 7) squeeze as the transformation. Our pro-
posed wAP-based approach outperforms the mAP-based and
mloU-based algorithms on both datasets and for five different
attack methods. On 38 out of 40 experiment configurations,
including black-box and white-box attacks, our approach
achieves higher AE detection accuracy. For instance, for the
C&W attack and Bit7 squeeze, our method provides 72.28%
and 73.93% detection accuracy on Bdd10k and Cityscapes
datasets, respectively. For the DR attack, which was shown
to be an effective and transferable attack [23], and with Bit7
squeeze, our proposed wAP approach achieves a detection ac-
curacy of 72.53% compared to 65.72% and 67.29% provided
by mAP and mloU, respectively, on the Cityscapes dataset
For the TI-DIM attack, on the Cityscapes dataset with Bit7
squeeze, our wAP approach increases the detection accuracy
from 65.97% and 68.74% to 72.7%, compared to using mAP
and mloU, respectively.

Accuracy(%) Bdd10k Cityscapes
Attack Squeeze | mAP mloU wAP | mAP mloU wAP
method method (ours) (ours)
C&W [1] bit4 59.95 6276 64.55 | 71.20 65.84 69.47
bit5 6735 67.62 68.87 | 7224 7199 74.05
bit6 68.18 71.82 71.60 | 73.68 74.10 74.18
bit7 69.41 71.79 7228 | 73.68 73.27 73.93
DR [23] bit4 68.43 63.15 73.50 | 56.51 6220 66.39
bit5 70.84 69.62 7514 | 59.03 65.09 71.46
bit6 70.67 72.10 75.65 | 6791 68.74 72.63
bit7 7133 7275 73.20 | 65.72 6729 72.53
MI-FGSM [4] | bit4 68.02 6123 7321 | 71.20 62.15 74.20
bit5 65.05 66.86 6943 | 71.78 67.22 75.00
bit6 69.80 70.99 7217 | 70.78 69.21 7212
bit7 68.28 72.19 7290 | 72.18 69.04 72.92
TI-DIM [21] bit4 68.07 61.54 73.62 | 69.71 60.96 73.45
bit5 67.47 68.09 6943 | 67.29 6542 7141
bit6 68.78 70.47 7238 | 66.37 69.06 71.75
bit7 69.87 71.83 7239 | 6597 68.74 72.70
DIM [22] bit4 69.20 5990 7275 | 70.76 62.6 74.94
bit5 64.54 67.63 69.28 | 69.16 67.44 70.88
bit6 68.36 71.48 7191 | 70.70 69.81 72.50
bit7 69.72  71.00 71.88 | 68.66 69.26 72.03

Table 1. Comparison of AE detection accuracy against different
attacks, with different-bit feature squeezing, when using mAP, mloU
and the proposed wAP metric.

4.2. Evaluation on Temporal AE Detection

The state-of-the-art temporal attack can successfully attack a
tracking system in 3 consecutive frames [16]. Thus, for this
experiment, we set the number of frames for temporal consis-
tency to ¢ = 3. We randomly chose multiples of 3 consecu-
tive frames from videos to insert AEs. Since these intervals

can overlap or neighbor each other, the number of consecutive
AEs can be greater than or equal to 3. Table 2 shows the detec-
tion accuracy values for single-frame and temporal detection
of AEs by the proposed wAP method, and the mAP and mIoU
baselines when bit7 squeezing is used. As seen in Tab. 2, our
proposed temporal wAP-based detection provides the highest
AE detection accuracy for all the attack methods. For exam-
ple, with C&W attack, proposed wAP increases the detection
accuracy from 93.4% and 89.8% to 97.6% compared to mAP
and mloU, respectively. For MI-FGSM attack, wAP increases
the detection accuracy from 88.2% and 94.2% to 97.2%. The
table also shows that temporal detection provides much better
accuracy than single-frame detection.

Single Frame Temporal
Attack mAP  mloU wAP mAP  mloU wAP
method (proposed) (proposed)
C&W [1] 69.41 71.79 72.28 93.40 89.80 97.60
DR [23] 71.33 7215 73.20 84.20 90.20 91.20

MI-FGSM [4] || 68.28 72.19 72.90 88.20 94.20 97.20

TI-DIM [21] 69.87 71.83 72.39 88.80 94.60 97.40

DIM [22] 69.72  71.00 71.88 86.77 91.72 95.94
Table 2. Comparison of AE detection accuracy on BDD10k
dataset, using both single-frame and temporal detection, against dif-
ferent attacks when using proposed wAP, mAP and mloU metrics.

In summary, compared to the mAP and mIoU baselines,
our proposed wAP metric is optimized, focuses on single im-
age instead of the whole dataset, and introduces weights to
bounding boxes. Moreover, since the proposed wAP metric
is calculated by making use of IoU, our AE detection method
can be applied to any perception task that is based on overlap-
ping of detection results, such as object detection, semantic
segmentation, and text detection and recognition. As for the
proposed temporal algorithm, any application that is based
on temporal information or tracking, such as video and audio
processing, can benefit from our approach.

5. CONCLUSION

We have proposed a new weighted average precision (wAP)
distance metric, and temporal optimization method to im-
prove the detection of AEs for object detection in autonomous
driving perception systems. Our proposed wAP metric fo-
cuses on bounding boxes in individual images, and can be
applied to a sequence of frames to fit into a tracking sys-
tem. The motivation behind the temporal wAP is that attack-
ing a single image frame is not enough to successfully deceive
a vehicle’s perception system, since it also involves tracking,
which is able to make predictions when bounding boxes of
objects cannot be detected or missed for a small number of
frames. Evaluation on different autonomous driving datasets,
and with a variety of white-box and black-box attacks shows
that our proposed pipeline greatly enhances the AE detection
performance compared to the mAP-based and mloU-based
baselines.
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