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Multifidelity Aerodynamic Flow Field Prediction Using
Random Forests

Jethro Nagawkar®, Marc Brittain®, and Leifur Leifsson*
lowa State University, Ames, lowa, 50011, USA

A random forest (RF)-based framework to predict the high-fidelity Reynolds-averaged
Navier-Stokes (RANS) flow field, namely, the pressure, velocity and turbulent viscosity, is
proposed in this work. In this framework, RF are used to increase the fidelity of a low-fidelity
flow field generated using a potential flow solver. Two cases are studied, both consisting of a
flow past a backward facing step. In the first case, the data is generated using ten different
inlet velocities. and in the second, using six different step heights. The input parameters to the
RF include the x and y cell-center locations, the corresponding x and y potential flow velocities,
and the inlet velocity to the domain, for the first case. For the second case, the cell-center
locations are normalized using the step height, and the step height is used in place of the inlet
velocity as input parameters. The outputs of the RF are the RANS velocities, pressures, and
turbulent viscosities at the corresponding x and y cell-center locations. The results from the
RF framework are compared to those generated using the tensorFlowFoam (TFF) framework
and from directly solving the RANS equations. The errors are quantified using both the
absolute and relative L, norm errors at different locations and for different flow quantities. RF
consistently shows lower errors compared to TFF, with the exception of viscosity ratios for the
second case. The relative L, norm errors are two to 30 times lower for RF compared to TFF
depending on the field variable and location. RF is also takes two to three times less time to
train than TFF and takes about a second to predict the entire flow field.

Nomenclature

= skin friction coefficient, ;—W
= reference dynamic pressure, 0.50,¢ V2, 4 [N/m?]

= Reynolds number based on the step height, M, [-]
= step height, [m]

= Dbaseline step height, [m]

= total number of samples

= number of samples

= number of subsets

= number of high-fidelity flow field variables

= domain inlet velocity, [m/s]

= reference air velocity, [m/s]

= sample points of the design variables

= design variables used to make RF-based flow field prediction
= low-fidelity flow field variables

= high-fidelity flow field variables

= RF-based flow field prediction

= x coordinate of the domain, [m]

= x coordinate of the grid cell-center, [m]

= y coordinate of the domain, [m]

=y coordinate of the grid cell-center, [m]
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Pr = RANS pressure in the grid cell-center, [N/m?2]

Up = potential flow x coordinate velocity in the grid cell-center, [m/s]
U, = RANS x coordinate velocity in the grid cell-center, [m/s]

Vp = potential flow y coordinate velocity in the grid cell-center, [m/s]
vy = RANS y coordinate velocity in the grid cell-center, [m/s]

Xrar = boundary layer reattachment length, [m]

y* = non-dimensionalized first layer cell thickness, [-]

% = kinematic viscosity, [m?2/s]

Ve = turbulent viscosity, [m?/s]

pref = reference air density, [kg/m3]

Ty = Wall shear stress, [N/m?]

I. Introduction
Aerodynamic design optimization (ADO), computational fluid dynamics (CFD), and machine learning (ML) are
increasing becoming an intrinsic part in the design of complex physical systems in the aerospace, automotive, and
energy sectors. While these three fields were initially developed separately, recently there has been an increasing effort
to couple these systems together to find optimum designs [1, 2], perform uncertainty analysis [3} 4] and solve inverse
problems [} 16].

ADO methods have traditionally relied on expensive high-fidelity simulations to calculate both the cost and constraint
function values [[7H9]. These methods also require multiple and repetitive high-fidelity model evaluations during the
iterative design process. When combined with a large number of design variables, these methods result in problems that
can be difficult to solve in a reasonable time period.

To overcome these challenges, several surrogate modeling techniques have been introduced [1, (10, [11]]. These
techniques can be classified into two types: data-fit methods [12]] and multifidelity methods [13]. Data-fit methods
include fitting a response surface through the evaluated cost function values at sampled points in the design space.
Kriging [14], polynomial chaos expansions [15], and neural networks (NN) [16] are some examples of data-fit methods.
Multifidelity surrogate modeling [[13]] methods use information from multiple levels of fidelity. Low-fidelity data is used
to provide information on the trends to a relatively small number of high-fidelity data samples. Cokriging [17]] and
manifold mapping [[18] are some examples of this method.

The use of ML to increasing the fidelity of Reynolds-averaged Navier-Stokes (RANS) models have increasingly
become popular [19H22]. A field inversion ML method to construct a deficiency (8) term from high-fidelity large
eddy simulation data was developed by Singh et al. [[19,20]. This term was then used in one of the two additional
transport equations of a two-equation RANS model. A NN was then used to construct a functional form of 8 from a set
of non-dimensional flow features. Cases that were not trained using the NN showed improvements. Wang et al. [21]]
developed a physics informed ML framework. Mean flow features were used as inputs to a random forest (RF) [23]] and
the outputs the discrepancy of Reynolds stresses between the RANS model and direct numerical simulations. This
discrepancy term was embedded into the RANS model and the resulting RANS model showed significant improvements
in field prediction. While the methods above are promising, they involve solving the RANS equations every time a
prediction is needed to be made.

Some researchers [1, 2] tried to directly predict the quantities of interest instead of solving the governing equations
each time. Gradient-enhanced Kriging with partial least squares [[11] was used by Li et al. [2] to predict the drag, lift
and pitching moment coefficient of different airfoils at varying flow conditions. A similar study was performed by
Bouhlel et al. [[L], but gradient-enhanced NN [24] was used to predict the force coefficients for an airfoil. The data used
in these approaches consisted of values generated in both subsonic and transonic flow regimes. The major drawback of
these methods is that they require a large amount of data to train the algorithms used, typically in the order of 103 to 10°.

The tensorFlowFoam (TFF)* framework was developed by Maulik et al. [25]26] to predict the turbulent viscosity
obtained from data generated using RANS models. Flow past a backward facing step was used as their test case. Data
for the first case was generated using ten different inlet velocities, while for the second, using six different step heights.
The NN is then tested on cases with two untrained inlet velocities and step heights, respectively. In order to predict the
flow field for the untrained cases, they solve the continuity and momentum equations in RANS and use the turbulent
viscosity predicted by the NN, instead of solving the additional closure equations. This reduced the simulation cost by a

*https://github.com/argonne-1cf/TensorFlowFoam
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factor of five [25]]. In that study [25]], each grid cell provided one data sample used in the training of the NN. Since each
CFD simulation had approximately 10° grid cells, the total number of CFD simulations required to accurately train the
NN was small.

This work is motivated by Maulik et al. [25]]. Instead of just predicting the turbulent viscosity, the velocity and
pressure fields are predicted as well. Furthermore, the RF [27] ML algorithm is used in place of NN [[16]. The results
from this work are compared to TFF for the same two cases used by Maulik et al. [25] as well as RANS CFD simulations.
Note that the two cases are redone using TFF and with data we generated.

The next section describes the method used to predict the flow field using RF. The following section describes the
application of this RF framework two cases. This framework is benchmarked against the TFF framework and is also
compared to RANS CFD simulations. Lastly, the conclusions and future work are presented.

I1. Methods
This section outlines the methods used to construct the RF-based flow field prediction framework. The section begins
with the workflow, followed by the sampling plan, a description of the RF used, the CFD setup and validation, the
validation metric used, and finally ends with the RF-based flow field prediction.

A. Workflow

A flowchart of the proposed RF-based flow field prediction framework is shown in Fig. [T} It consists of two parts, the
offline part (Fig. [I(a)) and the online part (Fig. [I(b)). In the offline part, the RF is trained and validated, while the
online part, the trained RF is used to make flow field predictions, given the low-fidelity flow field data and the design
parameters. The process for the offline part starts by sampling the design space. Both low and high-fidelity models are
run for sampled designs to generate the data required to train and validate the RF. The RF is trained using 90% of the
this data, while 10% is used to validate the RF. The is done in order to tune the hyperparameters in order to improve the
predictive capabilities of the RF. The mean squared error metric is used to quantify the training and validation dataset
accuracy. Once the hyperparameters are tuned, the RF is retrained with both the training and validation data, and the RF
is now ready to be used in the online part. In this part, the low-fidelity model is run on previous unsampled design
parameters, and the data generated is used as inputs to the trained RF to make high-fidelity flow field predictions.

B. Sampling plan

Sampling is the process of selecting discrete samples in the design space [28]]. It is an iteration-based process in which
the design parameters are randomly drawn from probability distributions assigned to the parameters. In this work, the
full-factorial sampling [28] plan is used to generate the design parameters. This is the same sampling plan used by
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Fig. 1 A flowchart of the proposed multifidelity random forest-based flow field prediction framework: (a)
training and validating the random forest, (b) random forest-based flow field prediction.



Maulik et al. [25]]. For these sampled design parameters, both high-fidelity RANS CFD simulations and low-fidelity
potential flow simulations are performed to generate the required flow field.

C. Random forest

Random forest [23}27] is an ensemble ML method [[29] which can be used for both regression and classification tasks
and is constructed using a multitude of decision trees [30]]. The output predictor space is segmented by both decision
trees [30] and random forests [27]]. The mean or mode value of the training observation in which the new observation
belongs to is used as its predicted value, for a new observation.

A schematic of a random forest with two decision trees is shown in Fig. [2. Decision trees consist of a root node,
followed by several intermediate nodes, and terminates on the leaf. The root node of a decision tree divides the entire
training dataset into smaller datasets or subsets. Each individual input feature and a splitting criterion such as a mean or
mode of the input feature value is iterated over and the combination which results in the lowest weighted mean squared
error over all the subsets is used as the criterion to split the data at the root node [31]. The weighted mean squared error
is given by

N& «ny o 2k) () 2
o Zn 2t Zj]:1( HF,j_fHF,j) (1)
split = k=1 N(k)nh i

where N¥) is the number of samples in the k™ subset created after splitting at the root node, n;, is the number of output
predicted variables, fé;) ; Tepresent the high-fidelity CFD field prediction for the j*” field variable and the i’ sample in

the subset, and f}(nli)j is the mean of the of the CFD field predictions for the j* field variable in the k" subset, and is
given by

N® (i
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The intermediate nodes perform the same task as the root node, but with data from a given subset created from the
previous intermediate or root node. Again, the subset is split into a smaller subset. This process continues with smaller
and smaller subsets till the leaf node is reached. Hyperparameters such as minimum number of samples in a subset
required to split it, and maximum tree depth can be set to decide whether a leaf node is reached. The leaf node returns
the predicted value from the decision tree. This value is the averaged value of all the samples in the subset of the leaf
node.

The main advantages of decision trees include ability to handle large amounts of data, interpretability, and ease of
use [31]]. This makes it attractive to use for various ML tasks. Its drawbacks, however, include high sensitivity to the
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Fig. 2 A schematic of a random forest.



training dataset, and over-fitting [31]. Random forest overcomes these problems by averaging the outputs from multiple
decision trees, which is set using the number of trees hyperparameter, and in order to construct each individual decision
tree, data from the training dataset is randomly selected with replacement and fed into the decision tree.

D. CFD setup and validation

In this work, the flow past a backward facing step is simulated. The domain of the geometry used in this study is shown
in Fig[3] The step height h is fixed at 12.7 mm and the remaining domain is scaled as per the dimensions shown in Fig.
The inlet velocity to the domain is set to a value of 44.2 m/s. The domain dimensions as well as the inlet velocity are
set in accordance to experimental data from David and Seegmiller [32], in order to validate the CFD setup.

This work uses blockMesh in OpenFOAM version 5.0 [33] to generate the mesh and is shown in Fig. f| Near
the wall boundaries, the mesh is refined to ensure that the first cell thickness is less than a y* value of one. A grid
independent study is performed and is shown in Table

OpenFOAM version 5.0 [33] is used to simulate both the high and low-fidelity flow. The potentialflowFoam and
simpleFoam solvers are used to simulate the low-fidelity potential flow field and the high-fidelity Spalart-Allmaras
[34] RANS turbulence model flow field, respectively. Figure[3 shows the boundary conditions set for this case. The
outlet has a zero pressure gradient value, and the viscosity (v) of the fluid used has a value of 1.56 x 107> m?/s. The
convergence criteria set is pressure and velocity residuals fall to a value below 107 for the RANS simulations. Table
|I shows the simulation time as well as the reattachment length (xg7,) of boundary layer downstream of the step for
different mesh sizes. On refining the mesh, the reattachment length from the CFD simulations closer to the experimental
value. For this study, mesh L1 is used for both the cases.

Symmetry No-slip wall
Vglocity Pressure
inlet 8h
outlet

Symmetry T h

No-slip wall
| I I
20h 110h 50h
x=0

Fig.3 Domain and boundary conditions of the backward facing step.

Fig. 4 Mesh generated for the backward facing step.



Table 1 Grid convergence study for the backward facing step.

Mesh No. of cells xgraz  Simulation time*, s
L3 7,620 597h 125

L2 30,730 6.03h 493

L1 123,000 6.06h 3434

LO 408,000 6.29n 2912.5

Exp [32] - 6.26h -

*Computed on a high-performance cluster with 16 processors.

E. Validation

This work uses 90% of the data to train the RF, and 10% to validate its accuracy. The mean squared error (MSE) metric
is used to measure the training and validation dataset accuracy, and is averaged over all the output predictions and is
given by

N A(i) (@) \2
i=1 Z?il(fH;,j - fH;,j)
L= , 3
Nnh
where ny, is the number of high-fidelity flow field variables, N C m, where m is the total number of data samples, N is

the number samples in either the training or validation data sets, f}(ﬁ:) j and fé;) ; Tepresent the high-fidelity RF and CFD

field prediction, respectively, of the j*” field variable and the i*" sample.

F. Random forest-based flow field prediction

Once trained, the RF can be used to increase the fidelity of the low-fidelity potential flow field to make high-fidelity
RANS field prediction. In order to do so, the potential flow field variables and the design variable are fed into the trained
RF and the corresponding RANS field is reconstructed. In this study, the absolute error as well as the relative L, norm
errors are measured at different locations in the domain, in order to quantify the accuracy of the predicted RF flow field.
The absolute error is given by

Labs,; = | fur,j = fur,j, “4)

where fHF, jand fy,; are the high-fidelity RF and CFD flow field prediction, respectively, for a given variable of interest
j. The relative L, norm is given by
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Engineering outer-loop problems, such as aerodynamic shape optimization, uncertainty quantification and propagation
as well as global sensitivity analysis, typically require multiple and repetitive high-fidelity physics-based simulations.
This makes it challenging to use for different engineering applications. Replacing these high-fidelity simulations with
the RF-based flow field prediction reduces this cost dramatically.

III. Numerical Examples
This section presents the two cases used to demonstrate the RF-based flow field prediction framework. Both these cases
involves a flow past a backward facing step. The results are compared to both the TFF framework as well as CFD
simulations.

A. Casel

In this case, the flow past a backward facing step is simulated. The step height, H = 1.0h, is used and the Reynolds
number based on this step height is defined as Rey = UjpjesH/v, where Uy e, is the freestream velocity at the inlet to
the domain, H is the step height, and v is the kinematic viscosity. The Rey for this case varies between 34, 000 and
41,500, based on the selected U;;.; values.



In this case, the high-fidelity RANS simulations are replaced with a RF that predicts the RANS flow field, namely,
velocity (u, and v,), pressure (p,) and turbulent viscosity (v;), in the domain. The inputs to the RF are the cell-center
locations of the grid, x. and y., respectively, the velocities at these gird locations from a low-fidelity potential flow
solver, given by u,, and v ,, respectively, and U;,;.;. The RF for this case is trained with data from ten CFD simulations
with Ujper varying from 40 m/s to 49 m/s in increments of 1 m/s. The RF is then tested on two unseen Uj, e, of 44.2
m/s and 48.5 m/s, respectively. The results are then compared to those from RANS CFD simulations and TFF.

The viscosity ratios for TFF, RF, and CFD are shown in Figs. [5(a) and|6{a) for the Ujpnse; of 44.2 m/s and 48.5 m/s,
respectively, and at different downstream locations. The corresponding absolute errors are shown in Figs. [5(b) and [6[b),
respectively. The viscosity ratio trend for both these cases are similar, with RF having a lower absolute error when
compared to TFF. At the midsection of this domain, with midsection referring to y/H values between 3 and 5, RF has
the lowest absolute error. This error is around three orders of magnitude lower compared to TFF. In the remaining part
of the domain, RF is still better at predicting the viscosity ratios than TFF. However, this error is around four orders of
magnitude higher than the midsection. The L; ,.; of the viscosity ratio at various downstream locations for this case is
shown in Table |Z RF has approximately half the L, ,..; compared to TFF, with the exception of x/H = 1, where this
error is an order of magnitude lower for RF than for TFF.

Figures [7]and ] show the velocity ratios and its absolute errors at selected downstream locations, for the two selected
Uinier- RF again outperforms TFF in predicting the velocity ratios. However, unlike the viscosity ratios. the absolute

0 100 200 300 400 500
Vt/V Absolute error
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Fig. 5 Case I viscosity results at different x/H locations for inlet velocity of 44.2 m/s: (a) viscosity ratio values,
and (b) absolute errors.

—x/H =1
x/H =4
—x/H =6
—x/H =10

—CFD
o TFF
a RF

0 200 400 600 1078 1074 102 100 102 104
t Absolute error

(a) (b)

Fig. 6 Case I viscosity results at different x/H locations for inlet velocity of 48.5 m/s: (a) viscosity ratio values,
and (b) absolute errors.



Table 2 Case I relative L, norm of the viscosity ratio.

Model  Ujpier, m/s x/H=1 x/H=4 x/H=6 x/H=10

TFF 44.2 0.082 0.019 0.017 0.016
RF 44.2 0.008 0.007 0.007 0.006
TFF 48.5 0.104 0.020 0.018 0.017
RF 48.5 0.008 0.008 0.008 0.007
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Fig. 7 Case I velocity results at different x/H locations for inlet velocity of 44.2 m/s: (a) velocity ratio values,
and (b) absolute errors.
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Fig. 8 Case I velocity results at different x/H locations for inlet velocity of 48.5 m/s: (a) velocity ratio values,
and (b) absolute errors.

errors in velocity ratios for RF fluctuate by approximately three orders of magnitude, from lower to upper walls. The
L ,; for the velocity ratios for RF is more than a magnitude smaller than TFF and is shown in Table

RF is better as at predicting the pressure and skin friction coefficients on the lower wall of the backward facing step
for the different Ujye;. This is shown in Figs. 9, [I0, [TT and [T2] respectively. The pressure coefficient profile from
RF matches the CFD results well, while small differences can be seen using TFF (Figs. [9 and[10). The skin friction
coefficient profile too from RF matches the CFD results well as seen in Figs. [IT and[I2. The skin friction values are
heavily affected by the turbulent viscosity values near the wall. Near the walls, the turbulent viscosity is in the order of



Table 3 Case I relative L, norm of the velocity ratio.

Model  Ujpier, m/s x/H=1 x/H=4 x/H=6 x/H=10

TFF 44.2 0.086 0.072 0.071 0.066
RF 44.2 0.002 0.002 0.003 0.002
TFF 48.5 0.092 0.080 0.079 0.072
RF 48.5 0.004 0.005 0.006 0.006

0.05

-0.05

Absolute error

-0.2

-0.25

-0.3 e 1078 ‘ ‘ ‘
0 10 20 30 0 10 20 30

x/H x/H
(a) (b)

Fig. 9 Case I pressure results on bottom wall for inlet velocity of 44.2 m/s: (a) pressure coefficient values, and
(b) absolute errors.
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Fig. 10 Case I pressure results on bottom wall for inlet velocity of 48.5 m/s: (a) pressure coefficient values, and
(b) absolute errors.

magnitude of 1078, while the maximum turbulent viscosity is in the order of magnitude of 1073, Small changes in this
viscosity values near the wall can heavily impact the skin friction values. It is therefore crucial for the ML algorithms to
accurately predict the viscosity values near the walls of the domain. Table 4] shows the L; ,; for both the pressure and
skin friction coefficients. The pressure coefficients for RF is slightly less than one order of magnitude lower than TFF,
while for the skin friction coefficients, it is more than a magnitude smaller than TFF.

The computational cost involved in Case I is listed in Table El Since the same data is used for both TFF and RF, the
data accumulation time is the same. RF is faster to train than TFF. RF takes about 1 second the predict the entire flow
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Fig. 11 Case I skin friction results on bottom wall for inlet velocity of 44.2 m/s: (a) skin friction coefficient
values, and (b) absolute errors.
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Fig. 12 Case I skin friction results on bottom wall for inlet velocity of 48.5 m/s: (a) skin friction coefficient
values, and (b) absolute errors.

field. TFF, however, requires significantly more time for prediction due to the need to solve the continuity and moment
equations. This shows the enormous benefits of using RF in predicting the flow fields.

Table 4 Case I relative L, norm of the pressure and skin friction coefficients on the bottom wall.

Model Uinlet’ m/s Cp Cf

TFF 44.2 0.075 1.032
RF 44.2 0.008 0.034
TFF 48.5 0.092 1.049
RF 48.5 0.012 0.031

10



Table 5 Case I computational cost.

Model  Ujpjer, m/s Data Accumulation, s  Training, s  Prediction, s

CFD 44.2 - - 474
TFF 44.2 4,740 170 90
RF 44.2 4,740 70 1
CFD 48.5 - - 473
TFF 48.5 4,740 170 79
RF 48.5 4,740 70 1

B. Case II

For this case, the flow past a backward facing step is simulated as well. However, instead of varying Uj,, H is varied.
The remaining domain is also scaled accordingly as shown in Fig. [3] The Rey for this case varies between 18, 000 and
72,000, based on the selected H values.

The objective of this case is the same as the previous case, however, instead of predicting the flow field for a given
Uinier, it is predicted for a given H with a fixed Ujpjer 0of 44.2 m/s. The inputs to the RF for this case include x. /H, y. /H,
Up,Vvp,and H. The RF is trained with data from six different step heights, namely, H = 0.5h, 0.75h, 1.25h, 1.5h, 1.75h, 2h,
respectively. The RF is then tested with step heights 1.0h and 1.9h. The results are then compared to those from RANS
CFD simulations and TFF.

Figure I3 shows the viscosity ratio plots for H of 1.0h at different downstream locations. At the midsection, RF
has approximately two orders of magnitude lower absolute errors compared to TFF, while in the remaining sections,
TFF has two order of magnitude lower errors than RF. For the step height of 1.9h, similar trends can be seen in the
midsection as seen in Fig. @ However, in the remaining section, the difference in absolute errors between RF and TFF
is lower compared to a step height of 1.0h, with RF still having higher errors than TFF. TFF has a lower L, ,.; when
compared to RF. Between the two H, however, H of 1.9h has a significantly lower L; ,.; than 1.0h, for RF. This is due to
the lack of training data in the vicinity of 1.0h when compared to 1.9h.

Similar to the previous case, RF is better at predicting the velocity ratios than TFF as seen in Figs. [[5]and[16] This
can also be seen in the lower Ly ,.; for RF in Table[7] TFF is especially poor at prediction the velocities in the region
between y/H = 7 and the upper wall, as well as between y/H = 3 and the lower wall.

The pressure coefficient trends on the lower wall predicted by RF is more accurate compared to TFF as seen in Figs.
[[7]and[T8] Similar results can be seen for the skin friction coefficient profiles in Figs. [I9]and[20] For both the H, RF is
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Fig. 13 Case II viscosity results at different x/H locations for step height of 1.0h: (a) viscosity ratio values, and
(b) absolute errors.
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Fig. 14 Case II viscosity results at different x/H locations for a step height of 1.9h: (a) viscosity ratio values,
and (b) absolute errors.

Table 6 Case Il relative L, norm of the viscosity ratio.

Model H x/H=1 x/H=4 x/H=6 x/H=10
TFF  1.0h  0.032 0.018 0.017 0.014
RF 1.0h  0.236 0.238 0.234 0.233
TFF 1.9h 0.038 0.014 0.015 0.023
RF 1.9h  0.050 0.051 0.049 0.082

able to capture the pressure coefficient profile well, however, for the skin friction profile, H of 1.9h is captured better
than 1.0h. This is due to the lack of training data in the vicinity of 1.0h, as mentioned above. Table §]shows that RF has
consistently lower Lj ,.; than TFF.

The computational cost involved in Case II is listed in Table[9] Similar to Case I, RF is cheaper to both train on the
given dataset and to predict the flow field, when compared to TFF. RF is approximately three times cheaper to train than
TFF. RF takes about one second to predict the entire flow field, while TFF takes about 70 to 80 seconds for the same.

Absolute error

(b)

Fig. 15 Case II velocity results at different x/H locations for a step height of 1.0h: (a) velocity ratio values, and
(b) absolute errors.
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Fig. 16 Case II velocity ratio at different x/H locations for a step height of 1.9h: (a) velocity ratio values, and

(b) absolute errors.

Table 7 Case Il relative L, norm of the velocity ratio.

Model H x/H=1 x/H=4 x/H=6 x/H=10
TFF  1.0h  0.063 0.055 0.056 0.050
RF 1.0h  0.016 0.010 0.010 0.011
TFF  1.9h  0.065 0.061 0.059 0.056
RF 1.9h  0.002 0.002 0.003 0.002

IV. Conclusion
The multifidelity RF ML framework is presented in this study. Two different cases, both with flow past a backward
facing step is studied. In the first case, the inlet velocity to the domain is varied, while for the latter case, the step
height is varied. The low- and high-fidelity models used are the potential flow and the Spalart-Allmaras RANS model,
respectively. The results from this framework is compared to the TFF framework as well as RANS CFD simulations.
The errors from both these frameworks are quantified using the absolute and relative L, norm errors.

0.1

o TFF
a RF

Absolute error

-6 . .
30 10 0 10

-0.3 Q

20 30

Fig. 17 Case II pressure results on bottom wall for a step height of 1.0h: (a) pressure coefficient values, and
(b) absolute errors.
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Fig. 18 Case II pressure results on bottom wall for a step height of 1.9h: (a) pressure coefficient values, and
(b) absolute errors.
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Fig. 19 Case II skin friction results on bottom wall for a step height of 1.0h: (a) skin friction coefficient values,
and (b) absolute errors.

-3
10 x10 2 102
3 —CFD
° o TFF
9 = RF
o
5 9 =
[ o o
S04
5 10
o o
>
©
[72]
Ke}
<
108
_5 L
0 10 20 30 0 10 20 30
x/H x/H
(a) (b)

Fig. 20 Case II skin friction results on bottom wall for a step height of 1.9h: (a) skin friction coefficient values,
and (b) absolute errors.
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Table 8 Case Il relative L, norm of the pressure and skin friction coefficients on the bottom wall.

Model H (O Cy
TFF  1.0h 0.155 1.434
RF 1.0h  0.012 0.222
TFF  1.9h 0.102 0.927
RF 1.9h 0.005 0.055

Table 9 Case II computational cost.

Model H Data Accumulation, s Training, s Prediction, s

CFD 1.0h - - 476
TFF  1.0h 2,856 126 77
RF 1.0h 2,856 40 1
CFD 1.%5h - - 473
TFF  1.%h 2,856 126 70
RF 1.%h 2,856 40 1

For the first case, ten different inlet velocities are used to generate the data to train both RF and TFF. For the second
case, six different step heights are used. The inputs to the RF for the first case include the cell-center locations, the
potential flow velocities at the cell-centers, along with the inlet velocity value. For the second case, the cell-centers are
normalized with the step height, and the step height is used in place of the inlet velocity as inputs to the RF algorithm.
The output for both these cases are the same and include the RANS velocities, pressures, and turbulent viscosities. For
these two cases, RF outperformed TFF in predicting the various flow quantities, with the exception of the viscosity
ratios for the second case. RF also was cheaper to train on the given data and predict the flow field compared to TFF.

This study does not investigate the choice of input variables to the ML algorithms. The choice of these variables
significantly affects the predictive performance of the ML algorithms. A thorough investigation of these variables is
needed. Furthermore, this study does not investigate the number of design variables needed in order to accurately
predict the flow field. This needs to be done in order to quantify the appropriate number of CFD simulations needed to
generate the training data. Currently, only a flow past a backward facing step is studied. Other problems need to be
considered. In addition, the online half of this framework needs to be developed and applied to problems involving
global sensitivity analysis, uncertainty quantification and propagation, and aerodynamic design optimization.
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